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DIOPHANTINE GEOMETRY OVER GROUPS VI: THE
ELEMENTARY THEORY OF A FREE GROUP

Z. SELA

Abstract. This paper is the sixth in a sequence on the structure of sets
of solutions to systems of equations in a free group, projections of such
sets, and the structure of elementary sets defined over a free group. In the
sixth paper we use the quantifier elimination procedure presented in the
two parts of the fifth paper in the sequence, to answer some of A. Tarski’s
problems on the elementary theory of a free group, and to classify finitely
generated (f.g.) groups that are elementarily equivalent to a non-abelian
f.g. free group.

In the first 5 papers in the sequence on Diophantine geometry over
groups we studied sets of solutions to systems of equations in a free group,
and developed basic techniques and objects required for the analysis of
sentences and elementary sets defined over a free group. The techniques
we developed enabled us to present an iterative procedure that analyzes
EAE sets defined over a free group (i.e. sets defined using 3 quantifiers),
and shows that every such set is in the Boolean algebra of AE sets defined
over a free group [Se6, 1.41].

In this paper we apply the tools and techniques presented in the pre-
vious 5 papers in the sequence to answer some of A. Tarski’s problems on
the elementary theory of a free group, and generalizations of these prob-
lems. We start by showing that every elementary set defined over a f.g.
free group is in the Boolean algebra of AE sets, which is a direct corollary
of our analysis of EAFE sets presented in [Se5] and [Se6]. We continue by
showing that for coefficient-free elementary sets, the quantifier elimination
procedure can be done uniformly for all f.g. non-abelian free groups (The-
orem 2). We then use this “uniform” quantifier elimination procedure, to
prove the equivalence of the elementary theories of all non-abelian f.g. free
groups (Theorem 3). A similar uniform quantifier elimination procedure
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can be used to show that if 2 < k < £, the standard embedding of the free
group Fj, into the free group Fy is an elementary embedding (Theorem 4).

We further analyze the entire collection of f.g. groups that are elemen-
tarily equivalent to a f.g. non-abelian free group. We prove that a f.g. group
is elementarily equivalent to a non-abelian f.g. free group if and only if it
is a non-elementary hyperbolic w-residually free tower (such towers were
presented in section 6 of [Sel]). At the end of the paper, we add an ap-
pendix that briefly summarizes the main constructions and results that are
obtained in the previous papers in this sequence, constructions and results
that are the key for proving some of the main results of this paper.

Theorems 3 and 4 of this paper, on the elementary equivalence of non-
abelian free groups, and the elementary properties of the standard embed-
dings of f.g. free groups, answer questions of Tarski. In the next papers in
this sequence, we generalize our results on the elementary theory of a free
group to the elementary theory of an arbitrary (torsion-free) hyperbolic
group, and then prove that the elementary theory of a (torsion-free) hy-
perbolic group, in particular a free group, is stable. Finally, we would like
to thank M. Bestvina, F. Paulin, E. Rips, and the referees of this paper,
whose comments helped us in improving its presentation.

In the two parts of the fifth paper of this sequence ([Se5] and [Se6]),
we proved that the Boolean algebra of AE sets defined over a free group
is invariant under projections, or equivalently, we proved that an FAFE set
is in the Boolean algebra of AE sets [Se6, 1.41]. This clearly implies that
every elementary set defined over a free group is in the Boolean algebra of
AFE sets.

Theorem 1. Let Fy, = (ai1,...,ar) be a (non-abelian) free group, and let
Q(p) be a definable set over Fj. Then Q(p) is in the Boolean algebra of
AEFE sets over Fy,.

Proof. If Q(p) is defined using not more than 3 quantifiers, then the theorem
follows from Theorem 1.41 of [Se6]. Otherwise, the theorem follows by a
standard induction on the number of quantifiers that defines the elementary

set Q(p).- o

Theorem 1 proves that every definable set over a free group is in the
Boolean algebra of AE sets. To show the equivalence of the elementary
theories of free groups of various ranks, we need to show that for coefficient
free predicates, our quantifier elimination procedure does not depend on
the rank of the coefficient group.
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Theorem 2. Let Q(p) be a set defined by a coefficient-free predicate over
a group. Then there exists a set L(p) defined by a coefficient-free predicate
which is in the Boolean algebra of AE predicates, so that for every free
group Fy, k > 2, the sets Q(p) and L(p) are equivalent.

Proof. If a system of equations over a non-abelian free group is coefficient
free, then by construction, its associated (canonical) Makanin—Razborov di-
agram is coefficient-free (see section 5 in [Sel]), and the diagram does not
depend on the rank of the non-abelian free group. Similarly, the (multi-)
graded Makanin—Razborov diagram associated with a coefficient-free para-
metric system of equations defined over a non-abelian free group, is coeffi-
cient free and it does not depend on the rank of the non-abelian free group
(see section 10 in [Sel]). Furthermore, the bounds on the numbers of rigid
solutions of the rigid limit groups in that diagram, and the bounds on the
numbers of strictly solid families of solutions of the solid limit groups in the
diagram, do not depend on the rank of the free group as well (see section
2 in [Se3]).

