
DIOPHANTINE GEOMETRY OVER GROUPS VII:

THE ELEMENTARY THEORY OF A HYPERBOLIC GROUP

Z. Sela1,2

This paper generalizes our work on the structure of sets of solutions to systems of

equations in a free group, projections of such sets, and the structure of elementary

sets defined over a free group, to a general torsion-free (Gromov) hyperbolic group.
In particular, we show that every definable set over such a group is in the Boolean

algebra generated by AE sets, prove that hyperbolicity is a first order invariant of

a finitely generated group, and obtain a classification of the elementary equivalence
classes of torsion-free hyperbolic groups. Finally, we present an effective procedure

to decide if two given torsion-free hyperbolic groups are elementarily equivalent.

In [18]-[24] we studied sets of solutions to systems of equations in a free group,
and developed basic techniques and objects that are required for the analysis of
sentences and elementary sets defined over a free group. The techniques we devel-
oped, enabled us to present an iterative procedure for a quantifier elimination for
predicates defined over a free group, and answer some of A. Tarski’s problems on
the elementary theory of a free group. We were also able to classify those finitely
generated groups that are elementarily equivalent to a free group.

In this paper we generalize our entire work from free groups to torsion-free
hyperbolic groups. In the first section we study limit groups over hyperbolic groups,
generalize Guba’s theorem on the equivalence of an infinite system of equations to
some finite subsystem [9], and associate a canonical Makanin-Razborov diagram
with a given system of equations defined over a torsion-free hyperbolic group. As
over free groups, this Makanin-Razborov diagram encodes the entire set of solutions
to the system.
In the second section we generalize Merzlyakov theorem on the existence of a
formal solution associated with a positive sentence [11], and the construction
of a formal solution to a general AE sentence which is known to be true over some
variety defined over a free group, presented in [19], to AE sentences that are known
to be true over some variety defined over a torsion-free hyperbolic group.
In the third section, we generalize our study of exceptional solutions of parametric
systems of equations defined over a free group [20], to hyperbolic groups. The
main result of this section is the existence of a global bound (independent of the
parameters specialization) on the number of families of exceptional solutions to
parametric systems of equations defined over a torsion-free hyperbolic group.

In the fourth section, we generalize the iterative procedure for validation of an
AE sentence defined over a free group, to AE sentences defined over a torsion-free
hyperbolic group. As over free groups, this terminating iterative procedure is the
basis for our analysis of elementary sets defined over a hyperbolic group.
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In the fifth section we generalize the construction of a core resolution, presented
in [22], to resolutions defined over a torsion-free hyperbolic group. In the sixth
section, we generalize the analysis of the Boolean algebra of AE sets defined over a
free group ([22],[23]), to study the Boolean algebra of AE sets defined over a torsion-
free hyperbolic group, and finally prove that every definable set over a torsion-free
hyperbolic group is in the Boolean algebra generated by AE sets.

In the seventh section we use the quantifier elimination obtained in the sixth
section, to study some basic properties of the elementary theory of a torsion-free
hyperbolic group. We prove that hyperbolicity is a first order invariant of a f.g.
group, i.e., we show that a f.g. group that is elementarily equivalent to a torsion-
free hyperbolic group must be hyperbolic as well. We continue by classifying all
the f.g. groups that are elementarily equivalent to a given torsion-free hyperbolic
group. We obtain this classification, by associating an elementary core with a given
torsion-free hyperbolic group, and prove that two torsion-free hyperbolic groups
are elementarily equivalent if and only if their elementary cores are isomorphic.
We conclude this section by proving that the universal theory of a torsion-free
hyperbolic group is decidable, and use it to construct an effective procedure to
decide if two given torsion-free hyperbolic groups are elementarily equivalent.

Some of the work presented in this paper has been generalized since it first
appeared. Emina Alibegovic has studied sets of solutions to systems of equations
over limit groups [1]. In a sequence of papers Daniel Groves has studied systems
of equations over torsion-free relatively hyperbolic groups with abelian parabolic
groups [8]. Francois Dahmani has given a simpler and more elegant solution to the
universal theory of a torsion-free hyperbolic group [5].

The work that is presented in this paper, was partially supported by an Israel
academy of sciences fellowship, and NSF grant no. DMS9729992 through the IAS.

§1. Γ-Limit Groups and their Makanin-Razborov Diagrams

Let Γ =< γ1, . . . , γk > be a torsion-free (Gromov) hyperbolic group, and let X
be its Cayley graph. LetG =< g1, . . . , gm > be a f.g. group. Let {hj} ⊂ Hom(G,Γ)
be a set of homomorphisms from G to Γ, and suppose that the homomorphisms
{hj} belong to distinct conjugacy classes (i.e., for every j1, j2, 1 ≤ j1 < j2, and
every γ ∈ Γ, γhj1γ

−1 6= hj2). For each index j we fix an element γj ∈ Γ having
”minimal displacement” under the action λhj

and set µj to be:

µj = max
1≤u≤m

dX(id., γjhj(gu)γj
−1) = min

γ∈Γ
max

1≤u≤m
dX(id., γhj(gu)γ−1)

Since the homomorphisms in the sequence {hj} ⊂ Hom(G,Γ) are non-conjugate,
the sequence of stretching factors {µj} does not contain a bounded subsequence.
We set {(Xj, xj)}

∞

j=1 to be the pointed metric spaces obtained by rescaling the

metric on the Cayley graph of Γ, (X, id.), by µj . (Xj, xj) is endowed with a left
isometric action of our f.g. group G via the homomorphisms τγj

◦ hj where τγj
is

the inner automorphism of Γ defined by γj . This sequence of actions of G on the
metric spaces {(Xj, xj)}

∞

j=1 allows us to obtain an action of G on a real tree by

passing to a Gromov-Hausdorff limit.

Proposition 1.1 ([13], 2.3). Let {Xj}
∞
j=1 be a sequence of δj-hyperbolic spaces

with δ∞ = lim δj = 0. Let H be a countable group isometrically acting on Xj.
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Suppose there exists a base point xj in Xj such that for every finite subset P of H,
the sets of geodesics between the images of xj under P form a sequence of totally
bounded metric spaces. Then there is a subsequence converging in the Gromov
topology to a δ∞-hyperbolic space X∞ endowed with a left isometric action of H.

Our spaces {(Xj, xj)}
∞
j=1 endowed with the left isometric action of G, satisfy

the assumptions of the proposition and they are all trees, so they are 0-hyperbolic,
hence, X∞ is a real tree endowed with an isometric action of G. By construction,
the action of G on the real tree X∞ is non-trivial. Let {jn}

∞
n=1 be the subsequence

for which {(Xjn
, xjn

)}∞n=1 converge to the limit real tree X∞, and let (Y, y0) denote
this (pointed) limit real tree. For convenience, for the rest of this section we denote
the homomorphism γjn

hjn
γjn

−1 : G→ Γ, by hn.

As we did in section 1 of [18], with the limit tree we obtained by using the
Gromov-Hausdorff topology we associate natural algebraic objects, the kernel of
the action of G on this (limit) real tree and the quotient of G by this kernel which
we call the (strict) Γ-limit group.

Definition 1.2. The kernel of the action of the group G on the limit tree Y is
defined to be:

K∞ = {g ∈ G | ∀y ∈ Y g(y) = y}

Having the kernel of the action, we define the (strict) Γ-limit group to be: L∞ =
G/K∞ and set η : G→ L∞ to be the natural quotient map.

The following simple facts on the kernel of the action and the (strict) limit group
are important observations, and their proof is identical to the proof of lemma 1.3
of [18].

Lemma 1.3. With notation of definition 1.2:

(i) L∞ is a f.g. group.
(ii) If Y is isometric to a real line then the (strict) limit group L∞ is f.g. free

abelian.
(iii) If g ∈ G stabilizes a tripod in Y then for all but at most finitely many

n’s g ∈ ker(hn) (recall that a tripod is a finite tree with 3 endpoints). In
particular, if g ∈ G stabilizes a tripod then g ∈ K∞.

(iv) Let g ∈ G be an element which does not belong to K∞. Then for all but at
most finitely many n’s g /∈ ker(hn).

(v) L∞ is torsion-free.
(vi) Let [y1, y2] ⊂ [y3, y4] be a pair of non-degenerate segments of Y and as-

sume the stabilizer of [y3, y4] in L∞, stab([y3, y4]), is non-trivial. Then
stab([y3, y4]) is an abelian subgroup of L∞ and:

stab([y1, y2]) = stab([y3, y4])

Hence, the action of L∞ on the real tree Y is stable.

In a torsion-free hyperbolic group every solvable subgroup is infinite cyclic and
every maximal cyclic subgroup is malnormal. These properties are naturally inher-
ited by the Γ-limit group L∞. The proof is identical to the proof of lemma 1.4 of
[18].
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Lemma 1.4. With the notation of definition 1.2:

(i) Let u1, u2, u3 be non-trivial elements of L∞, and suppose that [u1, u2] = 1
and [u1, u3] = 1. Then [u2, u3] = 1. It follows that every abelian subgroup
in L∞ is contained in a unique maximal abelian subgroup.

(ii) Every maximal abelian subgroup of L∞ is malnormal.
(iii) Every solvable subgroup of the (strict) Γ-limit group L∞ is abelian.

Proposition 1.3 shows that the action of L∞ on the real tree Y is stable. The
original analysis of stable actions of groups on real trees applies to f.p. groups ([3]),
and the limit group L∞ is only known to be f.g. at this point, by part (i) of lemma
1.3. Still, given the basic properties of the action of L∞ on the real tree Y that
we already know, we are able to apply a generalization of Rips’ work to f.g. groups
obtained in [25]. In [25], the real tree Y is divided into distinct components, where
on each component a subgroup of L∞ acts according to one of several canonical
types of actions. The theorem from [25] we present is going to be used extensively
in the next sections and its statement uses the notions and basic definitions appear
in the appendix of [15]. Hence, we refer a reader who is not yet familiar with these
notions to that appendix and to [3] and [2].

Theorem 1.5 ([25],3.1). Let G be a freely indecomposable f.g. group which admits
a stable isometric action on a real tree Y . Assume the stabilizer of each tripod in
Y is trivial.

1) There exist canonical orbits of subtrees of Y : Y1, . . . Yk with the following
properties:

(i) gYi intersects Yj at most in one point if i 6= j.
(ii) gYi is either identical with Yi or it intersects it at most in one point.

(iii) The action of stab (Yi) on Yi is either discrete or it is of axial type or
IET type.

2) G is the fundamental group of a graph of groups with:

(i) Vertices corresponding to orbits of branching points with non-trivial
stabilizer in Y .

(ii) Vertices corresponding to the orbits of the canonical subtrees Y1, . . . , Yk

which are of axial or IET type. The groups associated with these
vertices are conjugates of the stabilizers of these components. To a
stabilizer of an IET component there exists an associate 2-orbifold.
All boundary components and branching points in this associated 2-
orbifold stabilize points in Y . For each such stabilizer we add edges
that connect the vertex stabilized by it and the vertices stabilized by its
boundary components and branching points.

(iii) Edges corresponding to orbits of edges between branching points with
non-trivial stabilizer in the discrete part of Y with edge groups which
are conjugates of the stabilizers of these edges.

(iv) Edges corresponding to orbits of points of intersection between the or-
bits of Y1, . . . , Yk.

Before concluding our preliminary study of (strict) Γ-limit groups and their
action on the limit real tree, we present the following basic fact which is necessary
in the sequel. It’s proof is identical to the proof of lemma 1.6 of [18].
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Lemma 1.6. If L∞ is a (strict) Γ-limit group acting on a limit tree Y obtained
from a converging sequence of homomorphisms from a f.g. group G into a hyper-
bolic group Γ, and L∞ is freely-indecomposable, then stabilizers of non-degenerate
segments which lie in the complement of the discrete parts of Y are trivial in L∞.
Stabilizers of segments in the discrete components of Y are abelian subgroups of
L∞.

By theorem 1.5 and lemma 1.6 a non-trivial (strict) Γ-limit group admits a non-
trivial abelian decomposition. To further study the algebraic structure of a (strict)
Γ-limit group we need to construct its canonical abelian JSJ decomposition, in a
similar way to the construction of the abelian JSJ decomposition of a (Fk) limit
group ([18],2). Note that since a non-trivial (strict) Γ-limit group admits an abelian
decomposition, if a (strict) Γ-limit group is not abelian nor a surface group, its
abelian JSJ decomposition is non-trivial. To construct the JSJ decomposition of
a Γ-limit group we need to study some basic properties of abelian splittings. We
start with the following lemma, which is identical to lemma 2.1 of [18].

Lemma 1.7. Let L∞ be a (strict) Γ-limit group, let M be a maximal abelian
subgroup in L∞, and let A be an abelian subgroup of L∞. Then:

(i) If L∞ = U ∗A V and M is not cyclic then M can be conjugated into either
U or V .

(ii) If L∞ = U∗A and M is not cyclic then either M can be conjugated into U ,
or M can be conjugated to M ′, so that L∞ = U ∗A M ′.

By lemma 1.7 if we replace each abelian splitting of L∞ of the form L∞ = U∗A

in which A is a subgroup of a non-elliptic maximal abelian subgroup M by the
amalgamated product L∞ = U∗AM

′, we get that every non-cyclic abelian subgroup
of L∞ is elliptic in all the abelian splittings under consideration. This will allow us
to use acylindrical accessibility in analyzing all the abelian splittings of L∞.

Definition 1.8 [25]. A splitting of a group H is called k-acylindrical if for every
element h ∈ H which is not the identity, the fixed set of h when acting on the
Bass-Serre tree corresponding to the splitting has diameter at most k.

If a (strict) Γ-limit group L∞ = V1 ∗A1
V2 ∗A2

V3 ∗A3
V4, where A1, A2, A3 are

subgroups of a maximal abelian subgroup M that is a subgroup of V1, then one
can modify the corresponding graph of groups to a tripod of groups with V1 in the
center, and V2, V3, V4 at the 3 roots. Since by lemma 1.4 every maximal abelian
subgroup of L∞ is malnormal, the Bass-Serre tree corresponding to this tripod of
groups is 2-acylindrical. This sliding operation generalizes to an arbitrary (finite)
abelian splitting of a limit group.

Lemma 1.9. A splitting of L∞ in which all edge groups are abelian and all non-
cyclic abelian groups are elliptic can always be modified (by modifying boundary
monomorphisms by conjugations and sliding operations) to be 2-acylindrical.

Lemma 1.9 shows that if in all abelian splittings of L∞ under consideration, all
non-cyclic abelian subgroups are elliptic, these abelian splittings are 2-acylindrical.
By lemma 1.7 if we replace abelian splittings of L∞ having the form L∞ = U∗A

in which A is a subgroup of a non-elliptic maximal abelian subgroup by the amal-
gamated product L∞ = U ∗A M , we get that every non-cyclic abelian subgroup
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of L∞ is elliptic in all the abelian splittings under consideration. Hence, we may
assume that all abelian splittings of L∞ under consideration are 2-acylindrical. As
in our study of (Fk) limit groups, this acylindricity finally enables one to construct
the canonical abelian JSJ decomposition of a (strict) Γ-limit group (see section 2
of [18]).

Theorem 1.10 (cf. ([18],2.7)). Suppose that L∞ is a freely indecomposable
(strict) Γ-limit group. There exists a reduced unfolded splitting of L∞ with abelian
edge groups, which we call an abelian JSJ (Jaco-Shalen-Johannson) decomposition
of L∞ with the following properties:

(i) Every canonical maximal QH subgroup (CMQ) of L∞ is conjugate to a
vertex group in the JSJ decomposition. Every QH subgroup of L∞ can be
conjugated into one of the CMQ subgroups of L∞. Every vertex group in
the JSJ decomposition which is not a CMQ subgroup of L∞ is elliptic in
any abelian splitting of L∞ under consideration.

(ii) A one edge abelian splitting L∞ = D ∗A E or H∞ = D∗A under considera-
tion which is hyperbolic in another elementary abelian splitting is obtained
from the abelian JSJ decomposition of L∞ by cutting a 2-orbifold corre-
sponding to a CMQ subgroup of L∞ along a weakly essential s.c.c..

(iii) Let Θ be a one edge splitting along an abelian subgroup L∞ = D ∗A E or
L∞ = D∗A under consideration, which is elliptic with respect to any other
one edge abelian splitting of L∞ under consideration. Then Θ is obtained
from the JSJ decomposition of L∞ by a sequence of collapsings, foldings,
and conjugations.

(iv) If JSJ1 is another JSJ decomposition of L∞, then JSJ1 is obtained from
the JSJ decomposition by a sequence of slidings, conjugations and modifying
boundary monomorphisms by conjugations (see section 1 of [16] for these
notions)

In section 4 of [18] we were able to use the cyclic JSJ decomposition of a (Fk)
limit group, in order to show that (Fk) limit groups are f.p. and that a f.g. group
is a limit group if and only if it is ω-residually free. When Γ is a general torsion-
free hyperbolic group, Γ may contain f.g. subgroups that are not f.p. in which
case there are clearly (strict) Γ-limit groups that are not f.p. Still, the ascending
chain conditions that enable us to construct the Makanin-Razborov diagram of a
(Fk) limit group remain valid, and enable us to construct the (canonical) Makanin-
Razborov diagram of a general Γ-limit group.

Definition 1.11. Let Γ be a torsion-free hyperbolic group, and G a f.g. group. We
say that G is a Γ-limit group if G is isomorphic to a subgroup of Γ or if G is a
(strict) Γ-limit group.

We start the construction of the Makanin-Razborov diagram of a Γ-limit group
as in the construction of a Makanin-Razborov diagram of a (Fk) limit group. Let Γ
be a torsion-free hyperbolic group, and G a f.g. group. On the set of Γ-limit groups
we define a relation. Given two Γ-limit groups, R1, R2, that are quotients of G,
with prescribed maps ηi : G→ Ri, i = 1, 2 we say that R1 > R2, if there exists an
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epimorphism with non-trivial kernel: τ : R1 → R2, so that η2 = τ ◦ η1.

Theorem 1.12. Let Γ be a torsion-free hyperbolic group, and G a f.g. group. Every
decreasing sequence of Γ-limit groups that are quotients of G:

R1 > R2 > R3 > . . .

terminates after finitely many steps.

Proof: Suppose that there exists a f.g. group G and a torsion-free hyperbolic group
Γ, for which there exists an infinite decreasing sequence of Γ-limit groups that are
quotients of G: R1 > R2 > R3 > . . . . W.l.o.g. we may assume that the f.g.
group is a free group Fd, for some integer d. We fix such Γ, fix Fd, where d is
the minimal positive integer for which there exists an infinite descending chain of
Γ-limit quotients, and fix a free basis for Fd, Fd =< f1, . . . , fd >. We set C to be
the Cayley graph of Fd with respect to the given generating set, and look at an
infinite decreasing sequence constructed in the following way. We set R1 to be a
Γ-limit group with the following properties:

(1) R1 is a proper quotient of Fd.
(2) R1 can be extended to an infinite decreasing sequence of Γ-limit groups:

R1 > L2 > L3 > . . . .
(3) The map η1 : Fd → R1 maps to the identity the maximal number of elements

in the ball of radius 1 in the Cayley graph C, among all possible maps from
Fd to a Γ-limit group L that satisfies properties (1) and (2).

We continue iteratively. At step n, given the finite decreasing sequence R1 > R2 >
. . . > Rn−1, we choose the Γ-limit group Rn to satisfy:

(1) Rn is a proper quotient of Rn−1.
(2) The finite decreasing sequence of Γ-limit groups: R1 > R2 > . . . > Rn can

be extended to an infinite decreasing sequence.
(3) The map ηn : Fd → Rn (that is obtained as a composition of the map Fd →

R1 with the sequence of proper epimorphisms: Ri → Ri+1, i = 1, . . . , n−1)
maps to the identity the maximal number of elements in the ball of radius
n in the Cayley graph C, among all the possible maps from Fd to a Γ-limit
group Ln that satisfies properties (1) and (2).

With the decreasing sequence R1 > R2 > . . . we associate a sequence of homo-
morphisms {hn : Fd → Γ}. For each index n, Rn is a quotient of Fd, hence, Rn is
generated by d elements that are the image of the fixed generators of Fd under the
quotient map ηn.
Rn is a Γ-limit group, hence, either Rn can be embedded into Γ, or Rn is obtained
from a converging sequence of homomorphisms {us : Gn → Γ}, where Gn is a f.g.
group. In the second case, in which Rn is a (strict) Γ-limit group, since Rn is
generated by the image of the elements f1, . . . , fd under the quotient map ηn, for
large enough s, the images us(Gn) are d-generated subgroups of Γ, and furthermore,
they are generated by the images of d elements in the f.g. groupGn, that are mapped
by the quotient map νn : Gn → Rn onto the elements ηn(f1), . . . , ηn(fd). Hence,
we may assume that in both cases, the Γ-limit groups Rn are obtained as Γ-limit
groups from a sequence of homomorphisms {vs : Fd → Γ}, and the image of the
fixed generating set of the free group Fd, is the set of elements ηn(f1), . . . , ηn(fd).
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For each index n, we pick hn to be a homomorphism hn : Fd → Γ, so that hn

is a homomorphism vs : Fd → Γ for some large index s, so that hn satisfies the
following two conditions:

(i) every element in the ball of radius n of C, the Cayley graph of Fd, that is
mapped by the quotient map ηn : Fd → Rn to the trivial element, is mapped
by hn to the trivial element in Γ. Every such element that is mapped to a
non-trivial element by ηn, is mapped by hn to a non-trivial element in Γ.

(ii) there exists an element f ∈ Fd, that is mapped to the trivial element by
ηn+1 : Fd → Rn+1, for which hn(f) 6= 1.

To prove theorem 1.12, we will show that the last descending sequence we con-
structed terminates after finitely many steps.

By construction, the set of homomorphisms {hn : Fd → Γ} does not belong to
a finite set of conjugacy classes. Hence, from the sequence {hn} we can extract a
subsequence that converges into a (strict) Γ-limit group, that we denote R∞. By
construction, the Γ-limit group R∞ is the direct limit of the sequence of (proper)
epimorphisms:

Fd → R1 → R2 → . . .

Let η∞ : Fd → R∞ be the canonical quotient map. Our approach towards
proving the termination of descending chains of Γ-limit groups is based on studying
the structure of the (strict) Γ-limit group R∞, and its associated quotient map η∞.
We start this study by listing some basic properties of them.

Lemma 1.13.

(i) the set of homomorphisms {hn : Fd → Γ} do not belong to finitely many
conjugacy classes, hence, R∞ is a (strict) Γ-limit group.

(ii) R∞ is not finitely presented.
(iii) R∞ can not be presented as the free product of a f.p. group and freely inde-

composable Γ-limit groups that do not admit an abelian splitting.
(iv) Let R∞ = U1 ∗ . . .∗Ut ∗F be the most refined (Grushko) free decomposition

of R∞, where F is a f.g. free group. Then there exists an index j, 1 ≤ j ≤ t,
for which:
(1) Uj is not finitely presented.
(2) If B is a f.g. subgroup of Fd for which η∞(B) = Uj, then the re-

strictions hn|B do not belong to finitely many conjugacy classes. Fur-
thermore, if b1, . . . , bp is a generating set for B, then for every index
n, hn(B) is not isomorphic to η∞(B) by an isomorphism that sends
hn(bj) to η∞(bj) for j = 1, . . . , p.

Proof: Part (i) follows from the construction of the sequence {hn : Fd → Γ}, since
for every index n0, there exists some element f ∈ Fd, so that hn0

(f) 6= 1 and for
some index n1 > n0 and every index n > n1, hn(f) = 1. To prove part (ii), suppose
that R∞ is f.p. i.e.:

R∞ = < g1, . . . , gd | r1, . . . , rs > .

Then for some index n0, and every index n > n0, hn(rj) = 1 for j = 1, . . . , s. This
implies that for some index n1 > n0, and every index n > n1, each of the groups
Rn is a quotient of R∞, by a quotient map that send the generating set g1, . . . , gd

of R∞ to the elements ηn(f1), . . . , ηn(fd), a contradiction.
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Suppose that R∞ = V1 ∗ . . .∗Vt ∗M where M is f.p. and each of the factors Vj is
freely indecomposable and does not admit an abelian splitting. Let B1, . . . , Bt and
D be f.g. subgroups of Fd, for which η∞(Bj) = Vj for j = 1, . . . , t, and η∞(D) = M .
W.l.o.g. we may assume that the free group Fd is generated by the collection of
the subgroups B1, . . . , Bt, D.
Since the freely-indecomposable subgroups Vj do not admit an abelian splitting,
they are not strict Γ-limit groups. Hence, for every index j, j = 1, . . . , t, there
exists an index nj , so that for every index n > nj , the image hn(Bj) is isomorphic
to the factor Vj , via the isomorphism η∞ ◦ h−1

n .
The factorM is assumed f.p., hence, ifD =< d1, . . . , ds >, thenM =< d1, . . . , ds | r1, . . . , ru >.
There exists an index n0, for which for every index n > n0, hn(ri) = 1, for
i = 1, . . . , u.

Let m0 > nj for j = 0, . . . , t. By construction, there exists an element f ∈ Fd,
for which hm0

(f) 6= 1 and ηm(f) = 1 for every m > m0. Since hm0
(f) 6= 1,

η∞(f) 6= 1, which clearly contradicts the fact that ηm(f) = 1 for every m > m0,
Since R∞ is a proper quotient of all the Γ-limit groups Rm, and proves part (iii) of
the lemma. Part (iv) follows by exactly the same argument.

