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Abstract. We study the countable set of rates of growth of a
hyperbolic group with respect to all its finite generating sets. We
prove that the set is well-ordered, and that every real number can
be the rate of growth of at most finitely many generating sets up
to automorphism of the group. We prove that the ordinal of the
set of rates of growth is at least ωω, and in case the group is a limit
group (e.g. free and surface groups) it is ωω.

We further study the rates of growth of all the finitely generated
subgroups of a hyperbolic group with respect to all their finite
generating sets. This set is proved to be well-ordered as well, and
every real number can be the rate of growth of at most finitely
many isomorphism classes of finite generating sets of subgroups
of a given hyperbolic group. Finally, we strengthen our results to
include rates of growth of all the finite generating sets of all the
subsemigroups of a hyperbolic group.

1. Introduction

Growth of groups was studied extensively in the last decades. Finitely
generated (f.g.) abelian groups have polynomial growth. This was gen-
eralized later to f.g. nilpotent groups [3]. F.g. solvable groups have ei-
ther polynomial or exponential growth ([14],[24]), and the same holds
for linear groups by the Tits alternative [21]. Gromov’s celebrated the-
orem proves that a f.g. group has polynomial growth if and only if it
is virtually nilpotent ([9],[22]). Grigorchuk constructed a group of in-
termediate growth [8], and by now there are known to be uncountably
many such groups [11].
In this paper, we study the possible growth rates of groups of expo-

nential growth, in particular, hyperbolic groups. We will be interested
not in the growth rate with respect to a particular (finite) generating
set, but with the countable set of rates of exponential growths with
respect to all possible (finite) generating sets of the given hyperbolic
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group. By definition, the countable set of rates that we study is an
invariant of the group, and we study its basic properties.
The motivation for our study comes partly from the work of Jor-

gensen and Thurston on the volumes of hyperbolic 3-manifolds [20].
By analyzing volumes of Dehn fillings of finite volume hyperbolic 3-
manifolds with cusps, Jorgensen and Thurston proved that Dehn fill-
ings have always strictly smaller volume than the cusped manifold,
and deduced (using the Kazhdan-Margulis lemma and the thin-thick
decomposition) that the set of volumes of hyperbolic 3-manifolds is
well-ordered, and that the the ordinal of the (countable) set of volumes
is ωω. They further proved that there are only finitely many hyperbolic
3-manifolds with the same volume.
We prove analogous results for the set of growth rates of a non-

elementary hyperbolic group. We prove that the set of growth rates of
such a group, with respect to its finite generating sets, is well-ordered
(Theorem 2.2). We also prove that given a positive real number there
are at most finitely many (finite) generating sets with this real number
as a growth rate, up to the action of the automorphism group of the
hyperbolic group (Theorem 3.1).
Since the set of growth rates of a hyperbolic group is well-ordered,

we can associate a growth ordinal with every non-elementary hyper-
bolic group, the ordinal of the well-ordered set of growth rates. For
limit groups (in particular, free and surface groups), we prove that
the growth ordinal is ωω (Theorem 4.2 ). We conjecture that this is
true for all non-elementary hyperbolic groups, and for all limit groups
over hyperbolic groups. This conjecture turns out to be closely related
to the existence of a Krull dimension for limit groups over hyperbolic
groups, which is still open (the Krull dimension for limit groups (over
free groups) is known to exist by a celebrated work of Louder [13]).
The well-ordering of the set of growth rates proves, in particular,

that the set has a minimum. This answers a question of de la Harpe
[5]. In his book, de la Harpe explains that the existence of a minimum
for the set of growth rates, combined with a theorem of Arzhantseva
and Lysenok [1], that claims that a hyperbolic proper quotient of a
hyperbolic group has strictly smaller rate of growth, gives an alternative
proof for the Hopf property of hyperbolic groups.
After we analyze rates of growth of hyperbolic groups, we study rates

of growth of all the non-elementary f.g. subgroups of a given hyperbolic
group with respect to all their finite generating sets. We manage to
obtain the same results in this more general setting. The rates of
growth of all the f.g. non-elementary subgroups of a given hyperbolic
group, with respect to all their finite generating sets, is well-ordered
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(Theorem 5.1). Every real number can be the growth rate of only
finitely many isomorphism classes of pairs consisting of a subgroup of
the hyperbolic group and its finite set of generators (Theorem 5.3).
To demonstrate the generality and the power of our techniques we

continue further and study rates of growth of all the f.g. non-elementary
subsemigroups of a given hyperbolic group, with respect to all their
finite generating sets. We prove that the set of growth rates of all
these subsemigroups and their finite generating sets is well-ordered as
well (Theorem 6.1). In particular, we obtain that the ordinal of growth
rates of all the f.g. subsemigroups of a free or a surface group (and
more generally of a given limit group) with respect to all their finite
generating sets is ωω (Corollary 6.8).

In his seminal work, Gromov analyzed groups with polynomial growth
by using Gromov-Hausdorff convergence, obtaining a convergence of
rescaled Cayley graphs into a manifold with an isometric group action,
applying the solution of Hilbert’s 5th problem to deduce linearity of the
group in question, and finally referring to Tits alternative to conclude
that these groups must be virtually nilpotent.
To analyze rates of growth of hyperbolic groups and their subgroups

we use Gromov-Hausdorff convergence, via the Bestvina-Paulin method,
and obtain convergence of larger and larger balls in rescaled Cayley
graphs into a limit tree. This tree is not equipped with an action of
the hyperbolic group in question, but rather with an isometric action
of a limit group over that hyperbolic group. We then prove our results
using the structure theory of limit groups over hyperbolic groups, and
analyzing the action of these limit groups on limit trees.
Limit groups were originally defined and studied in order to un-

derstand the structure of varieties and first order formulas over cer-
tain classes of groups [16]. However, as can be seen in this paper,
they provide a natural and powerful tool to study variational prob-
lems over groups, e.g., the existence of a minimum for a set of growth
rates. Limit pairs, that were defined in [17] for studying varieties over
free semigroups, play a similar role in studying variational problems in
semigroups. We believe that limit algebras (see [18]), will eventually
be used in a similar way in studying associative and non-commutative
rings.
Throughout the paper we assume hyperbolicity of the ambient groups

in question, but it is probably not necessary. We believe that it should
be possible to prove most of our results under some weak acylindricity
assumptions. Our basic study of the set of growth rates suggests quite
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a few natural problems, and we list several of them in the last section
of the paper.

2. Well ordering of the set of growth rates

Let G be a finitely generated (f.g.) group with a finite generating set
S. Let Bn(G, S) be the set of elements in G whose word lengths are at
most n with respect to the generating set S. Let βn(G, S) = |Bn(G, S)|.
The exponential growth rate of (G, S) is defined to be:

e(G, S) = lim
n→∞

βn(G, S)
1

n

A f.g. group G has exponential growth if there exists a finite generat-
ing set S such that e(G, S) > 1. G has uniform exponential growth
if there exists c > 1, such that for every finite generating set S,
e(G, S) > c > 1.
Given a f.g. group G, We define:

e(G) = inf
|S|<∞

e(G, S)

where the infimum is taken over all the finite generating sets S of G.
Since there are f.g. groups that have exponential growth, but do not
have uniform exponential growth [23], the infimum, e(G), is not always
obtained by a finite generating set of a f.g. group.

Remark 2.1. Note that e(G, S) does not change if we make S symmet-
ric, hence, for the rest of this paper we will always assume that our
generating sets are symmetric.

Given a f.g. group G we further define the following set in R:

ξ(G) = {e(G, S)||S| < ∞}

where S runs over all the finite generating sets of G. The set ξ(G) is
always countable.
A non-elementary hyperbolic group contains a non-abelian free group,

hence, it has exponential growth. In fact, a non-elementary hyperbolic
group has uniform exponential growth [12]. Our main theorem proves
that the set of growth rates of a non-elementary hyperbolic group is
well-ordered (hence, in particular, has a minimum).

Theorem 2.2. Let Γ be a non-elementary hyperbolic group. Then ξ(Γ)
is a well-ordered set.

Proof. We need to prove that ξ(Γ) does not contain a strictly decreas-
ing convergent sequence. Suppose that there exists a sequence of finite
generating sets {Sn}, such that {e(G, Sn)} is a strictly decreasing se-
quence and limn→∞ e(G, Sn) = d, for some d > 1.
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By [2], if |Sn| = m, then e(G, Sn) has a lower bound that depends
linearly only on m and on the hyperbolicity constant δ of Γ, so this
lower bound grows to infinity with m. Hence, we may assume that the
cardinality of the generating sets |Sn| from the decreasing sequence is
bounded, and by possibly passing to a subsequence we may assume
that the cardinality of the generating sets is fixed, |Sn| = ℓ.
Let Sn = {xn

1 , · · · , x
n
ℓ }. Let Fℓ be the free group of rank ℓ with a

free generating set: S = {s1, . . . , sℓ}. For each index n, we define a
map: gn : Fℓ → Γ, by setting: gn(si) = xn

i . Since Sn are generating
sets, the map gn is an epimorphism for every n. Note that e(Γ, Sn) =
e(Γ, gn(S)).
We fix a Cayley graph X of Γ with respect to some finite generating

set. Since Γ is a hyperbolic group, X is a δ-hyperbolic graph. Γ
acts isometrically on its Cayley graph X by translations, hence, for
each index n, Fℓ acts on the Cayley graph X via the epimorphism:
gn : Fℓ → Γ.
For γ ∈ Γ, let |γ| denotes the word length. Since the sequence

e(Γ, Sn) is strictly decreasing, and in particular is not constant, the
sequence:

{min
γ∈Γ

max
i

|γgn(si)γ
−1|}

is not bounded. Hence, we may pass to a subsequence for which the
sequence converges to ∞. For each index n, we further replace the
epimorphism gn, by the epimorphism γngnγ

−1
n , where:

max
i

|γngn(si)γ
−1
n | = min

γ∈Γ
max

i
|γgn(si)γ

−1|

We still denote the conjugated epimorphisms {gn} (note that conjugat-
ing an epimorphism does not change the corresponding growth rate).
For each n, we set: ρn = maxi |gn(si)|, and denote by (X, dn) the

Cayley graph X with the metric obtained from the metric on X after
multiplying it by 1

ρn
. From the sequence of actions of Fℓ on the metric

spaces (X, dn) we extract (via the Bestvina-Paulin method) a subse-
quence that converges into a non-trivial action of Fℓ on a real tree Y .
The action of Fℓ is not faithful, so we divide Fℓ by the kernel of the
action, i.e., by the normal subgroup of Fℓ that acts trivially on Y , and
get a faithful action of a limit group L on the real tree Y , where the
limit group L is a limit group over the hyperbolic group Γ (for the def-
inition of limit groups over hyperbolic groups and some of their basic
properties see [15]).
Let: η : Fℓ → L be the associated quotient map. By Theorem 6.5 in

[15] there exists some index n0, such that for n > n0, there exists an
epimorphism hn : L → Γ that satisfies: gn = hn ◦ η. By passing to a
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subsequence we may assume that all the homomorphisms {gn} factor
through the epimorphism: η : Fℓ → L.

(Fℓ, S)

η

��

gn

&&◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

(L, η(S))
hn

// (Γ, gn(S))

Since gn = hn ◦ η, for every index n, e(Γ, gn(S)) ≤ e(L, η(S)). Our
strategy to prove Theorem 2.2 is to show that:

lim
n→∞

e(Γ, gn(S)) = e(L, η(S))

This will lead to a contradiction, since we assumed that the sequence
{e(Γ, gn(S))} is strictly decreasing, hence, it can not converge to an
upper bound of the sequence, e(L, η(S)).

Proposition 2.3. limn→∞ e(Γ, gn(S)) = e(L, η(S)).

Proof. To prove the proposition we need to analyze the action of L
on the limit tree Y . If the action of L on the real tree Y is free and
simplicial, then L is free, and for large index n, the image, hn(L), is a
free quasi-convex subgroup of infinite index in Γ. This is a contradiction
since the homomorphisms {hn} are assumed to be epimorphisms for
every n. Also, the rates of growth satisfy: e(Γ, gn(S)) = e(L, η(S))
for large n (since hn is injective for large n), and this contradicts our
assumption that the sequence: {e(Γ, gn(S))} is strictly decreasing.
In general, the action of L on Y is faithful, but it need not be free

nor simplicial. For presentation purposes, we start by assuming that
the action of L on Y is free, but not necessarily simplicial. Note that
in this case, L is necessarily torsion-free.

The case of a free action.

Let T1 ⊂ Y be the convex hull of the base point y0 ∈ Y , and the
images of the base point y0 under the action of the elements in the set
η(S): η(s1)(y0), . . . , η(sℓ)(y0). We assumed that the homomorphisms
gn satisfy: maxi |gn(si)| = minγ∈Γ maxi |γgn(si)γ

−1|. Hence, there are
at least two distinct germs at y0 in T1. (By the way we chose y0, it is
not a root of T1.)

Lemma 2.4. Let germ1, germ2 be two distinct germs at y0 in T1.
There are non-trivial elements ui,j ∈ L, i, j = 1, 2, with the follow-
ing properties:

(1) for every i, j = 1, 2, the segment: [y0, ui,j(y0)] starts with the
germ germi at y0, and ends with the germ germj at ui,j(y0).
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(2) dY (y0, ui,j(y0)) > 10, for i, j = 1, 2.
(3) for every w ∈ L, and every two pairs: (i1, j1), (i2, j2), 1 ≤

i1, j1, i2, j2 ≤ 2, if the segment [y0, ui1,j1(y0)] intersects the seg-
ment [w(y0), wui2,j2(y0)] non-trivially, then the length of the in-
tersection is bounded by: 1

10
dY (y0, ui1,j1(y0)) (if the pairs (i1, j1), (i2, j2)

are equal, we assume in addition that w 6= 1).

We call property (3) the small cancellation property of separators.

Proof. Since, by construction, y0 is a point that moves minimally by
the generators η(S), there are at least two distinct germs at y0 in T1.
Let germ1, germ2 be two distinct germs at Y0 in T1. Let s1, s2 ∈ S be
generators in S for which: [y0, η(si)(y0)] starts with the germ germi,
i = 1, 2. Also, since Γ is non-elementary, there exist elements w, z ∈ L,
such that:

(i) < w, z >< L is a free subgroup.
(ii) < w, si >< L and < z, si >< L, i = 1, 2, are free subgroups.