Let V be the variety associated with some coefficient-free system of
equations defined over a non-abelian free group, and let

Vy € V 3z (Si(z,y) = 1A (z,y) # 1) V---V (S, (z,y) = 1AV, (z,y) #1)

be a coefficient-free sentence. Since the Makanin-Razborov diagram associ-
ated with a coefficient-free system of equations defined over a non-abelian
free group, does not depend on the rank of the free group, the formal
Makanin-Razborov diagram associated with a coefficient-free sentence as
above, is coefficient free and it does not depend on the rank of the free
group (section 2 in [Se2]). Similarly, the graded formal Makanin-Razborov
diagram associated with a coefficient-free parametric sentence defined over
a non-abelian free group, is coefficient free and does not depend on the rank
of the free group (section 3 in [Se2]).

Let Res(t,v) be a (graded, multi-graded) coefficient-free well-separated
resolution defined over some non-abelian free group. Then, by construction,
the induced resolution, IndRes({v), Res(t,v)), is coefficient free and it does
not depend on the rank of the free group (section 3 in [Se4]). If Res(t,v) is
a (graded, multi-graded) coefficient-free well-separated resolution defined
over some non-abelian free group, then the core resolution constructed by
the procedure presented in section 4 of [Seb], is coefficient free and does
not depend on the rank of the free group.

Suppose that EAE(p) is an EAFE set that is defined by a coefficient-free
predicate over a non-abelian free group. The two iterative procedures used
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for the analysis of the set EAE(p) in [Se5] and [Se6], the procedure for the
construction of the tree of stratified sets, and the sieve procedure, are built
from graded and multi-graded Makanin—Razborov resolutions, core and in-
duced resolutions, and graded formal Makanin—-Razborov diagrams. Hence,
when these two iterative procedures are applied to the coefficient-free set
EAE(p), all the constructions made along these two iterative procedures
are coefficient free, and they do not depend on the rank of the free group
over which the set EAE(p) is defined. Therefore, there exists a set L(p)
that is defined over a non-abelian free group by a coefficient-free predi-
cate which is in the Boolean algebra of AFE sets, and for every non-abelian
free group @Q(p) = L(p). The standard finite induction used in the proof
of Theorem 1, finally implies the claim of the theorem for an arbitrary
coefficient-free set defined over a non-abelian free group. a]

Theorem 2 proves that in handling coefficient-free predicates, our quan-
tifier elimination procedure does not depend on the rank of the coefficient
(free) group. This clearly implies an affirmative answer to Tarski’s problem
on the equivalence of the elementary theories of (f.g.) free groups.

Theorem 3. The elementary theories of non-abelian f.g. free groups are
equivalent.

Proof. By Theorem 2, a coeflicient-free elementary set defined over a non-
abelian free group, is equivalent to a coefficient-free set that is in the
Boolean algebra of AE sets, and the equivalence does not depend on the
rank of the free group. Hence, every coefficient-free sentence defined over a
non-abelian free group can be reduced, in a way that is independent of the
rank of the free group, to a coefficient-free sentence that is in the Boolean
algebra of AFE sentences. Therefore, to prove the equivalence of the ele-
mentary theories of non-abelian f.g. free groups, it is enough to prove that
a coefficient-free AFE sentence defined over a non-abelian free group is true
if and only if it is a true sentence over any other non-abelian f.g. free group.

The equivalence of the AFE theories of non-abelian free groups was pre-
viously known [S], [H], but we chose to give an alternative argument using
our machinery. Given a coefficient-free AE sentence defined over a non-
abelian free group, we apply the procedure used for the construction of
the tree of stratified sets, presented in section 2 of [Se5], to validate it.
Note that unlike the general procedure for the construction of the tree of
stratified sets, when this procedure is applied to validate an AFE sentence,
it is applied without using parameters. Since the sentence is coefficient
free, all the constructions made along the procedure are coefficient free and
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independent of the rank of the free group. Hence, if a coefficient-free sen-
tence is a true sentence over a given f.g. non-abelian free group it is a true
sentence over every non-abelian f.g. free group. o

Arguments similar to the ones used to prove Theorems 2 and 3, enable
us to answer affirmatively another question of Tarski’s.

Theorem 4. Let Fy, F; be free groups for 2 < k < {. Then the standard
embedding Fy, — Fy is an elementary embedding.

Proof. Let Fy = {(ai,...,ar), and suppose that ¥(y,a) is a system of
equations over Fj. Instead of studying all the solutions to the system 3
in the coefficient group Fj, we study all its solutions in all free groups
of the form Fj % F, where F is a (possibly trivial) f.g. free group. Our
construction of the Makanin—Razborov diagram applies to study the entire
collection of solutions of the system ¥ in all free groups of the form Fj x F',
hence, we are able to associate with this collection of solutions, a canonical
Makanin-Razborov diagram.