�

R∞ is a Γ-limit group that is a (proper) quotient of all the Γ-limit groups,
Rn. For each index n, the limit group Rn was chosen to maximize the number
of elements that are mapped to the identity in the ball of radius n of Fd by the
quotient map ηn : Fd → Rn, among all the proper Γ-limit quotients of Rn−1 that
admit an infinite descending chain of Γ-limit groups. If R∞ admits an infinite
descending chain of Γ-limit groups:

R∞ → L1 → L2 → . . .

then the Γ-limit group L1 admits an infinite descending chain sequence of Γ-limit
groups, and since it is a proper quotient of R∞, for large enough index n, the
quotient map νn : Fd → L1 maps to the identity strictly more elements of the ball
of radius n in the Cayley graph of Fd, than the map ηn : Fd → Rn, a contradiction.
Hence, R∞ does not admit an infinite descending chain of Γ-limit groups.

To continue the proof of theorem 1.12, i.e., to contradict the existence of the
infinite descending chain of Γ-limit groups that we constructed, we need a modifi-
cation of the shortening procedure that was used in [18] for (Fk) limit groups. The
shortening procedure is presented in section 3 of [18], and is used there to prove
that a freely indecomposable, non-abelian (Fk) limit group admits a cyclic splitting.
Since the description of the shortening procedure is rather long and involved, we
prefer not to repeat it, and refer the interested reader to section 3 of [18]. The same
construction that appears in [18] applies to Γ-limit groups (where Γ is torsion-free
hyperbolic).
Given a f.g. group G, a torsion-free hyperbolic group Γ, and a sequence of homo-
morphisms {us : G → Γ}, that converges into a Γ-limit group L∞, the shortening
procedure constructs another (sub) sequence of homomorphisms from a free group
Fd (where the f.g. group G is generated by d elements), {vsn

: Fd → Γ}, so that
the sequence of homomorphisms vsn

converges to a Γ-limit group SQ∞, and there
exists a natural epimorphism L∞ → SQ∞.

Definition 1.14. We call the Γ-limit group SQ∞, obtained by the shortening pro-
cedure, a shortening quotient of the Γ-limit group L∞.
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By construction, a shortening quotient of a Γ-limit group is, in particular, a
quotient of that Γ-limit group. In the case of Fk-limit groups, a shortening quotient
is always a proper quotient ([18],5.3). If the Γ-limit group we start with, L∞, is
non-cyclic and freely-indecomposable, and the sequence of homomorphisms do not
”stabilize in a finite time”, a shortening quotient of L∞ is a proper quotient of it.

Proposition 1.15. Let G be a f.g. group, let Γ be a torsion-free hyperbolic group,
and let {us : G → Γ} be a sequence of homomorphisms that converges into an
action of a non-cyclic, freely-indecomposable (strict) Γ-limit group L on some real
tree Y . If for every index s, us(G) is not isomorphic to L by the natural map that
sends the images of the generators of G in us(G) to the images of these generators
in L, then every shortening quotient of L, obtained from the sequence {us}, is a
proper quotient of L.

Proof: Suppose that the f.g. group G is generated by d elements. A shortening
quotient SQ of L is obtained from a sequence of homomorphisms {vsn

: Fd → Γ}
that converges into SQ. By construction, the shortening quotient SQ is a quotient
of the Γ-limit group L. If the sequence of homomorphisms {vsn

} do not belong
to finitely many conjugacy classes, then the shortening quotient SQ is a proper
quotient of L by the shortening argument that is used in the proof of theorem 5.3
in [18]. Hence, by possibly passing to a subsequence, we may assume that the
homomorphisms {vsn

} are pairwise conjugate. In this case, if SQ is isomorphic to
the Γ-limit group L, then vsn

(Fd) is isomorphic to L for every index n, so for large
enough n, the image usn

(G) is isomorphic to L by an isomorphism that sends the
images of the generators of G in usn

(G) to the images of these generators in L, a
contradiction.

�

The shortening procedure, and proposition 1.15, enable us to show that from the
sequence of homomorphisms {hn : Fd → Γ} it is possible to extract a subsequence
that factors through a finite resolution of the Γ-limit group R∞.

Proposition 1.16. Let {hn : Fd → Γ} be the sequence of homomorphisms con-
structed above. Then there exists a finite sequence of Γ-limit groups:

R∞ → L1 → L2 → . . .→ Ls

for which:

(i) The epimorphisms along the sequence are proper epimorphisms.
(ii) Let Ls = H1 ∗ . . . ∗ Hr ∗ Ft be the (possibly trivial) Grushko’s free decom-

position of the terminal Γ-limit group Ls. Then there exists a subsequence,
{hnt

}, of the homomorphisms {hn : Fd → Γ} so that each of the homomor-
phisms hnt

can be written in the form:

hnt
= νt ◦ ηs−1 ◦ ϕ

t
s−1 ◦ ηs−2 ◦ . . . ◦ ϕ

t
1 ◦ η∞

where ϕt
i is a modular automorphism of the Γ-limit group Li for 1 ≤ i ≤

s−1, and νt is a homomorphism νt : Ls → Γ, that embeds each of the freely
indecomposable factors Hj of Ls into Γ.

(iii) the sequence of homomorphisms hnt
: Fd → Γ converges into a faith-

ful action of the Γ-limit group R∞ on a real tree Y . Furthermore, the
10



entire sequence of homomorphisms hnt
factors through the epimorphism

η∞ : Fd → R∞, i.e., for every index t, hnt
= ĥt ◦ η∞, where ĥt is a

homomorphism ĥt : R∞ → Γ.

Proof: By lemma 1.13 and proposition 1.15 a shortening quotient of R∞ is a
proper quotient of it. Hence, we set L1 to be a shortening quotient of R∞. If
from the sequence of (shortened) homomorphisms that was used to construct L1,
it’s possible to extract a subsequence that satisfy the properties of lemma 1.13,
we continue with this subsequence, and use it to get a shortening quotient L2 of
L1, which by proposition 1.15, is a proper quotient of L1. Continuing this process
iteratively, and recalling that every sequence of proper Γ-quotients terminates after
finitely many steps, we finally get the sequence of proper epimorphisms:

R∞ → L1 → L2 → . . .→ Ls.

Let {νn : Fd → Γ} be the sequence of homomorphisms that was used to construct
the terminal shortening quotient Ls. Let Ls = H1 ∗ . . . ∗Hr ∗ Ft be the (possibly
trivial) Grushko’s decomposition of Ls. Since Ls is a terminal shortening quotient,
from the sequence of homomorphisms {νn} that was used to construct Ls, it is
not possible to extract a subsequence that satisfies the properties of lemma 1.13.
Hence, if Bj is a subgroup of Fd that is mapped onto a factor Hj by the associated
quotient map λs : Fd → Ls, then there exists some index nj , so that for every index

n > nj, hn(Bj) is isomorphic to Hj by the map λs ◦ hn|Bj

−1
.

We prove part (ii) of the proposition by induction on the number of levels in the
sequence: R∞ → L1 → . . . → Ls. If the sequence has length 1, i.e., if R∞ = Ls,
the claim of part (ii) follows from the argument given above, i.e., it follows since
R∞ = Ls does not admit a proper shortening quotient. Suppose the claim of part
(ii) holds for the partial sequence: Lj+1 → . . .→ Ls. Since every non-trivial abelian
subgroup of a torsion-free hyperbolic group is infinite cyclic, it follows that every
abelian subgroup of the Γ-limit group Lj is a f.g. free abelian group. Therefore,
every vertex group in the abelian JSJ decomposition of Lj is finitely generated.
Hence, by our induction hypothesis, the claim of the proposition holds for the
restriction of the homomorphism to the pre-image of every non-abelian, non-QH
vertex group in the abelian JSJ decomposition of Lj . Since the claim holds for
every non-abelian, non-QH vertex group and all the other vertex groups and edge
groups in the abelian JSJ decomposition of Lj are f.p. the claim of the proposition
is valid for Lj . Therefore, by induction it holds for a subsequence of the original
sequence of homomorphisms from R∞ to Γ. Finally, part (iii) of the proposition is
a direct consequence of part (ii).

�

The homomorphisms {hn : Fd → Γ} were chosen so that for every index n, there
exists some element f ∈ Fd, for which ηn+1(f) = 1 and hn(f) 6= 1. Since R∞ is a
(proper) quotient of all the Γ-limit groups Rn, for every index n and every element
f ∈ Fd, if ηn+1(f) = 1 then η∞(f) = 1. By part (iii) of proposition 1.16, from the
sequence {hn} it is possible to extract a subsequence {hnt

: Fd → Γ}, that factors

through the Γ-limit group R∞, i.e., hnt
= ĥt ◦ η∞, where ĥt : R∞ → Γ. Hence,

for every index t, and every element f ∈ Fd, if ηnt+1(f) = 1 then η∞(f) = 1, so
hnt

(f) = 1, a contradiction to the construction of the homomorphisms {hn}, which
finally concludes the proof of theorem 1.12.

11



�

Theorem 1.12 clearly implies that a Γ-limit group is Hopf, i.e., that every epi-
morphism from a Γ-limit group onto itself is an automorphism. Therefore, the
relation defined on Γ-limit groups is indeed a partial order.

Let Γ =< γ1, . . . , γk > be a torsion-free hyperbolic group with a Cayley graph
X , and let G =< g1, . . . , gm > be a f.g. group. To analyze the entire set of
homomorphisms from the f.g. group G into the hyperbolic group Γ, we start with
the following theorem that generalizes proposition 1.16, and associates a resolution
with a subsequence of a given sequence of homomorphisms from G to Γ.

Theorem 1.17. Let G be a f.g. group, let Γ be a torsion-free hyperbolic group, and
let {hn | hn : G → Γ} be a sequence of homomorphisms from G into Γ. Then there
exists a finite sequence of Γ-limit groups:

G→ L1 → L2 → . . .→ Ls

for which:

(i) η0 : G→ L1 is an epimorphism and ηi : Li → Li+1 is a proper epimorphism
for 1 ≤ i ≤ s− 1.

(ii) Let Ls = H1 ∗ . . .∗Hr ∗Ft be the (possibly trivial) Grushko’s free decomposi-
tion of the terminal Γ-limit group Ls. Then there exists a subsequence {hnt

}
of the homomorphisms {hn : G → Γ} so that each of the homomorphisms
hnt

can be written in the form:

hnt
= νt ◦ ηs−1 ◦ ϕ

t
s−1 ◦ ηs−2 ◦ . . . ◦ ϕ

t
1 ◦ η0

where ϕt
i is a modular automorphism of the Γ-limit group Li for 1 ≤ i ≤

s−1, and νt is a homomorphism νt : Ls → Γ, that embeds each of the freely
indecomposable factors Hj of Ls into Γ.

(iii) the sequence of homomorphisms hnt
: G→ Γ converges into a faithful action

of the Γ-limit group L1 on a real tree Y1. Furthermore, the entire sequence
of homomorphisms hnt

factor through the epimorphism η0 : G → L1, i.e.,

for every index t, hnt
= ĥt ◦ η0, where ĥt is a homomorphism ĥt : L1 → Γ.

Proof: A subsequence of the homomorphisms {hn} converges into an action of a
Γ-limit group L1 on some real tree. If there exists a subsequence of that sequence
that satisfies the properties listed in lemma 1.13, we use it to get a shortening
quotient L2, which by proposition 1.15 is a proper quotient of L1. We continue
iteratively obtaining proper shortening quotients that are proper quotients, and by
theorem 1.12 the process terminates after finitely many steps. This give us the
sequence:

G→ L1 → L2 → . . . Ls.

Parts (ii) and (iii) of the theorem follow by the argument that was used to prove
proposition 1.16.

�

Theorems 1.12 and 1.17 enable us to obtain the ascending chain conditions that
are needed in order to construct the (canonical) Makanin-Razborov diagram asso-
ciated with a system of equations over a torsion-free hyperbolic group. We start
with two immediate implications.
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Let Γ be a non-elementary torsion-free hyperbolic group. A f.g. group G is called
ω-residually Γ if for any finite set of elements g1, . . . , gn ∈ G, there exists a homo-
morphism h : G→ Γ that maps these elements into distinct elements in Γ.

Proposition 1.18. Let Γ be a non-elementary torsion-free hyperbolic group. A
f.g. group G is ω-residually Γ if and only if it is a Γ-limit group.

Proof: From the definition of an ω-residually Γ group, an ω-residually Γ group is
a Γ-limit group. Suppose G is a Γ-limit group. Then G is obtained as a limit of a
sequence of homomorphisms {hn : U → Γ}. By theorem 1.17, by further passing to
a subsequence (still denoted {hn}) we may assume that all these homomorphisms
factor through the Γ-limit group G. Since the sequence converges into G, for
every finite set of elements of G, there exists some n0, so that for every n > n0,
the homomorphism hn maps the finite set into distinct elements. Hence, G is
ω-residually Γ.

�

Proposition 1.19. Let Γ be a non-elementary torsion-free hyperbolic group. Then
there are countably many Γ-limit groups.

Proof: A f.g. group has only countable f.g. subgroups. Since by theorem 1.16 ev-
ery Γ-limit group is obtained from finitely many f.g. subgroups of Γ using finitely
many iterations of free products and amalgamated free products and HNN exten-
sions along (f.g.) abelian subgroups, and free products and amalgamated products
with surface groups and f.g. abelian groups, there are only countably many Γ-limit
groups.

�

We continue by proving that there are maximal elements in the set of all Γ-limit
groups that are all quotients of a (fixed) f.g. group G, and that there are only
finitely many equivalence classes of such maximal elements.

Proposition 1.20. Let G be a f.g. group and Γ a torsion-free hyperbolic group. Let
R1, R2, . . . be a sequence of Γ-limit groups that are all quotients of the f.g. group
G, and for which:

R1 < R2 < . . .

Then there exists a Γ-limit group R that is a quotient of G, so that for every index
m, R > Rm.

Proof: For each Γ-limit group Rm, we choose a homomorphism hm : G→ Γ, that
factors through the quotient map ηm : G → Rm, i.e., hm = h′m ◦ ηm, so that h′m
maps the elements in a ball of radius m in Rm into distinct elements in γ.

A subsequence of the homomorphisms {hm} converges into a Γ-limit group R, which
is a Γ-limit quotient of G, and by theorem 1.17 we may assume that they all factor
through the quotient map η : G → R. Hence, by construction, R > Rm for every
index m.

�

The combination of propositions 1.19 and 1.20 implies that there are maximal
elements in the set of Γ-limit groups obtained from sequences of homomorphisms
from a fixed f.g. group G into Γ. Recall that we say that two Γ-limit quotients

13



of G, η1 : G → R1, η2 : G → R2, are equivalent, if there exists an isomorphism
τ : R1 → R2, so that η2 = τ ◦ η1.

Proposition 1.21. Let G be a f.g. group, and Γ a torsion-free hyperbolic group.
Then there are only finitely many equivalence classes of maximal elements in the
set of Γ-limit groups that are quotients of G.

Proof: LetG be a f.g group, andR1, R2, . . . an infinite sequence of (non-equivalent)
maximal Γ-limit quotients of it. Each Ri is equipped with a given quotient map
ηi : G→ Ri, hence, fixing a generating set for G, we fix a generating set in each of
the Ri’s. i.e., we have maps νi : Fd → Ri.

For each index i we look at the collection of words of length 1 in Fd that are
mapped to the identity by νi. There is a subsequence of the Ri’s for which this
(finite) collection of words is identical. Starting with this subsequence, for each
Ri we look at the collection of words of length 2 in Fd that are mapped to the
identity by νi, and again there is a subsequence for which this (finite) collection is
identical. We continue with this process for all lengths ℓ of words in Fd, and look
at the diagonal sequence (that we still denote R1, R2, . . . ).

First, we choose homomorphisms hi : Fd → Γ so that for words w of length at
most i, hi(w) = 1 iff ηi(w) = 1, and hi factors through the quotient map Fd → G.
(we can do that since Ri is a limit quotient of G). After passing to a subsequence
the homo. hi converge into a Γ-limit quotient M of G. Note that in the (canonical)
map Fd →M , the elements of length at most i that are mapped to the identity are
precisely those that are mapped to the identity by the map Fd → Ri.

Now, R1, R2, . . . are maximal limit quotients, so all (but at most 1) are not
equivalent to M (by omitting the one that is equivalent to M we may assume that
they are all not equivalent to M). We construct a new set of homo. τi : Fd → Γ
that factor through the quotient map Fd → G. First, τi has the same property as
hi, i.e., the elements of length at most i that are mapped to the identity by τi are
precisely those that are mapped to the identity by Fd → Ri. Second, since Ri is
maximal and is not equivalent to M , there must exist some element ui ∈ Fd so that
ui is mapped to the identity in M , but ui is mapped to a non-trivial element in Ri.
We require that τi(ui) 6= 1.

We look at a subsequence of the homo. τi that satisfy the conclusion of 1.17
(still denoted τi). This subsequence converges into a limit group that has to be M ,
and (by 1.17) they all factor through M . But that contradicts τi(ui) 6= 1.

�

As a corollary of proposition 1.21 and theorem 1.12, we get a generalization
of Guba’s theorem [9] for systems of equations over a free group, to an arbitrary
torsion-free hyperbolic group.

Theorem 1.22. Let Γ be a torsion-free hyperbolic group. Then every infinite sys-
tem of equations in finitely many variables Σ over Γ, is equivalent to a finite sub-
system of Σ.

Proof: Going over the equations in the system Σ, we iteratively construct a di-
rected locally finite tree. We start with the first equation, and with it we associate
a one relator group G1, generated by the variables of the system, with one relator
that corresponds to the first equation of the system Σ. By proposition 1.21, with
G1 we associate its finite collection of maximal Γ-limit quotients R1, . . . , Rm. With
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this collection, we associate a directed finite rooted tree, where in the root we place
the group G1 and in each of the other nodes we place its maximal Γ-limit quotients,
each connected to the root by an edge directed from the root to the node.

We continue with the second equation w2 in the system Σ, and with each of the
maximal Γ-limit quotients R1, . . . , Rm, in parallel. If w2 represents the trivial word
in the group Ri, we leave it unchanged. If w2 is non-trivial in Ri, we set R̂i to
be the (proper) quotient group R̂i = Ri/ < w2 >. With R̂i we associate its finite
collection of maximal Γ-limit quotients L1, . . . , Lt, which are all proper quotients
of the Γ-limit group Ri. We further extend the locally finite tree, by adding new
vertices labeled by L1, . . . , Lt, and connecting each of them by an edge directed
from vertex labeled by Ri to the vertex labeled by Li.

Continuing iteratively by adding the equations in Σ, we finally construct a locally
finite tree. By theorem 1.12 every (directed) path in this locally finite tree is finite,
hence, by Konig’s lemma, the locally finite tree is finite. Therefore, the construction
of the locally finite tree terminates after finitely many steps, so the infinite system
Σ is equivalent to some finite subsystem.

�

To study the entire collection of homomorphisms from a given f.g. group into a
hyperbolic group, we need to find a way to ”encode” this collection. To get such
”encoding” we will construct a canonical diagram associated with a Γ-limit group,
in a similar way to the construction of the Makanin-Razborov diagram for an (Fk)
limit group ([18],5).

Let R be a freely-indecomposable Γ-limit group and let r1, . . . , rm ∈ R be a
generating set of R. To analyze the entire set of homomorphisms from R to Γ, we
will need to look at the set of shortening quotients of R. However, we won’t need
to look at all the shortening quotients of R, but only those shortening quotients
obtained from sequences of homomorphisms {hn : R → Γ}, for which for every
index n, hn(R) is a proper quotient of R, i.e., those homomorphisms that do not
embed R in Γ. Note that by theorem 1.15 every such shortening quotient is a
proper quotient of R. For the rest of this section we will restrict our attention to
those (proper) shortening quotients.

Following [18], we say that two (proper) shortening quotients S1, S2 of the Γ-limit
group R are equivalent, if there exists an isomorphism τ : S1 → S2, so that the
canonical map η2 : R→ S2 can be expressed as η2 = τ ◦ η1 ◦ϕ, where ϕ ∈Mod(R)
and η1 : R → S1 is the canonical map associated with the shortening quotient
S1. The notion of equivalent shortening quotients is clearly an equivalence relation
on the set of couples of shortening quotients and their associated canonical maps:
{(Si, ηi : R→ Si)} of the Γ-limit group R.

Let SQ(R, r1, . . . , rm) be the set of (proper) shortening quotients of R. On the
set SQ(R, r1, . . . , rm) we define a partial order similar to the one defined on Γ-limit
groups. Given two shortening quotients S1, S2 ∈ SQ(R, r1, . . . , rm), we say that
S1 > S2 if S2 is a proper quotient of S1 and the canonical map η2 : R → S2 splits
as η2 = ν ◦ η1 where η1 : R → S1 is the canonical map associated with S1 and
ν : S1 → S2 is a proper epimorphism.

Lemma 1.23. Let R be a freely-indecomposable Γ-limit group. Let S1 < S2 <
S3 < . . . (where Sj ∈ SQ(R, r1, . . . , rm)) be a properly increasing sequence of
(proper) shortening quotients of R. Then there exists a shortening quotient S ∈
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SQ(R, r1, . . . , rm) so that S > Sj for every shortening quotient Sj in the increasing
sequence.

Proof: Identical to the proof of proposition 1.20.
�

Lemma 1.23 proves the existence of maximal elements with respect to the par-
tial order on the set of (proper) shortening quotients SQ(R, r1, . . . , rm). The next
lemma shows that there are only finitely many equivalence classes of maximal ele-
ments in the set of (proper) shortening quotients.

Lemma 1.24. Let R be a freely-indecomposable Γ-limit group. The set of (proper)
shortening quotients of R, SQ(R, r1, . . . , rm), contains only finitely many equiva-
lence classes of maximal elements with respect to its partial order.

Proof: Identical to the proof of proposition 1.21.
�

The main significance of maximal shortening quotients is the way they ”encode”
and simplify all the homomorphisms from a freely-indecomposable Γ-limit group
into a (torsion-free) hyperbolic group.

Proposition 1.25. Let R be a freely-indecomposable Γ-limit group. Let r1, . . . , rm ∈
R be a generating set of R, let M1, . . . ,Mk be a collection of representatives of
the (finite) set of equivalence classes of maximal (proper) shortening quotients in
SQ(R, r1, . . . , rm), and for i = 1, . . . , k let ηi : R → Mi be the canonical quotient
maps.
Let h : R → Γ be a homomorphism which is not an embedding. Then there exists
some index 1 ≤ i ≤ k (not necessarily unique!) and a modular automorphism
ϕh ∈ Mod(R) so that h ◦ ϕh splits through the maximal shortening quotient Mi.
i.e., h ◦ ϕh = hMi

◦ ηi where hMi
: Mi → Γ is a homomorphism.

Proof: Identical to the proof of proposition 5.6 in [18].
�

The shortening procedure and the lemmas and propositions proved so far in
this section finally allow us to present the main goal of this section, the (canoni-
cal) Makanin-Razborov diagram associated with a f.g. group G and a torsion-free
hyperbolic group Γ. The Makanin-Razborov diagram ”encodes” all possible homo-
morphisms from G into Γ, and as we will see later, some of its properties can be
stated as a criteria for a general f.g. group to be a Γ-limit group.

Let G be a f.g. limit group and Γ a torsion-free hyperbolic group. By proposi-
tion 1.21 G has finitely many (equivalence classes of) maximal Γ-limit quotients,
R1, . . . , Rs. We continue with each of the maximal Γ-limit quotients in parallel,
so we omit their index, and denote the maximal Γ-limit quotient of G we continue
with by R. Suppose that R = H1 ∗ . . .Hℓ ∗Fg1

is the Grushko’s factorization of R,
where each of the Hi’s is a freely-indecomposable non-cyclic subgroup of R and Fg1

is a free group. Let r11, . . . , r
1
m1

∈ R be a generating set of H1, r
2
1, . . . , r

2
m2

be a gen-
erating set of H2 etc. . By lemma 1.23 the sets of (proper) shortening quotients of
the freely-indecomposable generalized Γ-limit groups H1, . . . , Hℓ contain maximal
elements (with respect to the partial order defined above), and by lemma 1.24 there
are only finitely many equivalence classes of maximal (proper) shortening quotients
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of each of the Γ-limit groups H1, . . . , Hℓ. For i = 1, . . . , ℓ let M i
1, . . . ,M

i
ki

be a
collection of representatives of equivalence classes of maximal (proper) shortening
quotients in SQ(Hi, r

i
1, . . . , r

i
mi

), and let ηi
j : Hi →M i

j be the canonical projection
maps.

We define the Makanin-Razborov diagram of G iteratively. We start by map-
ping G into its finite collection of maximal Γ-limit quotients, and continue with
each of the maximal Γ-limit quotients (which we denote R) in parallel. We con-
tinue by factoring R into its freely-indecomposable factors H1, . . . , Hℓ and the free
factor Fg. From each of the factors Hi we associate ki directed edges, starting at
Hi and terminating at the maximal (proper) shortening quotient M i

j . To each such

directed edge we associate the canonical quotient ηi
j . Note that we do not proceed

from the free factor Fg1
.

We proceed iteratively. We factor each of the M i
j ’s into freely-indecomposable fac-

tors and associate with each such factor representatives for its equivalence classes
of maximal (proper) shortening quotients. Since each (proper) shortening quotient
of a Γ-limit group is a proper quotient of that Γ-limit group, and each sequence of
properly decreasing sequence of Γ-limit groups terminates by theorem 1.12, the con-
struction of the Makanin-Razborov diagram terminates after finitely many steps.
Finally, the Makanin-Razborov diagram of a f.g. group encodes all the homomor-
phisms from it into a given torsion-free hyperbolic group.