Given an element v ∈ L, we denote µ(v) = dY (y0, v(y0)), and tr(v)
the displacement of v along its axis. We set the elements ui,j ∈ L,
i, j = 1, 2, to be elements of the form:

ui,j = s
βi

i w
α1+i+3jzwα2+i+3jz . . . wα29+i+3jzwα30+i+3js

−βj

j

where the parameters βi, i = 1, 2, and αk, k = 1, . . . , 30, satisfy:

(1) βitr(si) > 5µ(si), and: βitr(si) > 5µ(w), i = 1, 2.
(2) α1tr(w) ≥ max(200µ(w), 20(β1µ(s1) + β2µ(s2)), 20µ(z), 1).
(3) αk = α1 + 6k, k = 2, . . . , 30.

The conditions on the parameters βi, i = 1, 2, and αk, k = 1, . . . , 30,
guarantee that the lengths of the cancellations between consecutive in-
tervals in the sequence: [y0, s

βi

i (y0)], i = 1, 2, [y0, w
α1(y0)(y0)], [y0, zw

αk(y0)],

k = 2, . . . , 30, [y0, s
−βj

j (y0)], j = 1, 2, are limited to a small proportion
of the lengths of these intervals. Hence, the interval [y0, ui,j(y0)] starts
with the germ in which [y0, si(y0)] starts, and terminates with the germ
that [y0, s

−1
j (y0)] terminates with, and we get part (1) of the lemma.

Part (2) of the lemma follows from the bound on the cancellations
between consecutive intervals and condition (2) on α1tr(w). Part (3)
of the lemma follows from the structure of the elements ui,j as prod-
ucts of high powers of an element w, separated by an element that
does not commute with it, and the bound on the cancellations between
consecutive intervals that correspond to these high powers.

�
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A non-elementary (i.e., non virtually abelian) limit group over a
hyperbolic group contains a non-abelian free subgroup, so it has ex-
ponential growth. Let Bm(L, η(S)) be the ball of radius m in the
Cayley graph of L with respect to the generating set η(S). Let βm =
βm(L, η(S)) be the number of elements in the ball Bm(L, η(S)), and let:

CL = e(L, η(S)) = limm→∞ βm

1

m be the (exponential) rate of growth of
L with the generating set η(S).
Let b be the maximal length of the words ui,j, i, j = 1, 2, that were

constructed in lemma 2.4 (the length is with respect to the generating
set η(S)). By the Gromov-Hausdorff convergence of the actions of L
on the Cayley graph X of Γ via the epimorphisms {hn}, for every
fixed positive integer m, and every large enough n, there exists a bi-
Lipschitz map from the ball: Bm+2b(L, η(S)), into the image of that
ball under the epimorphism hn: hn(Bm+2b(L, η(S))) ⊂ X , where X is
the fixed Cayley graph of Γ, and the ratios between the two bi-Lipschitz
constants approaches 1 when n tends to infinity.
Given a non-trivial element w ∈ Bm(L, η(S)), the segment, [y0, w(y0)] ⊂

Y , starts and terminates in (an orbit of) a germ of y0 in Y . For each
pair of non-trivial elements, w1, w2 ∈ Bm(L, η(S)), we choose an ele-
ment ui,j, from the elements that were constructed in lemma 2.4, such
that ui,j starts with a germ that w1 does not end with, and ui,j ends
with a germ that w2 does not start with. By the Gromov-Hausdorff
convergence, for large enough n, hn maps the elements w1ui,jw2 in a bi-
Lipschitz way into the Cayley graph X of Γ (with the same bi-Lipschitz
constants as it maps the ball Bm+2b(L, η(S)).
Continuing inductively, let q be an arbitrary positive integer, and

let w1, . . . , wq be a collection of non-trivial elements from Bm(L, η(S)).
For each t, 1 ≤ t ≤ q − 1, we choose an element ut from the collection
{ui,j} that was constructed in lemma 2.4, such that ut does not start
with the germ that wt ends with, and ut does not end with the germ
that wt+1 starts with. By the argument that we apply for a pair w1, w2,
for large enough n, hn maps in a bi-Lipschitz way all the elements of
the form:

w1u1w2u2 . . . wq−1uq−1wq

into the fixed Cayley graph X of Γ (with the same bi-Lipschitz con-
stants as it maps the ball Bm+2b(L, η(S)). We call q the length of this
form.
So far we know that all the elements that we constructed are mapped

to non-trivial elements by the epimorphisms {hn}. But the maps hn

may be not injective on these collections of elements. Hence, we take
out some of the elements that we constructed, in order to guarantee
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that the remaining elements are mapped injectively by the epimor-
phisms hn, for large enough n.

Definition 2.5 (Forbidden and feasible elements). We say that a non-
trivial element w1 ∈ Bm(L, η(S)) is forbidden if there exists an element
w2 ∈ Bm(L, η(S)), and an element ui,j that was constructed in lemma
2.4, such that:

(i) [y0, ui,j(y0)] does not start with the germ that [y0, w1(y0)] ter-
minates with.

(ii) dY (w2(y0), w1ui,j(y0)] ≤
1
5
dY (y0, ui,j(y0)).

An element w1u1 . . . wq−1uq−1wq from the set that we constructed
(where the elements wt ∈ Bm(L, η(S)) and the elements ut are elements
that were constructed in lemma 2.4) is called feasible of type q, if all
the elements wt, 1 ≤ t ≤ q, are not forbidden.

Feasible elements are mapped injectively by the epimorphisms hn for
large enough n.

Lemma 2.6. Given m, for all large enough n and every fixed q, the
epimorphisms hn map the collections of feasible elements of type q to
distinct elements in Γ.

Proof. Suppose that hn maps the two distinct feasible elements of type
q: w1u1 . . . uq−1wq and ŵ1û1 . . . ûq−1ŵq to the same element of Γ.
If for every t, 1 ≤ t ≤ q, wt = ŵt, then by the small cancellation

properties of the elements ui,j that were constructed in lemma 2.4 (part
(3) of that lemma), it follows that ut = ût for every 1 ≤ t ≤ q− 1, and
the two feasible elements are identical.
Hence, there exists an index t, for which wt 6= ŵt. Let t0 be the first

such index t. Note that 1 ≤ t0 ≤ q − 1, since if t0 = q, hn maps the
two feasible elements to distinct elements in Γ. Since hn maps the two
feasible elements into the same element in Γ, the small cancellation
properties of the elements, ui,j, imply that for all t < t0, ut = ût.
Since hn maps the two feasible elements to the same element in Γ, one

of the two intervals, [y0, wtut(y0)] and [y0, ŵtût(y0)], is almost contained
in the second one (which means that one of the intervals overlaps with
the beginning of the second interval, possibly except for the last 1

10
of its suffix [wt(y0), wtut(y0)] or [ŵt(y0), ŵtût(y0)]. This implies that
either wt or ŵt are forbidden elements, which means that one of the
two elements that were assumed to be mapped by hn to the same
element is not feasible.

�
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Since for large n, hn maps feasible elements injectively, to estimate
from below the growth of Γ with the generating sets {Sn}, it is enough
to count feasible elements.
Given m, recall that βm(L, η(S)) = |Bm(L, η(S)|, which we denote

for brevity βm.

Lemma 2.7. Given m, the following are lower bounds on the number
of non-forbidden and feasible elements:

(1) The number of non-forbidden elements in the ball of radius m

in L, Bm(L, η(S)), is at least
5
6
|Bm(L, η(S))|.

(2) For every positive q, the number of feasible elements of type q

is at least: (5
6
βm)

q.

Proof. Part (2) follows from part (1) since given m and q, feasible ele-
ments are built from all the possible q concatenations of non-forbidden
elements in a ball of radius m in L (with respect to the generating set
η(S)), with separators between the forbidden elements.
To prove part (1) we look at the convex hull of the images of the

base point y0 ∈ Y under all the elements in the ball of radius m in
L, {z(y0) | z ∈ Bm(L, η(S))}. We denote this convex hull, which is a
finite subtree of Y , Tm. By construction: maxsi∈S dY (y0, η(si)(y0)) = 1.
Since: T1 ⊂ T2 ⊂ . . . ⊂ Tm, every element in Bm(L, η(S)) adds at most
1 to the total length of the edges in Tm. Therefore, the sum of the
lengths of the edges in the finite tree Tm is bounded by the number of
elements in the ball of radius m, i.e., βm = |Bm(L, η(S))|.
Now, let w ∈ Bm(L, η(S)) be a forbidden element. By definition,

there exists an element ŵ ∈ Bm(L, η(S)), such that for some ele-
ment ui,j that was constructed in lemma 2.4, dY (wui,j(y0), ŵ(y0)) <
1
5
dY (y0, ui,j(y0)). Hence the interval: [w(y0), wui,j(y0)] covers at least

4
5
dY (y0, ui,j(y0)) from the total length of the edges in Tm.
The elements {ui,j} were constructed to satisfy a small cancellation

property (part (3) in lemma 2.4). Hence, for two distinct forbidden
elements w1, w2, the overlap between the intervals: [w1(y0), w1u

1
i,j(y0)]

and [w2(y0), w2u
2
i,j(y0)], is bounded by 1

10
dY (y0, u

k
i,j(y0)] for k = 1, 2.

Therefore, with each forbidden w ∈ Bm(L, η(S)), it is possible to
associate a subinterval Iw of length 6

10
dY (y0, ui,j(y0)] of the interval

[w(y0), wui,j(y0)] for which:

(i) the subinterval Iw starts after the first 1
10

of the interval [w(y0), wui,j(y0)],

and ends at 7
10

of that interval.
(ii) Iw ⊂ Tm.
(iii for distinct forbidden elements w1, w2, the intersection: Iw1

∩Iw2

is empty or degenerate.
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Since in part (2) of lemma 2.4 we assumed that the length of an inter-
val [y0, ui,j(y0)] is at least 10, it follows that the length of a subinterval
Iw of a forbidden element w is at least 6. Hence, the collection of subin-
tervals Iw, for all the forbidden elements w, cover a total length of 6
times the number of forbidden elements in Bm(L, η)(S) in Tm. Since the
total length of the edges in Tm is bounded by |Bm(L, η(S))|, the num-
ber of forbidden elements in Bm(L, η(S)) is bounded by: 1

6
|Bm(L, η(S)|,

which gives the lower bound on the number of non-forbidden elements
in part (1) of the lemma.

�

Recall that b is the maximal length of an element ui,j (that was
constructed in lemma 2.4), with respect to the generating set η(S) of
L. At this stage we fix m, and look at the balls, Bq(m+b)(Γ, gn(S)),
where n is large enough, and q is an arbitrary positive integer. The
ball, Bq(m+b)(Γ, gn(S)), contains all the elements:

hn(w1u1w2u2 . . . wq−1uq−1wq)

and in particular all such elements that are images of feasible elements.
Since by lemma 2.6, hn maps the feasible elements injectively, lemma
2.7 implies that (for large enough n, where large enough does not de-
pend on q), the ball, Bq(m+b)(Γ, gn(S)), contains at least the (distinct)
images of feasible elements, hence:

(
5

6
βm(L, η(S)))

q ≤ |Bq(m+b)(Γ, gn(S))|.

Therefore:

log(e(L, η(S))) ≥ lim
n→∞

log(e(Γ, gn(S))) ≥ lim
m→∞

lim
q→∞

q log(βm) + q log 5
6

q(m+ b)
= log(e(L, η(S))).

This finally proves proposition 2.3 in case the action of the limit
group L on the limit tree Y is free.

The general case of possibly non-free actions

Suppose that the action of L on Y is faithful, but possibly with point
stabilizers. We continue as in the free action case.
Recall that T1 is a finite subtree in the limit tree Y , which is the

convex hull of the images of the base point y0 under the action of the
generators η(S). y0 is a point that moves minimally by the set η(S),
hence, there are at least two distinct germs at y0 in T1.

Lemma 2.8. There exist elements ui,j ∈ L, i, j = 1, 2 that satisfy the
conditions that are listed in lemma 2.4, even if the action of L on the
tree Y is not free.
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Proof. The argument is similar to the one that was used in lemma 2.4.
Since y0 ∈ Y is, by construction, a point that moves minimally by the
set of generators, η(S), there are at least two distinct germs at y0 in
T1. Let germ1, germ2 be two distinct germs at Y0 in T1.
L is not elementary, and the action of L on Y has virtually abelian

segment stabilizers, hence, the limit tree Y has infinitely many ends.
Since the action of L on Y is minimal (i.e., there is no proper invariant
subtree), there exist elements e1, e2 ∈ L, that act hyperbolically on Y ,
and for which the interval: [y0, ei(y0)] starts with the germ germi for
i = 1, 2.
Furthermore, since Y has infinitely many ends, and L acts on Y

cocompactly, there exist elements w, z ∈ L that act hyperbolically on
Y , such that:

(i) < w, z >< L is a free subgroup.
(ii) < w, ei >< L and < z, ei >< L, i = 1, 2, are free subgroups.

Since w, z, e1, e2 are elements that act hyperbolically on Y , and sat-
isfy the same properties that the elements, w, z, s1, s2, do in the proof
of lemma 2.4, the construction of the elements ui,j, i, j = 1, 2, proceeds
precisely as in their construction in lemma 2.4.

�

Let w1, w2 be a pair of elements of the limit group L. We look at the
finite subtrees w1(T1) and w−1

2 (T1), in the limit tree Y . The segment,
[y0, w1(y0)] ⊂ Y , terminates in a germ at the point w1(y0) ∈ w1(T1).
Similarly, the segment, [y0, w

−1
2 (y0)] ⊂ Y , terminates in a germ at the

point w−1
2 (y0) ∈ w−1

2 (T1).
With the pair, w1, w2, we associate an element ui,j from the ones

that were constructed in lemma 2.8. We choose that element ui,j, to
satisfy:

(i) ui,j starts with a germ in T1, that is different than the germ
that [y0, w1(y0] terminates in the tree w1(T1) (in case w1 fixes
y0 we can choose ui,j to start with any germ).

(ii) u−1
i,j starts with a germ in T1, that is different than the germ that

[y0, w
−1
2 (y0)] terminates in the tree w−1

2 (T1) (in case w2 fixes y0
we can choose u−1

i,j to start with any germ).