The standard embedding Fj, — F} naturally enables us to interpret the
system of equations X as a system of equations over the free group Fj.
Again, we study the entire set of solutions to the system 3 in all free
groups of the form Fy*F', and associate with this set of solutions a canonical
Makanin-Razborov diagram. Since the system of equations ¥ involves only
the (image of the) generators ai,...,ar of Fy, the (canonical) Makanin—
Razborov diagrams associated with the system X over Fy is obtained from
the (canonical) Makanin—-Razborov diagram of ¥ over Fj, by replacing
each (restricted) limit group L in the diagram associated with Fj, with the
limit group L * Fy_j (i.e. only the factor containing the coefficient group
is changed in all the restricted limit groups that appear in the diagrams),
and in particular the structure of the two diagrams is essentially the same.

Using the same type of construction, if X(y, p, a) is a parametric system
of equations over Fj, then using the standard embedding F — Fy, ¥ can
be viewed as a parametric system over the free group Fy, and the graded
Makanin-Razborov diagram of ¥ over Fy is obtained from the one associ-
ated with Fj, by replacing each of the graded limit groups L with L x Fj_.
Clearly, the same relation holds for multi-graded Makanin—Razborov dia-
grams associated with Fj and Fj

Let V be the variety associated with some system of equations defined
over Fj, and let

vy eV 3z (Zi(z,y,a) = 1A Ty (z,y,a) #1) V...
V (Zr(z,y,0) = LA U (2,y,a) # 1)
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be a sentence defined over Fj. Using the standard embedding Fj — Fp,
both the variety V and the sentence can be interpreted as a variety and a
sentence defined over the free group Fy. Since the Makanin—Razborov dia-
gram associated with the variety V' over Fy is obtained from the Makanin—
Razborov diagram associated with V' over Fj by replacing each limit group
L with L % Fy_j, the formal Makanin—Razborov diagram associated with
the above sentence over Fy is obtained from the formal Makanin—Razborov
diagram over F}, by replacing each formal limit group F'L with F.Lx Fy .
Clearly, the same holds for the graded formal Makanin—Razborov diagram
associated with a predicate defined over Fj.

Let Res(t,v,a) be a (graded, multi-graded) well-separated resolution
defined over Fj. Using the standard embedding F}, — Fj, the resolution
Res(t,v,a) can be modified to a well-separated resolution Res‘(t,v,a) by
replacing each limit group L in Res(t,v,a) by L+ Fy_i. Then, by construc-
tion, the induced resolution, IndRes((v, a), Res(t,v,a)), is obtained from
the induced resolution IndRes((v,a), Res(t,v,a)), by replacing each limit
group L with L % Fy_j, and the same holds for the two core resolutions,
Core((v,a), Rest(t,v,a)) and Core((v,a), Res(t,v,a)), constructed by the
procedure presented in section 4 of [Se5].

Suppose that EAE(p) is an EAF set defined over Fy. By the standard
embedding Fj, — Fy, the predicate defining the set EAFE(p) can be inter-
preted as a predicate defined over Fj;. The two iterative procedures used
for the analysis of the set FAFE(p) in [Se5] and [Se6], the procedure for
the construction of the tree of stratified sets, and the sieve procedure, are
built from graded and multi-graded Makanin-Razborov resolutions, core
and induced resolutions, and graded formal Makanin—Razborov diagrams.
Hence, when these two iterative procedures are applied to the set FAE(p)
over F} and F}, all the constructions made along these two iterative proce-
dures are essentially similar. Hence, the set EAFE(p) defined over Fj, can
be defined using a predicate in the Boolean algebra of AFE sets over F}, this
predicate can be naturally interpreted as a predicate defined over Fy, and
when interpreted over Fy it defines the set EAFE(p) over Fj.

Using the standard embedding Fj, — Fjy, every sentence defined over
F}, can be naturally interpreted as a sentence defined over Fy. Since our
reduction procedures over Fj, and Fj are similar, a sentence defined over F},
is equivalent to a sentence in the Boolean algebra of AE sentences defined
over Fj, and the reduction is valid when the two sentences are interpreted
over Fy as well.
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The equivalence of an AFE sentence defined over Fj to the same AF
sentence interpreted as a sentence defined over Fy was previously known
[S], [H]. It also follows by applying the procedure used for the construction
of the tree of stratified sets to validate it over Fj and Fj. O

Note that although Theorems 1-4 are stated for f.g. free groups, the
arguments that prove them do not really use the f.g. assumption, hence,
the conclusions of these theorems remain valid for arbitrary non-abelian
free groups and their non-abelian free factors.