Theorem 1.26. Let G be a f.g. group. All the homomorphisms h : G→ Γ are given
by compositions of modular automorphisms of the Γ-limit groups in the diagram with
the canonical maps from the Γ-limit groups into their maximal (proper) shortening
quotients and finally with either embeddings of a Γ-limit group in the diagram into
Γ, or general homomorphisms (”substitutions”) of the terminal free groups that
appear in the diagram into Γ.

The (canonical) Makanin-Razborov diagram associated with a f.g. group, encodes
all the homomorphisms from that f.g. group into the torsion-free hyperbolic group
Γ. Some specific subdiagrams of it can be viewed as a criteria for a general f.g.
group to be a Γ-limit group.

Definition 1.27. A subdiagram of the Makanin-Razborov diagram in which we
choose a unique maximal shortening quotient R of G, and for each free factor Hi

of the limit group R we choose a unique edge connecting Hi to one of its maxi-
mal (proper) shortening quotients, and proceed iteratively choosing only one max-
imal (proper) shortening quotient at each stage, is called a Makanin-Razborov
resolution.

To present a criteria for a f.g. group to be a Γ-limit group we need to show
the existence of special type of Makanin-Razborov resolutions which we call strict
Makanin-Razborov resolutions.

Definition 1.28. Let R be a freely-indecomposable Γ-limit group. We say that a
(proper) shortening quotient S of R is a strict shortening quotient if:

(i) The subgroups generated by each non-CMQ, non-abelian vertex group to-
gether with centralizers of edge groups connected to it in the graph of groups
obtained from the abelian JSJ of R by replacing each abelian vertex group
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by the direct summand containing the edge groups connected to it, and
the abelian edge groups in the abelian JSJ decomposition of R are mapped
monomorphically into the (proper) shortening quotient S by the canonical
map η : R→ S.

(ii) each CMQ subgroup of R is mapped to a non-abelian subgroup of S by the
canonical map η, and each boundary element of a CMQ subgroup of R is
mapped to a non-trivial element in S by η.

(iii) Let A be an abelian vertex group in the JSJ decomposition of R, and let
A1 < A be the subgroup generated by all edge groups connected to the vertex
stabilized by A. Then A1 is mapped monomorphically into S by the canonical
map η.

A Makanin-Razborov resolution is called strict if all the maximal shortening quo-
tients appear in it are strict shortening quotients, and the terminal freely indecom-
posable non-cyclic groups in the resolution can be embedded into the torsion-free
hyperbolic group Γ.

Finally, the existence of strict Makanin-Razborov resolutions is a criteria for a
f.g. group to be a Γ-limit group. We first show that a Γ-limit group admits a strict
Makanin-Razborov resolution.

Proposition 1.29. Let R be a Γ-limit group. Then the (canonical) Makanin-
Razborov diagram of R contains a strict Makanin-Razborov resolution.

Proof: Identical to the proof of proposition 5.10 in [18].
�

Proposition 1.29 shows that a Γ-limit group admits a strict Makanin-Razborov
resolution. To state a criteria for a f.g. group to be a Γ-limit group we need to
define an analogue of a strict Makanin-Razborov resolution in the general context
of f.g. groups.

Definition 1.30. Let G be a f.g. group, and let:

G = G0
ν0−−−−−→G1

ν1−−−−−→G2
ν2−−−−−→ . . .

νm−2

−−−−−→Gm−1
νm−1

−−−−−→Gm

be a resolution of G, where each non-free factor in a free decomposition of the
terminal group Gm can be embedded in Γ. We say that the given resolution of G is
a strict MR resolution if the epimorphisms νi have the following properties.

First, we start with a (possible) free factorization of G, G = G1 ∗ . . . ∗Gn ∗ F s,
where F s is a free subgroup of G. Each of the factors Gj of G = G0 is mapped
by the epimorphism ν0 : G → G1 onto the factor Qj in a free factorization G1 =
Q1 ∗ . . . ∗ Qn of G1. We further assume that each Gj can either be embedded in
Γ and Gj is mapped isomorphically onto the factor Qj, or it admits a non-trivial
abelian splitting ΛGj with the following properties:

(i) each abelian edge group in ΛGj is a maximal abelian subgroup in at least
one of the vertex groups it is connected to.

(ii) ν0 maps each of the subgroups generated by a non-QH (quadratically hang-
ing), non-abelian vertex groups and the centralizers of the edges connected
to it in the graph of groups obtained from the given abelian splitting by re-
placing each abelian vertex group with the direct summand containing the
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edge groups connected to it, and each of the abelian edge groups in ΛGj

monomorphically into Qj.
iii) ν0 maps each QH vertex group in ΛGj into a non-abelian subgroup of Qj.

(iv) every abelian vertex group in ΛGj is non-cyclic free abelian, and if A is
an abelian vertex group in ΛGj , and A1 < A is the summand in A that
contains the subgroup generated by all edge groups connected to the vertex
stabilized by A in ΛGj as a subgroup of finite index, then A1 is mapped
monomorphically into Qj by the map ν0.

Finally, we assume that the epimorphisms νi associated with the next levels of the
resolution of G satisfy similar conditions to the ones listed for ν0, and the resolution
terminates when the target group admits a free decomposition in which each of the
non-free factors can be embedded into the hyperbolic group Γ.

Note that a strict Makanin-Razborov resolution of a Γ-limit group R is a strict
MR resolution of R, so by proposition 1.29 a Γ-limit group admits a strict MR
resolution. Theorem 1.31 shows that this is also a sufficient condition for a f.g.
group to be a Γ-limit group.

Theorem 1.31 (cf. ([18],5.12)). A f.g. group G is a Γ-limit group if and only if
it admits a strict MR resolution.

Proof: The argument we use is a modification of the argument used over free
groups ([18],5.12). Let:

G = G0
ν0−−−−−→G1

ν1−−−−−→G2
ν2−−−−−→ . . .

νm−2

−−−−−→Gm−1
νm−1

−−−−−→Gm

be a strict MR-resolution of a f.g. group G over the torsion-free hyperbolic group
Γ, and let {ΛGi

} be the cyclic splittings associated with each of the subgroups Gi.
We need to show the existence of sequences of modular automorphisms {ϕi(n) ∈
Mod(Gi)} for i = 0, . . . , m− 1, and embeddings of each of the non-free factors of
the terminal group Gm into Γ, and maps of the terminal free factor in Gm into
Γ, that we denote τ(n), so that the limit group corresponding to the sequence of
homomorphisms:

{hn : G→ Γ | hn = τ(n)νm−1ϕm−1(n)νm−2ϕm−2(n) . . . ν1ϕ1(n)ν0ϕ0(n)}

is the group G itself.
To construct the homomorphisms τ(n) of the terminal group Gm, we fix embed-

dings of each of the non-free factors of Gm, and pick a couple of elements a, b ∈ Γ,
that generate a free quasi-convex subgroup in Γ. We define τ(n), by conjugating
each of the fixed embeddings of the non-cyclic, non-free factors of Gm by elements
wi(a, b), and map a free basis of the free factor of Gm into elements wj(a, b), so
that the length of the elements wi, wj grows fast with n, and the elements wi, wj

satisfy a (small cancellation) C′( 1
n
) condition.

If none of the cyclic splittings ΛGi
contains QH vertex groups, we may pick the

automorphisms {ϕi(n)} to be an increasing sequence of Dehn twists corresponding
to the edges in the cyclic splittings ΛGi

. In the presence of QH vertex groups we
need the following technical lemma.

Lemma 1.32. Let Q be the fundamental group of a (possibly punctured) surface
SQ of Euler characteristic at most −2, or a punctured torus. Let µ : Q → Γ be a
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homomorphism and suppose that Q is mapped into a non-abelian subgroup of Γ and
the image of every boundary component of Q is non-trivial. Then either:

(i) there exists a separating s.c.c. γ ⊂ SQ such that γ is mapped non-trivially
into Γ, and the image in Γ of the fundamental groups of each of the con-
nected components obtained by cutting SQ along γ is non-abelian.

(ii) there exists a non-separating s.c.c. γ ⊂ SQ such that γ is mapped non-
trivially into Γ, and the image of the fundamental group of the connected
component obtained by cutting SQ along γ is non-abelian.

Proof: Identical to the free group case ([18],5.13).
�

By recursively applying lemma 1.32, for each surface SQj
corresponding to a

QH-vertex group in the cyclic splitting ΛGm−1
, we can find a finite set of s.c.c.

on SQj
, so that each connected component of the surface obtained by cutting SQj

along this family of s.c.c. has Euler characteristic -1, and the fundamental group of
each of these connected components is mapped onto a two generated non-abelian
subgroup of Γ, i.e., it is either mapped monomorphically into a free subgroup of Γ,
or it is mapped onto a freely indecomposable subgroup of Γ.
Since the fundamental group of each of the connected components is mapped either
monomorphically into Γ, or into a freely indecomposable subgroup of Γ, given any
finite collection of s.c.c. on the various surfaces associated with the QH vertex
groups in ΛGm−1

, if we extend each the cyclic splittings ΛGm−1
by further splitting

the QH-vertex groups along the families of s.c.c. chosen according to lemma 1.32,
and perform high powers of Dehn twists along the edges of the obtained cyclic
decomposition, the given s.c.c. from our (fixed) finite collection will be mapped to
non-trivial elements in Γ.
Hence, after performing a high power of Dehn twists, it is possible to find a new
collection of disjoint, non-homotopic, non-boundary-parallel s.c.c. on each of the
surfaces associated with QH vertex groups in ΛGm−1

, so that each of the connected
components obtained by cutting the surfaces along these s.c.c. has Euler character-
istic -1, and the fundamental group of each such connected component is mapped
onto a free quasi-convex subgroup of rank 2 in Γ. Therefore, the argument used
to prove theorem 5.12 in the absence of QH-subgroups generalizes to prove that
Gm−1 is a Γ-limit group. Continuing iteratively to the upper levels of the strict
MR resolution, we conclude that G0 = G is a Γ-limit group.

�

As in section 8 in [18], given a f.g. group G =< x1, . . . , xn, a1, . . . , ak >, and
a torsion-free hyperbolic group Γ =< γ1, . . . , γk >, we say that a homomorphism
h : G → Γ is a restricted homomorphism, if h(ai) = γi, for 1 ≤ i ≤ k. So far,
given a f.g. group G and a torsion-free hyperbolic group Γ, we have constructed
a Makanin-Razborov diagram that encodes all the homomorphisms from G to Γ.
The study of the collection of all homomorphisms from G to Γ, can be easily
generalized to study the collection of restricted homomorphisms from G to Γ in the
same way it was generalized in section 8 of [18]. Similarly, to encode the collection
of all the restricted homomorphisms from G to Γ, we associate with G a restricted
Makanin-Razborov diagram, constructed in a similar way to our construction of
the (non-restricted) Makanin-Razborov diagram.

The understanding of the structure of (Fk) limit groups, enable us to show that
every residually-free group is the sub-direct product of finitely many limit groups
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([18],7.5). Given a torsion-free hyperbolic group Γ, we say that a f.g. group G is
residually-Γ, if for each non-trivial element g ∈ G, there exists a homomorphism
h : G→ Γ, for which h(g) 6= 1.

Theorem 1.33. A f.g. group G is residually-Γ, if and only if it is a sub-direct
product of finitely many Γ-limit groups.

Proof: Identical to the proof of claim 7.5 in [18].
�

Studying sets of solutions to systems of equations over a torsion-free hyper-
bolic group Γ, and their associated (restricted) Γ-limit groups, we continue as in
[18] to study parametric system of equations. Equivalently, given a f.g. group
G(x, p) and a torsion-free hyperbolic group Γ, we need to encode the collections
of restricted homomorphisms {h : G(x, p, a) → Γ | h(p) = p0}. In parallel with
what we did in sections 9-11 of [18], with a f.g. group G(x, p, a) and the torsion-
free hyperbolic group Γ we associate a finite collection of graded Γ-limit groups,
L1(x, p, a), . . . , Ls(x, p, a), and with each graded Γ-limit group Li(x, p, a) we asso-
ciate a graded Makanin-Razborov diagram, precisely as we did in the case of an
(Fk) limit groups. Given the graded Makanin-Razborov associated with a Γ-limit
group, we can further associate with it a singular locus, as we did in section 11 of
[18], and as in section 12 in [18], the entire analysis of graded Γ-limit groups can
be generalized to the multi-graded case.

§2. Formal Solutions

In the first section we generalized the structure theory developed in [18] for
analyzing sets of solutions to systems of equations defined over a free group, in
order to study sets of solutions to systems of equations defined over a torsion-free
hyperbolic group.

In [19], in order to analyze general sentences and predicates defined over a free
group, we used completions, closures, formal solutions and formal limit groups. In
this section we generalize these notions and constructions in the context of a general
torsion-free hyperbolic group, to finally obtain a generalization of Merzlyakov’s
theorem for sentences and predicates defined over a hyperbolic group.

We start this section with a special case of our generalization of Merzlyakov’s
theorem, which is very similar to the original Merzlyakov’s theorem (cf. theorem
1.2 in [19]). The proof is essentially identical to the free group case.

Proposition 2.1. Let Γ =< a1, . . . , ak > be a non-elementary torsion-free hyper-
bolic group, let w1(x, y, a) = 1, . . . , ws(x, y, a) = 1 be a system of equations over Γ,
and let v1(x, y, a), . . . , vr(x, y, a) be a collection of words in the alphabet {x, y, a}.
Suppose that the sentence:

∀y ∃x w1(x, y, a) = 1, . . . , ws(x, y, a) = 1 ∧ v1(x, y, a) 6= 1, . . . , vr(x, y, a) 6= 1

is a truth sentence over Γ. Then there exists a formal solution x = x(y, a) so
that each of the words wj(x(y, a), y, a) is the trivial word in the free product Γ ∗Fy,
where Fy is the free group generated by the universal variables y, and the sentence:

∃y v1(x(y, a), y, a) 6= 1, . . . , vr(x(y, a), y, a) 6= 1
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is a truth sentence in Γ.

Furthermore, if the words w1, . . . , ws and v1, . . . , vr are coefficient-free (i.e., they
are words only in the variables x and y and not in the coefficients a), then the
formal solution x = x(y, a) can be taken to be coefficient-free, i.e., x = x(y).

Theorem 2.1 generalizes Merzlyakov’s theorem in case the universal variables
y, belong to the entire affine set Γℓ, and are not restricted to some variety. As
in analyzing sentences over a free group, to get a generalization of Merzlyakov’s
theorem to the case in which the universal variables are restricted to some variety,
we need to use completions and closures.

Let Γ be a torsion-free hyperbolic group, and Rlim(y, a) a restricted Γ-limit
group. As in [19] (proposition 1.10), we may replace the Makanin-Razborov diagram
associated with Rlim(y, a) with its (canonical) strict Makanin-Razborov diagram,
i.e., in a diagram in which every resolution is a strict resolution. Given a restricted
Γ-limit group, the notion of a well-structured resolution of it ([19], definition
1.11), directly generalizes to the context of torsion-free hyperbolic groups, and so
is the completion of a well-structured resolution ([19], definition 1.12) and its basic
properties (see [19], lemma 1.14).

Definition 2.2 (cf. ([19],1.16-1.17)). Let Γ =< a1, . . . , ak > be a torsion-free
hyperbolic group, Rlim(y, a) a (restricted) Γ-limit group, Res(y, a) a well-structured
resolution of Rlim(y, a), and Comp(Res)(z, y, a) the completion of the resolution
Res(y, a). Let Γ ∗ H1 ∗ . . . ∗ Hm ∗ Fs be the terminal Γ-limit group of the resolu-
tion Res(y, a), where Γ is the coefficient group, Fs is a free group of rank s, and
H1, . . . , Hm are freely indecomposable groups that are isomorphic to subgroups of
Γ.

A closure of the resolution Res(y, a), denoted Cl(Res)(s, z, y, a), is a well-
structured resolution defined over Γ, that is obtained from the completion, Comp(Res)(z, y, a),
by the following modifications.

(i) As in the case of Fk-limit groups ([19],1.16), replacing each of the (free)
abelian vertex groups that appear in the various abelian decompositions as-
sociated with the completion, Comp(Res)(z, y, a), by (free) abelian super-
groups that contain the original ones as subgroups of finite index.

(ii) replacing each of the factors Hj by a freely-indecomposable group Vj with
an associated embedding νj : Hj → Vj, and Vj is isomorphic to a subgroup
of Γ.

We say that a finite set of closures of the well-structured resolution Res(y, a),
Cl1(Res)(s, z, y, a), . . . , Clr(Res)(s, z, y, a) is a covering closure, if every special-
ization (y0, a) that factors through the resolution Res(y, a), can be completed to a
specialization (s0, z0, y0, a) that factors through at least one of the closures Cli(Res)(s, z, y, a)

Given the notions of a closure and a covering closure of a well-structured res-
olution over the torsion-free hyperbolic group Γ, we are finally able to obtain the
existence of formal solutions associated with a general true AE-sentence defined
over Γ.

Theorem 2.3 (cf. ([19],1.18)). Let Γ =< a1, . . . , ak > be a non-elementary
torsion-free hyperbolic group, let Rlim(y, a) be a restricted Γ-limit group, and let
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Vy be its associated variety. Let Res(y, a) be a well-structured resolution of the re-
stricted Γ-limit group Rlim(y, a), and let Comp(Res)(z, y, a) be the completion of
the resolution Res(y, a) with a corresponding completed Γ-limit group Comp(Rlim)(z, y, a).

Let w1(x, y, a) = 1, . . . , ws(x, y, a) = 1 be a system of equations over Γ, and let
v1(x, y, a), . . . , vr(x, y, a) be a collection of words in the alphabet {x, y, a}. Suppose
that the sentence:

∀y ∈ Vy ∃x w1(x, y, a) = 1, . . . , ws(x, y, a) = 1∧

∧ v1(x, y, a) 6= 1, . . . , vr(x, y, a) 6= 1

is a truth sentence over Γ.
Then there exists a covering closure: Cl1(Res)(s, z, y, a), . . . , Clq(Res)(s, z, y, a),

and for each index i, 1 ≤ i ≤ q there exists a formal solution xi(s, z, y, a), so that
each of the words wj(xi(s, z, y, a), y, a) is the trivial word in the restricted limit
group corresponding to the i-th closure Cli(Rlim)(s, z, y, a).
In addition, for each index i there exists a specialization (si

0, z
i
0, y

i
0, a) that factors

through the i-th closure Cli(Res)(s, z, y, a), so that for every index j:

vj(xi(s
i
0, z

i
0, y

i
0, a), y

i
0, a) 6= 1

(in Γ).
Furthermore, if the Γ-limit group Rlim(y, a) can be written as Rlim(y, a) =

Rlim(y) ∗ Γ, Rlim(y) is not abelian, and the words:

w1(x, y, a), . . . , ws(x, y, a), v1(x, y, a), . . . , vr(x, y, a)

are coefficient-free, then the formal solutions can be taken to be coefficient-free, i.e.,
x = xi(u, s, z, y), defined over a group of the form Cli(Res)(s, z, y, a) ∗U1∗ . . .∗Ur,
where the subgroups Uj are non-cyclic, freely indecomposable, and isomorphic to
subgroups of Γ.

Having constructed formal solutions associated with a truth AE sentence and a
well-structured resolution defined over a torsion-free hyperbolic group Γ, we asso-
ciate with a general AE sentence and a well-structured resolution defined over Γ, a
canonical collection of formal Γ-limit groups and their associated formal Makanin-
Razborov diagrams, precisely as we did in section 2 of [19], so that the collection
of formal resolutions in the formal Makanin-Razborov diagrams encodes the entire
collection of formal solutions associated with the well-structured resolution and the
given AE sentence.
Given an AE predicate and a graded well-structured resolution defined over Γ, we
construct finitely many graded formal Γ-limit groups, and their associated graded
formal Makanin-Razborov diagrams, precisely as we did in section 3 of [19].

§3. A Bound on the Number of Rigid and Solid Solutions

In the first section we have generalized the structure theory developed in [18] for
Fk-limit groups, to Γ-limit groups, for a general torsion-free hyperbolic group Γ. In
the second section, we have generalized the results of [19], to prove the existence of
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formal solutions associated with a true AE sentence defined over a general torsion-
free hyperbolic group, and further collected all such formal solutions in (graded)
formal Γ-limit groups.

In this section we generalize the results of [20] to general torsion-free hyperbolic
groups. We show that given a torsion-free hyperbolic group Γ, and a rigid (solid)
Γ-limit group, Rgd(x, p, a)(Sld(x, p, a)), there exists a global bound (independent of
the value of the defining parameters) on the number of rigid (strictly solid families
of) solutions associated with an arbitrary value of the defining parameters.

As in [20] we prove the existence of such a global bound in two steps. Following
section 1 of [20], we first study the combinatorial types of rigid and solid solutions,
and prove the existence of a global constant R, for which every rigid or shortest
strictly solid solution is R-AP covered. Then we use this combinatorial bound, to
get a global bound on the number of rigid or strictly solid families of solutions.

Let S be the Cayley graph of a rigid graded Γ-limit group Rgd(x, p, a) with
respect to the generating system Rgd(x, p, a) =< x, p, a >, and let X be the Cay-
ley graph (tree) of the torsion-free hyperbolic group Γ with respect to some fixed
generating set Γ =< a1, . . . , ak >. Clearly, a homomorphism h : Rgd(x, p, a) → Γ
corresponds to a natural equivariant map τ : S → X , where each edge in S is
mapped to a (possibly degenerate) geodesic path in X .

Definition 3.1 (cf. ([20],1.1)). Let BR be the ball of radius R in the Cayley
graph S of Rgd(x, p, a). We say that a homomorphism h : Rgd(x, p, a) → Γ is
R-AP -covered, if the union of the R-neighborhoods of the images in X of the edges
labeled by either an element of {a} or an element of {p} in BR covers the entire
image in X of the ball B1.

As in [20], to define and control the combinatorial types of rigid solutions we
need the following basic theorem.

Theorem 3.2. Let Rgd(x, p, a) be a rigid Γ-limit group. There exists a constant
R0 so that every rigid homomorphism h : Rgd(x, p, a) → Γ is R0-AP -covered.

Proof: Suppose that there is no such constant R0. Let {hn | hn : Rgd(x, p, a) →
Γ} be a sequence of rigid homomorphisms, so that for every integer n, the n-th
homomorphism in the sequence, hn, is not n-AP -covered. By ([13],2.3), from the
sequence of rigid homomorphisms {hn} one can extract a subsequence converging
in the Gromov-Hausdorff topology into an action of Rgd(x, p, a) on a (pointed) real
tree (Y, y0).

The action of Rgd(x, p, a) on the real tree Y satisfies the conclusions of lemma 1.3,
hence, it is in particular a stable action. If K∞ denotes the kernel of the action,
then L∞ = Rgd(x, p, a)/K∞ is a Γ-limit group.

Let YAP ⊂ Y be the convex hull of the images of the base point y0 under
the action of the subgroup AP =< a, p > of our rigid Γ-limit group Rgd(x, p, a).
Clearly, either there exists a non-degenerate segment J ⊂ Y which is not in the
orbit of YAP in Y , or the orbit of every non-degenerate segment in Y contains a
non-degenerate subsegment which is in the subtree YAP .

If there exists a non-degenerate segment J ⊂ Y which does not contain a non-
degenerate subsegment that is in the orbit of YAP , then (by the argument that
was used in proving theorem 1.2 in [20]) there exists a graph of groups ΛL∞

, with
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fundamental group L∞, for which the subgroup AP < L∞ is contained in a proper
connected subgraph of groups Λ′ ⊂ ΛL∞

.
Now, since AP is contained in a proper connected subgraph of groups Λ′ of a

graph of groups ΛL∞
with fundamental group L∞, and since the real tree Y was

constructed from the homomorphisms {hn : Rgd(x, p, a) → Γ}, for large enough
n, the homomorphisms {hn} are flexible homomorphisms, a contradiction to our
assumption of the homomorphisms {hn : Rgd(x, p, a) → Γ} being rigid.

By the argument given above, for the rest of the argument we may assume that
the orbit of YAP in Y intersects any non-degenerate segment in the real tree (Y, y0)
in a non-degenerate segment. Furthermore, given any non-degenerate segment J
in the real tree Y , the segment is covered in a finite time (depending only on
the segment J) by the images of the edges (y0, ai(y0)) and (y0, pj(y0), where the
elements ai are the generators of the coefficient group Γ, and the elements pj are
the given generators of the parameter subgroup P .

In case every non-degenerate segment in the real tree Y intersects the orbit of
the tree YAP in a non-degenerate subsegment, we continue inductively by analyzing
the actions of each of the point and edge stabilizers on corresponding real trees as
in the proof of theorem 1.2 in [20], to finally conclude that there exists a graph
of groups Θ with fundamental group L∞, for which the subgroup AP is contained
in the fundamental group of a proper subgraph Θ′ of Θ, a contradiction to the
assumption on the rigidity of the sequence of homomorphisms {hn}. However, to
obtain such contradiction, it is necessary to show that an induction process, similar
to the one used in the proof of theorem 1.2 in [20], terminates after finitely many
steps.

Let Λ be the graph of groups associated with the action of the limit group L∞ on
the real tree Y . If the graph of groups Λ gives rise to a non-trivial free decomposition
of L∞, we continue the induction process with each of the free factors in parallel,
noting that a free factor in a non-trivial free decomposition of of L∞ is a proper
quotient of L∞.