The elements that were constructed in lemma 2.8 start and terminate
in all the combinations of two distinct germs of T1 at y0, so given the
pair w1, w2 there exists at least one element that was constructed in
lemma 2.8 and satisfies both (i) and (ii). For such an element ui,j:

dY (y0, w1ui,jw2(y0)) = dY (y0, w1(y0))+dY (y0, ui,j(y0))+dY (y0, w2(y0)).
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As we argue in the case of a free action, by the Gromov-Hausdorff
convergence, for large enough n, hn maps the elements w1ui,jw2 in a bi-
Lipschitz way into the Cayley graph X of Γ (with the same bi-Lipschitz
constants as it maps the ball Bm+2b(L, η(S)) into X .
We continue inductively in the same way, similarly to what we did in

the case of a free action. Let q be a positive integer, and let: w1, . . . , wq

be a collection of non-trivial elements from Bm(L, η(S)). We choose
iteratively the elements ut, 1 ≤ t ≤ q − 1, from the elements, ui,j, that
were constructed in lemma 2.8.
We choose u1 to be an element that satisfies properties (i) and (ii)

with respect to the pair: w1, w2. We choose ut, 2 ≤ t ≤ q− 1, to be an
element that satisfies properties (i) and (ii) with respect to the pair:
w1u1w2 . . . ut−1wt, wt+1. By construction:

dY (y0, w1u1w2 . . . uq−1wq(y0)) = dY (y0, w1(y0))+dY (y0, u1(y0))+dY (y0, w2(y0))+. . .

. . .+ dY (y0, uq−1(y0)) + dY (y0, wq(y0))

As in the free action case, for large enough n, hn maps in a quasi-
isometric way all the elements of the form:

w1u1w2u2 . . . wq−1uq−1wq

into the fixed Cayley graph X of Γ (with the same quasi-isometric
constants as it maps the ball Bm+2b(L, η(S)) into X).
We define forbidden and feasible elements precisely as we did in the

case of the free action (Definition 2.5). The rest of the argument is
identical to the one presented in the free case. This finally proves
Proposition 2.3.

�

Proposition 2.3 proves that there is no strictly decreasing sequence
of rates of growth, {e(Γ, Sn)}, hence, concludes the proof that the set
of growth rates is well-ordered, and Theorem 2.2 follows.

�

Theorem 2.2 proves that the set of rates of growth of all the finite
generating sets of a hyperbolic group is well ordered, so in particular it
has a minimum. As pointed out by de la Harpe [5], the existence of a
minimum for the set of growth rates gives an alternative proof for the
Hopf property of hyperbolic groups.

Corollary 2.9. (cf. [19], [15], [5]) Every hyperbolic group is Hopf.

Proof. Let ν : Γ1 → Γ2 be a proper epimorphism between hyperbolic
groups, and let S be a finite generating set of Γ1. By [1]: e(Γ1, S) >
e(Γ2, ν(S)).
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Now, suppose that there exists a proper epimorphism, τ : Γ → Γ,
from a non-elementary hyperbolic group Γ onto itself. Let S be a finite
generating set with a minimal possible rate of growth: e(Γ) = e(Γ, S)
(such a generating set exists by theorem 2.2). By [1]: e(Γ) = e(Γ, S) >
e(Γ, τ(S)), a contradiction to the minimality of the growth rate e(Γ, S).

�

3. Finiteness of equal growth generating sets

Jorgensen and Thurston proved that there are only finitely many
hyperbolic 3-manifolds with the same volume. In this section we prove
an analogous finiteness for generating sets of hyperbolic groups.

Theorem 3.1. Let Γ be a non-elementary hyperbolic group, and let
r > 1. Then up to the action of Aut(Γ), there are at most finitely
many finite generating sets {Sn} of Γ, that satisfy: e(Γ, Sn) = r.

Proof. Suppose that there are infinitely many finite sets of generators
{Sn} that satisfy: e(G, Sn) = r, and no pair of generating sets Sn is
equivalent under the action of the automorphism group Aut (Γ). As in
the proof of theorem 2.2, the cardinality of the generating sets {Sn} is
bounded, so we may pass to a subsequence that have a fixed cardinality
ℓ. Hence, each generating set Sn corresponds to an epimorphism, gn :
Fℓ → Γ, where S is a fixed free generating set of Fℓ, and gn(S) = Sn.
By passing to a further subsequence, we may assume that the se-

quence of epimorphisms {gn} converges into a faithful action of a limit
group (over Γ) L on some real tree Y . Let η : Fℓ → L be the as-
sociated quotient map. As in the proof of theorem 2.2, by properties
of limit groups over hyperbolic groups (Theorem 6.5 in [15]), for large
n, gn = hn ◦ η, where hn : L → Γ is an epimorphism. In particular,
Sn = hn(η(S)). We pass to a further subsequence such that for every
n, gn = hn ◦ η.
If two of the epimorphisms hn1

, hn2
are isomorphisms, then the cor-

responding pair of generating sets: Sni
= gni

(S) = hni
◦ η(S), i = 1, 2,

are equivalent under an automorphism of Γ. i.e., there exists an au-
tomorphism ϕ ∈ Aut(Γ), ϕ = hn2

◦ h−1
n1
, that maps Sn1

to Sn2
. This

contradicts our assumption that the generating sets {hn} are not equiv-
alent under the action of Aut(Γ). Hence, we may assume that none of
the epimorphisms {hn} are isomorphisms.
The epimorphisms {hn} are proper epimorphisms from (L, η(S)) to

(Γ, Sn). For each n, hn has a non-trivial kernel. By basic properties
of limit groups over hyperbolic groups [15], we may further pass to a
subsequence, for which the kernel of the epimorphisms, {hn}, contain
no non-trivial torsion elements in L.
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Since for every index n, hn is an epimorphism from L onto Γ that
maps η(S) to gn(S), e(Γ, gn(S)) ≤ e(L, η(S)). By proposition 2.3,
limn→∞ e(Γ, Sn) = e(L, η(S)). By our assumption, for every index n,
e(Γ, Sn) = r. Hence, e(L, η(S)) = r. To obtain a contradiction to the
existence of an infinite sequence of non-equivalent generating sets with
the same rate of growth, and conclude the proof of the theorem, we
prove the following:

Proposition 3.2. For every index n, the generating sets {gn(S)} of Γ
(from the remaining subsequence that factor through the limit group L)
satisfy: e(Γ, gn(S)) < e(L, η(S)).

Proof. To prove the proposition, for any given index n, we construct
collections of elements in larger and larger balls of the limit group L

(with respect to the generating set η(S)), that grow with strictly bigger
rate than the growth of the corresponding balls in Γ, with respect to
the generating set Sn = gn(S). This contradicts the equality between
the growth rates of Γ with respect to the generating sets {Sn}, and the
growth rate of L with respect to η(S).
As we did in the second section, for presentation purposes we first

assume that the action of the limit group L on the limit tree Y is free.

The case of a free action.

We define the finite tree T1 as we did in the second section, i.e., the
convex hull in the limit tree Y of the points η(si)(y0), si ∈ S.

Lemma 3.3 (Separators). Let germ1, germ2 be two of the germs of y0
in T1, and fix an index n0. There are non-trivial elements vi,j ∈ L,
i, j = 1, 2, that satisfy the properties that the elements ui,j, i, j = 1, 2,
satisfy in lemma 2.4 (with respect to the germs germ1, germ2), and in
addition: hn0

(vi,j) = 1, for i, j = 1, 2.

Proof. First, since hn0
: L → Γ is a proper epimorphism, there exists

a non-trivial element r ∈ L, for which: hn0
(r) = 1. Note that since

r acts hyperbolically on Y , r is an element of infinite order in L. We
construct the elements vi,j, i, j = 1, 2, as products of conjugates of r in
a similar way to what we did in proving lemma 2.4.
Since Γ is not elementary, there are at least two distinct germs at

y0 in T1. Let germ1, germ2 be two distinct germs at Y0 in T1. Let
s1, s2 ∈ S be generators in S for which: [y0, η(si)(y0)] starts with the
germ germi, i = 1, 2. Also, since Γ is not elementary, there exist
elements z1, . . . , z30 ∈ L, such that:

(i) < z1, . . . , z30, r >=< z1 > ∗ . . . < z30 > ∗ < r >.
(ii) < zt, si >, are free subgroups for i = 1, 2 and t = 1, 2, 29, 30.
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Let f ∈ L. We denote µ(f) = dY (y0, f(y0)), and tr(f) the displace-
ment of f along its axis. We set the elements vi,j ∈ L, i, j = 1, 2, to be
elements of the form:

vi,j = s
βi

i z1r
α1+i+3jz−1

1 s
−βi

i z2r
α2+i+3jz−1

2 . . .

. . . z29r
α29+i+3jz−1

29 s
βj

j z30r
α30+i+3jz−1

30 s
−βj

j

where the parameters βi, i = 1, 2, and αk, k = 1, . . . , 30, satisfy:

(1) βitr(si) > 5µ(si), and: βitr(si) > 5(µ(r) + µ(z1) + µ(z2) +
µ(z29) + µ(z30)), i = 1, 2.

(2) α1tr(r) ≥ max(200µ(r), 10(β1µ(s1)+β2µ(s2)), 10µ(z1), . . . , 10µ(z30), 1).
(3) αk = α1 + 6k, k = 2, . . . , 30.

The elements vi,j are products of conjugates of the element r, hence,
hn0

(vi,j) = 1. As in the proof of lemma 2.4, the conditions on the
parameters βi, i = 1, 2, and αk k = 1, . . . , 30, guarantee that the
lengths of the cancellations between consecutive intervals in the se-
quence: [y0, s

βi

i (y0)], i = 1, 2, [y0, z1r
α1z−1

1 (y0)(y0)], [y0, zkr
αkz−1

k (y0)],

k = 2, . . . , 30, [y0, s
−βj

j (y0)], j = 1, 2, are limited to a small proportion
of the lengths of these intervals. Hence, the interval [y0, vi,j(y0)] starts
with the germ in which [y0, si(y0)] starts, and terminates with the germ
that [y0, s

−1
j (y0)] terminates with, and we get property (1) in the state-

ment of lemma 2.4. The elements vi,j satisfy properties (2) and (3) in
lemma 2.4, by the same arguments that were used to prove that the
elements ui,j constructed in lemma 2.4 satisfy them.

�

We fix an index n0. Since hn0
is a bijection between the sets η(S)

and Sn0
, there is a canonical bijection between the set of words on η(S)

and the set of words on Sn0
.

At this point we need to construct collections of elements in larger
and larger balls of the limit group L, that grow faster than correspond-
ing balls in the hyperbolic group Γ with respect to the generating set
Sn0

.
With the generating set Sn0

= gn0
(S) of Γ, we associate a finite au-

tomata that encodes geodesics in the Cayley graph of Γ with respect
to the generating set Sn0

. The regular language that the automata
produces, encodes the elements in Γ, i.e., with each element in Γ the
language associates a unique element which is a geodesic in the corre-
sponding Cayley graph of Γ.
We further fix a positive integer m (we will choose a specific value for

m in the sequel), and look at all the subwords of length m in words in
the regular language that the automata produces. By the properties of
the automata, each such subword represents a geodesic of length m in
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the Cayley graph of Γ with respect to the generating set Sn0
. Because

of the bijection between η(S) and Sn0
, given by the epimorphism hn0

,
we can associate canonically with each such subword of length m in
the generators Sn0

, a word of length m in L.
Let w be such a word of length m in L. Starting with the word w, we

construct a collection of words in the limit group L. Given a positive
integer k, 1 ≤ k ≤ m − 1, we separate the subword w into a prefix of
length k, and a suffix of length m − k. The prefix corresponds to a
non-trivial element in L that we denote wk

p , and the suffix corresponds

to a non-trivial element in L that we denote wk
s .

The interval [y0, w
k
p(y0)] in the real tree Y , terminates in a germ that

is in the orbit of a germ of y0 in Y . The interval [y0, w
k
s (y0)] starts in a

germ that is in the orbit of a germ of y0 in Y . With the pair wk
p , w

k
s we

associate an element vi,j , that was constructed in lemma 3.3, that does
not start with the germ that [y0, w

k
p(y0)] terminates with, and does not

end with the germ that [y0, w
k
s (y0)] starts with. With the pair wk

p , w
k
s

we associate the element in L: wk
pvi,jw

k
s .

The collection of words that we constructed in L from a given word
w ∈ L of length m, may contain elements that represent the same
element in L. To prevent that, we take out from the collection that we
constructed, a subcollection of forbidden words (in somewhat similar
way to what we did in the second section).

Definition 3.4 (Forbidden words). Let w ∈ L be an element that was
produced from a subword of length m of a word in the regular lan-
guage which is the output of the finite automata that is associated
with (Γ, Sn0

). We say that a word wk
pvi,jw

k
s , from the collection that is

built from w, is forbidden if there exists f , 1 ≤ f ≤ m such that:

dY (w
k
pvi,j(y0), w

f
p (y0)) ≤

1

5
dY (y0, vi,j(y0))

With a word w ∈ L that is associated with a subword of length m

of a word in the regular language that the automata that is associated
with (Γ, Sn0

) produces, we have constructed m − 1 words of the form
wk

pvi,jw
k
s . It is further possible to bound the number of the forbidden

words of that form.

Lemma 3.5. Let w ∈ L be associated with a subword of length m of
a word in the regular language produced by the finite automata that is
associated with (Γ, Sn0

). Then there are at most 1
6
m forbidden words

of the form: wk
pvi,jw

k
s for k = 1, . . . , m− 1.

Proof. We argue in a similar way to the way we argued in the proof of
lemma 2.7. Given w we look at the convex hull of the images of the base
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point y0 ∈ Y under all the prefixes wk
p of w, where k = 1, . . . , m − 1.

We denote this convex hull, which is a finite subtree of Y , Tw.
By construction: maxsi∈S dY (y0, η(si)(y0)) = 1. wk+1

p is obtained

from wk
p by multiplying wk

p with one of the generators η(si), si ∈ S.

Hence, the segment: [wk
p(y0), w

k+1
p (y0)] is of length at most 1. There-

fore, the total length of the edges in the finite tree Tw is bounded the
length of the word w, i.e., bounded by m.
Now, let wk

pvi,jw
k
s be a forbidden element. By definition, there exists

an element wf
p for some f , 1 ≤ f ≤ m, such that:

dY (w
k
pvi,j(y0), w

f
p (y0)) ≤

1

5
dY (y0, vi,j(y0)).