Tarski’s problems deal with the equivalence of the elementary theories
of free groups of different ranks. Our next goal is to modify the tools used
for quantifier elimination for predicates defined over a free group, in order
to get a complete classification of all the f.g. groups that are elementarily
equivalent to a (non-abelian) free group. We start by proving a necessary
condition for a f.g. group to be elementarily equivalent to a non-abelian
free group, and then we show that the necessary condition is also sufficient.

Non-abelian limit groups are known to be the f.g. groups that are uni-
versally equivalent to a non-abelian free group. A group that contains a
maximal abelian subgroup that is isomorphic to a free non-cyclic abelian
group, cannot be elementarily equivalent to a free group. This is true since
one can count the number of classes of commuting elements mod 2, there
are two such classes for an infinite cyclic group and at least four for ev-
ery non-cyclic free abelian group. Hence, a f.g. group that is elementarily
equivalent to a non-abelian free group, must be a limit group that contains
no non-cyclic free abelian subgroups, therefore, it must be a non-elementary
hyperbolic limit group. However, not every non-elementary hyperbolic limit
group is elementarily equivalent to a free group.

Suppose that G = F *(,y F' = (b1, b2) * ) (b3,b4) is a double of a free
group of rank 2, suppose that w has no roots in F, and suppose that
the given amalgamated product is the abelian JSJ decomposition of the
group G. G is a limit group since it admits a strict Makanin—Razborov
resolution (see [Sel, Theorem 5.12]), and it is hyperbolic since it contains
no non-cyclic free abelian subgroups.

Cram 5. The group G = F %, F is not elementarily equivalent to the
free group F'.

Proof. We look at a system of equations ¥(yi,...,y4) = 1 that corre-
sponds to the given presentation of G, i.e. a (coefficient-free) system of equa-
tions with four variables y1,...,ys and the equation w(y1,y2) = w(ys, ya).
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Clearly, there is a single limit group associated with this system, which is
the limit group G.

We first examine the system of equations ¥ as a system of equations
over a f.g. non-abelian free group. Since by our assumptions, the limit
group G is not isomorphic to a free product of free groups and surface
groups, the (canonical) Makanin-Razborov diagram of the limit group G
is non-trivial, which implies that there exists a (canonical) finite collection
of limit groups G4, ..., Gy that are all proper quotients of GG, so that given
an arbitrary solution of the system ¥ in a non-abelian free group, we can
act on the given solution with the modular group associated with G' (the
modular group of G is cyclic by our assumptions), so that the obtained
solution factors through at least one of the limit groups G, ..., Gy.

We then view the system of equations X as a system of equations over
the limit group G. Let y¢,...,y} be the tautological solution of the system
¥ over the limit group G, i.e. the solution obtained by substituting y! = b;
for i = 1,...,4. If we act by an arbitrary element of the modular group
of G on the tautological solution y¢, ..., y%, the subgroup generated by the
obtained solution is still isomorphic to G, hence, the obtained solution does
not factor through any of the subgroups G, ..., Gy, which are all proper
quotients of G.

Since the action of the modular group of G on a given solution of X,
gives rise to a conjugation of the specializations of y3 and y4 by an element
that commutes with the specialization of w, the fact that every solution
of ¥, viewed as a system of equations over a non-abelian free group, can
be modified by an action of the modular group of G, to a solution that
factors through at least one of the groups G, ..., Gy, can be translated to
a coefficient-free AF sentence, which is a true sentence over a non-abelian
free group. However, that coefficient-free AFE sentence is not a true sentence
over the limit group G. o

The argument used to prove Claim 5, demonstrates that hyperbolic limit
groups with no QH vertex groups in their canonical JSJ decomposition are
not elementarily equivalent to a non-abelian free group. In section 6 of
[Sel] we presented w-residually free towers, as an example for limit groups.

A hyperbolic w-residually free tower is constructed in finitely many
steps. In its first level there is a free product of (possibly none) (closed)
surface groups and a (possibly trivial) free group, where each surface in this
free product is a hyperbolic surface (i.e. with negative Euler characteristic),
except the non-orientable surface of genus 2. In each additional level we
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add a punctured surface that is amalgamated to the group associated with
the previous levels along its boundary components, and in addition there
exists a retraction of the obtained group onto the group associated with
the previous levels. The punctured surfaces are supposed to be of Euler
characteristic bounded above by -2, or a punctured torus.

The argument used to prove Claim 5 can be generalized to show that
if a hyperbolic limit group is elementarily equivalent to a non-abelian free
group, then it must be a hyperbolic w-residually free tower.

PROPOSITION 6. Let G be a f.g. group that is elementarily equivalent to a
non-abelian free group. Then G is a non-elementary hyperbolic w-residually
free tower.

Proof. Let G be a f.g. group that is elementarily equivalent to a f.g. non-
abelian free group. Since G is universally equivalent to a non-abelian free
group it must be a limit group, and since it is AE equivalent to a non-
abelian free group, it cannot contain a non-cyclic free abelian subgroup.
Hence, G must be a non-elementary hyperbolic limit group.