Suppose that all the edge stabilizers in the graph of groups Λ are non-trivial.
With the graph of groups Λ we naturally associate a modular group, that we denote
Mod(Λ), that is generated by Dehn twists along edge groups in Λ, mapping class
groups associated the QH vertex groups in Λ, and the subgroups of automorphisms
of abelian vertex groups in Λ that fix (elementwise) the edge groups connected to
those vertices.
We continue by applying the shortening procedure using the modular group,Mod(Λ).
With the given sequence of homomorphisms {hn}, and the modular group Mod(Λ),
we associate a finite collection of maximal shortening quotients that are all quo-
tients of L∞. Let L1 be one of the maximal shortening quotients, so that infinitely
many of the homomorphisms {hn}, can be written in the form: hn = h1

n ◦φn, where
φn ∈ Mod(Λ) and h1

n is the shortest in its class under the action of the modular
group Mod(Λ).
The maximal shortening quotient L1 is a quotient of the limit group L∞. If L1 is
a proper quotient of L∞ we continue to the next step of our inductive process with
the limit group L1. Hence, in the sequel, we may assume that L1 is isomorphic to
L∞.

From the sequence of homomorphisms {h1
n} that factor through L1 and are the

shortest in their modular class, we can extract a subsequence that convergence into
a faithful action of L1 = L∞ on some real tree Y1. With this action, there is an
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associated graph of groups Λ − 1 with fundamental group L1. If Λ1 gives rise to
a non-trivial free product of L1, we continue with each of the factors in this free
decomposition, which is a proper quotient of L1 = L∞. Hence, we may assume
that all the edge groups in Λ1, and in the graph of groups λ associated with the
action of L∞ on the real tree Y , are non-trivial.

First, we modify the graphs of groups Λ and Λ1, according to lemma 1.7, to get
graphs of groups in which all non-cyclic abelian groups are elliptic (we still denote
the obtained graphs of groups Λ and Λ1).
If all the edge groups in Λ are elliptic in Λ1 and vice versa, then from the graphs of
groups Λ and Λ1, we obtain a common refinement graph of groups with fundamental
group L1, that we denote ∆1. If ∆1 gives rise to a non-trivial free product, we
continue with each of the factors in parallel, and each factor is clearly a proper
quotient of the Γ-limit group L1. If ∆1 does not give rise to a non-trivial free
product of L1, then ∆1 is a proper refinement of both graphs of groups Λ and Λ1.
With ∆1 we associate a modular group of automorphisms of L1, that we denote
Mod(∆1). We continue by further shortening the homomorphisms {h1

n}, using the
modular group Mod(∆1), and obtain an (infinite) subsequence that converge into
an action of a Γ-limit group L2 on a real tree Y2. If L2, which is a quotient of
L∞, is isomorphic to it, and the graph of groups Λ2, associated with the action
of L2 on Y2, is compatible with ∆1 (i.e., every edge group in ∆1 is elliptic in Λ2

and vice versa), we construct a common refinement of Λ2 and ∆1, that we denote
∆2, and repeat the process. Since the complexity of the obtained refinements is
increasing, and by acylindrical accessibility the complexity of an abelian splitting of
L∞ is globally bounded, this process of properly refining the abelian decomposition
of L∞, terminates after finitely many steps.

Let E1 be an edge in Λ, and E2 be an edge in Λ1. If the edge stabilizer of E1

is elliptic in Λ1 and the edge stabilizer of E2 is hyperbolic in Λ (or vice versa),
then by theorem 2.1 in [16], then from the combination of the graphs of groups
Λ and Λ1 it is possible to extract a non-trivial free decomposition of L1 = L∞.
Hence, in case such two edges E1 and E2 do exist, we continue to the next step of
the inductive process with each of the factors in the non-trivial free decomposition
extracted from Λ and Λ1.

Finally, we may assume that if E1 is an edge in Λ and E2 is an edge in Λ1,
then their stabilizers are either elliptic-elliptic or hyperbolic-hyperbolic. We start
analyzing this case, by first applying the JSJ machine presented in section 4 of
[16] to analyze the hyperbolic-hyperbolic edge stabilizers. The outcome of the
JSJ machine, is either a non-trivial free decomposition of L1 = L∞, in which
case we continue to the next step of the inductive process with each of the free
factors in parallel. Otherwise, the JSJ machine produces a quadratic decomposition
similar to the one described in theorem 4.21 in [16]. In this last case, we continue
by refining the quadratic decomposition, obtained by the JSJ machine, using the
elliptic-elliptic splittings in the graphs of groups Λ and Λ1, to finally obtain an
abelian decomposition of L1, that we denote ∆1. If ∆1 gives rise to a non-trivial
free decomposition of L1 = L −∞, we continue to the next step of the inductive
process with each of the factors. Otherwise, we associate with ∆1 a modular group,
that is necessarily bigger than the modular group associated with the original graph
of groups Λ, and apply the shortening procedure to obtain an (infinite) subsequence
that converge into an action of a Γ-limit group L2 on a real tree Y2. If L2, which
is a quotient of L∞, is isomorphic to it, we continue according to the various cases
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described above. Since each time in which a non-trivial free decomposition is not
obtained, the complexity of the refined graph of groups ∆n is strictly bigger than
the complexity of the previous graph of groups, and by acylindrical accessibility the
complexity of an abelian splitting of L∞ is globally bounded, this process of properly
refining the abelian decomposition of L∞, terminates after finitely many steps.
Hence, after finitely many steps, we the inductive process replaces the Γ-limit group
L∞ by a proper quotient of it. Since by theorem 1.12 every decreasing sequence
of Γ-limit groups terminates after finitely many steps, the inductive process we’ve
constructed terminates after finitely many steps.

�

In a similar way to rigid homomorphisms of rigid Γ-limit groups we analyze solid
homomorphisms of solid Γ-limit groups. To state the analogous theorem for solid
homomorphisms we will need the notions of solid family of specializations of a
solid Γ-limit group, and strictly solid family of a solid Γ-limit group. Those are
defined in ([20],1.4-1.5) for solid Fk-limit groups. The definition for solid Γ-limit
groups is identical, so we don’t repeat the definition of these notions.

Definition 3.3. Let Sld(x, p, a) be a solid Γ-limit group, let S be the Cayley graph
of the solid Γ-limit group Sld(x, p, a) with respect to the generating set Sld(x, p, a) =<
x, p, a >, and let X be the Cayley graph of Γ with respect to the generating set
Γ =< a >.

With each abelian vertex group Ai in the graded abelian JSJ decomposition of the
solid limit group Sld(x, p, a), we associate a fixed retract ri : Ai → A1

i , where A1
i is

the direct summand of of Ai that contains the subgroup generated by the edge groups
connected to the vertex stabilized by Ai as a subgroup of finite index. Clearly, the
collection of retracts {ri} extends to a retract r : Sld(x, p, a) → Sld(x, p, a) which
restricts to the identity on all the non-abelian vertex groups, and to the retract ri
on the abelian vertex group Ai.

We say that a solid homomorphism h : Sld(x, p, a) → Γ is among the shortest

in its solid family, if h = ĥ ◦ r for some homomorphism ĥ : Sld(x, p, a) → Γ, and
the image of the generating set of Sld(x, p, a) in the free Γ, is the shortest among
all homomorphisms h1 : Sld(x, p, a) → Γ that are in the same solid family of the

homomorphism h, and for which there exists some homomorphism ĥ1 for which

h1 = ĥ1 ◦ r.

In the case of a solid limit group we are able to bound the combinatorial types
of strictly solid solutions which are among the shortest in their corresponding solid
families.

Theorem 3.4. Let Sld(x, p, a) be a solid Γ-limit group. There exists a constant
R0 so that every strictly solid homomorphism h : Sld(x, p, a) → Γ which is among
the shortest in its solid family, is R0-AP -covered.

Proof: Given the argument used to prove the existence of a global bound in the
rigid case (theorem 3.2), the modification to the solid case is identical to the mod-
ification used over a free group, presented in the proof of theorem 1.7 in [20].

�

So far we have shown that for a rigid (solid) Γ-limit groupRgd(x, p, a) (Sld(x, p, a))
there exists a constant R0, so that all the rigid homomorphisms h : Rgd(x, p, a) → Γ
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(strictly solid homomorphisms h : Sld(x, p, a) → Γ which are the shortest in their
solid family) are R0-AP -covered. As in section 2 of [20], the existence of this bound
on the combinatorial types of states of rigid and shortest strictly solid homomor-
phisms enable us to get a global bound on the number of possible distinct rigid
homomorphisms h : Rgd(x, p, a) → Γ (strictly solid families of homomorphisms,
h : Sld(x, p, a) → Γ) for any specialization of the defining parameters h(p) = p0.

Theorem 3.5 (cf. ([20],2.5)). Let Rgd(x, p, a) be a rigid Γ-limit group. There
exists a global bound bR(Rgd(x, p, a)) for which for any particular value of the
defining parameters p0, there are at most bR distinct rigid homomorphisms h :
Rgd(x, p, a) → Γ satisfying h(p) = p0.

Proof: Theorem 3.5 generalizes theorem 2.5 in [20], to rigid Γ-limit groups. The
proof of theorem 2.5 in [20], uses the existence of a global constant R, for which
every rigid homomorphism of a rigid limit group Rgd(x, p, a) is R-AP -covered, and
the finite presentability of an Fk-limit group. The existence of a global constant R,
for which every rigid homomorphism of a Γ-limit group is R-AP -covered, is proved
in theorem 3.2. A Γ-limit group is not f.p. in general, but by the generalization of
Guba’s theorem presented in theorem 1.22, a Γ-limit group is f.p. in the class of
Γ-limit groups. Hence, the proof of theorem 3.5 follows by an identical argument
to the one used to prove theorem 2.5 in [20].

�

In a similar way one can globally bound the number of strictly solid families of
homomorphisms of a solid Γ-limit group. The proof is identical to the one presented
for theorem 2.9 in [20].

Theorem 3.6 (cf. ([20],2.9)). Let Sld(x, p, a) be a solid Γ-limit group. For any
particular value p0 of the defining parameters p, there are at most bS distinct strictly
solid families of homomorphisms h : Sld(x, p, a) → Γ satisfying h(p) = p0.

Strictly solid families of specializations of a solid Γ-limit group Sld(x, p, a) were
defined as those families of specializations that do not factor through completions
of the resolutions in the graded Makanin-Razborov diagram of the Γ-limit group
Sld(x, p, a) (definition 3.3). Theorem 3.6 bounds the number of strictly solid fami-
lies of specializations of a solid Γ-limit group Sld(x, p, a) for any possible value p0,
of the defining parameters p.
As in the free group case, we will need a similar global bound on the number of
families of specializations of a solid Γ-limit group Sld(x, p, a), that do not factor
through a covering closure (definition 2.2) of the resolutions that appear in the
graded Makanin-Razborov diagram of the solid Γ-limit group Sld(x, p, a), for any
possible value of the defining parameters p.

Definition 3.7 (cf. ([20],2.12)). Let Sld(x, p, a) be a solid Γ-limit group, and
let:

GRes1(x, p, a), . . . , GResr(x, p, a)

be the resolutions in its graded Makanin-Razborov diagram. Let:

Cl11(s, x, p, a), . . . , Cl
1
m1

(s, x, p, a), . . . , Clr1(s, x, p, a), . . . , Cl
r
mr

(s, x, p, a)

be a finite collection of graded closures of the graded resolutions: GRes1(x, p, a), . . . , GResr(x, p, a).
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A specialization (x0, p0, a) of the solid Γ-limit group Sld(x, p, a) is called a strictly
solid specialization with respect to the given closure if:

(i) for p = p0 the given closures form a covering closure of the (ungraded)
resolutions associated with the specialization p0 (see definition 2.2).

(ii) the specialization (x0, p0, a) does not factor through any of the the given
closures.

Note that a strictly solid solution with respect to the given closures is not necessarily
strictly solid with respect to the completions of the resolutions GRes1(x, p, a), . . . , GResr(x, p, a)
(cf. definition 1.5 in [20]).
An orbit of specializations of the solid Γ-limit group Sld(x, p, a) under the action of
the graded modular group GMod(x, p, a) is called strictly solid family with respect
to the given closures, if it contains a strictly solid specialization.

As in [20], in parallel with theorem 3.6, given a solid Γ-limit group Sld(x, p, a) and
a closure of the resolutions that appear in its graded Makanin-Razborov diagram,,
one can globally bound the number of strictly solid families of the solid Γ-limit
group Sld(x, p, a) with respect to the given closure.

Theorem 3.8 (cf. ([20],2.13)). Let Sld(x, p, a) be a solid Γ-limit group, and let:

GRes1(x, p, a), . . . , GResr(x, p, a)

be the resolutions in its graded Makanin-Razborov diagram. Let:

Cl11(s, x, p, a), . . . , Cl
1
m1

(s, x, p, a), . . . , Clr1(s, x, p, a), . . . , Cl
r
mr

(s, x, p, a)

be a finite collection of graded closures of the graded resolutions: GRes1(x, p, a), . . . , GResr(x, p, a).
There exists a constant bS, so that for any particular value p0 of the defining param-
eters p, there are at most bS distinct families of homomorphisms h : Sld(x, p, a) →
Fk that are strictly solid with respect to the given closure, and satisfy h(p) = p0.

Given the global bounds on the numbers of rigid and solid solutions, and theorem
1.22 from which one can deduce that a given Γ-limit group is f.p. in the class of
Γ-limit groups, we can generalize the properties of the stratification of the set of the
defining parameters associated with a given graded resolution presented in section
3 of [20]. In particular, the stratification associated with a graded limit group, or a
graded resolution, contains finitely many strata, and each stratum is in the Boolean
algebra generated by AE sets.

§4. An Iterative Procedure for Validation of a Sentence

In the first 3 sections we have generalized the results and notions presented in
[18], [19] and [20], for studying varieties, sentences and predicates defined over a free
group, to general torsion-free hyperbolic groups. In this paper we use these notions
to generalize the iterative procedure for validation of an AE sentence defined over
a free group, presented in [21], to AE sentences defined over a general torsion-free
hyperbolic groups.

The definition of a well-separated resolution over a free group, presented in
definition 2.2 of [21], generalizes in a direct way to well-separated resolutions over
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a torsion-free hyperbolic group Γ. We further generalize the notion of a geometric
subresolution presented in definition 3.1 of [21].

Definition 4.1. Let Res(t, y, a) be a a well-separated resolution over a torsion-free
hyperbolic group Γ, and let Comp(Res)(u, t, y, a) be its completion. Let GSRes(g, y, a)
be a resolution with the following properties:

(i) the resolution GSRes(g, y, a) is a well-separated resolution.
(ii) the resolution GSRes(g, y, a) is a completed resolution, i.e., the completion

of GSRes(g, y, a) is the resolution GSRes(g, y, a) itself.
(iii) there exists a (geometric) embedding ν : GSRes(g, y, a) → Comp(Res)(u, t, y, a)

that maps the subgroup < y, a > of the resolution GSRes(g, y, a) onto the
subgroup < y, a > of the completed resolution Comp(Res)(u, t, y, a) elemen-
twise. In addition, the embedding ν has the following properties:

1) every QH subgroup in an abelian decomposition associated with one of
the various levels of the resolution GSRes(g, y, a) is embedded geomet-
rically into (a finite index subgroup of) a QH subgroup of Comp(Res)(u, t, y, a).

2) every abelian vertex group in an abelian decomposition associated with
one of the levels of the resolution GSRes(g, y, a) is embedded into an
abelian vertex group in one of the abelian decompositions associated
with Comp(Res)(u, t, y, a).

3) every terminal non-cyclic, freely indecomposable factor of the geomet-
ric subresolution is embedded by ν into a terminal non-cyclic freely in-
decomposable factor of the ambient completion, Comp(Res)(u, t, y, a).

4) except for the terminal free groups and terminal freely-indecomposable
factors dropped along the various levels of the geometric subresolu-
tion, the free and abelian decompositions associated with each level
of the resolution GSRes(g, y, a) are the decompositions induced (us-
ing Bass-Serre theory) from the embedding ν and the free and abelian
decompositions of Comp(Res)(u, t, y, a). Furthermore, the canonical
maps between successive levels in the resolution GSRes(g, y, a) are the
ones induced from the canonical maps between successive levels in the
completion Comp(Res)(u, t, y, a).

We call the resolution GSRes(g, y, a) together with the embedding ν : GSRes(g, y, a) →
Comp(Res)(u, t, y, a), a geometric subresolution of the (completion of the) reso-
lution Res(t, y, a). The modular groups associated with a geometric subresolution
are set to be the modular groups induced from those of the completed resolution
Comp(Res)(u, t, y, a). In particular, the modular groups associated with each of the
QH vertex groups in the abelian decompositions of GSRes(g, y, a), are set to be the
modular groups of the corresponding QH vertex groups of Comp(Res)(u, t, y, a) into
which they are embedded. Note that the completion, Comp(Res)(u, t, y, a), itself is
a geometric subresolution of the (completion of the) resolution Res(t, y, a).

In section 3 of [21], while constructing the induced resolution, we have associ-
ated a complexity with any geometric subresolution of a well-separated resolution
defined over a free group, a complexity that was later used in guaranteeing the ter-
mination of the iterative procedure for validation of an AE sentence. The notion of
a geometric subresolution generalizes directly to well-separated resolutions defined
over a torsion-free hyperbolic group. However, the complexity of such resolutions
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needs to be slightly modified (cf. definition 3.2 in [20]).

Definition 4.2. Let Res(t, a) be a well-separated completed resolution over a torsion-
free hyperbolic group Γ, with (possibly) reduced modular groups associated with each
of its various QH subgroups. Let Q1, . . . , Qm be the QH subgroups that appear
in the completion Comp(Res)(t, y, a) and let S1, . . . , Sm be the (punctured) sur-
faces associated with the reduced modular group associated with each of the QH
vertex group. To each (punctured) surface Sj we may associate an ordered cou-
ple (genus(Sj), |χ(Sj)|). We will assume that the QH subgroups Q1, . . . , Qm are
ordered according to the lexicographical (decreasing) order of the ordered couples
associated with their corresponding surfaces. Let rk(Res(t, a)) be the rank of the
free group that is dropped along the resolution Res(t, a) (see definition 2.1 in [21]),
let fact(Res(t, a)) be the number of freely-indecomposable, non-cyclic terminal (em-
bedded) factors of the resolution Res(t, a), and let Abrk(Res(t, a)) be the sum of the
ranks of the kernels of the mappings of (free) abelian groups that appear as vertex
groups along the resolution Res(t, a) (see definition 1.15 in [21]).
We set the complexity of the resolution Res(t, a), denoted Cmplx(Res(t, a)), to be:

Cmplx(Res(t, a)) = (fact(Res(t, a)) + rk(Res(t, a)), (genus(S1), |χ(S1)|), . . .

. . . , (genus(Sm), |χ(Sm)|), Abrk(Res(t, a))).

On the set of complexities of completed resolutions with (possibly) reduced modular
groups we can define a linear order. Let Res1(t1, a) and Res2(t2, a) be two completed
resolutions with (possibly) reduced modular groups. We say that Cmplx(Res1(t1, a)) =
Cmplx(Res2(t2, a)) if the tuples defining the two complexities are identical. We say
that Cmplx(Res1)(t1, a)) < Cmplx(Res2(t2, a)) if:

(1) the ”kurosh” rank, fact(Res1(t1, a)) + rk(Res1(t1, a)) is smaller than the
kurosh rank fact(Res2(t2, a)) + rk(Res2(t2, a)).

(2) the above ranks are equal and the tuple:

((genus(S1
1), |χ(S1

1)|), . . . , (genus(S1
m1

), |χ(S1
m1

|))

is smaller in the lexicographical order than the tuple:

((genus(S2
1), |χ(S2

1)|), . . . , (genus(S2
m2

), |χ(S2
m2

|)).

(3) the above ranks and tuples are equal and Abrk(Res1(t1, a)) < Abrk(Res2(t2, a)).

Given a well-separated resolution Res(t, y, a) over a free group, and a subgroup
< y, a > of its associated limit group, we have constructed in section 3 of [21],
the induced resolution Ind(Res(t, y, a))(u, y, a). The construction of the induced
resolution generalizes directly to well-separated resolutions defined over a torsion-
free hyperbolic group Γ, hence, we omit its detailed description.

In section 1 of [21] we presented an iterative procedure for the validation of
an AE sentence over a free group, assuming all the (Fk) limit groups that are
needed to be treated along the procedure are of minimal rank. This procedure
generalizes directly to validate AE sentences over a torsion-free hyperbolic group,
in the minimal rank case.

31



The general procedure for validation of a sentence over a free group, presented in
section 4 of [21], needs to be slightly modified in order to be adopted for general
torsion-free hyperbolic groups. In the previous sections we have already modified
all the tools needed in order to be able to modify the general procedure presented
in [21], and in the rest of this section we present the modified procedure.

Let:

∀y ∃x Σ(x, y, a) = 1 ∧ Ψ(x, y, a) 6= 1

be a truth sentence over a torsion-free hyperbolic group Γ. Let Fy =< y1, . . . , yℓ >
be a the free group with a free basis y1, . . . , yℓ. By proposition 2.1 there ex-
ists a formal solution x = x(y, a), and a finite set of restricted Γ-limit groups:
Rlim1(y, a), . . . , Rlimm(y, a) for which:

(i) the words corresponding to the equations in the system Σ(x(y, a), y, a) rep-
resent the trivial word in the free group Γ ∗ Fy.

(ii) for every index i, Rlimi(y, a) is a proper quotient of the free group Γ ∗ Fy.
(iii) let B1(y), . . . , Bm(y) be the basic sets corresponding to the restricted Γ-

limit groups Rlim1(y, a), . . . , Rlimm(y, a). If y /∈ B1(y)∪ . . .∪Bm(y), and
ψj(x, y, a) is a word corresponding to one of the equations in the system
Ψ(x, y, a), then: ψj(x(y, a), y, a) 6= 1.

Proposition 2.1 gives a formal solution that proves the validity of the given
sentence on a co-basic set (Fk)ℓ \ (B1(y) ∪ . . . ∪ Bm(y)), hence, the rest of the
procedure needs to construct formal solutions that prove the validity of the sentence
on the remaining basic sets B1(y), . . . , Bm(y). We will continue with the Γ-limit
groups Rlimi(y, a) in parallel, hence, for brevity we denote the Γ-limit group we
continue with, Rlim(y, a). Note that Rlim(y, a) is a proper quotient of the Γ-limit
group Γ ∗ Fy, hence, the Kurosh rank of every resolution in the (taut) Makanin-
Razborov diagram of Rlim(y, a) is strictly less than ℓ, the rank of the free group
Fy.

With the Γ-limit group Rlim(y, a) we associate its (canonical) taut Makanin-
Razborov diagram. Let Res1(y, a), . . . , Resr(y, a) be the resolutions in this taut
diagram. With each resolution Resi(y, a) we can associate its completed resolution
Comp(Resi)(z, y, a). We continue with each of the resolutions in parallel, hence,
we will omit the index in the sequel.

By theorem 2.3 from the validity of our given sentence, we get the existence of a cov-
ering closure Cl1(Res)(s, z, y, a), . . . , Clq(Res)(s, z, y, a) of the resolution Res(y, a),
and for each index 1 ≤ n ≤ q there exists a formal solution xn(s, z, y, a) for which:

(i) the words corresponding to the equations in the system Σ(xn(s, z, y, a), y, a)
represent the trivial word in the closure Cln(Res)(s, z, y, a).

(ii) there exists some specialization (sn
0 , z

n
0 , y

n
0 ) for which Ψ(xn(sn

0 , z
n
0 , y

n
0 , a), y

n
0 , a) 6=

1.

Given a resolution Res(y, a), and one of the closures from its given covering clo-
sure, we analyze all the specializations (s0, z0, y0, a) that are taut and shortest form
with respect to the closure Cl(Res)(s, z, y, a) (see definition 4.1 in [21] for the def-
inition of taut shortest form specializations). The entire collection of taut shortest
form specializations (s0, z0, y0, a) that factor through the closure Cl(Res)(s, z, y, a),
and satisfy the corresponding system of equations, is contained in a finite set of
maximal Γ-limit groups QRlim1(s, z, y, a), . . . , QRlimu(s, z, y, a). Our analysis of
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these quotient Γ-limit groups is conducted in parallel, hence, in the sequel we will
omit its index.

Let Zlim2 =< s2, z2, . . . , sℓ, zℓ > be the subgroup associated with all the lev-
els of the closure, Cl(Res)(s, z, y, a), except the top level. Zlim2 is naturally
mapped into the closure, Cl(Res)(s, z, y, a), hence, into the quotient Γ-limit group
QRlim(s, z, y, a). Let Base12,1, . . . , Base

1
2,v1

be the non-abelian, non-QH vertex
groups in the abelian decomposition associated with the top level of the closure,
Cl(Res)(s, z, y, a). With the quotient Γ-limit group QRlim(s, z, y, a) we associate
canonically the multi-graded taut Makanin-Razborov diagram with respect to the
subgroups Base12,1, . . . , Base

1
2,v1

. In constructing this diagram, we take into consid-
eration only those homomorphisms of the quotient Γ-limit group, QRlim(s, z, y, a),
that embed the (images of the) terminal non-cyclic, freely-indecomposable factors
of the closure, Cl(Res)(s, z, y, a), into the hyperbolic group Γ. Let:

MGQRes1(s, z, y, Base
1
2,1, . . . , Base

1
2,v1

, a), . . . ,MGQResq(s, z, y, Base
1
2,1, . . . , Base

1
2,v1

, a)

be the quotient multi-graded resolutions in this taut Makanin-Razborov diagram.