Hence, the interval: [wk
p(y0), w

k
pvi,j(y0)] covers at least

4
5
dY (y0, vi,j(y0))

from the total length of the edges in Tw.
The elements {vi,j} were constructed to satisfy a small cancellation

property (part (3) in lemma 2.4). Hence, for two distinct forbidden
prefixes, wk1

p v1i,jw
k1
s , wk2

p v2i,jw
k2
s , 1 ≤ k1 < k2 ≤ m − 1, the overlap

between the intervals: [wk1
p (y0), w

k1
p v1i,j(y0)] and [wk2

p (y0), w
k2
p v2i,j(y0)], is

bounded by 1
10

of the minimum of the lengths of these two intervals.
Therefore, with each forbidden element: wk

pvi,jw
k
s , 1 ≤ k ≤ m− 1, it is

possible to associate a subinterval Ik of length 6
10
dY (y0, vi,j(y0)] of the

interval [wk
p(y0), w

k
pvi,j(y0)] for which:

(i) the subinterval Ik starts after the first
1
10

of the interval: [wk
p(y0), w

k
pvi,j(y0)],

and ends at 7
10

of that interval.
(ii) Ik ⊂ Tm.
(iii for distinct forbidden elements: wk1

p v1i,jw
k1
s , wk2

p v2i,jw
k2
s , 1 ≤ k1 <

k2 ≤ m− 1, the intersection: Ik1 ∩ Ik2 is empty or degenerate.

Since in part (2) of lemma 2.4 we assumed that the length of an
interval [y0, vi,j(y0)] is at least 10, it follows that the length of a subin-
terval Ik of a forbidden element wk

pvi,jw
k
s is at least 6. Hence, the col-

lection of subintervals {Ik}, for all the forbidden elements: wk
pvi,jw

k
s ,

1 ≤ k ≤ m−1, cover a total length of 6 times the number of forbidden
elements in the tree Tw. Since the total length of the edges in Tw is
bounded by m, the number of forbidden elements that are associated
with the word of length m, w, is bounded by 1

6
m.

�

We exclude forbidden words to guarantee that all the words that are
constructed from a given element of length m, w ∈ L, are distinct in
L.
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Lemma 3.6. Let w ∈ L be an element that is associated with a subword
of length m of a word in the regular language that is associated with
(Γ, Sn0

).
Then the non-forbidden words: wk

pvi,jw
k
s , for all k, 1 ≤ k ≤ m − 1,

are distinct elements in L.

Proof. Suppose that for such element w of length m, and a pair: 1 ≤
k1 < k2 ≤ m − 1, two non-forbidden elements satisfy: wk1

p v1i,jw
k1
s =

wk2
p v2i,jw

k2
s in L. Since by part 3 of lemma 2.4, the elements {vi,j}

satisfy a small cancellation property, it follows that there exists f for
which either:

(i) 1 ≤ f ≤ k1 and:

dY (w
k2
p v2i,j(y0), w

f
p (y0)) ≤

1

5
dY (y0, v

2
i,j(y0))

(ii) k1 < f ≤ k2 and:

dY (w
k1
p v1i,j(y0), w

f
p (y0)) ≤

1

5
dY (y0, v

2
i,j(y0))

In both cases one of the two elements that are assumed to represent
the same element in L is forbidden, which contradicts the assumption
of the lemma.

�

The non-forbidden words enable us to construct a collection of fea-
sible words in L, that demonstrate that the growth of L with respect
to the generating set η(S) is strictly bigger than the growth of Γ with
respect to Sn0

.

Definition 3.7 (Feasible words in L). Let q be a positive integer, and
let w ∈ L be an element that is associated with a word of length mq

in the regular language that is associated with the automata that was
constructed for (Γ, Sn0

). We present w as a concatenation of q subwords
of length m: w = w(1) . . . w(q).
With w, and any choice of integers: k1, . . . , kq, 1 ≤ kt ≤ m− 1, t =

1, . . . , q, for which all the elements, w(t)ktp v
t
i,jw(t)

kt
s , are non-forbidden,

we associate a feasible word (of type q) in L:

w(1)k1p v1i,jw(1)
k1
s v̂1i,j w(2)

k2
p v2i,jw(2)

k2
s v̂2i,j . . . w(q)

kq
p v

q
i,jw(q)

kq
s

where for each t, 1 ≤ t ≤ q − 1, v̂ti,j is one of the elements that were
constructed in lemma 3.3, that starts with a germ that is different than
the germ that w(t)kts ends with, and ends with a germ that is different
than the germ that w(t+ 1)kt+1

p starts with.

Feasible words are all distinct:
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Lemma 3.8. Given a positive integer q, the feasible words that are
associated with all the elements w that are associated with words of
length mq in the regular language that is the output of the automata
that is constructed for (Γ, Sn0

), are all distinct in L.

Proof. Let w1, w2 ∈ L be two distinct elements that are associated with
(distinct) words of length mq in the regular language that is associated
with the finite automata of (Γ, Sn0

). Since the words in the regular
language are distinct, hn0

(w1) 6= hn0
(w2), i.e., w1 and w2 are associated

with distinct elements in Γ.
Let ŵe ∈ L, e = 1, 2, be feasible elements that are constructed from

we, e = 1, 2, in correspondence. Since hn0
(vi,j) = 1 according to lemma

3.3, it follows that: hn0
(ŵe) = hn0

(we). Since hn0
(w1) 6= hn0

(w2),
feasible elements that are constructed from distinct words in the regular
language are distinct in L.
Let w ∈ L be an element that is associated with a word of length mq

in the regular language that is associated with (Γ, Sn0
). Let k1, . . . , kq,

k′
1, . . . , k

′
q, 1 ≤ kt, k

′
t ≤ m − 1, be two distinct q-tuples of integers.

Suppose that the corresponding elements that are constructed from
the word w and each of the two tuples are feasible, and the two feasible
elements represent the same element in L:

w(1)k1p v1i,jw(1)
k1
s v̂1i,j . . . w(q)

kq
p v

q
i,jw(q)

kq
s = w(1)k

′

1
p v′

1
i,jw(1)

k′1
s v̂′

1

i,j . . . w(q)
k′q
p v′

q

i,jw(q)
k′q
s .

We argue with a similar argument to the one that was used in proving
lemma 2.6. First, consider the case in which for every t, 1 ≤ t ≤ q,

w(t)ktp v
t
i,jw(t)

kt
s = w(t)

k′t
p v

′t
i,jw(t)

k′t
s in L. Since the two elements that

are associated with w and the two t-tuples are assumed to be feasible,

the elements: w(t)ktp v
t
i,jw(t)

kt
s and w(t)

k′t
p v′

t
i,jw(t)

k′t
s , are non-forbidden

for every t, 1 ≤ t ≤ q. By lemma 3.6 all the non-forbidden elements
that are associated with the same word w(t) represent distinct elements
in L. Hence, for all t, 1 ≤ t ≤ q, kt = k′

t, and the two t-tuples that are
associated with the two feasible elements are identical.
Furthermore, by the small cancellation properties of the elements vi,j

(part (3) of lemma 2.4), it follows that: v̂ti,j = v̂′
t

i,j, for every 1 ≤ t ≤
q − 1. Since the two t-tuples are identical and so are the separators,
the two feasible elements are identical.
Next, assume that there exists an index t, 1 ≤ t ≤ q, for which:

w(t)ktp v
t
i,jw(t)

kt
s 6= w(t)

k′t
p v

′t
i,jw(t)

k′t
s in L. Let t0 be the first such index

t. Note that 1 ≤ t0 ≤ q − 1, since if t0 = q, the two feasible elements
represent distinct elements in L.

Furthermore, for all t < t0, w(t)
kt
p v

t
i,jw(t)

kt
s = w(t)

k′t
p v

′t
i,jw(t)

k′t
s , and

the two feasible elements represent the same element in L. Hence, the
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small cancellation properties of the elements, vi,j , imply that for every

t < t0, v̂
t
i,j = v̂′

t

i,j. Lemma 3.6 implies that in addition, for every t < t0,
kt = k′

t.
since the two feasible elements represent the same element in L, and:

w(t0)
kt0
p vt0i,jw(t0)

kt0
s 6= w(t0)

k′t0
p v′

t0
i,jw(t0)

k′t0
s , the small cancellation prop-

erties of the elements, vi,j, imply that the segment: [y0, w(t0)
kt0
p vt0i,j(y0)]

is almost contained in the segment: [y0, w(t0)
k′t0
p v′

t0
i,j(y0)], or vice versa.

i.e., one of the two segments is contained in the second one possi-

bly except for the last 1
10

of its suffix: [w(t0)
kt0
p (y0), w(t0)

kt0
p vt0i,j(y0)] or

[w(t0)
k′t0
p (y0), w(t0)

k′t0
p v′

t0
i,j(y0)].

By the argument that was used to prove lemma 3.6, this implies that

at least one of the elements, w(t0)
kt0
p vt0i,jw(t0)

kt0
s or w(t0)

k′t0
p v′

t0
i,jw(t0)

k′t0
s ,

is forbidden. A contradiction to our assumption that the two elements
that we started with are feasible, and lemma 3.8 follows.

�

Let b be the maximal length of an element vi,j with respect to the
generating set η(S) of L. Given a positive integer q, the length of a
feasible word (of type q) with respect to η(S) is bounded by q(m+2b).
Let r = e(Γ, Sn0

). Let SphR(Γ, Sn0
) be the collection of elements of

distance R from the identity in the Cayley graph of Γ with respect to
the generating set Sn0

. By [4], the number of elements in SphR(Γ, Sn0
)

is bounded below by c1r
R and bounded above by c2r

R, where c1 ≤ c2
are two positive constants. In particular, |Sphmq(Γ, Sn0

)| ≥ c1r
mq.

By lemma 3.8, the number of elements in a ball of radius q(m+ 2b)
in L, with respect to the generating set η(S), is bounded below by the
number of feasible elements in that ball. Notice that the number of
feasible elements in that ball is at least:

|Sphmq(Γ, Sn0
)|(

5

6
m)q.

Hence:

log e(L, η(S)) ≥ lim
q→∞

log(|Sphmq(Γ, Sn0
)|(5

6
m)q)

q(m+ 2b)

= lim
q→∞

log(c1) + qm log(r) + q(log(m) + log 5
6
)

q(m+ 2b)

Therefore, if we choose m to satisfy:

logm > 2b log(r)− log
5

6
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Then: log(e(L, η(S)) > log(r), hence, e(L, η(S)) > e(Γ, Sn0
), and we

get the conclusion of proposition 3.2 in case the action of L on the real
tree Y is free.

The general case of possibly non-free actions

Suppose that the action of L on Y is faithful, but possibly with
point stabilizers. In this general case, we modify the argument that
was used in the free case, using similar modifications that was used in
the generalization to general faithful actions in the proof of proposition
2.3.

Lemma 3.9. There exist elements vi,j ∈ L, i, j = 1, 2 that satisfy the
conditions that are listed in lemma 3.3, even if the action of L on the
tree Y is not free.

Proof. The argument is similar to the one that was used in lemma 3.3,
with a modification to the non-free action case, that is similar to the
modification that we used in lemma 2.8.
y0 ∈ Y is, by construction, a point that moves minimally by the set

of generators, η(S). Hence, there are at least two distinct germs at y0
in T1. Let germ1, germ2 be two distinct germs at Y0 in T1.
The limit tree Y has infinitely many ends, and the action of L on Y is

minimal, hence, there exist elements e1, e2 ∈ L, that act hyperbolically
on Y , and for which the interval: [y0, ei(y0)] starts with the germ germi

for i = 1, 2.
Since hn0

: L → Γ is a proper epimorphism, there exists a non-trivial
element r̂ ∈ L, for which: hn0

(r̂) = 1. In selecting a subsequence of
the epimorphisms, {hn}, we used some basic properties of limit groups
over hyperbolic groups, and passed to a subsequence of the proper epi-
morphisms {hn}, so that the kernels of the epimorphisms {hn} contain
no torsion elements. Hence, the element r̂ must be of infinite order in
L.
The limit tree Y has infinitely many ends, and L acts cocompactly

and minimally on Y . Hence, there exist elements x1, x2 such that:

(i) < x1, x2, r >=< x1 > ∗ < x2 > ∗ < r >.
(ii) x1 and x2 act hyperbolically on Y .

Recall that µ(x) = dY (y0, x(y0)), and tr(x) is the displacement of x
along its axis in Y . If we choose f to satisfy:

f min(tr(x1), tr(x2)) ≥ 10(µ(x1) + µ(x2) + µ(r̂))

Then the element r = x
f
1 r̂x

−f
1 x

f
2 r̂x

−f
2 acts hyperbolically on Y , and

hn0
(r) = 1.
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Having constructed elements e1, e2 that act hyperbolically on Y , for
which [y0, ei(y0)] start with the germ germi, i = 1, 2, and an element r
that acts hyperbolically on Y , and satisfies hn0

(r) = 1, and observing
that the limit tree Y has infinitely many ends, and the action of L on
Y is minimal and cocompact, the proof of lemma 3.9 proceeds precisely
as the rest of the proof of lemma 3.3.

�

Given lemma 3.9 we use the modification that we applied in the
proof of proposition 2.3, and follow the argument that was used to
prove proposition 3.2 in the free case.
With a pair, w1, w2 ∈ L, we associate an element vi,j from the ones

that were constructed in lemma 3.9. We choose that element vi,j, to
satisfy:

(i) vi,j starts with a germ in T1, that is different than the germ that
[y0, w1(y0] terminates in the tree w1(T1) (in case w1 fixes y0 we
can choose vi,j to start with any germ).

(ii) v−1
i,j starts with a germ in T1, that is different than the germ that

[y0, w
−1
2 (y0] terminates in the tree w−1

2 (T1) (in case w2 fixes y0
we can choose v−1

i,j to start with any germ).

We define forbidden and feasible elements precisely as we did in the
free action case (definitions 3.4 and 3.7). The lower bounds on the num-
ber of forbidden and feasible elements (lemma 3.5), and the fact they
represent distinct elements in L (lemmas 3.6 and 3.8), remain valid in
the general case by the same arguments that were used in the free case.
Finally, the lower bound on the number of feasible elements implies the
conclusion of proposition 3.2, precisely by the same argument that was
used in the free case.

�

Proposition 3.2 contradicts our assumption that for all n, r = e(L, η(S)) =
e(Γ, gn(S)). Hence, proves that there can not be an infinite sequence
of inequivalent generating sets of Γ with the same rate of growth, that
finally proves theorem 3.1.

�

4. The growth ordinal

Theorem 2.2 proves that the set of growth rates of a non-elementary
hyperbolic group is well-ordered. Hence, we can associate with this set
an ordinal, that depends only on the group Γ, that we denote ζGR(Γ).
Jorgensen and Thurston proved that the ordinal that is associated

with the well-ordered set of volumes of hyperbolic 3-manifolds is ωω.
Although we conjecture that: ζGR(Γ) = ωω for all non-elementary
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hyperbolic groups, we were able to prove that only in the case of limit
groups.