If G is isomorphic to the free product of several surface groups and a free
group, G is a hyperbolic w-residually free tower, hence, we may assume that
in the canonical (Grushko’s) free decomposition of G, G = By*---x By, Fy,,
at least one of the factors B; is not isomorphic to a surface group.

We analyze the structure of the various factors B; that appear in the free
decomposition of G, and are not isomorphic to a surface group, in parallel.
Hence, we continue with a single such factor, that we denote B. Since G is a
hyperbolic limit group, the factor B is a hyperbolic limit group as well. By
section 2 of [Sel], since B is a freely-indecomposable hyperbolic limit group
that is not isomorphic to a surface group, it admits a non-trivial abelian JSJ
decomposition, and since B is hyperbolic, its abelian JSJ decomposition is
a cyclic JSJ decomposition with no non-cyclic abelian vertex groups.

Let A be the cyclic JSJ decomposition of the factor B. If A contains no
QH vertex groups, then the argument used to prove Claim 5, implies that
the group G is not elementarily equivalent to a non-abelian free group.
Hence, A contains QH vertex groups. At this point we show that there
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exists a retract in B which is the free product of the fundamental groups
of disjoint subgraphs of A, so that at least one of the QH vertex groups in
A is not a vertex group in any of these subgraphs.

Let ¥(y) = 1 be a system of equations that corresponds to a pre-
sentation of the factor B = (by,...,bs). With the system X(y) = 1 we
associate its Makanin-Razborov diagram over a non-abelian free group.
Let G1,...,Gy, be the limit groups that appear in the second level of
this Makanin—-Razborov diagram. By the construction of the diagram,
G1,...,G, are proper quotients of B, and every solution of the system
3(y) = 1 can be modified by an element of the modular group of the
factor B, to a specialization of at least one of the quotient limit groups
Gi,...,G,.

Given a non-abelian free group F, for every homomorphism h : B — F,
there exists a homomorphism b’ : B — F that factors through one of the
finitely many quotients G1,...,G),, and that maps each edge and vertex
groups in the graph of groups A to a conjugate of its image under h. Fur-
thermore, if the image under h of a QH vertex group in A is non-abelian,
so is the image of that QH vertex group under h'. Since G is assumed to
be elementarily equivalent to F', the same is true for every homomorphism
f : B — G. Hence, it applies to the inclusion B — G. Therefore, there
exists a homomorphism: p : B — G that has non-trivial kernel, for which
each non-Q H vertex group and each edge group in A is mapped to a con-
jugate in G (elementwise), and each QH vertex group in A is mapped to a
non-abelian subgroup of G.

We modify the endomorphism p : B — G as follows. The image of
the factor B, u(B), inherits a free decomposition from the (Grushko’s) free
decomposition of G, G = By % -+ x By, x Fyy, u(B) = Dy % --- % D, x Fj,
where each of the factors D; can be conjugated into one of the factors B;,
and the image of each non-QQ H vertex group and each edge group in A can
be conjugated into one of the factors D; that is contained in a conjugate
of the factor B.

Each QH vertex group () in A inherits a cyclic decomposition Ag from
the Grushko decomposition of u(B), u(B) = Dy *---* D, x Fy, so that each
edge group in the cyclic decomposition Ag is mapped to the identity by pu,
and each connected component that contains a boundary element in Ag is
mapped into a conjugate of B.

Given the homomorphism p, we define an endomorphism uq : B — B,
by mapping each of the factors D; that are subgroups of a conjugate of B,
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back into the factor B by a corresponding conjugation, and mapping each
connected component in the cyclic decompositions Ag that does not con-
tain a boundary element of (), into B. Since the homomorphism y: B — G
has non-trivial kernel, the endomorphism g : B — B has non-trivial ker-
nel, and since y maps each non-Q H vertex group and each edge group in A
into a conjugate in G, p1; maps each non-QQH vertex group and each edge
group in A into a conjugate in the factor B. Since y maps each QH vertex
group in A to a non-abelian subgroup, by choosing properly the elements
that conjugates the factors D; back into the factor B, and the maps from
the connected components of the cyclic splittings Ag that do not contain
a boundary element into B, we can guarantee that every QH vertex group
in A is mapped to a non-abelian subgroup by u.

With each QH vertex group @ in A, we associate a (possibly trivial)
maximal collection of simple closed curves (s.c.c.) that are mapped to the
identity element by p;. Using the maximal collections of s.c.c. on the QH
vertex groups in A, we construct a graph of groups A, obtained from the
graph of groups A by cutting the QH vertex groups along their associated
collections of s.c.c. and filling each of the s.c.c. that we cut along with
disks, and erase those pieces that are not connected to any of the boundary
components of the original QQH vertex groups in the graph of groups A. We
set B to be the fundamental group of the graph of groups A.