We continue with a subset of the resolutions that appear in the multi-graded taut
Makanin-Razborov diagram of the quotient limit group QRlim(s, z, y, a), a subset
through which all the specializations (y0, a) that are taut with respect to Res(y, a),
and for which there exists a taut shortest form specialization (s0, z0, y0, a) that fac-
tor through QRlim(s, z, y, a) do factor, and not with all the quotient multi-graded
resolutions in this taut multi-graded diagram. If the subgroup of generated by
< y, a > of the limit group (generated by) < s, z, y, a > associated with a quo-
tient multi-graded resolution: MGQResi is a proper quotient of the Γ-limit group
Rlim(y, a) associated with the resolution Res(y, a) we have started this branch
of the first step of the procedure, we include the quotient multi-graded resolution
MGQResi in the subset we continue with.
Otherwise, for each QH vertex group Q in the abelian decomposition associated
with the top level of the closure Cl(Res)(s, z, y, a), the boundary elements of Q can
be conjugated (in the limit group associated with the closure Cl(Res)(s, z, y, a))
into one of subgroups Base12,1, . . . , Base

1
2,v1

. Since the closure Cl(Res)(s, z, y, a)
is canonically mapped onto the quotient Γ-limit group QRlim(s, z, y, a), each of
the QH subgroups Q in the abelian decomposition associated with the top level of
Cl(Res)(s, z, y, a) is naturally mapped into the quotient Γ-limit groupQRlim(s, z, y, a).
Hence, the QH subgroup Q and its corresponding quotients naturally inherits a se-
quence of abelian decompositions from the multi-graded abelian decompositions
associated with the various levels of a multi-graded resolution MGQResi abelian
decompositions in which the boundary elements of Q are all elliptic.
The resolution Res(y, a) was assumed to be well-separated, hence, on each of the
QH vertex groups Q associated with its various levels, there exists an additional
indication for a collection of s.c.c. on its associated surface S that is mapped to a
trivial element in the Γ-limit group associated with the next level of the resolution
Res(y, a). Given a multi-graded resolution MGQResi, if for some QH vertex
group Q in the abelian decomposition associated with the top level of the closure
Cl(Res)(s, z, y, a), the sequence of abelian decompositions Q and its corresponding
quotients inherit from the multi-graded resolution MGQResi, is not compatible
with the specific indication of the collection of s.c.c. on the surface S associated
with the QH vertex groupQ that are mapped to the trivial element in the resolution
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Res(y, a), we omit the quotient multi-graded resolution MGQResi from our list of
quotient multi-graded resolutions. Otherwise, we include the quotient multi-graded
resolution in the subset of multi-graded resolutions we continue with.
By construction, every specialization (y0, a) that factors and is taut with respect
to the resolution Res(y, a) and for which there is a specialization (s0, z0, y0, a)
that is taut and shortest form with respect to the closure Cl(Res)(s, z, y, a), there
exists a quotient multi-graded resolutionMGQResi that is included in the subset of
quotient multi-graded resolutions we continue with, and for which the specialization
(s0, z0, y0, a) factors through and is taut with respect to that quotient multi-graded
resolution.

Let Q1, . . . , Qr be the QH vertex groups in the abelian decomposition associ-
ated with the top level of the resolution Res(y, a) we have started with, i.e., the
QH vertex groups in the abelian JSJ decomposition of Rlim(y, a). As in theo-
rems 1.7 and 2.9 in [21], we can assume that each multi-graded quotient resolu-
tion MGQResi terminates in a multi-graded abelian Γ-limit group with a multi-
graded abelian decomposition containing the entire collection of surviving QH ver-
tex groups Qi1 , . . . , Qir′

, and these surviving QH subgroups are either closed sur-
face subgroups or (in case they correspond to punctured surfaces) they are mapped
to their images in the subgroup < z2, a > in either a rigid or solid multi-graded
limit group with respect to the subgroups Base12,1, . . . , Base

1
2,v1

. Furthermore, the
surviving QH vertex groups Qi1 , . . . , Qir′

are subgroups of the non-abelian, non-
QH vertex groups, the ones stabilized by the subgroups Base12,1, . . . , Base

1
2,v1

, in
all levels above the two terminating ones (see theorem 1.7 in [21]).
A basic property of a multi-graded quotient resolution, is the following property
(cf. proposition 4.2 in [21]).

Proposition 4.3. Suppose that the subgroup generated by < y, a > in the Γ-limit
group associated with a multi-graded resolution MGQRes(s, z, y, Base12,1, . . . , Base

1
2,v1

, a),
is isomorphic to the Γ-limit group Rlim(y, a) associated with the resolution Res(y, a)
we have started the iterative process with. Then the complexity of each of the multi-
graded abelian decompositions associated with the various levels of the multi-graded
resolution: MGQRes is bounded by the complexity of the abelian decomposition as-
sociated with the top level of the completion Comp(Res)(z, y, a). In case of equality,
the multi-graded resolution: MGQRes has only one level and its structure is iden-
tical to the structure of the abelian decomposition associated with the top level of
the completion Comp(Res)(z, y, a).

Proof: Identical to the proof of proposition 4.2 in [21].
�

The other properties of the multi-graded resolutions, MGQRes, that were proved
in the free group case can be modified to hold over a general torsion-free hyperbolic
group Γ.

Proposition 4.4 (cf. ([21],4.3)). Let MGQRes be one of the multi-graded quo-
tient resolutions, for which the subgroup generated by < y, a > in the Γ-limit
group associated with that multi-graded resolution is isomorphic to the Γ-limit group
Rlim(y, a) associated with the resolution Res(y, a). By construction, the original
Γ-limit group Rlim(y, a) is mapped into the Γ-limit groups associated with each
of the levels of the multi-graded quotient resolution MGQRes. Let Qterm(y, a)
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be the image of Rlim(y, a) in the terminal (rigid or solid) multi-graded Γ-limit
group of MGQRes. Then the terminal Γ-limit group of the multi-graded resolu-
tion, MGQRes, can be replaced by a finite collection of finitely many terminal
multi-graded Γ-limit groups, in which either Qterm(y, a) is a proper quotient of
Rlim(y, a), or one can assume that each of the homomorphisms that factors through
the given terminal Γ-limit group embeds each of its non-cyclic, freely-indecomposable
factors into the coefficient group Γ.

Proof: Identical to the proof of proposition 4.3 in [21].
�

The procedure we present for the validation of an AE sentence over a torsion-
free hyperbolic group, is similar to the one used over a free group in section 4 of
[21]. The necessary required modifications are similar to the modifications applied
in constructing the tree of stratified sets, presented in section 2 of [22] (and are
implied by the modification of proposition 4.4 in comparison to proposition 4.3 in
[21]).

I: The first step

(1) Let Rlim(y, a) be the Γ-limit group we have started with. Let Q(y, a) be
the Γ-limit group generated by < y, a > in the Γ-limit group associated
with the multi-graded quotient resolution MGQRes. If Q(y, a) is a proper
quotient of Rlim(y, a), we continue this branch of the iterative procedure,
by replacing the Γ-limit group Rlim(y, a) by Q(y, a), and continue with the
finite collection of resolutions that appear in the taut Makanin-Razborov
diagram of the Γ-limit group Q(y, a) in the same way we handled the reso-
lutions in the taut Makanin-Razborov diagram of Rlim(y, a).

(2) At this stage we may assume that Q(y, a) is isomorphic to Rlim(y, a). At
this part we will also assume that the multi-graded quotient resolution
MGQRes is not of maximal complexity, i.e., that the complexities of the
abelian decompositions associated with its various levels are strictly smaller
than the complexity of the abelian decomposition associated with the top
level of the resolution Res(y, a).

In this case, either the image of Rlim(y, a) in the Γ-limit group asso-
ciated with the second level of: MGQRes(s, z, y, Base12,1, . . . , Base

1
2,v1

, a),
Q2(y, a), is a proper quotient of Rlim(y, a), or the image ofQRlim(s, z, y, a)
in the limit group associated with the second level of:

MGQRes(s, z, y, Base12,1, . . . , Base
1
2,v1

, a)

Q2(s, z, y, a), is a proper quotient of QRlim(s, z, y, a), or the homomor-
phisms that factor through the given multi-graded resolution, MGQRes,
embed each of the non-cyclic, freely indecomposable factors of the quotient
Γ-limit group, QRlim, into the coefficient group Γ.

If the subgroup Q2(y, a) is a proper quotient of Rlim(y, a), we associate
with it its taut Makanin-Razborov diagram, and with each of the resolu-
tions QResj(y, a) in the diagram we associate a developing resolution, an
auxiliary resolution, and an anvil, precisely as we did in part (2) of the
initial step in the free group case.
If Q2(y, a) is isomorphic to Rlim(y, a) we continue to the next levels of the
multi-graded quotient resolution MGQRes If at some level j of MGQRes,
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the image of Rlim(y, a) in the limit group associated with the j-th level of
MGQRes, Qj(y, a), is a proper quotient of Rlim(y, a), we continue in a sim-
ilar way to what we did in case Q2(y, a) is a proper quotient of Rlim(y, a).

By part (i) of proposition 4.4, if for every level j, Qj(y, a) is isomorphic
to the Γ-limit group Rlim(y, a) we have started with, we can assume that
each of the homomorphisms that factor through the given terminal Γ-limit
group of MGQRes embeds each of its non-cyclic, freely-indecomposable
factors into the coefficient group Γ. In this case we associate a developing
resolution and an anvil with MGQRes, precisely as we did in case (2) of the
initial step of the procedure for the construction of stratified sets (section
2 in [22]), in case the map of the original Fk-limit group into the terminal
limit group of the multi-graded quotient resolution is an isomorphism, and
hence, this terminal limit group is rigid or solid with respect to the defining
parameters p..

(3) By part (1) we may assume that Q(y, a) is isomorphic to Rlim(y, a). Part
(2) treats the case in which the multi-graded quotient resolutionMGQRes is
not of maximal complexity. The only case left, that of a maximal complexity
quotient resolution, MGQRes, is treated in precisely the same way it was
treated in the initial step of the procedure over a free group (case (3) of the
initial step).

II: The general step

The general step of the iterative procedure is similar to the one over free groups,
presented in section 4 of [21]. The ultimate goal of the general step of the iterative
procedure is to obtain a strict reduction in either the complexity of certain decom-
positions and resolutions or a strict reduction in the Zariski closures of certain limit
groups associated with the anvils constructed in the previous steps of the proce-
dure. The strict reduction in complexity and Zariski closures will finally guarantee
the termination of the iterative procedure after finitely many steps, precisely as in
the case of free groups.

The description of the general step of the procedure in the case of free groups
appears in section 4 of [21]. The only modifications needed in the case of a torsion-
free hyperbolic group are those presented in lemma 4.4, and as a consequence, in
case (2) of the initial step, and its parallels in the general case. The argument
for the termination of the procedure is essentially identical to the free group case.
hence, we prefered not to repeat the details of the general step of the procedure,
and refer the interested reader to the detailed description in section 4 of [21].

§5. Core Resolutions

In the first 3 sections of this paper, we have generalized the structure theory
developed in [18], [19] and [20] from free groups to torsion-free hyperbolic groups.
Section 4 generalizes the iterative procedure for validating an AE sentence to hyper-
bolic groups, that finally allows us to generalize the quantifier elimination procedure
presented in [22] and [23]. In this section we prepare the main tool needed for gen-
eralizing the q.e. procedure, the construction of the core resolution for resolutions
defined over torsion-free hyperbolic groups.

Definition 5.1 (cf. ([22],4.1). Let Res(t, v, a) be a a well-separated resolution
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over a torsion-free hyperbolic group Γ, and let Comp(Res)(u, t, v, a) be its com-
pletion. Let CRes(r, v, a) be a geometric subresolution of the completed resolu-
tion Res(u, t, v, a). We say that the resolution CRes(r, v, a) is a core resolution
of the subgroup < v, a > in the completion Comp(Res)(u, t, v, a), if the resolution
CRes(r, v, a) is a firm subresolution of the subgroup < r, v, a > ([21], definition
3.9). i.e., it has the following properties:

(i) the Kurosh rank of the resolution CRes(r, v, a), i.e., the sum of the num-
ber of non-cyclic, freely indecomposable factors and the ranks of the free
groups dropped along its levels, is equal to the Kurosh rank of the subgroup
< r, v, a > with respect to the completed resolution Comp(Res)(u, t, v, a).

(ii) there exists a firm test sequence for the subgroup < r, v, a >, i.e., a test
sequence of the ambient completion, Comp(Res)(u, t, v, a), in which the
Kurosh rank of the subgroup < r, v, a > is precisely the Kurosh rank of
the core, CRes(r, v, a).

(iii) Let A1, . . . , Am be all the non-cyclic pegged abelian groups that appear along
the completed resolution Comp(Res)(t, v, a), let peg1, . . . , pegm be the pegs
of the abelian groups A1, . . . , Am, and let {pegi, q

i
1, . . . , q

i
ji
}m

i=1 be an arbi-
trary basis for the collection of the subgroups A1, . . . , Am. Then for any set
of integers {(si

j , n
i
j)}, where ni

j ≥ 2 and 0 ≤ si
j ≤ ni

j, there exist a firm test
sequence {tn, vn, a} of the subgroup < v, a >, so that for every index n, the
specialization of each of the pegs pegi is an element hi with no non-trivial

roots, and the specialization of each of the basis elements qi
j is h

ri
j

i where

ri
j = ui

j · n
i
j + si

j for some positive integer ui
j.

We denote a core resolution, Core(< v, a >,Res(t, v, a))(r, v, a). In exactly the
same way we define a graded core resolution, and a multi-graded core resolution.
Since a core resolution is in particular a geometric subresolution, we set the com-
plexity of a core resolution to be its complexity as a geometric subresolution.

The procedure for the construction of a core resolution over hyperbolic groups,
is essentially similar to the one presented in section 4 of [22] over a free group.
It is composed from 2 iterative procedures. The procedure used for the first part
is essentially identical to the iterative procedure used to construct the induced
resolution. In the second part, in a similar way to the procedure over a free group,
we use an iterative procedure that either reduces the Kurosh rank of the resolution
constructed in the first part, or alternatively, shows that the resolution constructed
in the first part is a firm subresolution, hence, it is a core resolution.

Since the first part is identical to the construction of the induced resolution, we
do not present it in detail. Let Res(t, v, a) be a complete well-separated resolution.
We denote the resolution induced by the subgroup < v, a > from Res(t, v, a),
IResf (u, v, a). To the induced resolution IResf (u, v, a) we iteratively add pegs
of its abelian groups using the procedure presented in section 4 of [22]. Using the
same procedure, we iteratively add roots toQH vertex groups along our constructed
resolution that are finite index subgroups in conjugates of QH vertex groups along
the ambient resolution Res(t, v, a), so that the outcome of this iterative procedure
is a geometric subresolution of the ambient resolution, Res(t, v, a), in which every
QH vertex group is conjugate to a QH vertex group along Res(t, v, a).

We denote the resolution obtained by adding pegs and ”completing” QH vertex
groups, IResp(u, v, a). Note that the procedure that iteratively add pegs, and
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”complete” QH vertex groups, is conducted by iteratively adding finite order roots
to the terminal group, hence, it does not increase the Kurosh rank. Furthermore, if
it preserves the Kurosh rank, and the obtained resolution is firm, so is the induced
resolution IResf (u, v, a).

As in the free group case, to modify the resolution IResp(u, v, a) in order to
obtain a firm subresolution, we use an iterative procedure, that is aimed towards
sequentially reducing the Kurosh rank of the obtained resolutions. The iterative
procedure we present either reduces the Kurosh rank after finitely many steps, or
guarantees (after finitely many steps) that the resolution IResp(u, v, a) is indeed a
firm subresolution. The procedure we present, which is a slight modification of the
procedure used in the free group case, starts from the bottom level of the resolution
Res(t, v, a) and iteratively climbs towards its top level.

(1) The terminal level (which we denote by ℓ) of the resolution Res(t, v, a) is a
free product of freely-indecomposable groups that can be embedded in the
torsion-free hyperbolic group Γ, and a free group. The terminal level of the
resolution IResp(u, v, a), admits a (possibly trivial) free decomposition to
a (possibly trivial) free group and a (possibly trivial) factor M , so that M
embeds into the terminal level of the ambient resolution, Res(t, v, a). The
factor M inherits a (possibly trivial) free decomposition from the given free
decomposition of the terminal group of Res(t, v, a), M = M1 ∗ . . . ∗Ms ∗F ,
where F is a (possibly trivial) free group, and the factors Mi are embedded
into conjugates of the non-cyclic, freely-indecomposable factors in the free
decomposition of the terminal group of the ambient resolution, Res(t, v, a).

We modify the resolution IResp(u, v, a) by replacing each of the terminal
factorsMi, with the non-cyclic, freely-indecomposable factor in the terminal
group of Res(t, v, a) that contains it. With the subgroup corresponding to
this modified resolution, we associate the induced resolution, and iteratively
add pegs and complete QH vertex groups. If the terminal group of the
resolution has changed, and there exist new factors that embed into non-
cyclic, freely-indecomposable factors in the terminal group of Res(t, v, a),
we repeat part (1) of the construction.
Note that this modification does not increase the Kurosh rank, and if it
preserves the Kurosh rank, and the obtained resolution is firm, so is the
resolution IResp(u, v, a). We denote the resolution obtained after this mod-
ification IResc(u, v, a).

(2) We continue from the level above the terminal one (level ℓ− 1). According
to the construction of an induced resolution, the subgroup associated with
the resolution IResc(u, v, a) inherits a (possibly trivial) free decomposition
from each of the levels of the resolution IResc(u, v, a), and it is mapped to
a subgroup associated with each of the levels. In particular, in accordance
with the free decomposition inherited by the subgroup associated with the
resolution IResc(u, v, a) from the levels that lie above the ℓ − 1 level, the
image of the subgroup associated with IResc(u, v, a), G

ℓ−1, admits a free

decomposition when mapped into the ℓ−1 level, Gℓ−1 = Hℓ−1
1 ∗. . .∗Hℓ−1

s(ℓ−1).

We treat the factors Hℓ−1
i in parallel.

We fix a system of generators of Hℓ−1
i , Hℓ−1

i =< hℓ−1
1 , . . . , hℓ−1

r(ℓ−1,i) >.

If no (non-trivial) subgroup of the factor Hℓ−1
i fixes a vertex in the Bass-

Serre tree associated with the ℓ − 1 level of the resolution Res(t, v, a), we
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have started with, we leave the factor Hℓ−1
i unchanged. Suppose that a

(non-trivial) subgroup of Hℓ−1
i fixes a vertex in the abelian decomposition

associated with the ℓ− 1 level of the resolution Res(t, v, a).

Let Tℓ−1 be the Bass-Serre tree corresponding to the abelian decompo-
sition associated with the ℓ− 1 level of the ambient resolution Res(t, v, a),

and let ΛHℓ−1

i
be the graph of groups inherited by Hℓ−1

i from its action on

the Bass-Serre tree Tℓ−1. Suppose that the abelian decomposition Λ
Hℓ−1

i
,

inherited by Hℓ−1
i from its action on the Bass-Serre tree Tℓ−1, contains a

couple of QH vertex groups, Q1, Q2, that satisfy the following conditions:
(i) Q1 is a conjugate of a QH vertex group in the abelian decomposition as-

sociated with the ℓ − 1 level of the ambient resolution Res(t, v, a), and Q2

is conjugate to the same QH vertex group in the abelian decomposition
associated with the ℓ− 1 level of the ambient resolution Res(t, v, a).

(ii) the QH vertex group Q1 (hence, also Q2) is not of minimal rank, i.e., there
exists a s.c.c. on S1 (the surface associated with Q1) that is mapped to the
trivial element in the next level of the resolution Res(t, v, a).

In this case we say that the abelian decomposition ΛHℓ−1

i
contains a reducing

QH couple.

If the abelian decomposition Λ
Hℓ−1

i
contains a reducing QH couple, Q1

and Q2, we set the subgroup Ĥi to be the subgroup generated by Hℓ−1
i ,

and an element in the Γ-limit group associated with the ℓ − 1 level of the
ambient resolution Res(t, v, a) that conjugates Q1 to Q2. We set H ′

i to be
the Γ-limit group associated with the resolution induced by the subgroup
Ĥi from the ambient resolution Res(t, v, a). Since the QH vertex groups Q1

and Q2 are not of minimal rank, and since Q1 and Q2 are not conjugate in
the subgroup Hℓ−1

i we have started with, and Q1 and Q2 are conjugate in

H ′
i, the Kurosh rank of H ′

i is strictly smaller than the Kurosh rank of Hℓ−1
i .

In this case we replace the factor Hℓ−1
i by H ′

i, and repeat the construction
the whole construction of the core resolution starting with the obtained
group.

Suppose that the abelian decomposition ΛHℓ−1

i
does not contain a reduc-

ing QH couple. Let ηℓ−1 be the map from the Γ-limit group associated with
the ℓ−1 level of Res(t, v, a) to the Γ-limit group associated with the (termi-
nal) ℓ level ofRes(t, v, a). Let t0 ∈ Tℓ−1 be its base point, and let T ′

ℓ−1 be the

finite subtree of Tℓ−1 spanned by the points t0, h
ℓ−1
1 (t0), . . . , h

ℓ−1
r(ℓ−1,i)(t0).

To continue our treatment of the factorHℓ−1
i we need the notions of floating

and absorbed surfaces.

Definition 5.2 (cf. definition 4.7 in [22]). Let Q be a QH vertex group in the
finite tree T ′

ℓ−1, and let S be its associated surface. Since the ambient resolution
Res(t, v, a) is well-separated, the image of the QH vertex group Q in the next level
of the resolution Res(t, v, a) is non-abelian. Recall (definition 4.7 in [22]) that we
say that Q is a floating QH vertex group (S is a floating surface) with respect
to the geometric subresolution IRes(u, v, a), if Q does not intersect the subgroup

Hℓ−1
i in a subgroup of finite index, and one of the three conditions hold:

(i) the QH vertex group Q is not of minimal rank, i.e., there exists a s.c.c.
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on the surface Ŝ that is mapped to the trivial element in the limit group
associated with the next level of the ambient resolution Res(t, v, a).

(ii) none of the vertex groups that are adjacent to Q in T ′
ℓ−1 intersect non-

trivially the subgroup Hℓ−1
i .

(iii) the QH vertex group Q is of minimal rank, and for every vertex group V

in T ′
ℓ−1 that is adjacent to Q in T ′

ℓ−1 and intersects Hℓ−1
i non-trivially, the

Kurosh rank of the subgroup: ηℓ−1(< Hℓ−1
i ∩ V,Q >) is strictly bigger than

the Kurosh rank of the subgroup: ηℓ−1(H
ℓ−1
i ∩ V ).

We say that Q is an absorbed vertex group (S is an absorbed surface) if it is not
floating.

In the case in which there is no reducing QH couple, we set Ĥi to be the
subgroup generated by the factor Hℓ−1

i and one of the following if it exists:
(i) an abelian vertex group in the finite tree T ′

ℓ−1 that is intersected non-

trivially by the factor Hℓ−1
i , but is not contained in it.

(ii) an absorbed QH vertex group in the finite tree T ′
ℓ−1 (with respect to the

subgroup Hℓ−1
i ), that is not contained in Hℓ−1

i .
(iii) an (abelian) edge group E in the finite tree T ′

ℓ−1, that is not contained in

Hℓ−1
i , and is adjacent to a non-abelian, non-QH vertex group V in T ′

ℓ−1

that is intersected non-trivially by Hℓ−1
i , for which the Kurosh rank of the

subgroup: ηℓ−1(< Hℓ−1
i ∩ V,E >) is bounded from above by the Kurosh

rank of the subgroup: ηℓ−1(H
ℓ−1
i ∩ V ).

(iv) an element v0 ∈ V , v0 /∈ Hℓ−1
i , where V is a non-abelian, non-QH vertex

group in the finite tree T ′
ℓ−1 that is intersected non-trivially by the subgroup

Hℓ−1
i , for which there exist two edge groups E1, E2 that are adjacent to V

in the finite tree T ′
ℓ−1 and are not conjugate in the subgroup Hℓ−1

i , so
that v conjugates E1 to E2 in the Γ-limit group associated with the ℓ − 1
level of the ambient resolution Res(t, v, a), and the Kurosh rank of the

subgroup: ηℓ−1(< Hℓ−1
i ∩ V, v0 >) is bounded above by the Kurosh rank of

the subgroup: ηℓ−1(H
ℓ−1
i ∩ V ).

We further set H ′
i to be the subgroup associated with the resolution

induced by the subgroup Ĥi. Since Ĥi is generated by Hℓ−1
i , the absorbed

QH vertex groups in T ′
ℓ−1 with respect to Hℓ−1

i , abelian vertex groups that

are intersected non-trivially by Hℓ−1
i , and additional elements that do not

increase the Kurosh ranks of the corresponding vertex groups, the Kurosh
rank of H ′

i is bounded by the Kurosh rank of Hℓ−1
i , rk(H ′

i) ≤ rk(Hℓ−1
i ).

Furthermore, both groups H ′
i and Hℓ−1

i inherit free decompositions from
the abelian decompositions associated with their corresponding actions on
the Bass-Serre tree Tℓ−1, and both the number of factors as well as the
rank of the additional free group in the abelian decomposition associated
with H ′

i (the Kurosh rank) are bounded by the number of factors and the

corresponding rank in the abelian decomposition associated with Hℓ−1
i .

If H ′
i is identical to Hℓ−1

i we have concluded our treatment of the factor

Hℓ−1
i . Otherwise, we replace the factor Hℓ−1

i by H ′
i, and repeat the con-

struction of a subgroup Ĥi associated with the newly obtained subgroup
Hℓ−1

i (without changing the finite tree T ′
ℓ−1), and the construction of the
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subgroup H ′
i associated with the resolution induced by Ĥi from the ambient

resolution Res(t, v, a), and repeat our treatment of the subgroup H ′
i.