Theorem 4.1. Let L be a non-abelian limit group (over a free group).
Then the rates of growth of L, with respect to all its finite generating
sets, is well ordered.

Proof. We argue by contradiction. Let {Sn} be a sequence of finite
generating sets of the limit group L, such that the sequence of rates
of growth, {e(L, Sn)}, is strictly decreasing. L is a limit group, hence,
there exists a sequence of epimorphisms, {um : L → F2}, that converges
into the limit group L.
Since F2 is a hyperbolic group, by proposition 2.3, for each index n:

lim
m→∞

e(F2, um(Sn)) = e(L, Sn)

Since the sequence {e(L, Sn)} is strictly decreasing, for each index n,
we can find an index m(n), such that: e(L, Sn+1) < e(F2, um(n)(Sn)) ≤
e(L, Sn). Therefore, the sequence {e(F2, um(n)(Sn))} is strictly decreas-
ing, a contradiction to the well ordering of the rates of growth of F2

(Theorem 2.2).
�

By theorem 4.1 the set of rates of growth of a non-abelian limit group
L is well-ordered, hence, we can associate with it an ordinal, ζGR(L).
Also, given r > 1 we look at the set of rates of growth of a limit

group L, that are bounded by r. This set is well ordered, hence, we
can associate with it an ordinal that we denote, ζrGR(L).

Theorem 4.2. For every non-abelian limit group L, ζGR(L) = ωω.

Proof. Let {Sn} be a sequence of generating sets of L, such that the se-
quence of rates of growth: {e(L, Sn)} is strictly increasing and bounded.
A non-abelian limit group L can be approximated by a sequence of epi-
morphisms: {um : L → F2}. Hence, the bound on the rates of growth
of the sequence: {(L, Sn)}, bounds the rates of growth of the pairs:
(F2, um(Sn)), for all positive integers: m,n. Therefore, [2] implies that
the cardinality of the generating sets {Sn} is bounded. Hence, by pass-
ing to a subsequence, we may assume that it is fixed. As we did in
proving theorem 2.2, with each generating set Sn we can associate an
epimorphism: gn : Fℓ → L.
From the sequence of epimorphisms {gn} we can pass to a subse-

quence that converges into a limit group L1 with a generating set
U1. Since a limit group is finitely presented [16], for large n, we
get an epimorphism: hn : (L1, U1) → (L, Sn). By proposition 2.3,
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limn→∞ e(L, Sn) = e(L1, U1). Note that for a large n, hn is a proper
epimorphism, since for every n, e(L, Sn) < e(L1, U1).

(Fℓ, S)

η

��

{gn}

%%❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

(L1, U1)
{hn}

// (L, Sn)

So far we proved that with every convergent increasing sequence of
rates of growth of L, we can associate (not uniquely) a pair, (L1, U1),
where L is a proper quotient of L1, and U1 is a generating set of L1:

Fℓ → L1 → L.

If we repeat this construction, starting with a bounded increasing
sequence of increasing sequences of rates of growth of L, we get a two
step sequence: L2 → L1 → L of proper epimorphisms of limit groups.
Repeating the construction iteratively, for bounded iterated sequences
of strictly increasing sequences of rates of growth, we get a sequence of
proper epimorphisms:

Fℓ → Ls → Ls−1 → . . . → L1 → L.

By [2], given r > 1, there is a bound, denoted dr, on the cardinality
of a generating set S of L, for which: e(L, S) ≤ r. By a celebrated
theorem of L. Louder [13] limit groups have a Krull dimension. This
means that given a limit group L, there is a uniform bound on the
lengths of sequences of proper epimorphisms:

L = L1 → L2 → . . . → Ls

where all the Li’s are limit groups, and the bound depends only on the
minimal number of generators of L.
We constructed sequences of proper epimorphisms of limit groups

from bounded (iterations of) convergent sequences of convergent se-
quences of rates of growth of L. Given r > 1, a bound on the collection
of rates of growth, the Krull dimension for limit groups implies that
there is a uniform bound, depending only on dr (that depends only
on r), on the lengths of sequences of proper epimorphisms of limit
groups of degree dr. Hence, there is a bound, depending only on r,
on the number of iterations of convergent sequences of convergent se-
quences of rates of growth of the limit group L, where all these rates
are bounded by the given real number r. A bound on the number of
iterations of increasing sequences, is identical to a bound on the degree
of ω in the ordinal ζrGR(L). Since ζ

r
GR(L) is a polynomial in ω for every

r > 1, it follows that ζGR(L) ≤ ωω.
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It remains to prove that: ζGR(L) ≥ ωω. Note that for every positive
integer t, there exists a sequence of proper epimorphisms:

L1 = L∗Ft → L2 = L∗Ft−1 → . . . → Lt−1 = L∗F2 → Lt = L∗Z → Lt+1 = L.

For every index i, 1 ≤ i ≤ t, let vin : Li → Li+1, be an approximating
sequence of epimorphisms that converges into the limit group Li.
We start with a finite generating set S of L, and extend it to a

generating set S1 of L1, by adding to S a free basis of Ft. Suppose
that e(L1, S1) ≤ r1. We continue with the approximating sequence of
epimorphisms: {vjn}, 1 ≤ j ≤ t. For each i, 1 ≤ i ≤ t, we construct a
(multi-index) sequence of generating sets of Li+1:

{(Li+1, v
i
ni
◦ . . . ◦ v1n1

(S1)}

where ni
i, . . . , n

1
1 runs over all the possibilities for an i-tuple of positive

integers.
The sequence of epimorphisms: {v1n : L1 → L2} converges into

L1. Hence, by proposition 2.3, limn→∞ e(L2, v
1
n(S1)) = e(L1, S1). The

maps v1n are proper epimorphisms, and they converge into L1. Hence,
the pairs {(L2, v

1
n(S1))} belong to infinitely many distinct isomorphism

classes of pairs (of a limit group and its finite set of generators). By
passing to a subsequence we may assume that they all belong to distinct
isomorphism classes of pairs.
By theorem 5.8 in the sequel, only finitely many isomorphism classes

of pairs, (L2, v
1
n(S1)), can have the same growth rate. Hence, we can

pass to a subsequence of the homomorphisms, {v1n}, such that the pairs,
(L2, v

1
n(S1)), do all have different growth rates. Since: limn→∞ e(L2, v

1
n(S1)) =

e(L1, S1), and for each n: e(L2, v
1
n(S1)) ≤ e(L1, S1), we may pass to a

further subsequence such that {e(L2, v
1
n(S1))} is a strictly increasing

sequence that converges to e(L1, S1).
Now we fix an index n1, and look at the sequence of pairs: (L3, v

2
n ◦

v1n1
(S1)). v

2
n are proper epimorphisms that converge into L2. Hence, by

proposition 2.3: limn→∞e(L3, v
2
n ◦ v

1
n1
(S1)) = e(L2, v

1
n1
(S1)). Applying

again the finiteness of non-isomorphic generating sets of a limit group
with the same growth rate (theorem 5.8), there exists a subsequence
of the homomorphisms {v2n} such that the sequence of rates of growth,
{e(L3, v

2
n ◦ v

1
n1
(S1))} is a strictly increasing sequence that converges to

e(L2, v
1
n1
(S1)).

So far from the two steps sequence of proper epimorphisms: L1 →
L2 → L3, we managed to construct a strictly increasing sequence of
strictly increasing convergent sequences of rates of growth, {e(L3, v

2
n2
◦

v1n1
(S1))}, that eventually converges to e(L1, S1). Continuing itera-

tively with the same constructions for the t-steps sequence of proper
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epimorphisms: L1 → L2 → . . . → Lt+1 = L, we can construct
t-iterates of increasing sequence of increasing sequences of rates of
growth: {(e(L = Lt+1, v

t
nt
◦ . . . ◦ v1n1

(S1))}.
Therefore, ζr1GR(L) ≥ ωt. Since t was arbitrary, ζGR(L) ≥ ωω, so:

ζGR(L) = ωω.
�

Theorems 4.1 and 4.2 imply that in particular the sets of growth
rates of all hyperbolic non-cyclic limit groups are well ordered, and their
growth ordinals are ωω. We conjecture that the conclusion of Theorem
4.2 hold for all non-elementary hyperbolic groups and all non-virtually
abelian limit groups over hyperbolic groups. This conjecture is related
to the existence of a Krull dimension for limit groups over hyperbolic
groups.

Proposition 4.3. Let Γ be a non-elementary hyperbolic group. Then:

ζGR(Γ) ≥ ωω.

Moreover, if limit groups over Γ have a Krull dimension, then:

ζGR(Γ) = ωω

Proof. The argument in the second part of the proof of theorem 4.2,
that proves a lower bound on the growth ordinal of a non-abelian limit
group, generalizes to every non-elementary hyperbolic group, and im-
plies that for every non-elementary hyperbolic group Γ, ζGR(Γ) ≥ ωω.
If limit groups over Γ have a Krull dimension, i.e., if for every limit

group over Γ, L, there is a bound (depending only on L) on the length
of a sequence of proper epimorphisms: L = L1 → L2 → . . . → Lt, then
the first part of the proof of theorem 4.2, that proves an upper bound
on the growth ordinal of a non-abelian limit group, generalizes to every
non-elementary hyperbolic group, and implies that ζGR(Γ) ≤ ωω, so:
ζGR(Γ) = ωω.

�

Recall that a resolution over a non-elementary hyperbolic group Γ,
is a sequence of proper quotients of limit groups over Γ: L1 → L2 →
. . . → Ls, where to each of the limit groups over Γ, Li, 1 ≤ i ≤ s− 1,
one adds its virtually abelian JSJ decomposition and its associated
modular group (see [15]). A resolution over Γ is called strict, if each
epimorphism: Li → Li+1 restricts to injective maps of the rigid vertex
groups and the edge groups in the virtually abelian JSJ decomposition
of Li, and the image of every QH vertex group in the JSJ decomposition
of Li in Li+1 is non-elementary (for the definition and basic properties
of strict resolutions see section 5 in [16]).
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Proposition 4.4. Let Γ be a non-elementary hyperbolic group. If limit
groups over Γ do not have a Krull dimension for strict resolutions that
encode epimorphisms onto Γ, i.e., if there exists a limit group L over
Γ, with no bound on the lengths of strict resolutions that terminate in
Γ: L = L0 → L1 → . . . → Ls → Γ, where each of the Li’s is a limit
group over Γ, then:

ζGR(Γ) > ωω

Proof. Let η : L → L̂ be a strict proper epimorphism, i.e., η maps each
of the rigid vertex groups and each edge group in the virtually abelian
JSJ decomposition of L monomorphically into L̂, and maps every QH
vertex group in this JSJ decomposition into a non-elementary subgroup
in L̂. Then it is possible to find a sequence of modular automorphisms
of L, {ϕn} ∈ Mod (L), such that the sequence {η ◦ ϕn : L → L̂}
converges into L (see [15]).
If limit groups over Γ do not have a Krull dimension for strict resolu-

tions that encode epimorphisms onto Γ, there exists a limit group L over
Γ, with longer and longer strict resolutions: L = L1 → L2 → . . . →
Lt → Γ. Since the proper epimorphisms along the strict resolution are
strict, there exist approximating sequences of proper epimorphisms:
{vin : Li → Li+1}, i = 1, . . . , t, i.e., the sequences {vin} converge into
the limit groups Li, for i = 1, . . . , t.
Now we can fix a generating set S for L. Let r = e(L, S). With each

strict resolution L = L1 → . . . → Lt, there are associated sequences
of approximate homomorphisms {vin}, i = 1, . . . , t. By the argument
that was used to prove the lower bound on the growth ordinal of a
limit group in the proof of theorem 4.2, the strict resolutions and the
sequences of approximate homomorphisms imply that ζrGR(Γ) ≥ ωt.
Since we assumed that there is no bound on the length of a strict
resolution of L, this implies that ζrGR(Γ) ≥ ωt for every positive integer
t, so: ζrGR(Γ) ≥ ωω.

By increasing the number of generators, there is a generating set Ŝ
with e(Γ, Ŝ) > r. It follows that: ζGR(Γ) ≥ ωω + 1, so: ζGR(Γ) > ωω.

�

5. Growth rates of subgroups of hyperbolic groups

In the previous sections we studied the rates of growth of hyperbolic
groups with respect to all their generating sets. In this section we
strengthen the results to include the rates of growth of all the f.g.
subgroups of a given hyperbolic group. We prove that if Γ is a non-
elementary hyperbolic group, then the set of growth rates of all the f.g.
non-elementary subgroups of Γ with respect to all their finite generating
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sets is well ordered, strengthening theorem 2.2. Then we prove that
every given real number can be obtained only finitely many times (up
to a natural isomorphism) as the growth rate of a finite generating set
of a non-elementary subgroup of Γ, strengthening theorem 3.1.
Let Γ be a hyperbolic group. Let H < Γ, be a non-elementary f.g.

subgroup. Since H is a non-elementary subgroup in Γ it contains a free
subgroup, so H has exponential growth. We set e(H,S) to be the rate
of the (exponential) growth of H with respect to the generating set S.
We look at the following set in R:

Θ(Γ) = {e(H,S)|H < Γ , |S| < ∞}

where H runs over all the f.g. non-elementary subgroups in Γ, and S

runs over all the finite generating sets of all such possible subgroups H .
The set Θ(Γ) is a countable subset of R, that contains the subset ξ(Γ)
that was studied in the second section, where ξ(Γ) contains only growth
rates of the ambient group Γ itself (and not of its non-elementary sub-
groups).

Theorem 5.1. Let Γ be a non-elementary hyperbolic group. Then Θ(Γ)
is a well-ordered set.