By construction there is a natural epimorphism, v : B — B. We define
a homomorphism 7 : B — B, by defining 7 on each factor of B, where the
factors of B are associated with the connected components in the graph
of groups A. On each such factor (connected component) we set 7 to be
the image under u; of a preimage of that factor in B. Note that since the
collections of s.c.c. on each of the QH vertex groups in A are assumed to be
maximal collections of disjoint non-homotopic s.c.c. that are mapped to the
identity by @1, no non-trivial s.c.c. on a QH vertex group in A is mapped
by 7 to the trivial element in B. We set the endomorphism ps : B — B
to be pus = 7 ov. Since the endomorphism gy : B — B has non-trivial
kernel, the endomorphism o : B — B has non-trivial kernel, and since p;
maps each non-Q H vertex group and each edge group in A onto a conjugate
in B, pe maps each non-QQH vertex group and each edge group in A onto
a conjugate in the factor B. Furthermore, the homomorphism ps can be
replaced by a homomorphism uf, : B — B % F', where F' is a (possibly
trivial) free group, so that us is obtained from p), by composing it with the
natural retraction, B * F' — B, and the image of each QH vertex group
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in A under y), is non-abelian. u) = 7' o v/, where v/ : B — B % F' maps
each of the connected components that do not contain boundary elements
in the graphs of groups obtained from the QQH vertex groups in A after
decomposing them along the maximal collections of s.c.c. that are mapped
to the identity by p; onto (possibly trivial) factors of the free group F’,
7| = 7 and 7'| is the identity map.

The endomorphism pe maps each non-QH vertex group and each edge
group in A into a conjugate in B. Since the graph of groups A was obtained
from A by cutting QH vertex groups along maximal collections of s.c.c. that
are mapped to the identity by u1, and the endomorphism po = 7o v, by
Lemma 1.4 in [Se4], if the image of a QH vertex group @ in A, ua(@),
intersects non-trivially a conjugate of a QH vertex group in A, then it
intersects it in a group of finite index. By Lemma 1.3 in [Sed], if p2(Q)
intersects a conjugate of a QH vertex group @' in A in a subgroup of finite
index, the topological complexity of @', (|x(Q")|, genus(Q')), is bounded
by the topological complexity of @), and if the topological complexities are
equal, then @ is mapped by ps isomorphically onto Q.

If for every QH vertex group @' in A, the image of u9 contains a con-
jugate of a finite index subgroup of Q’, then each QH subgroup @ in A is
mapped by po isomorphically onto a conjugate of a QH subgroup in A, and
distinct QH subgroups in A are mapped onto conjugates of distinct QH
vertex groups in A. Replacing ue by a power of itself, we may assume that
1o preserves the conjugacy classes of all the vertex and edge groups in A.
Since A is a cyclic splitting of the hyperbolic group B, hence, it can be
assumed to be 2-acylindrical, if uo maps each vertex group and each edge
group in A to a conjugate, pus maps the factor B onto itself, and since B
is w-residually free and w-residually free groups are Hopf, uo being an epi-
morphism is also a monomorphism, a contradiction since o was assumed
to have non-trivial kernel. Therefore, there must exist QH vertex groups
in A, so that ps(B) does not contain any finite index subgroups of their
conjugates.

Let Q1,-..,Q be all the QH vertex groups in A, for which ps(B) inter-
sects conjugates of 1, . .., @y in subgroups of finite index. By construction,
the image of ps(B) is generated by subgroups of the fundamental groups of
connected components of the graph of groups obtained from A by erasing
these QH vertex groups that are not in the list Q1,..., Q-

First, suppose that the list Q1,..., Q¢ is empty or that each of the QH
vertex groups Q1, - .., Q¢ is mapped isomorphically onto a conjugate of one
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of the QH vertex groups Q1,...,Qy, and different QH vertex groups from
this list are mapped to conjugates of distinct QQ.H vertex groups in A, hence,
1o permutes the conjugacy classes of Q1,...,Q¢. In this case a power of
1o preserves the conjugacy classes of @1, ..., Qy, hence, we can replace this
power of ug, with a (proper) retraction from B onto the subgroup H gener-
ated by the connected components of the graph of groups obtained from A
by erasing these QH vertex groups that are not in the list Q1,...,Qy,
r : B — H. Furthermore, in the same way we replaced us : B — B by
ph : B — B* F', we may assume that the retraction r can be replaced by a
map u : B — H x F', where F' is a (possibly trivial) free group, so that r is
obtained from u by composing it with the natural retraction: H * F' — H,
and the image of each Q H vertex group in A under u is non-abelian. Note
that since the retract H is the fundamental group of a proper subgraph
of the JSJ decomposition A of the hyperbolic factor B, H is a hyperbolic
group as well.