Since in each step we either reduce the Kurosh rank of the obtained sub-
group, or we add a new edge group, an abelian vertex group or absorbed QH
vertex group from the finite tree T ′

ℓ−1 to the subgroup associated withHℓ−1
i ,

or we add an element that conjugates two edge groups in T ′
ℓ−1 that were

not conjugated previously, we conclude our treatment of the factor Hℓ−1
i

after finitely many steps. If the Kurosh rank of at least one of the factors
Hℓ−1

i strictly decreased by the iterative procedure, we replace the resolu-
tion IResc(u, v, a) with the resolution induced by the subgroup generated
by the subgroup associated with IResc(u, v, a) and the newly obtained fac-

torsHℓ−1
1 , . . . , Hℓ−1

s(ℓ−1), and denote the obtained resolution IResℓ−1(u, v, a).

In this case, the Kurosh rank of the resolution IResℓ−1(u, v, a) is strictly
smaller than the Kurosh rank of the resolution IResc(u, v, a)), and we con-
tinue by starting the second step of the construction of the core resolution
with the resolution IResℓ−1(u, v, a) (instead of IResf (u, v, a)). If none of

the Kurosh ranks of the various factors Hℓ−1
i decreases, we continue by

analyzing the next (ℓ− 2) level of the resolution IResc(u, v, a).

The iterative procedure presented in part (2) terminates after finitely many steps,

and concludes our treatment of the various factors Hℓ−1
i of the subgroup Gℓ−1 =

Hℓ−1
1 ∗ . . . ∗Hℓ−1

s(ℓ−1), which is the image of the subgroup associated with the reso-

lution IResc(u, v, a) in the subgroup associated with the ℓ− 1 level of the ambient
resolution Res(t, v, a). We continue by iteratively increasing the index m, and ana-

lyzing the various factors of the image of the subgroup Gℓ−m = Hℓ−m
1 ∗. . .∗Hℓ−m

s(ℓ−m),

which is the image of the subgroup associated with the resolution IResc(u, v, a) in
the subgroup associated with the ℓ−m level of the ambient resolution Res(t, v, a),
according to the procedure presented in part (2). Since given part (2), this iterative
construction is identical to the one presented in [22] over free groups, we omit its
detail, and refer the interested reader to part (3) of the construction of the core
resolution over a free group in section 4 of [22].

The iterative procedure used for the second part of the construction of the core
resolution terminates after finitely many steps. Using it we obtain a geometric sub-
resolution of the ambient resolution Res(t, v, a), which we denote IRess(u, v, a),
which is set to be either the resolution IResf (u, v, a) obtained by the first part of
the construction, in case the procedure used for the second part of the construction
of the core resolution has not reduced the Kurosh rank of the resolution it has con-
structed, or it is the resolution constructed by the procedure used in the second part
of the construction of the core resolution, in case this resolution is of strictly smaller
Kurosh rank than the resolution IResf (u, v, a), constructed by the procedure used
in the first part of the construction. The obtained resolution IRess(u, v, a) is a
geometric subresolution of Res(t, v, a) by construction, in addition it is guaranteed
to be a firm subresolution by the following theorem, hence, it may serve as a core
resolution, Core(< v, a >,Res(t, v, a)).

Theorem 5.3 (cf. ([22],4.8). The resolution IRess(u, v, a), obtained by the pro-
cedure for the construction of a core resolution, is a firm subresolution of the reso-
lution Res(t, v, a).
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Proof: The proof is essentially identical to the proof of theorem 4.8 in [22], replac-
ing rank by Kurosh rank.

�

Once the construction of the core resolution is generalized to torsion-free hyper-
bolic groups, all the basic properties of the core over a free group, presented in
propositions 4.13-4.21 in [22], generalize to torsion-free hyperbolic groups as well.
The arguments are essentially identical, hence, we refer the interested reader to
section 4 in [22] for the basic properties of the core and their proofs.

§6. Quantifier Elimination

As in the case of a free group, to obtain quantifier elimination of elementary
predicates over a torsion-free hyperbolic group, our goal is showing that the Boolean
algebra of AE sets is invariant under projections. Our approach to proving this
invariance is similar to the quantifier elimination procedure in the free group case,
presented in [22] and [23].

Given a predicate defined over a torsion-free hyperbolic group Γ, we start by
constructing the tree of stratified sets, in the same way it is constructed in section
2 of [22] over a free group. The procedure for constructing the tree of stratified sets
is based on the iterative procedure for validating an AE sentence, and the modifi-
cations required for generalizing it to torsion-free hyperbolic groups, are precisely
the modifications presented in section 4. Hence, we omit its detailed description
and refer the interested reader to section 2 of [22].

The outcome of the tree of stratified sets is an encoding of all the (finitely many)
possible sequences of forms of families of formal solutions that are needed in order
to validate that a certain specialization p0 of the defining parameters p is indeed
in the set EAE(p). As in the free group case, this stratification is the basis for our
analysis of the structure of the set EAE(p).

Let Γ =< a1, . . . , ak > be a torsion-free hyperbolic group, and let EAE(p) be
the set defined by the predicate:

EAE(p) = ∃w ∀y ∃x Σ(x, y, w, p, a) = 1 ∧ Ψ(x, y, w, p, a) 6= 1.

Recall (definition 1.19 in [22]) that a specialization w0 of the variables w, is said to
be a witness for a specialization p0 of the defining parameters p, if the following
sentence:

∀y ∃x Σ(x, y, w0, p0, a) = 1 ∧ Ψ(x, y, w0, p0, a) 6= 1

is a truth sentence. Clearly, if there exists a witness for a specialization p0 then
p0 ∈ EAE(p), and every p0 ∈ EAE(p) has a witness.

By the construction of the tree of stratified sets, a witness w0 for a specialization
p0, proves that p0 ∈ EAE(p) using a certain ”proof system” which is built from
a finite sequence of (families of) formal solutions, which correspond to boundedly
many paths along the tree of stratified sets (proof system are presented in definition
1.20 in [22]).
Given p0 ∈ EAE(p), we are not able to say much about a possible witness for p0

using the information we have collected so far. However, with each ”proof system”,
i.e., with each path of (families of) formal solutions that goes along the tree of
stratified sets, one can associate a certain Diophantine set. The bound on the form
and number of all possible ”proof systems” associated with all possible witnesses
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suggested by the tree of stratified sets, forces every possible witness for p0 to belong
to one of the finitely many Diophantine sets associated with the (finite) collection
of all proof systems. Furthermore, as in the free group case, we will show that if a
specialization p0 ∈ EAE(p), and it can be shown that p0 ∈ EAE(p) using a witness
w0 with a corresponding proof system, then every ”generic” specialization of w that
belongs to (a closure of) some modular block associated with the Diophantine set
which is associated with the specific proof system is a witness for p0 using the
same proof system as w0. This will reduce the analysis of the set EAE(p) to
the analysis of the Diophantine sets and the modular blocks associated with each
”proof system”, and eventually will enable us to show that the set EAE(p) is in
the Boolean algebra of AE sets.

Definition 6.1. Let p0 ∈ EAE(p) be a specialization of the defining parameters
p, and let w0 be a witness for p0. By the construction of the tree of stratified sets,
one can associate a proof system with the couple (w0, p0), which corresponds to
a (finite) collection of paths in the tree of stratified sets. Note that there may be
several proof systems associated with a given couple (w0, p0), but the construction
of the tree of stratified sets guarantees that the number of proof systems associated
with the couple (w0, p0) is globally bounded.
We will say that a given proof system associated with the couple (w0, p0) is of depth
d, if all the paths associated with the proof system terminate after d steps (levels)
of the tree of stratified sets.

As in the free group case, we start by analyzing those specializations of the
defining parameters p that have witnesses with proof systems of depth 1, continue
by analyzing the specializations of the defining parameters p for which there are
witnesses with proof systems of depth at most 2, and then present the analysis of
the entire set EAE(p).

Lemma 6.2. Let T1(p) ⊂ EAE(p) be the subset of all specializations p0 ∈ EAE(p)
of the defining parameters p, that have witnesses with proof system of depth 1. Then
T1(p) is an EA set.

Proof: Identical to lemma 1.21 in [22].
�

Lemma 6.2 proves that the set of specializations of the defining parameters p
that have witnesses with proof statement of depth 1 is an EA set. As in the case of
a free group, we continue by showing that the set of p’s that have witnesses with
proof statement of depth 2 is in the Boolean algebra of AE sets, and then generalize
it to the existence of a witness with an arbitrary depth proof statement.

Theorem 6.3. Let T2(p) ⊂ EAE(p) be the subset of all specializations p0 ∈
EAE(p) of the defining parameters p, that have witnesses with proof system of
depth 2. Then T2(p) is in the Boolean algebra of AE sets.

Before we start with the proof of theorem 6.3, we need the notion of a valid PS
statement.

Definition 6.4. Suppose that a specialization p0 ∈ EAE(p) has a witness w0 with
a proof system of depth 2 (i.e., p0 ∈ T2(p)). The structure of the tree of stratified
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sets guarantees the existence of a rigid or strictly solid families of specializations
(h1

0, w0, p0) of one of the rigid or solid limit groups WPH(h, w, p, a) with the fol-
lowing properties:

(i) For every Γ-limit group WPHG(g1, h1, w, p, a), which is a terminal Γ-limit
group of its associated graded resolution, hence, it is a (possibly trivial) free
product of a rigid or solid Γ-limit group with several freely indecomposable
groups that are embedded into Γ, there are at most (globally) boundedly many
rigid or strictly solid families of specializations of the form (g1

0 , h
1
0, w0, p0) of

WPHG(g1, h1, w, p, a), where the strictly solid families are with respect to
the given set of closures associated with (some of the other) Γ-limit groups
WPHG(g1, h1, w, p, a). The elements (g1

0, h
1
0, w0, p0, a) that appear in a

proof system, contains representatives for all the boundedly many rigid and
solid classes.

(ii) The specialization (h1
0, w0, p0) is rigid or solid specialization of the corre-

sponding Γ-limit group WPH, and it does not factor through any of the mod-
ular blocks that factor through one of the Γ-limit groups λWPGL(y, h, w, p, a)
and correspond to the entire free group Fy.

(iii) For each of the (boundedly many) rigid or strictly solid families of spe-
cializations (g1

0 , h
1
0, w0, p0) there exist a finite collection of rigid or strictly

solid families of specializations (h2
0, g

1
0, h

1
0, w0, p0) of the rigid or strictly solid

Γ-limit groups WPHGH(h2, g1, h1, w, p, a), so that the (ungraded) resolu-
tions corresponding to the specializations (h2

0, g
1
0, h

1
0, w0, p0) form a cover-

ing closure of the (ungraded) resolution corresponding to the specialization
(g1

0, h
1
0, w0, p0).

(iv) For each of the (boundedly many) rigid or strictly solid families of special-
izations (h2

0, g
1
0, h

1
0, w0, p0) there exists no specialization g2

0 of the variables
g2 so that the specialization (g2

0, h
2
0, g

1
0, h

1
0, w0, p0) factors through one of the

(rigid or solid) Γ-limit groups WPHGHG(g2, h1, g1, h1, w, p, a).

To a specialization of the form:

((h2
1, g

1
1), . . . , (h

2
ν(ps), g

1
ν(ps)), h

1
0, w0, p0, a)

that satisfies conditions (i)-(iv) above, where the integer ν(ps) depends on the fixed
proof system, we add specializations of new variables r, that testify that the associ-
ated specialization satisfies property (iii). We call such a combined specialization:

(r, (h2
1, g

1
1), . . . , (h

2
ν(ps), g

1
ν(ps)), h

1
0, w0, p0, a)

a valid PS statement.

The tree of stratified sets guarantees that there are finitely many proof systems
of depth 2. Once we fix a proof system of depth 2, we have fixed the rigid or
solid Γ-limit group WPH(h, w, p, a), the number of rigid or strictly solid families
of specializations of each of the rigid or solid factor in the given free decomposition
of the Γ-limit groups WPHG(g1, h1, w, p, a), and the number of families of each of
the other factors that do not factor through completions of other (deeper) ungraded
resolutions of these factors, and the number of rigid or solid specializations of each
of the rigid or solid factor in the Γ-limit groups (h2, g1, h1, w, p, a), and the number
of families of embeddings of each of the other factors.
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We start the analysis of the set T2(p) by enumerating all the possible proof sys-
tems, and for each proof system we collect all possible (configurations of) valid
PS statements: (r, (h2

1, g
1
1), . . . , (h

2
ν(ps), g

1
ν(ps)), h

1
0, w0, p0, a) (the integer ν(ps) de-

pends on the fixed proof system), which by the standard arguments presented
in section 1, factor through a (canonical) collection of maximal Γ-limit groups
PSHGH1, . . . , PSHGHm, which we call PS (proof system) Γ-limit groups.

By construction, for each p0 ∈ T2(p) there exists some witness w0 and a corre-
sponding proof system, so that a specialization of the form:

(r, (h2
1, g

1
1), . . . , (h

2
ν(ps), g

1
ν(ps)), h

1
0, w0, p0, a)

that is associated with the specialization p0, the witness w0 and that proof system,
is a valid PS statement (i.e., it satisfies conditions (i)-(iv) of definition 6.4), and
factors through a PS Γ-limit group PSHGHj. Naturally, as in the free group case,
we will try to understand the set of valid PS statements:

(r, (h2
1, g

1
1), . . . , (h

2
ν(ps), g

1
ν(ps)), h

1
0, w0, p0, a)

that factor through a given PS limit group PSHGHj . Our main goal will be
to show that these valid PS statements are ”generic” in some modular blocks
associated in the sequel with each of the PS limit groups PSHGH.

Let P =< p > be the group of defining parameters. With each of the limit
groups PSHGHi we associate its canonical graded Makanin-Razborov diagram
(with respect to the parameter subgroup P ), which contains finitely many graded
resolutions which we denote PSHGHRes (omitting their index).
As in the free group case, with (the completion of) the graded PS resolution
PSHGHRes we associate a (canonical) finite collection of Non-Rigid and Non-
Solid PS Γ-limit groups (definition 1.25 in [22]), which we call the non-rigid PS Γ-

limit groups associated with the PS resolution PSHGHRes,NRgdPSj
1, . . . , NRgdPS

j
q ,

and the non-solid PS Γ-limit groups associated with PSHGHRes,NSldPSj
1, . . . , NSldPS

j
r .

We continue by collecting all the test sequences that factor through the comple-
tion of one of the PS resolutions PSHGHRes, Comp(PSHGHRes), and for which
for at least one of the tuples: (h2

t (n), g1
t (n), h1(n), wn, pn, a) there exists some spe-

cialization g2
m(n) so that the (combined) specialization: (g2

t (n), h2
t (n), g1

t (n), h1(n), wn, pn, a)
factors through (at least) one of the Γ-limit groups WP (HG)2, or there exists a
specialization g1(n) so that the (combined) specialization: (g1(n), h1(n), wn, pn, a)
factors through (at least) one of the Γ-limit groups WPHG, which is not associ-
ated with one of the paths associated with our fixed proof system (definition 1.31
in [22]).
The collection of all these (graded) test sequences factor through a (canonical)

collection of maximal left PS Γ-limit groups: LeftPSj
1, . . . , LeftPS

j
mj

, and with
them we associate the Left PS resolutions that are graded formal closures of the
resolutions PSHGHRes (see definition 1.26 in [22]). In a similar way, we construct
Root PS resolutions that collect all the test sequences for which specializations of
what is supposed to be primitive roots have roots of order that divides the least
common multiples of the indices of the finite index subgroups that are associated
with the closures that are associated with the given proof system (see definition
1.27 in [22]).
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”Generic” specializations that factor through the PS resolutions PSHGHRes
can fail to be valid PS statements also if there exist additional rigid or strictly solid
specializations of the Γ-limit groups PSHG(g1, h1, w, p, a) that are not specified
by the given specializations. The ”generic” specializations for which there exists
”surplus” in rigid or strictly solid specializations are collected in extra PS (graded)
Γ-limit groups and graded resolutions (definition 1.28 in [22]).

The extra PS Γ-limit groups and their associated graded formal closures collect
all the ”generic” specializations (i.e., all the test sequences) of the PS limit groups
PSHGH for which there exist rigid or strictly solid families in addition to those
specified by the generic specializations. For a general specialization of the PS limit
groups PSHGH, i.e., a specialization which is not necessarily ”generic”, it may as
well be that the additional rigid or strictly solid specializations, collected by the ex-
tra PS limit groups and their associated graded formal closures, do become flexible
or do coincide with the rigid or strictly solid families of the various specializations
(g1

t , h
1
0, w0, p0).

We collect all the test sequences of specializations that factor through an extra
PS resolution, ExtraPSRes, and are collapsed specializations, in finitely many
closures of the resolution PSHGHRes we have started with, which we call formal
collapsed Extra PS (graded) resolutions.

Collecting all ”collapsed” test sequences in a finite collection of formal collapsed
extra PS resolutions, we still need to collect all the collapsed specializations that
factor and are taut with respect to a given extra PS resolution ExtraPSRes.
We go over all the graded auxiliary resolutions (definition 2.1 in [23]), and all the
collapse forms associated with the extra PS resolution, ExtraPSRes. Given a
graded auxiliary resolution and a collapse form, we add elements that demonstrate
that the given extra rigid or solid specialization is collapsed according to the given
collapse form.

Given the auxiliary Γ-limit group or one of its degenerate quotients, and the
additional elements that are associated with the given collapse form, we look at
the associated collection of combined specializations, so that the (combined) spe-
cializations satisfy the system of equations associated with the given collapse form
associated with the extra PS resolution ExtraPSRes.

By our standard method presented in section 1, this collection of specializations
factor through a canonical (finite) collection of maximal limit groups, which we call
collapsed extra PS Γ-limit groups.

By construction, if p0 ∈ T1(p) then there must exist a valid PS statement of the
form: (r, (h2

1, g
1
1), . . . , (h

2
ν(ps), g

1
ν(ps)), h

1
0, w0, p0, a) that factors through one the of

the PS resolutions PSHGHResj constructed with respect to all proof systems of
depth 2. By proposition 3.7 in [22], that generalizes in a straightforward way to
torsion-free hyperbolic groups, the sets TSPS(p) associated with the various PS
resolutions PSHGHRes, i.e., the sets of specializations p0 of the defining parame-
ters P =< p > for which there exists a test sequence of valid PS statements that
factor through any of the PS resolutions PSHGHResj, is in the Boolean algebra
generated by AE sets. As in the free group case, if there exists a valid PS state-
ment that factors through a PS resolution PSHGHResj, then either there exists
a test sequence of valid PS statements that factor through the PS resolution, or
there must exist a specialization that factors through one of the graded auxiliary
resolutions associated with one of the PS resolutions PSHGHRes, and one of its
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associated collapsed extra PS limit groups.
To analyze the remaining set of valid PS statements we construct an iterative

sieve procedure that is similar to the sieve procedure over a free group, presented
in [23]. Having generalized the core resolution to resolutions over a torsion-free
hyperbolic group in the previous section, the structure of the sieve procedure over
a torsion-free hyperbolic group and the proof of its termination, is identical to the
sieve procedure over a free group, presented in [23]. Hence, we omit its details and
refer the interested reader to [23].
This sieve procedure finally proves theorem 6.3, i.e., it shows that the set of special-
izations of the defining parameters p, for which there exists a valid PS statement
of depth 2, is in the Boolean algebra of AE sets.

The tree of stratified sets has a finite depth, which (by definition) bounds the
depth of all possible proof systems associated with the tree of stratified sets. For
each integer d, we set Td(p) to be the set of specializations p0 of the defining
parameters P =< p > for which there exists a valid PS statement for some proof
system of depth d. Clearly: EAE(p) = T1(p) ∪ . . . ∪ Td0

(p) where d0 is the depth
of tree of stratified sets. Each of the sets Td(p) is in the Boolean algebra generated
by AE sets, by applying the same sieve procedure that was used to analyze the set
T2(p) (cf. [23]). Since a Boolean algebra is closed under finite unions, it follows
that every EAE set is in the Boolean algebra generated by AE sets.

Theorem 6.5. Let Γ =< a1, . . . , ak > be a torsion-free hyperbolic group, and let
the EAE set EAE(p) be defined as:

EAE(p) = ∃w ∀y ∃x (Σ1(x, y, w, p, a) = 1 ∧ Ψ1(x, y, w, p, a) 6= 1) ∨ . . .

. . . ∨ (Σr(x, y, w, p, a) = 1 ∧ Ψr(x, y, w, p, a) 6= 1).

Then EAE(p) is in the Boolean algebra generated by AE sets.

§7. The elementary theory of a hyperbolic group

In the first six sections of this paper we have modified the techniques presented
in [18]-[23] to prove that every elementary set defined over a torsion-free hyperbolic
group is in the Boolean algebra of AE sets (theorem 6.5). In [24] we were able
to use the quantifier elimination procedure presented in [23] to classify those f.g.
groups that are elementarily equivalent to a free group, i.e., to show that a f.g.
group is elementarily equivalent to a free group if and only if it is an ω-residually
free tower. In this section we use the quantifier elimination procedure for torsion-
free hyperbolic groups, to classify those f.g. groups that are elementarily equivalent
to a given torsion-free hyperbolic group. We start with the following observation.

Proposition 7.1. Let Γ1,Γ2 be non-elementary torsion-free rigid hyperbolic groups
(i.e., Γ1 and Γ2 are freely-indecomposable and do not admit any non-trivial cyclic
splitting). Then Γ1 is elementarily equivalent to Γ2 if and only if Γ1 is isomorphic
to Γ2.

Proof: We fix a system of generators of Γ1, Γ1 =< g1, . . . , gt >, and set X to be
the Cayley graph of Γ1 with respect to the given generating system. By section 8
of [27], since Γ1 is rigid and Γ2 is hyperbolic, there exists a positive integer n1, for
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which if h : Γ1 → Γ2 is a homomorphism that maps the elements in a ball of radius
n1 in the Cayley graph X of Γ1 into distinct elements in Γ2, then h is necessarily
a monomorphism.

Suppose that Γ1 is elementarily equivalent to Γ2. Since the existence of a ho-
momorphism from Γ1 to Γ2 that maps the elements that are in a ball of radius n1

in X into distinct elements in Γ2, can be formulated by a (coefficient-free) exis-
tential sentence that is true over Γ1, and Γ1 is assumed elementarily equivalent to
Γ2, there must exist a monomorphism from Γ1 to Γ2. Similarly, there must exist
a monomorphism from Γ2 to Γ1. By the co-Hopf property for hyperbolic groups
([26]), Γ1 is necessarily isomorphic to Γ2.

�

Proposition 7.1 implies that, in particular, a uniform lattice in a real rank 1
semi-simple Lie group that is not SL2(R) is elementarily equivalent to another such
lattice if and only if the two lattices are isomorphic. Hence, by Mostow’s rigidity,
the two lattices are conjugate in the same Lie group. By Margulis normality and
super-rigidity theorems, the same hold in higher rank (real) Lie groups.

Theorem 7.2. Let L1, L2 be uniform lattices in real semi-simple Lie groups that
are not SL2(R). Then L1 is elementarily equivalent to L2 if and only if L1 and L2

are conjugate lattices in the same real Lie group G.

Proposition 7.1 shows that rigid hyperbolic groups are elementarily equivalent if
and only if they are isomorphic. To classify elementary equivalence classes of hy-
perbolic groups in general, we need to present elementary (hyperbolic) prototypes.

Definition 7.3. Let Γ be a non-elementary torsion-free hyperbolic group. We say
that Γ is an elementary-prototype if:

(i) Γ is not an ω-residually free tower (i.e., Γ is not elementarily equivalent to
a free group).

(ii) Γ admits a (Grushko) free decomposition: Γ = H1∗. . .∗Hℓ, where H1, . . . , Hℓ

are freely-indecomposable, non-cyclic and are not ω-residually free towers.
(iii) Each of the factors Hi does not admit an endomorphism h : Hi → Hi∗ <

c > with non-trivial kernel, that maps (elementwise) each of the non-QH
vertex groups and each of the edge groups in the JSJ decomposition of Hi

to their conjugates (in Hi), and each of the QH vertex groups onto a non-
abelian subgroup.

Like rigid hyperbolic groups, elementary prototypes that are elementarily equiv-
alent have to be isomorphic.

Proposition 7.4. Let Γ1,Γ2 be two (hyperbolic) elementary-prototypes. Γ1 and
Γ2 are elementarily equivalent if and only if they are isomorphic.

Proof: First, suppose that both elementary-prototypes, Γ1 and Γ2, are freely in-
decomposable. We fix a system of generators of Γ1, Γ1 =< g1, . . . , gt >, and set X
to be the Cayley graph of Γ1 with respect to the given generating system.
Suppose that Γ1 is elementarily equivalent to Γ2. From the universal equivalence
of Γ1 and Γ2, for every index n, there exists a homomorphism vn : Γ1 → Γ2 that
maps the ball of radius n in X , the Cayley graph of Γ1, monomorphically into Γ2.
Moreover, since Γ1 is an elementary-prototype, the equivalence of the EA theories of
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Γ1 and Γ2 implies that for every integer n, there exists a homomorphism hn, so that
for every modular automorphism, ϕ ∈Mod(Γ1), the composition hn ◦ϕ : Γ1 → Γ2,
maps the ball of radius n in X monomorphically into Γ2.