Proof. The proof is essentially identical to the proof of theorem 2.2.
Let {Sn} be a sequence of finite generating sets of non-elementary sub-
groups, {Hn}, such that {e(Hn, Sn)} is a strictly decreasing sequence
and limn→∞ e(Hn, Sn) = d, for some d > 1 (d > 1 by a result of Koubi
[12]).
By [7], there exists a lower bound on e(Hn, Sn), that depends only on

|Sn| and the hyperbolicity constant δ of Γ, and this lower bound grows
to infinity with |Sn|. Hence, |Sn| is bounded for the entire strictly
decreasing sequence. By passing to a subsequence we may assume that
|Sn| is fixed, |Sn| = ℓ, for the entire sequence.
Let Sn = {xn

1 , · · · , x
n
ℓ }. Let Fℓ be the free group of rank ℓ with a free

generating set: S = {s1, . . . , sℓ}. For each index n, we define a map:
gn : Fℓ → Γ, by setting: gn(si) = xn

i . By construction: e(Hn, Sn) =
e(Hn, gn(S)).
We fix a Cayley graph X of Γ with respect to some finite generating

set. X is a δ-hyperbolic graph endowed with a Γ-action. Hence, for
each n, Fℓ acts on X via the homomorphism: gn : Fℓ → Γ.
Since the sequence {e(Hn, Sn)} is strictly decreasing, the sequence:

{min
γ∈Γ

max
i

|γgn(si)γ
−1|}

is not bounded. Hence, we may pass to a subsequence for which the
sequence converges to ∞. For each index n, we further replace the
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epimorphism gn, by the homomorphism: γngnγ
−1
n , where:

max
i

|γngn(si)γ
−1
n | = min

γ∈Γ
max

i
|γgn(si)γ

−1| = ρn.

We denote by (X, dn) the Cayley graph X with the metric obtained
from the metric on X after multiplying it by 1

ρn
. From the sequence

of actions of Fℓ on the metric spaces (X, dn) we extract a subsequence
that converges into a non-trivial action of Fℓ on a real tree Y . The
action of Fℓ is not faithful, so we divide Fℓ by the kernel of the action,
and get a faithful action of a limit group L on the real tree Y , where
the limit group L is a limit group over the hyperbolic group Γ.
Let: η : Fℓ → L be the associated quotient map. By Theorem 6.5 in

[15] there exists some index n0, such that for every n > n0 there exists
an epimorphism hn : L → Hn that satisfies: gn = hn ◦ η. By passing to
a subsequence we may assume that all the homomorphisms {gn} factor
through the epimorphism: η : Fℓ → L. Generalizing proposition 2.3
we have:

Proposition 5.2. limn→∞ e(Hn, gn(S)) = e(L, η(S)).

Proof. The subgroups Hn are non-elementary subgroups of the hyper-
bolic group Γ. Hence, all of these subgroups, and the limit group L,
contain non-cyclic free subgroups, and the limit tree Y has infinitely
many ends. This is sufficient for constructing the elements ui,j ∈ L,
i, j = 1, 2, with the properties that are listed in lemma 2.4, for the
action of L on the limit tree Y , using the construction that appears in
the proof of lemma 2.8.
Once there exist elements {ui,j} with the properties that are listed in

lemma 2.4, the definitions of forbidden and feasible elements and their
properties in the current context, as well as the rest of the argument,
are identical to the way they appear in the proof of proposition 2.3.

�

As in the proof of theorem 2.2, Proposition 5.2 proves that there is
no strictly decreasing sequence of rates of growth, {e(Hn, Sn)}, since a
strictly decreasing sequence can not approach its upper bound. Hence,
it concludes the proof that the set of growth rates of all the f.g. non-
elementary subgroups of a hyperbolic group with respect to all their
finite generating sets, Θ(Γ), is well-ordered.

�

In the third section we have generalized another theorem of Jor-
gensen and Thurston, and proved that given a real number r, there
are at most finitely many finite generating sets of a hyperbolic group Γ
with growth rate r up to the action of Aut(Γ) (theorem 3.1). In fact,
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it is possible to strengthen this finiteness theorem further, to include
all the isomorphism classes of pairs of a non-elementary f.g. subgroup
of Γ and a finite generating set of the f.g. subgroup.

Theorem 5.3. Let Γ be a non-elementary hyperbolic group, and let
r > 1. Then up to an isomorphism, there are at most finitely many
non-elementary subgroups {Hn} of Γ, each with a finite generating set
Sn, with a growth rate r, i.e., finitely many isomorphism classes of
pairs: (Hn, Sn), Hn < Γ, that satisfy: e(Hn, Sn) = r.

Proof. The proof is a strengthening of the argument that was used to
prove theorem 3.1. Let r > 1 and suppose that there are infinitely
many isomorphism classes of pairs: (Hn, Sn), where Hn < Γ is a non-
elementary subgroup, and Sn is a finite generating set of Hn, for which:
e(Hn, Sn) = r.
As in the proof of theorem 5.1, the cardinality of the generating

sets {Sn} is bounded, so we may pass to a subsequence that have a
fixed cardinality ℓ. Hence, each generating set Sn corresponds to an
epimorphism: gn : Fℓ → Hn, where S is a fixed free generating set of
Fℓ, and gn(S) = Sn.
By passing to a further subsequence, we may assume that the se-

quence of homomorphisms {gn} converges into a faithful action of a
limit group (over Γ) L on some real tree Y . Let η : Fℓ → L be the
associated quotient map. Passing to a further subsequence, we may as-
sume that for every n, gn = hn◦η, where hn : L → Γ is an epimorphism
of L onto Hn.
If two of the homomorphisms hn1

, hn2
are isomorphisms of L ontoHn1

and Hn2
in correspondence, then the corresponding pairs of subgroups

and generating sets: (Hn1
, Sn1

) and (Hn2
, Sn2

), are both isomorphic to
the pair: (L, η(S)), so they are both in the same isomorphism class of
pairs, a contradiction to our assumption. Hence, omitting at most one
homomorphism hn from the sequence, we may assume that for every
n, the homomorphism hn is not injective.
By proposition 5.2, limn→∞ e(Hn, Sn) = e(L, η(S)). By our assump-

tion, for every index n, e(Hn, Sn) = r. Hence, e(L, η(S)) = r. As in the
proof of theorem 3.1, to obtain a contradiction to the existence of an
infinite sequence of non-isomorphic pairs of non-elementary subgroups
of the hyperbolic group Γ and their finite generating sets with the same
rate of growth, and conclude the proof of theorem 5.3, we prove the
following:

Proposition 5.4. For every index n, the pairs: {(Hn, Sn)} from the
convergence sequence, satisfy: e(Hn, Sn) < e(L, η(S)).
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Proof. To prove the proposition, we follow the proof of proposition
3.2, although unlike finite generating sets of the ambient hyperbolic
group Γ, Cayley graphs of subgroups of Γ with respect to their finite
generating sets are not guaranteed to have the Markov property. We
fix an index n0 and aim to prove that: e(Hn0

, Sn0
) < e(L, η(S)), using

the limit action of L on the real tree Y , and the non-trivial kernel of
the epimorphism: hn0

: L → Hn0
.

The subgroups Hn < Γ are assumed to be non-elementary, hence,
they contain a non-cyclic free subgroup, and so does the limit group
(over Γ) L. As we noted in the proof of proposition 5.2, this suffices to
construct elements vi,j ∈ L, i, j = 1, 2, that satisfy the properties that
are listed in lemma 3.3, using the construction that was used to prove
lemma 3.9.
We fix n0. With the generating set Sn0

and the subgroup Hn0
we

can not associate a finite automata in general as we did in the proof
of proposition 5.2. Let Xn0

= X(Hn0
, Sn0

) be the Cayley graph of Hn0

with respect to the generating set Sn0
(note thatXn0

is not a hyperbolic
space in general). With each element in Hn0

we associate a geodesic
from the identity to that element in the Cayley graph Xn0

. Note that
there are several geodesics from the identity to each given vertex in
Xn0

, and we choose a single one for every vertex arbitrarily (i.e., we
choose an arbitrary combing by geodesics in the Cayley graph Xn0

).
We fix an integer m, and look at a geodesic of length m from the

identity to an element of distance m from the identity in the Cayley
graph Xn0

. Let w be a word that represents such a geodesic. w is a
word in the generators Sn0

, so we can view it as a word of length m in
the generators η(S) in L. Given a positive integer k, 1 ≤ k ≤ m − 1,
we separate the word into a prefix of length k and a suffix of length
m − k. The prefix and suffix correspond to non-trivial elements in L

(since they are mapped by hn0
to nontrivial elements (of distances k

and m − k from the identity in Xn0
) in Γ). We denote the prefix wk

p ,

and the suffix wk
s (both are elements in L).

As we did in the proof of proposition 3.2, with the pair wk
p , w

k
s we

associate an element vi,j that was constructed in lemma 3.9, that does
not start with the germ that [y0, w

k
p(y0)] terminates with, and does not

end with the germ that [y0, w
k
s (y0)] starts with (in the tree Y ).

Given the collection of elements in L that we constructed, we de-
fine forbidden elements precisely as we define them in definition 3.4.
Lemma 3.5 that gives an upper bound on the number of forbidden
elements, remains valid (by the same argument) for words w that rep-
resent geodesics in the Cayley graph Xn0

.



THE RATES OF GROWTH IN A HYPERBOLIC GROUP 33

Let w1, w2 be words that represent geodesics between the identity
and two distinct elements on the sphere of radius m in Xn0

. The words
w1 and w2 (as words in η(S)) represent elements in L. Since hn0

maps
w1 and w2 to distinct elements in Γ, and hn0

(vi,j) = 1, i, j = 1, 2, all the
non-forbidden elements that are constructed from w1, are distinct from
the non-forbidden elements that are constructed from w2. Furthermore,
by the argument that proves lemma 3.6, all the non-forbidden elements
that are constructed from a single word that represent a geodesic in
Xn0

, w1, are distinct.
As in the proof of theorem 3.2, the non-forbidden words enable us

to construct a collection of feasible words in L.
(cf. definition 3.7) Let q be a positive integer, and let w be a word

of length mq that represent a geodesic in the (fixed) geodesic combing
of the Cayley graph Xn0

(i.e., a chosen geodesic from the identity to
an element of distance mq from the identity in Xn0

). We present w as
a concatenation of q subwords of length m: w = w(1) . . . w(q). Clearly,
each subword w(t), 1 ≤ t ≤ q, represents a geodesic of length m in
Xn0

.
We define the feasible elements that are constructed from w precisely

as we defined them in definition 3.7. Given any choice of integers:
k1, . . . , kq, 1 ≤ kt ≤ m − 1, t = 1, . . . , q, for which all the elements:
w(t)ktp v

t
i,jw(t)

kt
s , are non-forbidden, we associate a feasible word (of type

q) in L:

w(1)k1p v1i,jw(1)
k1
s v̂1i,j w(2)

k2
p v2i,jw(2)

k2
s v̂2i,j . . . w(q)

kq
p v

q
i,jw(q)

kq
s

where for each t, 1 ≤ t ≤ q − 1, v̂ti,j is one of the elements that were
constructed in lemma 3.9, that starts with a germ that is different than
the germ that:

[y0, w(1)
k1
p v1i,jw(1)

k1
s v̂1i,j . . . w(t)

kt
p v

2
i,jw(t)

kt
s (y0)]

ends with, and ends with a germ that is different than the germ that
[y0, w(t+ 1)kt+1

p vt+1
i,j w(t+ 1)kt+1

s (y0)] starts with.
The argument that was used to prove lemma 3.8, proves that the

constructed feasible elements from the geodesic combing of Xn0
are all

distinct.

Lemma 5.5. Given a positive integer q, the feasible words, that are
constructed from all the geodesics of length mq in the geodesic combing
of Xn0

, do all represent distinct elements in L.

At this point, to complete the proof of proposition 5.4, we need to
slightly modify the estimates that we used in section 3 because the
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geodesic combings of Xn0
that we use is not guaranteed to have the

Markov property.
Let b be the maximal length of an element vi,j with respect to the

generating set η(S) of L. Given a positive integer q, the length of a
feasible word (of type q) with respect to η(S) is bounded by q(m+2b).
Let Sphmq(Xn0

) be the sphere of radius mq in the Cayley graph Xn0

of Hn0
.

Let r = e(Hn0
, Sn0

). By lemma 3.8, the number of elements in a ball
of radius q(m + 2b) in L, with respect to the generating set η(S), is
bounded below by the number of feasible elements in that ball.
Unlike the case of a Cayley graph of a hyperbolic group in section

3, for which we have a Markov type lower bound of |Sphmq(Xn0
)|, in

the case of a general finite generating set of a subgroup of a hyperbolic
group we only have an asymptotic estimate:

lim
q→∞

log |Sphmq(Xn0
)|

mq
= log r,

Hence:

log e(L, η(S)) ≥ lim
q→∞

log(|Sphmq(Xn0
)|(5

6
m)q)

q(m+ 2b)
=

= lim
q→∞

log(|Sphmq(Xn0
)|)

q(m+ 2b)
+
q(log(m) + log 5

6
)

q(m+ 2b)
= log(r)

m

m+ 2b
+
log(m) + log(5

6
)

m+ 2b

Therefore, if we choose m to satisfy:

logm > 2b log(r)− log
5

6

Then: log(e(L, η(S)) > log(r), hence, e(L, η(S)) > e(Hn0
, Sn0

), and we
get the conclusion of proposition 5.4.

�

Proposition 5.4 contradicts our assumption that for all n, r = e(L, η(S)) =
e(Hn, Sn). Hence, proves that there can not be an infinite sequence of
non-isomorphic finite generating sets of non-elementary subgroups of
Γ with the same rate of growth, that finally proves theorem 5.3.

�

Theorem 5.1 proves that the set of growth rates of all f.g. non-
elementary subgroups of a given hyperbolic group Γ, with respect to all
their finite generating sets, is well-ordered. This theorem has several
immediate corollaries.

Corollary 5.6. Let L be a non-elementary (i.e., non-virtually abelian)
limit group over a hyperbolic group Γ. Then the rates of growth of all
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the non-elementary f.g. subgroups of L with respect to all their finite
generating sets is well ordered.

Proof. Every f.g. non-elementary subgroup of L is a limit group over
Γ, and can be approximated by a sequence of epimorphisms of the sub-
group of L onto non-elementary subgroups of Γ. Hence, by proposition
5.2, the rates of growth of all the non-elementary subgroups of L with
respect to all their finite sets of generators, is a subset of the closure
of the set of rates of growth of all the f.g. non-elementary subgroups of
Γ with respect to all their finite sets of generators, i.e., a subset of the
closure of Θ(Γ).
By theorem 5.1, Θ(Γ) is well-ordered. Hence, its closure is well-

ordered. Every subset of a well-ordered set is well-ordered, and the
corollary follows.

�

Corollary 5.7. Let Γ be a hyperbolic group. The rates of growth of all
the non-elementary limit groups over Γ, with respect to all their finite
sets of generators is well ordered.