Suppose that the list of QH vertex groups Q1, .- ., Q¢ is not empty, and
that po does not map Q1,- .., Q¢ isomorphically onto distinct conjugates
of Q1...,Q¢. In this case we look at the endomorphism u% : B — B.
By (possibly) refining the cyclic decomposition A according to a maximal
collection of s.c.c. on the various QH vertex groups in A that are mapped
to the identity by p3, and use the construction of the map po from puy, we
obtain a new map pus : B — B, for which pu3(B) intersects conjugates of a
proper subset of the QH vertex groups Q1,-..,Q in a subgroup of finite
index, p3 maps each non-QH vertex group and each edge group in A into
a conjugate, and u3 can be replaced by a map v : B — B * F’, where F' is
a (possibly trivial) free group, so that u3 is obtained from v by composing
it with the natural retraction, B *x F' — B, and the image of each QH
vertex group in A under v is non-abelian. Therefore, a finite induction
proves the existence of a retraction r from B onto the subgroup generated
by the connected components of the graph of groups obtained from A by
erasing some (non-empty) subset of the QH vertex groups in A. Note that
by Lemma 1.4 in [Se4] this subgroup (the image of r) is the free product of
the fundamental groups of the corresponding connected components in A.

So far we have constructed a proper retraction of the original limit group
G onto its proper subgroup H, which is a hyperbolic limit group like the
ambient group G (since it is a f.g. subgroup of a hyperbolic limit group). We
now continue in the same way with this proper subgroup H. We start with
its (Grushko’s) free decomposition, and then look at all the factors that are
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not surface (or free) groups. Since G is elementarily equivalent to a free
group, the construction applied for the factor B, and the retraction from
G onto H, enables one to show first that there exists a proper map from
a given (non-surface, non-free) factor of H into itself that conjugates each
non-Q H vertex group and each edge group in its cyclic JSJ decomposition
(elementwise). Furthermore the image of every QH vertex group under
this map is non-abelian. Now applying the same construction that was
used for the factor B, implies that H has a proper retraction onto a proper
subgroup of itself with similar properties as the retraction from B to H.
Since limit groups satisfy the descending chain condition [Sel, 5.1], this
construction of proper retractions terminates after finitely many steps, and
the limit group G is indeed a hyperbolic w-residually free tower. o

Proposition 6 shows that a f.g. group that is elementarily equivalent to
a free group must be a non-elementary hyperbolic w-residually free tower.
The techniques used in our quantifier elimination procedure can be modified
to prove the converse, hence, we finally obtain a classification of the f.g.
groups that are elementarily equivalent to a non-abelian f.g. free group.

Theorem 7. A fg. group is elementarily equivalent to a non-abelian free
group if and only if it is a non-elementary hyperbolic w-residually free tower.

Proof. Proposition 6 proves that a f.g. group that is elementarily equiva-
lent to a non-abelian free group must be a non-elementary hyperbolic w-
residually free tower. Hence, it is left to prove that if G is a non-elementary
hyperbolic w-residually free tower, then G is elementarily equivalent to a
f.g. non-abelian free group.

Let G be a non-elementary hyperbolic w-residually free tower. With
the structure of the w-residually free tower associated with GG, we can nat-
urally associate a (coefficient-free, strict) resolution Resg(b) over a non-
abelian free group (where the groups that appear along the resolution are
the groups associated with the various levels of the tower). By construction,
the resolution Resq(b) is a completed resolution (i.e. it has the structure
of a completion, see Definition 1.12 in [Se2]), and since G is assumed to
be hyperbolic, the resolution Resg(b) contains no non-cyclic abelian vertex
groups.

Let F be a f.g. non-abelian free group, and let £(y) = 1 be a (coef-
ficient-free) system of equations. With the system ¥ (y) = 1, interpreted
as a system of equations over the free group F, we have associated a
taut Makanin—-Razborov diagram. With each resolution in this taut
Makanin—Razborov diagram we have associated its completion. Let
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Comp(Res1)(z,y),...,Comp(Resy)(z,y) be the set of completions asso-
ciated with the system ..

LEMMA 8. Let y' be a solution of the system Y.(y) = 1, interpreted as a
system of equations over the w-residually free tower G. Then there exist
elements z' in G, so that the tuple (2',y') is a specialization of (at least)
one of the completions Comp(Res1)(2,y),--.,Comp(Resq)(z,y), ie. it is
the image of a homomorphism from the limit group associated with one of
these completions into the group G.