The sequence of homomorphisms hn : Γ1 → Γ2, contains a subsequence (still
denoted {hn}) that converges into an action of Γ1 on a real tree Y . Hence, Γ1 is a Γ2-
limit group. Therefore, either Γ1 can be embedded into Γ2, or a subsequence of the
homomorphisms hn : Γ1 → Γ2 factors through a non-trivial taut Makanin-Razborov
resolution of the Γ2-limit group Γ1. However, the existence of a subsequence of
homomorphisms hn : Γ1 → Γ2 that factors through a non-trivial resolution of the
Γ2-limit group Γ1 contradicts our assumption that for every index n, and for every
modular automorphism ϕ ∈ Mod(Γ1), the composition hn ◦ ϕ embeds the ball of
radius n in X , the Cayley graph of Γ1, into Γ2. Hence, Γ1 can be embedded in Γ2.
In a similar way, Γ2 can be embedded in Γ1. Since we assumed that Γ1 and Γ2

are freely-indecomposable, torsion-free hyperbolic groups, they are co-Hopf by [26],
which finally implies that Γ1 is isomorphic to Γ2 in case Γ1 and Γ2 are elementarily
equivalent and freely indecomposable.

Suppose that Γ1 and Γ2 are (general) elementarily equivalent prototypes. Let
Γ1 = H1 ∗ . . . ∗ Hℓ and Γ2 = M1 ∗ . . . ∗ Ms, where the factors Hi and Mj are
(non-elementary) freely indecomposable and not ω-residually free towers. By the
equivalence of the EA theories of Γ1 and Γ2, for every n, there exists a homomor-
phism hn, so that for every modular automorphism ϕ ∈Mod(Γ1), the composition
hn◦ϕ : Γ1 → Γ2, maps the ball of radius n inX monomorphically into Γ2. Moreover,
we can further require that for any possible choice of elements: γ1, . . . , γℓ ∈ Γ2,
and every modular automorphism ϕ ∈Mod(Γ1), the homomorphism τn : Γ1 → Γ2

obtained by setting τn(Hi) = γi(hn ◦ ϕ(Hi))γi
−1, maps the ball of radius n in X

monomorphically into Γ2.
From the sequence of homomorphisms: hn : Γ1 → Γ2, it is possible to extract a

subsequence that converges into a faithful action of Γ1 on a real tree, hence, Γ1 and
its factors H1, . . . , Hℓ are all Γ2-limit groups. Since for every modular automor-
phism ϕ ∈Mod(Γ1), hn ◦ ϕ embeds the ball of radius n in X , the Cayley graph of
Γ1, we can further extract a subsequence of homomorphisms (still denoted {hn})
that embeds each of the factors H1, . . . , Hℓ into Γ2. Similarly, there exist similar
subsequence of homomorphisms vn : Γ2 → Γ1 that have similar properties as the
sequence {hn}, and each of the homomorphisms vn embeds the factors M1, . . . ,Ms

into Γ1.
The homomorphisms {hn : Γ1 → Γ2} embed each of the factors Hi into Γ2, and

the homomorphisms vn : Γ2 → Γ1 embed each of the factors Mj into Γ1. Since
the factors Hi and Mj are freely indecomposable, for each index i, 1 ≤ i ≤ ℓ,
hn(Hi) is a subgroup of a conjugate of one of the factors Mj , and for each index j,
1 ≤ j ≤ s, vn(Mj) is a subgroup of a conjugate of one of the factors Hi. Therefore,
for each index n, with the pair of homomorphisms hn, vn we can associate a two
sided directed graph Grn, where the vertices of the two sides correspond to the
factors H1, . . . , Hℓ and M1, . . . ,Ms, from a vertex associated with Hi there is an
edge connected to it and directed towards the vertex associated with the factor Mj

that contains a conjugate of hn(Hi), and from a vertex associated with Mj there is
an edge connected to it and directed towards the vertex associated with the factor
Hi that contains a conjugate of vn(Mj).

Since there are only finitely many possibilities for the combinatorial types of the
graphs Grn, we can pass to a further subsequence and assume that they are all
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identical, which we denote Gr. Since from each vertex in the bipartite directed
graph Gr there exists an edge connected to it and directed towards another vertex
in Gr, the graph Gr contains a (directed) circle.
Let C be an innermost circle in the graph Gr. Since Gr is a bipartite graph, C con-
tains an equal number of vertices corresponding to the factors Hi and to the factors
Mj . Since the factors Hi and Mj are all assumed to be freely-indecomposable, these
factors are co-Hopf. Since, in addition, for every index n, the homomorphism hn

embeds the factors Hi in Γ2, and the homomorphism vn embeds the factors Mj in
Γ1, the factors Hi and Mj that correspond to vertices along the innermost circle C
in the directed graph Gr, are pairwise isomorphic, and the homomorphisms hn, vn

restricted to the edges in the circle C are isomorphisms.
Since the homomorphisms hn, vn restricted to the edges in the circle C are iso-

morphisms, and since we assumed that for every index n, and any possible collection
of elements γ1, . . . , γℓ ∈ Γ2, and every modular automorphism ϕ ∈ Mod(Γ1), the
homomorphism τn : Γ1 → Γ2 obtained by conjugating hn◦ϕ(Hi) by γi for 1 ≤ i ≤ ℓ,
embeds the ball of radius n in X , the Cayley graph of Γ1, and correspondingly for
the homomorphism vn, no vertex that is not in the innermost circle C in Gr is
connected by an edge to a vertex in C. Applying the same argument for the sub-
graph Gr \ C, and continuing inductively, we finally obtain that ℓ = s, and up to
a change of order, the factor Hi of Γ1 is isomorphic to the factor Mi of Γ2, hence,
Γ1 is isomorphic to Γ2.

�

After showing that the elementary class of an elementary prototype determines
its isomorphism class (among the set of elementary prototypes), we (canonically)
associate with any given torsion-free hyperbolic group a retract of it which is an
elementary prototype, a retract that we call elementary core. As we will see in the
sequel, a torsion-free hyperbolic group that is not elementary equivalent to a free
group, is elementary equivalent to its elementary core.

Definition 7.5. Let Γ be a non-elementary torsion-free hyperbolic group. We con-
struct the elementary core of Γ iteratively. Let the Grushko’s decomposition of Γ
be: Γ = H1 ∗ . . .Hm ∗ Fs, where each of the factors Hi is non-cyclic and freely-
indecomposable, and Fs is a (possibly trivial) free group. We omit the free factor
Fs, as well as each of the freely-indecomposable factors Hi that are isomorphic to
a (closed) surface group that is elementarily equivalent to a free group, i.e., a hy-
perbolic surface group, where the surface is not the non-orientable surface of genus
2.
Let H1, . . . , Ht be the remaining factors. We continue by constructing the elemen-
tary core of each of the factors Hi, EC(Hi), and then set the core of the hyperbolic
group Γ, EC(Γ), to be:

EC(Γ) = EC(H1) ∗ . . . ∗ EC(Ht).

To construct the elementary core of a freely indecomposable, non-cyclic factor
Hi, we associate with it its (cyclic) JSJ decomposition. If Hi is an elementary
prototype (see definition 7.3), we set EC(Hi) = Hi, and conclude the construction
of the elementary core of the factor Hi. If Hi is not an elementary prototype,
there must exist an endomorphism ν : Hi → Hi∗ < c > with non-trivial kernel,
that maps each of the non-QH vertex groups in the JSJ decomposition of Hi into
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a conjugate in Hi (elementwise), and each QH vertex group onto a non-abelian
subgroup. The existence of such endomorphism ν, implies the existence of a proper
retraction, r : Hi → Hi, that maps the factor Hi onto the fundamental group
of a (not necessarily connected) proper subgraph of the JSJ decomposition of H1,
and maps (elementwise) each of the non-QH vertex groups into a conjugate (see
the argument that was used to prove proposition 6 in [24] for the existence of the
proper retraction r, given the proper map ν).

The image of the retraction r, is the fundamental group of a subgraph of the JSJ
decomposition of the torsion-free hyperbolic factor Hi, hence, it is a torsion-free
hyperbolic group. Continuing the construction iteratively, we set the elementary
core of the factor Hi to be: EC(Hi) = EC(r(Hi)).
In each step along the iterative construction of the elementary core of the torsion-
free hyperbolic group Γ, we replace a factor by a proper retract of it, which is a
proper quotient of the factor, and a subgroup of the original torsion-free hyperbolic
group Γ. Hence, the descending chain condition for Γ-limit groups (theorem 1.12)
proves that the construction of the elementary core terminates after finitely many
steps.

Note that by construction, the ambient torsion-free hyperbolic group Γ has the
structure of a tower, in which the bottom level is a free product of the elementary
core, EC(Γ), with a (possibly trivial) collection of a free group and surface groups,
and in each level of the tower a punctured surface group is being added, so that the
boundaries of the punctured surface are identified with non-trivial elements in the
group associated with the previous level. In addition there are retractions associated
with the tower, mapping the groups associated with the various levels to the groups
associated with the previous ones (cf. the structure of ω-residually free towers in
[24]).

By construction, the elementary core of a (non-elementary) torsion-free hyper-
bolic group is trivial if and only if the hyperbolic group is an ω-residually free tower,
i.e., if it is elementarily equivalent to a free group.
Along the construction of the elementary core various choices can be made, and
indeed, in general the elementary core of a torsion-free hyperbolic group is not
necessarily a unique subgroup. The next theorem shows that an elementary core
is an elementary submodel of a torsion-free hyperbolic group. Hence, every two
elementary cores are elementarily equivalent, and since an elementary core is an
elementary prototype (definition 7.3), proposition 7.4 implies that the isomorphism
type of an elementary core is uniquely defined.

Theorem 7.6. Let Γ be a non-elementary torsion-free hyperbolic group that is not
an ω-residually free tower, i.e., that is not elementarily equivalent to a free group.
Then Γ is elementarily equivalent to its elementary core, EC(Γ). Furthermore, the
embedding of the elementary core, EC(Γ), in the ambient group Γ is an elementary
embedding.

Proof: Let EC = EC(Γ). By the construction of the elementary core, EC, from
the torsion-free hyperbolic group Γ, it follows that Γ is the fundamental group
of a tower over the elementary core, EC, free product with a (possibly trivial)
finite collection of surface groups and a free group, that we denote Twr. With the
structure of the tower Twr we associate a (completed) resolution over the coefficient
group EC, that we denote ResΓ. Note that the terminal group of ResΓ is a free

51



product of EC with a (possibly trivial) collection of surface groups and a free group.
Let EC =< a1, . . . , ak >, and let Σ(y, a) = 1 be a system of equations with

coefficients in the elementary core, EC. With the system Σ(y, a) = 1, interpreted
as a system of equations over EC, which is in particular a torsion-free hyperbolic
group, we have associated a taut Makanin-Razborov diagram. With each resolution
in this taut Makanin-Razborov diagram we have associated its completion. Let
Comp(Res1)(z, y, a), . . . , Comp(Resd)(z, y, a) be the set of these completions.

Lemma 7.7. Let y′ be a solution of the system Σ(y, a) = 1, interpreted as a
system of equations over the ambient torsion-free hyperbolic group Γ. Then there
exist elements z′ in Γ, so that the tuple (z′, y′) is a specialization of (at least) one of
the completions Comp(Res1)(z, y, a), . . . , Comp(Resd)(z, y, a), i.e., it is the image
of a homomorphism from the Γ-limit group associated with one of these completions
into Γ.

Proof: We look at a test sequence of the resolution, ResΓ(b), associated with the
tower Twr, in the core EC. Let y′n ∈ EC be the sequence of specializations of
the elements y′ ∈ Γ along the given test sequence. Since Σ(y′, a) = 1 in Γ, the
sequence y′n satisfies Σ(y′n, a) = 1 in EC, for every index n. Hence, for every index
n, there exist elements z′n ∈ EC, so that the tuple (z′n, y

′
n, a) is a specialization of

one of the completions Comp(Res1)(z, y, a), . . . , Comp(Resd)(z, y, a). If for every
n we choose the shortest such z′n, then the techniques used for the construction
of a formal solution ([19],1.17), prove that there exists a subsequence of tuples
(z′n, y

′
n, a) that are all specializations of the same completion, Comp(Resi)(z, y, a),

that converge into tuple (z′, y′, a) ∈ Γ, and the tuple (z′, y′, a) is a specialization of
the completion Comp(Resi)(z, y, a).

�

Clearly, the same argument used to prove lemma 7.7 applies to specializations
of graded and multi-graded systems of equations, and the completions of the cor-
responding taut graded and multi-graded taut Makanin-Razborov diagrams. Let
Θ(y, a) = 1 be a system of equations with coefficients in the elementary core, EC,
and let:

(∀y) (Θ(y, a) = 1) ∃x Σ(x, y, a) = 1 ∧ Ψ(x, y, a) 6= 1

be a sentence. Suppose that the sentence is a true sentence over the elementary core,
EC. By theorem 2.1, with each resolution Res(y, a) in the taut Makanin-Razborov
diagram associated with the system Θ(y, a) = 1 over the elementary core, EC, it
is possible to associate finitely many formal solutions, x = xi(s, z, y, a), defined
over closures of that resolution, Cli(Res)(s, z, y, a), that together form a covering
closure of the resolution Res(y, a), for which for every index i:

(i) Σ(x(s, z, y, a), y) = 1 in the EC-limit group corresponding to the closure,
Cli(Res)(s, z, y, a).

(ii) there exists a specialization (si, zi, yi, a) (in the core EC), of the closure
Cli(Res)(s, z, y, a), for which Ψ(x(si, zi, yi, a), yi, a) 6= 1 (in EC).

By lemma 7.7, if y′ is a solution of the system Θ(y, a) = 1 interpreted as a
system of equations over the ambient group Γ, then there exists elements z′ in
Γ, so that the tuple (z′, y′) is a specialization of (at least) one of the comple-
tions Comp(Res1)(z, y, a), . . . , Comp(Resd)(z, y, a) of the resolutions in the taut
Makanin-Razborov diagram associated with the system of equations Θ(y, a) =
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1. Hence, there exists a closure of some of these completions, a formal solution
xi(s, z, y, a), and elements s′, for which: Θ(xi(s

′, z′, y′, a), y, a) = 1 over that clo-
sure. Clearly, the graded and multi-graded categories are completely analogous.

Proposition 7.8. Let:

∀y ∃x (Σ1(x, y, a) = 1 ∧ Ψ1(x, y, a) 6= 1) ∨ . . . ∨ (Σr(x, y, a) = 1 ∧ Ψr(x, y, a) 6= 1)

be an AE sentence with coefficients in the elementary core, EC. Then the AE
sentence is a true sentence over EC if and only if it is a true sentence over the
ambient hyperbolic group Γ, i.e., the embedding of the elementary core of a torsion-
free hyperbolic group into the ambient hyperbolic group is an AE embedding.

Proof: Suppose that

∀y ∃x (Σ1(x, y, a) = 1 ∧ Ψ1(x, y, a) 6= 1) ∨ . . . ∨ (Σr(x, y, a) = 1 ∧ Ψr(x, y, a) 6= 1)

is a sentence with coefficients in the elementary core, EC. If the sentence is a
true sentence over EC, then it is possible to apply the iterative procedure pre-
sented in section 4 (based on [21]), and associate iteratively with the sentence a
(finite) sequence of anvils, developing resolutions and formal solutions defined over
them, that prove the validity of the sentence over the elementary core EC. By the
arguments given above, the proof given by the sequence of anvils, developing res-
olutions, and formal solutions defined over them, is valid over the non-elementary
torsion-free hyperbolic group Γ.

Suppose that the given sentence is false over the elementary core, EC. By
applying the iterative procedure for validation of a sentence over EC, there exists a
resolutionRes(z, y, a) over EC, so that there exists a test sequence of specializations
of this resolution (over EC), for which for the corresponding specializations of the
variables y, there is no specialization of the variables x (in EC) for which:

(Σ1(x, y, a) = 1 ∧ Ψ1(x, y, a) 6= 1) ∨ . . . ∨ (Σr(x, y, a) = 1 ∧ Ψr(x, y, a) 6= 1).

We want to show that the given sentence is false over the ambient hyperbolic group
Γ. The resolution Res(z, y, a) is a resolution over the elementary core, EC, hence,
it is also a resolution over the ambient hyperbolic group Γ. By our assumptions,
the resolution Res(z, y, a) has a test sequence of specializations in EC, so that
for the corresponding sequence of specializations of the variables y, there are no
specializations of the variables x in EC, for which:

(Σ1(x, y) = 1 ∧ Ψ1(x, y) 6= 1) ∨ . . . ∨ (Σr(x, y) = 1 ∧ Ψr(x, y) 6= 1).

EC is a non-elementary quasi-convex subgroup of Γ, so the test sequence of special-
izations of the resolution Res(z, y, a) in EC is also a test sequence of specializations
of the resolution Res(z, y, a) in the ambient group Γ. Suppose that our given sen-
tence is a true sentence over Γ. Then for each specialization of the variables y from
our given test sequence, there exists a specialization of the variables x in Γ for
which:

(Σ1(x, y, a) = 1 ∧ Ψ1(x, y, a) 6= 1) ∨ . . . ∨ (Σr(x, y, a) = 1 ∧ Ψr(x, y, a) 6= 1)
53



where the equalities and inequalities are in Γ.
Using our machinery for constructing a formal solution (theorem 2.1), and after pos-
sibly passing to a subsequence of the test sequence in Γ, we obtain a formal solution
x = x(s, z, y, a) defined over some closure Cl(s, z, y, a) of the resolution Res(z, y, a)
over Γ. Since Γ retracts onto its elementary core, the existence of a formal solution
over the ambient group Γ, implies the existence of a formal solution x′ = x′(s, z, y, a)
defined over a closure Cl′(s, z, y, a) of the resolution Res(z, y, a) over the elemen-
tary core, EC, where the same test subsequence that factored through the closure,
Cl(s, z, y, a), factors through the closure Cl′(s, z, y, a). This is a contradiction,
since we assumed that for every specialization of the variables y in the test se-
quence, there does not exist a specialization of the variables x in the elementary
core, EC, for which the set of equalities and inequalities defining the sentence hold.

�

Proposition 7.8 proves that the embedding of the elementary core into the ambi-
ent torsion-free hyperbolic group is an AE embedding (assuming the ambient group
is not elementarily equivalent to a free group). To prove that the embedding is an
elementary embedding, it remains to prove that the quantifier elimination proce-
dure conducted over EC, for predicates defined over the elementary core, EC, is
valid over the the ambient hyperbolic group Γ. The quantifier elimination pro-
cedure presented in [22] and [23] (and section 6) is composed from two parts, the
procedure for the construction of the tree of stratified sets, and the sieve procedure.
We start by showing that the procedure for the construction of the tree of stratified
sets remains valid over the ambient group.

The procedure for the construction of the tree of stratified sets analyzes the re-
maining set of y’s using multi-graded resolutions, and their associated developing
resolutions, and then we associate with each developing resolution, its entire col-
lection of formal solutions, which are encoded in the graded formal diagram. Since
the predicates we consider are defined over the elementary core, EC, and the con-
struction of the tree of stratified sets is conducted over EC, all the resolutions are
defined over EC, and all the limit groups are EC-limit groups.

Lemma 7.7 proves that the set of the remaining y’s over the group Γ at each
step, can be completed to specializations that factor through the completions of
the multi-graded resolutions at each step of the procedure for the construction of
the tree of stratified sets (over EC). We have also argued that if p0 is in the
definable set of the given predicate, interpreted as a predicate over Γ, then with
each ungraded resolution associated with the (graded) developing resolution and
p0, there exists a formal solution (over Γ) that satisfies the properties of theorem
2.1.
The ungraded resolution defined over Γ, can be approximated by a sequence of
ungraded resolutions over the core, EC. From the existence of a formal solution
defined over the given ungraded resolution over Γ, it follows that all the approx-
imating resolutions over EC admit formal solutions that approximate the formal
solution over Γ. Hence, the given formal solution defined over Γ, factors through
the completion of at least one of the graded formal resolutions associated with the
given developing resolution over the elementary core EC.

The iterative procedure for validation of an AE sentence, shows that if an AE
sentence over EC is a true sentence, then it has a proof using a finite collection of
formal solutions. By the proof of lemma 7.7, the same is true for sentences defined
over Γ.
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Let L(p, w) be an AE predicate defined over the elementary core, EC. Let
QEC(p, w) be the set defined by L(p, w) over the EC, and QΓ(p, w) be the set
defined by L(p, w) over Γ. The tree of stratified sets constructed over the free
group EC, shows that if (p0, w0) ∈ QEC(p, w), then the sentence corresponding
to the specialization (p0, w0) can be proved using a sequence of formal solutions
according to one of the proof systems given by the tree of stratified sets over EC.
The argument given above, shows that if (p0, w0) ∈ QΓ(p, w), then the sentence
corresponding to the specialization (p0, w0) can be proved using a sequence of formal
solutions according to one of the proof systems given by the same tree of stratified
sets (over EC).

Furthermore, if Rgd(x, p, a) (Sld(x, p, a)) is a rigid (solid) EC-limit group, then
the maximal number of rigid (families of strictly solid) specializations of Rgd(x, p, a)
(Sld(x, p, a)) for a specialization of the defining parameter p is identical over the
elementary core EC, and the ambient group Γ. Hence, the collection of proof
systems associated with the tree of stratified sets is identical over EC and over Γ,
i.e., for the two sets QEC(w, p) and QΓ(w, p).

The collection of proof systems associated with the tree of stratified sets over EC
and over Γ are identical. Any valid PS statement over Γ can be approximated by
a sequence of valid PS statements over EC. Furthermore, any valid PS statement
over Γ does not factor through any of the Non-Rigid, Non-Solid, Root or Left
PS resolutions constructed along the Sieve procedure over EC, and if it factors
through an extra PS resolution, it has to factor through either one of the collapse
extra PS EC-limit groups associated with it, or one of the Generic collapse extra
PS resolutions associated with it (constructed over EC). Hence, any valid PS
statement over Γ, belongs to at least one of the TSPS(p) sets constructed along the
sieve procedure (over the core EC. See proposition 1.34 in [22] for the definition
of the sets TSPS(p)). Therefore, the reduction of a predicate defined over the
elementary core, EC, to a predicate in the Boolean algebra of AE sets, can be
done uniformly for the towers defined over the elementary core EC, i.e., for all the
torsion-free hyperbolic groups for which EC is their elementary core. Since the AE
theories of these towers are equivalent by proposition 7.8, the elementary core EC
is an elementary submodel of the ambient torsion-free hyperbolic group Γ.

�

Corollary 7.9. Let Γ1,Γ2 be two non-elementary torsion-free hyperbolic groups.
Then Γ1 and Γ2 are elementarily equivalent if and only if their elementary cores,
EC(Γ1) and EC(Γ2), are isomorphic.

Proof: By the construction of the elementary core (definition 7.5), the elemen-
tary core of a torsion-free hyperbolic group is trivial if and only if the torsion-free
hyperbolic group is a hyperbolic ω-residually free tower, i.e., if and only if it is ele-
mentarily equivalent to a free group. Hence, to prove the corollary we may assume
that both hyperbolic groups, Γ1 and Γ2, are not elementarily equivalent to a free
group.

By theorem 7.6, Γ1 and Γ2 are elementarily equivalent to their elementary cores,
EC(Γ1) and EC(Γ2), in correspondence. An elementary core of a non-elementary,
torsion-free hyperbolic group that is not elementarily equivalent to a free group is an
elementary prototype, hence, by proposition 7.4, EC(Γ1) is elementarily equivalent
to EC(Γ2) if and only if EC(Γ1) is isomorphic to EC(Γ2), and the corollary follows.
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Remark: The iterative procedure that was used to construct the the elementary
core of a torsion-free hyperbolic group (see definition 7.5), can be applied in the
case of a general f.g. group. It is not difficult to see that the construction terminates
after finitely many steps in the case of a general f.g. group as well. However, for a
f.g. group we do not know if the elementary core is unique up to isomorphism, and
whether there is a connection between the structure of the elementary core and the
first order theory of the group.

Corollary 7.9 determines the elementary classes of (torsion-free) hyperbolic groups.
The next theorem shows that hyperbolicity is preserved under elementary equiva-
lence.

Theorem 7.10. Let Γ be a torsion-free hyperbolic group, and let G be a f.g. group.
If G is elementarily equivalent to Γ, then G is a torsion-free hyperbolic group.
Hence, either:

(i) Both G and Γ are either trivial or (infinite) cyclic.
(ii) Both G and Γ are ω-residually free towers, i.e., they are both elementarily

equivalent to a non-abelian free group.
(iii) Both G and Γ are non-elementary and not ω-residually free towers, and the

elementary core of Γ, EC(Γ), is isomorphic to the elementary core of G,
EC(G).

Proof: Let Γ be a torsion-free hyperbolic group and G a f.g. group, and suppose
that Γ is elementarily equivalent toG. A f.g. group that is elementarily equivalent to
a trivial or an infinite cyclic group is trivial or infinite cyclic in correspondence. By
[24] a f.g. group that is elementarily equivalent to a free group is an ω-residually free
tower, which is, in particular, a torsion-free hyperbolic group. Hence, to prove the
theorem we may assume that the torsion-free hyperbolic group Γ is non-elementary,
and not an ω-residually free tower, i.e., not elementarily equivalent to a free group.
Under these assumptions, we can associate with Γ its elementary core, EC(Γ), and
by theorem 7.6 Γ is elementarily equivalent to EC(Γ), so EC(Γ) is elementarily
equivalent to G.

Since the elementary core, EC(Γ), is a torsion-free hyperbolic group, and G
is elementarily equivalent to EC(Γ), G is, in particular, universally equivalent to
EC(Γ), which implies that there exists a sequence of homomorphisms un : G →
EC(Γ), so that for each index n, un embeds the elements in the ball of radius n in
G into EC(Γ), hence, G is an EC(Γ)-limit group. Since G is an EC(Γ)-limit group,
and G is elementarily equivalent to a torsion-free hyperbolic group, G contains no
non-cyclic abelian subgroups. Hence, by applying the construction presented in
definition 7.5, one can associate with G a core, which we denote C(G), together
with a sequence of retractions of G:

G→ G1 → G2 → . . .→ Gt = C(G)

that are used in the construction of the core, C(G), and in which all the retractions
Gi are EC(Γ)-limit groups.