Proof. Every non-elementary limit group over Γ can be approximated
by a sequence of epimorphisms of the limit group onto non-elementary
subgroups of Γ. By proposition 5.2 the rates of growth of an approxi-
mating sequence approaches the rate of growth of the limit group with
its given set of generators.
Hence, the set of rates of growth of all the non-elementary Γ-limit

groups with respect to all their finite generating sets, is the closure
of Θ(Γ), i.e., the set of rates of growth of all the f.g. non-elementary
subgroups of Γ with respect to all their finite generating sets. Θ(Γ) is
well-ordered so its closure is well-ordered.

�

So far we have strengthened the well ordering that was proved in
theorem 5.1 for the growth rates of all the finite generating sets of all
the f.g. subgroups of a hyperbolic group Γ, to obtain well-ordering of the
growth rates of all the finite generating sets of all the non-elementary
limit groups over Γ (note that every f.g. subgroup of Γ is in particular
a limit group over Γ).
The statement and the proof of theorem 5.3, about the finiteness

of isomorphism classes of finite generating sets of subgroups of a hy-
perbolic group with the same growth rate, can be strengthened to in-
clude all the finite generating sets of all the limit groups over Γ. This
strengthening plays an important role in studying the ordinal of growth
rates in a hyperbolic group (see theorem 4.2).
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Theorem 5.8. Let Γ be a non-elementary hyperbolic group, and let
r > 1. Then up to an isomorphism, there are at most finitely many non-
elementary subgroups {Hn}, of all the limit groups over Γ, each with a
finite generating set Sn, with a growth rate r, i.e., at most finitely many
isomorphism classes of pairs: (Hn, Sn), Hn a non-elementary subgroup
of a limit group over Γ, that satisfy: e(Hn, Sn) = r.

Proof. The argument that was used to prove theorem 5.3, didn’t re-
ally use the hyperbolicity of the ambient group Γ. Given a sequence
of f.g. subgroups of a hyperbolic group Γ, and their finite generating
sets, {(Hn, Sn}, that have all rate of growth r, we constructed a limit
object, (L, η(S)), such that L acts minimally on a real tree Y , and a
subsequence of the sequence of pairs, {Hn, Sn}, are proper quotients of
the pair (L, η(S)).
Note that f.g. subgroups of limit groups over Γ are limit groups

over Γ. Hence, we denote the subgroups Hn in the statement of the
theorem, Ln. Given a sequence of non-isomorphic pairs, {(Ln, Sn)}, of
limit groups over Γ, and their finite generating sets, all with rate of
growth r, we can use the argument that was applied to study finite
generating sets of subgroups of Γ with the same rate of growth in the
proof of theorem 5.3, and extract a subsequence that converges into a
pair, (L, η(S)), where L is a limit group over Γ, and η(S) is its finite
set of generators. Furthermore, by the same argument L is equipped
with a minimal action on a real tree Y , and a subsequence of the non-
isomorphic pairs, {(Ln, Sn)}, are proper quotients of the pair, (L, η(S)).
Having constructed the limit pair (L, η(S)) and its limit action on

the limit tree Y , the rest of the proof follows precisely the proof of
proposition 5.4 and theorem 5.3.

�

By theorem 5.1, the set of rates of growth of all f.g. non-elementary
subgroups of a hyperbolic group Γ with respect to all their finite gen-
erating sets, Θ(Γ), is well-ordered. Hence, we can associate with this
set an ordinal that we denote, θGR(Γ).
Furthermore, by corollary 5.7, the rates of growth of all the the non-

elementary limit groups over a hyperbolic group Γ, with respect to all
their finite sets of generators, is well ordered. Hence, we can associate
with this set an ordinal, that depends only on the group Γ, that we
denote λGR(Γ).
We conjecture that for every non-elementary hyperbolic group Γ:

θGR(Γ) = λGR(Γ) = ωω, but as in section 4 and the ordinal ζGR(Γ),
we are able to prove that only in the case of limit groups (over a free
group).
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Corollary 5.9. For every non-abelian limit group (over a free group)
L, θGR(L) = λGR(L) = ωω.

Proof. λGR(L) ≥ θGR(L) ≥ ζGR(L) = ωω. θGR(L) ≤ λGR(L) ≤ ωω, by
the same argument that was used to prove the upper bound: ζGR(L) ≤
ωω in the proof of theorem 4.2.

�

We can’t prove the generalization of the equality in corollary 5.9 to
all hyperbolic groups, but as in proposition 4.3 we can prove a general
inequality.

Corollary 5.10. Let Γ be a non-elementary hyperbolic group. Then:
λGR(Γ) = θGR(Γ) ≥ ωω.
Moreover, if limit groups over Γ have a Krull dimension, then:

θGR(Γ) = λGR(Γ) = ωω

Proof. ωω ≤ ζGR(Γ) by proposition 4.3, and: ζGR(Γ) ≤ θGR(Γ) ≤
λGR(Γ) since the associated well-ordered sets satisfies the corresponding
inclusions. If limit groups over Γ have a Krull dimension, then all these
ordinals are ωω by the proof of the upper bound: ζGR ≤ omegaω, in
the proof of theorem 4.2.
The well-ordered set that is associated with λGR(Γ) is the closure of

the set that is associated with θGR(Γ). Hence, the difference between
the two sets is a subset of the accumulation points of ΘGR(Γ). Since
the set of accumulation points of ΘGR(Γ) is not bounded, it follows
that: θGR(Γ) = λGR(Γ).

�

6. Growth rates of subsemigroups of a hyperbolic group

In the previous sections we studied the set of rates of growth of hy-
perbolic groups, their f.g. subgroups, and limit groups over hyperbolic
groups, with respect to all their finite generating sets. The main tool
that we used to study generating sets of subgroups was the structure of
limit groups over hyperbolic groups and basic properties of the actions
of these limit groups on real trees.
Limit groups were originally defined to study varieties and first order

formulas over groups. In [17] the analysis of varieties over groups using
limit groups is modified to analyze varieties over a free semigroup.
In the case of semigroups, limit groups are replaced by limit pairs,
(U, L), where L is a limit group (over a free group), and U is a f.g.
subsemigroup that generates L as a group.
In this section we use these limit pairs (over a hyperbolic group). We

modify the arguments that were used in previous sections to study rates
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of growth of subgroups, to study rates of growth of non-elementary f.g.
subsemigroups of a given hyperbolic group, with respect to all their
finite sets of generators. Such a modification demonstrates once again,
that the use of limit objects (over groups, semigroups, algebras and
so on), enables at time natural modifications of concepts, tools and
objects that are used in studying questions in one algebraic category,
to study analogous questions in other algebraic categories. This is a
major principle in model theory, when the signature is changed, but
basic properties of the corresponding theories do not.
Let U be a f.g. semigroup with a finite generating set S. The growth

of the semigroup U with respect to the generating set S is defined
precisely as in the group case. In case U has exponential growth with
respect to S (hence, with respect to any other finite generating set), we
define e(U, S) to be the growth rate of U with respect to S, precisely
as it is defined in the case of groups.
In this case of exponential growth, we further define the following

set in R:

ξ(U) = {e(U, S)||S| < ∞}

where S runs over all the finite generating sets of U .
Now, let Γ be a hyperbolic group. We say that a subsemigroup U

in Γ is non-elementary if the subgroup generated by U in Γ is non-
elementary. Like subgroups, a f.g. subsemigroup of Γ has exponential
growth if and only if it is non-elementary. In analogy with our study
in section 4, we look at the following set in R:

∆(Γ) = {e(U, S)|U < Γ , |S| < ∞}

where U runs over all the f.g. non-elementary subsemigroups in Γ, and S

runs over all the finite generating sets of all such possible subsemigroups
U . The set ∆(Γ) is a countable subset of R, that contains the subset
Θ(Γ) that was studied in section 4, and contains only growth rate of
subgroups.

Theorem 6.1. Let Γ be a non-elementary hyperbolic group. Then
∆(Γ) is a well-ordered set.

Proof. The proof is a modification of the proofs of theorems 2.2 and
5.1, modified to the case of subsemigroups.
As in the proofs of theorems 2.2 and 5.1 we need to prove that ∆(Γ)

does not contain a strictly decreasing convergent sequence. Suppose
that there exists a sequence of non-elementary subsemigroups {Un},
with finite generating sets {Sn}, such that {e(Un, Sn)} is a strictly
decreasing sequence and limn→∞ e(Un, Sn) = d, for some d > 1.
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As in the case of groups, by [7] we may assume that the cardinality of
the generating sets Sn from the decreasing sequence is bounded, and by
possibly passing to a subsequence we may assume that the cardinality
of the generating sets is fixed, |Sn| = ℓ.
Let Sn = {xn

1 , · · · , x
n
ℓ }. Let FSℓ be the free semigroup of rank ℓ with

a free generating set: S = {s1, . . . , sℓ}. For each index n, we define a
semigroup homomorphism: gn : FSℓ → Γ, by setting: gn(si) = xn

i . By
our assumptions, gn is an epimorphism of FSℓ onto Un.
Γ is a group, hence, every semigroup homomorphism: gn : FSℓ → Γ

extends to a group homomorphism: ĝn : Fℓ → Γ. Hence, following [17],
we view every homomorphism gn as a homomorphism of pairs (still
denoted gn): gn : (FSℓ, Fℓ) → (Un,Γ). Note that unlike the convention
in [17], in our current setting the free semigroup FSℓ generates Fℓ as
a group, but the subsemigroup Un may not generate Γ (as it will be
clear in the sequel, this change in the convention does not change the
tools and the analysis).
We fix a Cayley graph X of Γ with respect to some finite generating

set. Since Γ is a hyperbolic group, X is a δ-hyperbolic graph. For
each index n, both the free semigroup FSℓ, and the free group Fℓ that
contains it, act isometrically on the Cayley graph X of Γ via the pair
homomorphism gn.
Since the sequence e(Un, Sn) is strictly decreasing, and in particular

is not constant, the sequence:

{min
γ∈Γ

max
i

|γgn(s
±1
i )γ−1|}

is not bounded. Hence, we may pass to a subsequence for which the
sequence converges to ∞. For each index n, we further replace the pair
homomorphism gn, by the pair homomorphism: γngnγ

−1
n , where:

max
i

|γngn(s
±1
i )γ−1

n | = min
γ∈Γ

max
i

|γgn(s
±1
i )γ−1|

We still denote the conjugated epimorphism {gn} (note that conjugat-
ing a pair epimorphism does not change the corresponding growth rate
of the subsemigroup Un = gn(FSℓ)).
For each n, we set:

ρn = max
i

|gn(s
±1
i )|

and denote by (X, dn) the Cayley graph X with the metric obtained
from the metric on X after multiplying it by 1

ρn
. From the sequence

of actions of the pair: (FSℓ, Fℓ) on the metric spaces (X, dn) we ex-
tract a subsequence that converges into a non-trivial action of the pair
(FSℓ, Fℓ) on a real tree Y . The action of Fℓ is not faithful, so we di-
vide the pair (FSℓ, Fℓ) by the kernel of the action, i.e., by the normal
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subgroup of Fℓ that acts trivially on Y . We get a faithful action of
a limit pair (U, L) on the real tree Y , where the limit pair (U, L) is a
limit pair over the hyperbolic group Γ. In particular, the limit group
L is a limit group over Γ, and the subsemigroup U is the image of the
free semigroup FSℓ in the limit group L.
Let: η : (FSℓ, Fℓ) → (U, L) be the associated quotient map of pairs.

Note that U = η(FSℓ). By Theorem 6.5 in [15] there exists some
index n0, such that for n > n0, there exists an epimorphism (of pairs):
hn : (U, L) → (Un,Γ) that satisfies: gn = hn ◦ η. By passing to a
subsequence, we may assume that all the homomorphisms of pairs {gn}
factor through the epimorphism of pairs: η : (FSℓ, Fℓ) → (U, L).
Since gn = hn ◦ η, for every index n, e(Un, gn(S)) ≤ e(U, η(S)).

Following our strategy in the group case we prove:

Proposition 6.2. limn→∞ e(Un, gn(S)) = e(U, η(S)).

Proof. As we did in the group case, we start by constructing elements
in the limit subsemigroup U with some small cancellation properties.

Lemma 6.3. There exist non-trivial elements z1, z2, z3 ∈ U , with the
following properties:

(1) for every two elements w1, w2 ∈ L, there exists an index i,
i = 1, 2, 3, such that:

dY (y0, w1zi(y0)) ≥ dY (y0, w1(y0)) +
19

20
dY (y0, zi(y0))

and:

dY (y0, ziw2(y0)) ≥ dY (y0, w2(y0)) +
19

20
dY (y0, zi(y0))

that implies:

dY (y0, w1ziw2(y0)) ≥ dY (y0, w1(y0))+
9

10
dY (y0, zi(y0))+dY (y0, w2(y0)).

(2) dY (y0, zi(y0)) > 20, for i = 1, 2, 3.
(3) for every w ∈ L, and every two indices: i, j, 1 ≤ i, j ≤ 3, if

the segment [y0, zi(y0)] intersects the segment [w(y0), wzj(y0)]
non-trivially, then the length of the intersection is bounded by:
1
20
dY (y0, zi(y0)) (if i = j we assume in addition that w 6= 1).

Proof. The semigroup U , is a subsemigroup of a limit group L over
a hyperbolic group Γ, and L is not elementary. Furthermore, by con-
struction the limit group L acts minimally and cocompactly on the limit
tree Y , Y has infinitely many ends, and U generates L as a group.
For any u ∈ U , let Fix(u) ⊂ Y be the fixed subset of u in Y . If for

two generators of U , η(s1), η(s2) ∈ η(S), the intersection Fix(η(s1)) ∩
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Fix(η(s2)) is trivial, and both η(s1) and η(s2) act elliptically on Y ,
then η(s1)η(s2) acts hyperbolically on Y .
If ∩s∈SFix(η(s)) is non-trivial, the semigroup U has a fixed point in

Y , and since U generates L, L has a fixed point in Y , a contradiction
to the minimality of the action of L on Y .
The fixed set of an element in U is a convex subset of Y , so by

Helly’s type theorem for convex subset of trees, if ∩s∈SFix(η(s)) is
empty, there must exist s1, s2 ∈ S for which Fix(η(s1))∩Fix(η(s2)) is
empty. Hence, U contains an element that acts hyperbolically on Y .
Let YU ⊂ Y be the convex hull of the images of the base point y0 ∈ Y

under the action of the semigroup U . Since U contains a hyperbolic
element, YU contains an infinite ray that starts at y0. U generates L and
L is not elementary, hence, YU must have infinitely many ends. This
implies that there exist elements u1, u2 ∈ U that act hyperbolically on
Y , and < u1, u2 > is a free subgroup in L.
Recall that µ(u) = dY (y0, u(y0)) and tr(u) is the displacement of

u along its axis in Y , At this point we can construct the elements
z1, z2, z3:

zi = u1u
α1+i
2 u1u

α2+i
2 . . . u1u

α50+i
2

where i = 1, 2, 3, and the positive integers αk, k = 1, . . . , 50 satisfy:

(i) α1tr(u2) ≥ max(20(µ(u1) + µ(u2)), 1)
(ii) α1 ≥ 200, αk = α1 + 4(k − 1), k = 2, . . . , 50.