At this point we modify the argument that was used to prove that elementarily
equivalent elementary prototypes are isomorphic (proposition 7.4), in order to prove
that EC(Γ) and the core of G, C(G), are isomorphic. This implies that the core,
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C(G), is a torsion-free hyperbolic group, which further implies, by the construction
of the core and the combination theorem of M. Bestvina and M. Feighn [4], that G
is a torsion-free hyperbolic group.

Let EC(Γ) = H1 ∗ . . . ∗Hℓ and C(G) = M1 ∗ . . . ∗Ms, where the factors Hi and
Mj are (non-elementary) freely indecomposable and not ω-residually free towers.
By the equivalence of the EA theories of EC(Γ) and G, for every n, there exists
a homomorphism hn : C(G) → EC(Γ), so that for every modular automorphism
ϕ ∈Mod(C(G)), the composition hn ◦ϕ : C(G) → EC(Γ), maps the ball of radius
n in the Cayley graph of C(G) monomorphically into EC(Γ). Moreover, we can
further require that for any possible choice of elements: γ1, . . . , γs ∈ EC(Γ), and
every modular automorphism ϕ ∈ Mod(C(G)), the homomorphism τn : C(G) →
EC(Γ) obtained by setting τn(Mi) = γi(hn ◦ ϕ(Mi))γi

−1, maps the ball of radius
n in X monomorphically into EC(Γ).
From the sequence of homomorphisms: hn : C(G) → EC(Γ), it is possible to
extract a subsequence that converges into a faithful action of C(G) on a real tree.
Since for every modular automorphism ϕ ∈ Mod(C(G)), hn ◦ ϕ embeds the ball
of radius n in the Cayley graph of C(G), we can further extract a subsequence of
homomorphisms (still denoted {hn}) that embeds each of the factors M1, . . . ,Ms

into EC(Γ).
We continue by constructing a torsion-free hyperbolic group L, into which the

f.g. group G is naturally embedded. By the above argument, each of the factors
Mi, 1 ≤ i ≤ s, of the core, C(G), is embedded in the elementary core EC(Γ).
Hence, for each index i, 1 ≤ i ≤ s, we fix an embedding: νi : Mi → EC(Γ). By the
construction of the core of the EC(Γ)-limit group G, C(G) (see definition 7.5), the
EC(Γ)-limit group G is obtained from its core, C(G), which is a retract of G, by
starting with a free product of C(G) with a (possibly trivial) free product of a free
group and closed hyperbolic surface groups, and then iteratively adding hyperbolic
punctured-surface groups that are amalgamated to the group associated with the
previous steps along their boundary subgroups.

We construct the hyperbolic group L, by imitating the construction of G from
C(G). We start with s copies of the elementary core, EC(Γ), where with the i-th
copy of EC(Γ) we associate the (fixed) image of the factor Mi by the i-th em-
bedding: νi : Mi → EC(Γ). We continue with a free product of the s copies of
EC(Γ) free product with a (possibly trivial) free product of a free group and closed
hyperbolic surface groups, as in the free product associated with the bottom level
of the construction of G from its core, C(G). We further continue the construction
of the group L by iteratively adding hyperbolic punctured-surface groups that are
amalgamated to the group associated with the previous steps along their boundary
components, precisely as in the construction of G from its core, C(G). By construc-
tion, L is torsion-free and G is a subgroup of L, and by the combination theorem
of M. Bestvina and M. Feighn [4], L is a hyperbolic group.

Recall that EC(Γ) = H1 ∗ . . . ∗Hℓ and C(G) = M1 ∗ . . . ∗Ms, where the factors
Hi and Mj are (non-elementary) freely indecomposable and not ω-residually free
towers. By the equivalence of the EA theories of EC(Γ) and G, for every n, there
exists a homomorphism vn : EC(Γ) → G, so that for every modular automorphism
ϕ ∈Mod(EC(Γ)), the composition vn ◦ ϕ : EC(Γ) → G, maps the ball of radius n
in the Cayley graph of EC(Γ) monomorphically into G. Moreover, we can further
require that for any possible choice of elements: g1, . . . , gℓ ∈ G, and every modular
automorphism ϕ ∈Mod(EC(Γ)), the homomorphism τn : EC(Γ) → G obtained by
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setting τn(Hi) = gi(vn◦ϕ(Hi))gi
−1, maps the ball of radius n inX monomorphically

into G.
Since G is embedded in the hyperbolic group L, we can further compose the

sequence of homomorphisms {vn}, with the embedding ν : G → L, and obtain a
sequence of homomorphisms v̂n : EC(Γ) → L. From the sequence of homomor-
phisms: v̂n : EC(Γ) → L, it is possible to extract a subsequence that converges
into a faithful action of EC(Γ) on a real tree. Since for every modular automor-
phism ϕ ∈ Mod(EC(Γ)), vn ◦ ϕ embeds the ball of radius n in the Cayley graph
of EC(Γ), we can further extract a subsequence of homomorphisms (still denoted
{vn}) that embeds each of the factors H1, . . . , Hℓ into G. By the construction of
the core of the EC(Γ)-limit group G, C(G), since EC(Γ) is an elementary proto-
type and for every index n, the homomorphism vn : EC(Γ) → G embeds each of
the factors H1, . . . , Hℓ of EC(Γ) into G, for every index n, the composition of vn

with the projection from the EC(Γ)-limit group G to its core C(g), η : G→ C(G),
v′n = η ◦ vn : EC(Γ) → C(G), embeds each of the factors H1, . . . , Hℓ into the core
C(G).

At this point we can continue in a similar way to the argument that was used to
prove proposition 7.4. The homomorphisms hn : C(G) → EC(Γ) embed each of the
factors Mj into EC(Γ), and the homomorphisms v′n : EC(Γ) → C(G) embed each
of the factors Hi into C(G). Since the factors Hi and Mj are freely indecomposable,
for each index i, 1 ≤ i ≤ ℓ, v′n(Hi) is a subgroup of a conjugate of one of the factors
Mj , and for each index j, 1 ≤ j ≤ s, hn(Mj) is a subgroup of a conjugate of one
of the factors Hi. Therefore, for each index n, with the pair of homomorphisms
hn, v

′
n we can associate a bipartite directed graph Grn, where the vertices of the

two sides correspond to the factors H1, . . . , Hℓ and M1, . . . ,Ms, from a vertex
associated with Hi there is an edge connected to it and directed towards the vertex
associated with the factor Mj that contains a conjugate of v′n(Hi), and from a
vertex associated with Mj there is an edge connected to it and directed towards
the vertex associated with the factor Hi that contains a conjugate of hn(Mj).

Since there are only finitely many possibilities for the combinatorial types of the
graphs Grn, we can pass to a further subsequence and assume that they are all
identical, which we denote Gr. As in the proof of proposition 7.4, the directed
graph Gr contains a (directed) circle, and an innermost circle, which we denote C,
contains an equal number of vertices corresponding to the factors Hi and to the
factors Mj . Since the factors Hi are all assumed to be freely-indecomposable (and
they are torsion-free hyperbolic), these factors are co-Hopf. Since, in addition, for
every index n, the homomorphism v′n embeds the factors Hi into C(G), and the
homomorphism hn embeds the factors Mj into EC(Γ), the factors Hi and Mj that
correspond to vertices along the innermost circle C in the directed graph Gr, are
pairwise isomorphic, and the homomorphisms hn, v

′
n restricted to the edges in the

circle C are isomorphisms.
Since the homomorphisms hn, v

′
n restricted to the edges in the circle C are iso-

morphisms, and since we assumed that for every index n and any possible collection
of elements g1, . . . , gℓ ∈ G, and a modular automorphism ϕ ∈ Mod(EC(Γ)), the
homomorphism τn : EC(Γ) → C(G) obtained by conjugating v′n ◦ ϕ(Hi) by γi for
1 ≤ i ≤ ℓ, embeds the ball of radius n in the Cayley graph of EC(Γ), and corre-
spondingly for the homomorphism hn, no vertex that is not in the innermost circle
C in Gr is connected by an edge to a vertex in C. Applying the same argument
for the subgraph Gr \ C, and continuing inductively, we finally obtain that ℓ = s,
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and up to a change of order, the factor Hi of EC(Γ) is isomorphic to the factor Mi

of C(G). Hence, EC(Γ) is isomorphic to C(G), and in particular, the core C(G)
is a torsion-free hyperbolic group. By the construction of the core C(G) from the
EC(Γ)-limit group G, the combination theorem of Bestvina-Feighn [4] implies that
G is a torsion-free hyperbolic group. Therefore, the rest of the theorem follows
from corollary 7.9.

�

Corollary 7.9 asserts that the elementary class of a torsion-free hyperbolic group
that is not elementary equivalent to a free group (among all f.g. groups) is deter-
mined by the isomorphism class of its elementary core. Hence, in order to be able
to decide if two torsion-free hyperbolic groups are elementary equivalent one needs
to decide if they are elementarily equivalent to a free group, and if they are not,
to compute their elementary core, and to decide if the two elementary cores are
isomorphic.

Theorem 7.11. Let Γ1,Γ2 be two torsion-free hyperbolic groups. Then it is decid-
able if Γ1 is elementarily equivalent to Γ2.

Proof: According to corollary 7.9, in order to decide if two torsion-free hyperbolic
groups, Γ1 and Γ2, are elementarily equivalent, we need to check the following:

(i) Decide if either Γ1 or Γ2 are trivial or cyclic. To be elementarily equivalent,
if one of them is trivial or cyclic, the other must be as well.

(ii) Assuming both Γ1 and Γ2 are non-elementary, we need to construct effec-
tively their elementary cores, EC(Γ1) and EC(Γ2).

(iii) Once the elementary cores, EC(Γ1) and EC(Γ2), are constructed, we need
to check effectively if they are isomorphic.

Given a hyperbolic group there is an algorithm to find its hyperbolicity constant
δ (see [12]). Given δ, the word problem is decidable, hence, it is possible to decide
if any of the two given torsion-free hyperbolic groups, Γ1 and Γ2, are trivial or
infinite cyclic. Hence, for the rest of the argument, we may assume that both Γ1

and Γ2 are non-elementary.
By the construction of the elementary core (definition 7.5), the core itself is a

torsion-free hyperbolic group. Hence, once the cores of Γ1 and Γ2 are constructed,
the solution to the isomorphism problem for torsion-free hyperbolic groups ([28],[6])
decides effectively if the cores, EC(Γ1) and EC(Γ2), are isomorphic. Therefore, to
prove theorem 7.11, we are only required to give a procedure to construct the
elementary core of a torsion-free hyperbolic group effectively.

The construction of the elementary core of a torsion-free hyperbolic group Γ is
conducted iteratively. Given the group Γ, we first need to find effectively its (possi-
bly trivial) Grushko’s decomposition: Γ = H1 ∗ . . . ∗Hm ∗Fs, where the factors Hi

are non-elementary and freely indecomposable. We need to decide effectively which
of the freely-indecomposable factors is a (non-exceptional) surface groups, and for
those that are not surface groups, we need to compute effectively the (essential)
JSJ decomposition of each of the factors Hi, and once the JSJ is given, we need
to check if there is proper retraction of a given factor into the fundamental group
of a proper subgraph of the JSJ decomposition, so that the retraction maps each
non-QH vertex group and each edge group in the JSJ to a conjugate (elementwise),
and so that the retraction factors through a proper map of the factor to the image
of the retract free product with an infinite cyclic group, so that under this map each
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QH vertex group is mapped into a non-abelian subgroup (see the construction of
the elementary core in definition 7.5). Once such a proper retraction exists, for at
least one of the factors, we continue iteratively. By theorem 1.12, the construction
terminates after finitely many steps (see definition 7.5).

The Grushko factorization of a torsion-free hyperbolic group can be found ef-
fectively by either the procedure suggested by Gerasimov in [7], or the procedure
presented in [28] for the same purpose, as part of the solution of the isomorphism
problem. The JSJ decomposition of a freely-indecomposable, torsion-free hyper-
bolic group is constructed effectively in [28] and [6] (see also section 9 in [27]), and
using its construction it is also possible to decide which of the freely indecomposable
factors in the Grushko’s decomposition are (non-exceptional) surface groups.

Once the JSJ decomposition of the various factors is constructed, we still need
to decide effectively which of them admits a proper map into a free product of the
fundamental group of a proper subgraph of the JSJ decomposition and an infinite
cyclic group, so that each non-QH vertex group and each edge group is mapped to
a conjugate (elementwise) in the fundamental group of the proper subgraph of the
JSJ decomposition, and each surface group is mapped into a non-abelian subgroup.

Given a factor in the Grushko decomposition of Γ, to check if there exists such
a proper map, we go over all the proper (not necessarily connected) subgraphs
of the JSJ that contain all the non-QH vertex groups and all the edges between
them, in parallel. Given such a subgraph, we need to check effectively if there is
a map of each of the remaining QH vertex groups into the fundamental group of
the subgraph free product with an infinite cyclic group, that maps the boundary of
each of the QH vertex groups into (a conjugate of) the edge group it is connected
to, and so that the image of each of the QH vertex groups is non-abelian.

The fundamental group of a subgraph of the JSJ decomposition is a torsion-free
hyperbolic group, and so is its free product with an infinite cyclic group. The exis-
tence of a homomorphism of a QH vertex group into the fundamental group of the
given subgraph free product with an infinite cyclic group, that maps the boundary
elements of the QH vertex into (conjugates of) the edge groups it is connected to,
naturally translates into a finite system of equations (with coefficients), over the
fundamental group of the subgraph free product with an infinite cyclic group. To
impose the image of each QH vertex group to be non-abelian, we further need to
replace the finite system of equations, by a finite disjunction of finite systems of
equalities and inequalities. Hence, it is sufficient to show that it is decidable if
a finite system of equalities and inequalities has a solution, i.e., to show that the
universal theory of a torsion-free hyperbolic group is decidable (note that the Dio-
phantine theory of a torsion-free hyperbolic group is decidable by [17]). We would
like to note that a more elegant solution to the universal theory of a torsion-free
hyperbolic group than the one described below was given by F. Dahmani in [5].

Theorem 7.12 (cf. [5]). The universal theory of a torsion-free hyperbolic group
is decidable.

Proof: Let Γ =< a1, . . . , ak > be a non-elementary torsion-free hyperbolic group,
and let Fk =< f1, . . . , fk > be a free group of rank k. With the hyperbolic group
Γ, we naturally associate the quotient map τ : Fk → Γ, that maps fi to ai, for
i = 1, . . . , k.

Let Σ(y, a) = 1 be a finite system of equations over Γ, and let Ψ(y, a) 6= 1 be a
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finite system of inequalities over Γ. To show that the universal theory over Γ is
decidable, we need an effective procedure to decide if the conjunction of Σ and Ψ
has a solution.

By [17], with the system Σ(y, a) it is possible to associate effectively finitely
many systems of equations over the free group Fk:

Σ1(x1, f) = 1, . . . ,Σℓ(xℓ, f) = 1

so that for every index i, 1 ≤ i ≤ ℓ, there exists a tuple of elements ŷi ∈< xi, f >,
and for every solution x0

i of the system of equations Σi, i.e., for every xi
0 that

satisfies Σi(x
0
i , a) = 1, τ(y0

i ) is a solution of the system Σ, i.e., Σ(τ(y0
i ), a) = 1.

Furthermore, every solution of the system Σ(y, a) = 1 over Γ, is obtained in that
way from one of the systems Σi(xi, a) = 1 over the free group Fk.

By the Bulitko lemma (cf. lemma 1.4 in [Ma]), if a system of equations over
a free group has a solution, then it has a solution with periodicity bounded by a
constant that can be computed from the combinatorial complexity of the system of
equations (see lemma 1.4 in [Ma] for this constant). The Bulitko lemma naturally
generalizes to a conjunction of a system of equalities and inequalities over a free
group, and using the canonical representatives presented in [17], it generalizes to the
conjunction of systems of equalities and inequalities over a torsion-free hyperbolic
group.

Therefore, if the conjunction of the systems Σ(y, a) = 1 and Ψ(y, a) 6= 1 has a
solution in the hyperbolic group Γ, then there exists an index i, 1 ≤ i ≤ ℓ, and a
solution x0

i of the system Σi(xi, f) = 1 for which:

(i) Σ(τ(y0
i ), a) = 1 and Ψ(τ(y0

i ), a) 6= 1 (in Γ).
(ii) the periodicity of xi

0 is bounded by a constant that can be effectively com-
puted, and depends only on the given presentation of Γ, Γ =< a1, . . . , ak >,
and the combinatorial structures of the systems Σ and Ψ.

Given the generalization of the Bulitko lemma, to decide effectively if the con-
junction of the systems Σ(y, a) = 1 and Ψ(x, a) 6= 1 has a solution over the torsion-
free hyperbolic group Γ, we use [17] to construct effectively the systems of equations:

Σ1(x1, f) = 1, . . . ,Σℓ(xℓ, f) = 1.

By the work of Makanin [10] and A. Razborov [14], given the systems of equations,
Σi, over the free group Fk, and the effective bound on the periodicity given by the
Bulitko lemma, it is possible to extract finitely many fundamental sequences, so
that all the solutions of the systems Σi with periodicity bounded by the prescribed
bound, factor through.

These fundamental sequences, constructed by the Makanin-Razborov machinery,
correspond to resolutions of the (Fk) limit groups associated with the various sys-
tems Σi. To decide if the conjunction of the systems Σ(y, a) = 1 and Ψ(y, a) 6= 1 has
a solution, we continue by replacing each resolution constructed by the Makanin-
Razborov machinery from the various systems Σi, with a strict resolution over the
hyperbolic group Γ. Once the resolutions over Γ are strict, it is rather straight-
forward to decide effectively if there is a homomorphism that factors through one
of them and satisfy the system of inequalities Ψ (the equalities in the system Σ
hold by construction for any homomorphism that factors through one of the strict
resolutions we construct).
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With the systems of equations Σ1, . . . ,Σℓ, the Makanin-Razborov machinery
associates finitely many resolutions (over the free group Fk). Given one of these
resolutions, Res(x, f), that is defined over the free group Fk, we transform it into
a strict resolution over the torsion-free hyperbolic group Γ iteratively, from bottom
to top.

The terminal group of the resolution Res(x, f) is a free group of the form Fk ∗ Fs,
where Fs may be trivial, and Fk is the coefficient group. With the coefficient
group Fk, there is an associated quotient map onto Γ. We start the modification of
Res(x, f) by replacing the terminal group Fk ∗ Fs with a group of the form Γ ∗ Fs,
with a naturally associated quotient map, and where Γ is considered to be the
coefficient group of the newly obtained resolution.

At this stage we start modifying the next level of the resolution Res(x, f), i.e.,
the group Lt−1, the abelian decomposition Λt−1, and the quotient map ηt−1 :
Lt−1 → Fk ∗Fs, associated with the level above the terminal level. Lt−1 is mapped
by the quotient map ηt−1 onto the terminal group Fk ∗ Fs, so this map extends
naturally to an epimorphism νt1 : Lt−1 → Γ ∗ Fs. We continue by checking all the
possible degeneracies of the abelian decomposition Λt−1 given the map νt−1.

(1) an edge group in Λt−1 is mapped by νt−1 to the trivial subgroup.
(2) a non-abelian vertex group in Λt−1 is mapped to an abelian subgroup or

the trivial subgroup by νt−1.
(3) some of the boundary elements of a QH vertex group in Λt−1 are mapped

to the trivial subgroup by νt−1.
(4) the image of a QH vertex group in Λt−1 is mapped to an abelian (cyclic)

subgroup or to the trivial subgroup by νt−1.

Clearly, there are finitely many possibilities for degenerations in the abelian decom-
position Λt−1, and they can all be checked using the solution to the word problem
in the hyperbolic group Γ ∗ Fs.

If there are no degenerations in the graph of groups Λt−1, we associate with it a
completion over the torsion-free hyperbolic group Γ, constructed by starting with
the group Γ ∗ Fs associated with the terminal level, and then follow the construc-
tion of the completion presented in definition 1.12 of [19] according to the abelian
decomposition Λt−1.

Suppose that Λt−1 has degenerations, and contains no QH vertex groups. In this
case we modify Λt−1 by collapsing all the edge groups that are mapped to the
trivial subgroup in Γ ∗ Fs by νt−1, all the abelian vertex groups that are mapped
to the trivial subgroup, and all the non-QH, non-abelian vertex groups that are
mapped to an abelian subgroup in Λt−1. The obtained graph of groups, denoted
∆t−1, admits no degenerations, hence, we can associate a completion over Γ with
it, as in the non-degenerate case.

Suppose that Λt−1 contains QH vertex groups. We start by checking which QH
vertex groups are mapped into trivial or abelian subgroups in the terminal group
Γ∗Fs by the map νt−1. We modify Λt−1 by collapsing each of the QH vertex groups
that are mapped into the trivial subgroup, as well as all the edges connected to such
a QH vertex group. We replace each of the QH vertex groups that are mapped into
non-trivial abelian subgroups, with the maximal free abelian quotient of the QH
vertex group, in which the boundary elements are fixed. We denote the obtained
abelian decomposition Λ′

t−1. Note that every QH vertex group in Λ′
t−1 is mapped

onto a non-abelian subgroup by νt−1.
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We continue by modifying the abelian decomposition Λ′
t−1 as we did in case there

were no QH subgroups. We collapse all edge groups that connect between two
non-QH vertex groups and are mapped to the trivial group by νt−1. If V is a
non-abelian, non-QH vertex group in Λ′

t−1 that is mapped to an abelian subgroup
by νt−1, and V is connected to a non-QH vertex group, we collapse the edge that
connects these two vertices. We further iteratively erase all edge groups that are
connected to QH vertex groups in the obtained graph of groups, and are mapped
to the trivial group by νt−1. If such an edge is contained in a circle in the obtained
graph of groups, we introduce a new free factor in our abelian decomposition,
generated by the Bass-Serre generator associated with that circle. Let U be a vertex
group that remains isolated after we erase the edge groups that are connected to
QH vertex groups and mapped to the trivial subgroup by νt−1. If U is mapped to
the trivial subgroup by νt−1, we erase it.

We continue by modifying QH vertex groups that are mapped to non-abelian
subgroups by νt−1. Let Q be such a vertex group and let SQ be its associated
surface. If none of the edge groups connected to Q is mapped to the trivial subgroup
by νt−1, we leave Q unchanged. Suppose that there exist edge groups connected
to Q that are mapped into the trivial subgroup. We modify the QH subgroup Q,
by the fundamental group of the surface obtained from SQ by filling with disks all
the boundary components that are mapped into the trivial subgroup by νt−1. If
the obtained surface is a closed non-orientable surface of genus 2, a 3 punctured
sphere, or a 2 punctured projective plane, we declare the obtained group as a
non-QH, non-abelian vertex group. If the obtained surface is a 1-punctured Klein
bottle, we replace it by one non-abelian, non-QH vertex group and a loop based
on it, obtained by cutting the 1-punctured Klein bottle along its non-boundary
parallel s.c.c.

For each connected component in the obtained graph of groups that does not
contain the coefficient group Γ, we add a new generator, so that the fundamental
group of that connected component is mapped into Γ ∗ Fs conjugated by the new
free generator. With the obtained abelian decomposition, we associate a completion
over the hyperbolic group Γ, constructed by starting with the terminal group Γ∗Fs,
and continuing using the given abelian decomposition according to definition 1.12
in [19].

The obtained completion over Γ, associated with the 2 bottom levels of given
resolution over Fk, is a Γ-limit group by theorem 1.31, and it is f.p. by construction.
The word problem is solvable for f.p. Γ-limit groups, In the similar way to its
solution for f.p. residually finite groups, i.e., by using two parallel processes, the
first looks for a presentation of the given word in the normal closure of the given
relations, and the second looks for a homomorphism into Γ that maps the given
word into a non-trivial element (clearly, one of the two processes must terminate).
Hence, the word problem for the obtained completion over Γ is decidable.
Since in order to construct the completion associated with the bottom 2 levels,
only a solution to the word problem in the terminal hyperbolic group is required,
the construction used for the bottom 2 levels generalizes to the higher levels of the
resolution, and finally associates with it a completion over Γ.

Once completions over Γ are associated with the resolutions associated with the
systems of equations Σ1, . . . ,Σℓ, to decide if there exists a solution of the system
Σ over Γ, for which the inequalities Ψ hold, we only need to check if the words
that appear in the system Ψ are all non-trivial in at least one of the completions
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over Γ we constructed. Since the word problem is decidable over these completions,
this can be decided effectively. Hence, it is possible to decide effectively if the
conjunction of the systems Σ and Ψ have a solution in the torsion-free hyperbolic
group Γ.

�

Theorem 7.12 enables us to decide if there exists a proper map from a freely-
indecomposable factor in the Grushko decomposition of a torsion-free hyperbolic
group into the fundamental group of a proper subgrpaph of its JSJ decomposition
free product with an infinite cyclic group, that maps each of the non-QH vertex
groups and all the edge groups in the JSJ decomposition into their conjugates
(elementwise), and so that the image of each QH is non-abelian.

If no such retract exists for any of the factors, the construction of the elemen-
tary core is completed. If such a retract exists for at least one of the factors, we
continue iteratively. The construction terminates after finitely many iterations, by
the descending chain condition for Γ-limit groups (theorem 1.12) and the co-Hopf
property for non-elementary, freely-indecomposable, torsion-free hyperbolic groups.
Hence, the effective construction of the elementary core of a torsion-free hyperbolic
group is completed, and so is the procedure for deciding if two such groups are
elementarily equivalent (theorem 7.11).

�
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