The elements zi, i = 1, 2, 3, satisfy part (2) of the lemma by con-
struction. The small cancellation requirement in part (3) of the lemma
follows from the structure of the elements zi. Given w1, w2 ∈ L, note
that if:

dY (y0, w1z1(y0)) < dY (y0, w1(y0)) +
19

20
dY (y0, z1(y0))

then for i = 2, 3:

dY (y0, w1zi(y0)) ≥ dY (y0, w1(y0)) +
19

20
dY (y0, zi(y0))

and if:

dY (y0, z1w2(y0)) < dY (y0, w2(y0)) +
19

20
dY (y0, z1(y0))

then for i = 2, 3:

dY (y0, ziw2(y0)) ≥ dY (y0, w2(y0)) +
19

20
dY (y0, zi(y0)).

Hence, a simple pigeonhole argument implies that at least for one of
the elements zi, i = 1, 2, 3, the inequalities in part (1) of the lemma
must hold.
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�

Let b be the maximal length of the words zi, i = 1, 2, 3, that were
constructed in lemma 6.3, as elements in the limit subsemigroup U

with respect to the generating set η(S). Let Bm(U, η(S)) be the ball of
radius m in the Cayley graph of the semigroup U with respect to the
generating set η(S).
Let w1, w2 be two non-trivial elements in Bm(U, η(S)). Because of

property (1) in lemma 6.3, there exists i, 1 ≤ i ≤ 3, for which:

dY (y0, w1ziw2(y0)) ≥ dY (y0, w1(y0)) +
9

10
dY (y0, zi(y0)) + dY (y0, w2(y0))

We continue iteratively. Let q be an arbitrary positive integer, and
let w1, . . . , wq be a collection of non-trivial elements from Bm(U, η(S)).
For each t, 1 ≤ t ≤ q−1, we choose an element z(t) from the collection
z1, z2, z3, that was constructed in lemma 6.3, such that z(t) satisfies:

dY (y0, w1z(1)w2z(2) . . . wtz(t)wt+1(y0)) ≥

≥ dY (y0, w1z(1)w2z(2) . . . wt(y0))+
9

10
dY (y0, z(t)(y0))+dY (y0, wt+1(y0))

By the Gromov-Hausdorff convergence, for large enough n, hn maps in
a bi-Lipschitz way all the elements of the form:

w1z(1)w2z(2) . . . wq−1z(q − 1)wq

into the fixed Cayley graph X of Γ.
As in the proofs of theorems 2.2 and 5.1, we know that all the ele-

ments that we constructed are mapped to non-trivial elements by the
epimorphisms {hn}, but the maps hn may be not injective on these
collections of elements. Hence, we need to exclude forbidden elements.

Definition 6.4. We say that a non-trivial element w1 ∈ Bm(U, η(S)) is
forbidden if there exists an element zi (i = 1, 2, 3) that was constructed
in lemma 6.3, and an element w2 ∈ Bm(U, η(S)), such that:

(i)

dY (y0, w1zi(y0)) ≥ dY (y0, w1(y0)) +
19

20
dY (y0, zi(y0))

(ii) dY (w2(y0), w1zi(y0)] ≤
3
20
dY (y0, zi(y0)).

As in definition 2.5, An element w1z(1) . . . wq−1z(q − 1)wq from the
set that we constructed is called feasible of type q, if all the elements
wt, 1 ≤ t ≤ q, are not forbidden.

Lemma 6.5. Given m, for all large enough n and every fixed q, the
semigroup homomorphisms hn map the collections of feasible elements
of type q to distinct elements in Un.
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Proof. Identical to the proof of lemma 2.6.
�

As in the group case, the injectivity of hn on the set of feasible
elements of type q, enables us to estimate from below the number of
elements in balls in the Cayley graph of the semigroups Un, for large
n.

Lemma 6.6. The following are lower bounds on the numbers of non-
forbidden and feasible elements:

(1) Given m, the number of non-forbidden elements (in the ball of
radius m in U , Bm(U, η(S))) is at least 13

14
|Bm(U, η(S))|.

(2) Given m, we set βm = |Bm(U, η(S)|. For every fixed m, and
every positive q, the number of feasible elements of type q is at
least: (13

14
βm)

q.

Proof. As in the proof of lemma 2.7, part (2) follows from part (1)
since given m and q, feasible elements are built from all the possible q

concatenations of non-forbidden elements in a ball of radius m in U .
To prove (1) let w ∈ Bm(U, η(S)) be a forbidden element. By defi-

nition 6.4 this means that there exists an element zi, i = 1, 2, 3, with
the following properties:

(1) there exists a subinterval Jw ⊂ Y , such that: [y0, w1zi(y0)] =
[y0, w1(y0)] ∪ Jw and this union is a disjoint union.

(2) Jw ⊂ [w1(y0), w1zi(y0)]. Hence, by part (3) of lemma 6.3, for
distinct forbidden elements w1, w2 ∈ Bm(U, η(S)):

length(Jw1
∩ Jw2

) ≤
1

19
min(length(Jw1

), length(Jw2
)).

(3) let Tm be the convex hull of all the points: {u(y0) | u ∈ Bm(U, η(S))}
in the limit tree Y . By part (ii) of definition 6.4:

length(Jw ∩ Tm) ≥
16

19
length(Jw).

Therefore, with each forbidden w ∈ Bm(U, η(S)), it is possible to
associate a subinterval Iw ⊂ Jw of length: 15

19
length(Jw), that satisfies

similar properties to the ones that are listed in the proof of lemma 2.7:

(i) the subinterval Iw starts after the first 1
19

of the length of the

interval Jw, and ends at 16
19

of the length of that interval.
(ii) Iw ⊂ Tm.
(iii) for distinct forbidden elements w1, w2, the intersection: Iw1

∩Iw2

is empty or degenerate.
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In part (2) of lemma 6.3 we assumed that the length of an intervals
[y0, zi(y0)], i = 1, 2, 3, is at least 20. Hence, the length of a subin-
terval Iw that is associated with a forbidden element w is at least
14. Since the interiors of the intervals Iw for different forbidden ele-
ments w are disjoint, the total length that the collection of subinter-
vals, Iw, for all the forbidden elements w ∈ Bm(U, η(S)), cover in the
tree Tm ⊂ Y , is at least 14 times the number of forbidden elements
in Bm(U, η(S)). Since the total length of the edges in Tm is bounded
by |Bm(U, η(S))|, the number of forbidden elements in Bm(U, η(S))
is bounded by: 1

14
|Bm(U, η(S)|, which gives the lower bound on the

number of non-forbidden elements in part (1) of the lemma.
�

Given lemma 6.6, the proof of proposition 6.2 continues exactly as
the proofs of propositions 2.3 and 5.2.

�

Proposition 6.2 proves that there is no strictly decreasing sequence
of rates of growth, {e(Un, Sn)}, hence, concludes the proof that the set
of growth rates of all the f.g. subsemigroups of a hyperbolic group Γ,
with respect to all their finite set of generators, is well-ordered (theorem
6.1).

�

As in the case of subgroups of a given hyperbolic group (theorem
5.1), theorem 6.1 has several immediate corollaries.

Corollary 6.7. Let Γ be a hyperbolic group. The rates of growth of all
the the non-elementary f.g. subsemigroups of limit groups over Γ, with
respect to all their finite sets of generators is well ordered.

Proof. Identical to the proof of corollary 5.7.
�

By theorem 6.1, the set of rates of growth of all the f.g. non-elementary
subsemigroups of a hyperbolic group Γ with respect to all their finite
generating sets, ∆(Γ), is well-ordered. Hence, we can associate with
this set an ordinal that we denote, δGR(Γ). Furthermore, by corollary
6.7, the rates of growth of all the non-elementary f.g. subsemigroups of
all the limit groups over a hyperbolic group Γ, with respect to all their
finite sets of generators, is well ordered. Hence, we can associate with
this set an ordinal, that depends only on the group Γ, that we denote
τGR(Γ).
We conjecture that for every non-elementary hyperbolic group Γ:

θGR(Γ) = τGR(Γ) = ωω, but as in sections 4 and 5, we are able to
prove that only in the case of subsemigroups of limit groups (over a
free group).
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Corollary 6.8. For every non-abelian limit group L, δGR(L) = τGR(L) =
ωω.

Proof. δGR(L) ≤ τGR(L) ≤ ωω by the same argument that was used
to prove the upper bound on the growth ordinal (of subgroups) of a
limit group in the proof of theorem 4.2, i.e., by the existence of a Krull
dimension for limit groups.
By theorem 4.2 ωω = ζGR(L). Hence: ωω = ζGR(L) ≤ δGR(L) ≤

τGR(L), since the set of rates of growth of the limit group L with
respect to all its finite generating sets (as a group) is contained in the
set of rates of growth of all the subsemigroups of L with respect to all
their finite generating sets. Therefore: δGR(L) = τGR(L) = ωω.

�

As in corollary 5.10, for all hyperbolic groups, we can prove a general
inequality.

Corollary 6.9. Let Γ be a non-elementary hyperbolic group. Then:
δGR(L) = τGR(L) ≥ ωω.
Moreover, if limit groups over Γ have a Krull dimension, then:

δGR(Γ) = τGR(Γ) = ωω.

Proof. ωω ≤ θGR(Γ) ≤ λGR(Γ) by corollary 5.10, and: θGR(Γ) ≤
δGR(Γ) ≤ τGR(Γ) by the inclusion of the corresponding sets. This
proves the lower bound.
The set of rates of growth of all the non-elementary subsemigroups

of limit groups over Γ, with respect to all their finite generating sets, is
the closure of the set of rates of growth of all the non-elementary sub-
semigroups of Γ with respect to all their finite generating sets. Since
both sets are well-ordered, and the first has an unbounded set of accu-
mulation points, δGR(Γ) = τGR(Γ).
If limit groups over hyperbolic groups have a Krull dimension then

the argument that proves the upper bound on the growth ordinal of
limit groups, ζGR(L) ≤ ωω, that was used in the proof of theorem 4.2,
implies an upper bound: δGR(Γ) = τGR(Γ) ≤ ωω, and the equality
between the ordinals follows.

�

7. Some open problems

The growth ordinals of a hyperbolic group raise quite a few problems
on rates of growth of particular hyperbolic groups, and on the set of
rates of growth of other classes of groups.
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Problem 7.1. Are the set of rates of growth well-ordered, or at least
is there a minimum possible growth rate, for the following classes of
groups:

• exponentially growing linear groups.
• lattices in (real and complex) Lie groups.
• acylindrically hyperbolic groups
• the mapping class groups MCG(Σ).

In his Bourbaki seminar on the work of Jorgensen and Thurston [10],
Gromov observed that covers of the same degree of a fixed hyperbolic
manifold have the same volume, hence, there can not be a uniform
bound on the number of hyperbolic manifolds with the same volume.
He further asked if there is such a uniform bound if in addition we
bound the volumes of the hyperbolic manifolds.

Problem 7.2. Let Γ be a non-elementary hyperbolic group. In theorem
3.1 we proved that only finitely many equivalence classes of generating
sets (under the action of the automorphism group), can give the same
rates of growth of Γ. Given r0 > 1, is there a uniform bound b0,
such that for every r < r0 there are at most b0 equivalence classes of
generating sets with growth rate r? is there such a uniform bound on
the number of isomorphism classes of generating sets of subgroups of
the hyperbolic group Γ that have the same rate of growth r, r < r0?

Problem 7.3. We proved the finiteness of the number of isomorphism
classes of finite generating sets of subgroups of a hyperbolic group with
the same rate of growth only for subgroups (Theorem 5.3). We believe
that the same finiteness should hold for subsemigroup generators of all
the quasi-convex subgroups of a given hyperbolic group (since these
have the Markov property). Does finiteness hold in the class of finite
sets of generators of general subsemigroups of a hyperbolic group? for
subsemigroups of the free semigroup?

Problem 7.4. Theorem 4.2 proves that the growth ordinal of a limit
group (over a free group), and in particular, of a free or a surface
group, is ωω. By theorem 4.2, given r > 1, ζrGR(L) is a polynomial in
ω. What can be said on the degree of these polynomials (as a function
of r) for a free group or a surface group?

Problem 7.5. By theorem 3.1 the set of growth rates of a free group is
well ordered. By theorem 3.1 there are only finitely many generating
sets (up to the action of the automorphism group) with the same rate.
The minimal growth rate of F2 is 3. Denote by dn the minimal growth
of F2 with a generating set of cardinality n. By [2], limn dn = ∞.
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What can be said about dn? About the generating sets that achieve
the minimum for each n?

The following was already indicated in sections 4-6:

Problem 7.6. Is it true that: ζGR(Γ) = θGR(Γ) = δGR(Γ) = ωω for every
non-elementary hyperbolic group Γ?

We conjecture that the answer to question 6 is positive. Hence,
ζGR(Γ) does not carry any information about Γ, but the set of ordinals,
ζrGR(Γ), for every r > 1, does.

Problem 7.7. Given the set of ordinals, ζrGR(Γ), for all reals r > 1, what
can be said about the structure of Γ? suppose that two hyperbolic
groups, Γ1,Γ2, satisfy: ζrGR(Γ1) ≥ ζrGR(Γ2). What can be said about
the pair: Γ1,Γ2?

Hyperbolic 3-manifolds with small volumes have been studied exten-
sively. One can ask similar questions regarding the rates of growth of
their fundamental groups.

Problem 7.8. Is there a hyperbolic 3-manifold M , with a generating
set SM for its fundamental group π1(M), such that e(π1(M), SM) is
minimal among all rates of growth of fundamental groups of (closed)
hyperbolic 3-manifolds? What can be said about this manifold and the
minimizing generating set of its fundamental group?
Is the set of rates of growth of all the fundamental groups of (closed)

hyperbolic 3-manifolds, with respect to all their finite generating sets,
well ordered? If it is well ordered, is its ordinal ωω?
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