Proof. We look at a test sequence of the (coefficient-free) resolution,
Resg(b), in the free group F' (test sequences are presented in Definition 1.20
in [Se2]). Let y/, € F be the sequence of specializations of the elements
y' € G along the given test sequence. Since X(y') = 1 in G, the sequence y/,
satisfies X(y/,) = 1 in F, for every index n. Hence, for every index n, there
exist elements z/, € F, so that the tuple (z],,}) is a specialization of
one of the completions: Comp(Res1)(z,y),...,Comp(Resq)(z,y). If for
every n we choose the shortest such z/,, then the techniques used for the
construction of a formal solution [Se2, 1.18]) prove that there exists a subse-
quence of tuples (z!,, ) that are all specializations of the same completion,
Comp(Res;)(z,y), that converge into a tuple (2’,3') € G. Hence, there is a
homomorphism from the completion, Comp(Res;)(z,y), into the tower G,
that sends the elements vy to 3’ and the elements z to 2'. O

Clearly, the same argument used to prove Lemma 8 applies to given
covering closures of the resolutions in the taut Makanin—Razborov diagram,
and to graded and multi-graded systems of equations, and the completions
and covering closures of the resolutions in their associated graded and multi-
graded taut Makanin-Razborov diagrams.

Let O(y) = 1 be a coefficient-free system of equations, and let

(Vy) (©(y) =1) Tz B(z,y) = 1A U(z,y) # 1

be a coefficient-free sentence. Suppose that the sentence is a true sen-
tence over the (non-abelian) free group F. By Theorem 1.18 of [Se2], with
each resolution Res(y) in the taut Makanin-Razborov diagram associated
with the system ©(y) = 1, it is possible to associate a covering closure,
Cli(Res)(s,2,Y),--.,Cle(Res)(s, z,y), and formal solutions z; = z;(s, z,y)
defined over the closures, Cl;(Res)(s, z,y), for which

(i) X(z;(s,2,9),y) = 1 in the limit group corresponding to the closure,
Cl;(Res) (s, z,y)-



16 Z. SELA GAFA

(ii) There exists a specialization (s, 20,%0) (in the free group F), of the
closure, Cl;(Res)(s, z,y), for which ¥ (z;(s0, 20, Y0),y0) # 1.

By Lemma 8, if ¢ is a solution of the system ©(y) = 1, interpreted as
a system of equations over the hyperbolic w-residually free tower G, then
there exists a resolution Res(y) in the taut Makanin-Razborov diagram
associated with the system ©(y) = 1 over a non-abelian free group F,
a closure CI(Res)(s,z,y) from a given covering closure of the resolution
Res(y), and elements s’ and 2’ in G, so that the tuple (s, 2, y) is a spe-
cialization of the closure Cl(Res)(s,z,y). Hence, there exists a formal
solution, x;(s, z,y), for which: X(z;(s',2',v'),y') = 1. Clearly, the graded
and multi-graded categories are completely analogous.
PROPOSITION 9. Let
Vy dx (El(xay) =1A \Ijl(may) # 1) VeV (Zr(xay) =1A \I]'I'('Tay) # 1)
be a coefficient-free AE sentence. Then the AFE sentence is a true sentence
over the f.g. non-abelian free group F' if and only if it is a true sentence over
the non-elementary hyperbolic w-residually free tower G. i.e. the AE theo-

ries of non-abelian free groups and non-elementary hyperbolic w-residually
free towers are equivalent.

Proof. Suppose that

Vy 3z (Si(z,y) = 1A Ui (z,y) #1) V-V (Sr(z,y) = 1A Ty (z,y) # 1)
is a coefficient-free sentence. If the sentence is a true sentence over a f.g.
non-abelian free group F, then it is possible to apply the iterative procedure
presented in section 4 of [Se4], and associate iteratively with the sentence
a (finite) sequence of (coefficient-free) anvils, developing resolutions and
formal solutions defined over them, that prove the validity of the sentence
over the free group F. By the arguments given above, the proof given by
the sequence of (coefficient-free) anvils, developing resolutions, and formal
solutions defined over them, is valid over the non-elementary hyperbolic
w-residually free tower G.

Suppose that the given sentence is false over the free group F. By
applying the iterative procedure for validation of a sentence presented in
section 4 of [Sed], there exists a coefficient free resolution Res(z,y), so
that there exists a test sequence of specializations of this resolution, for
which for the corresponding specializations of the variables y, there is no
specialization of the variables x (in the free group F') for which

(B1(zyy) = 1A T (z,y) 1) V-V (Sr(z,y) = 1A T (z,y) £1).
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We want to show that the given (coefficient-free) sentence is false over
the non-elementary hyperbolic w-residually free tower G. G is, in particular,
a non-elementary hyperbolic group, hence, the free group F admits a quasi-
isometric embedding into G. Let Fz be the (quasi-isometric) image of that
embedding in G. By our assumptions, the resolution Res(z,y) has a test
sequence of specializations in the free group F', so that for the corresponding
sequence of specializations of the variables y, there are no specializations
of the variables z in F', for which

(21(.'17,y) =1A \Ill(xay) # 1) VeV (Zr(xay) =1A \I/',-(J?,’y) 36 1) .
The free group F is isomorphic (and quasi-isometric) to the subgroup Fg
of G, hence, we can naturally interpret the given test sequence of specializa-
tions of the resolution Res(z,y) in F, as a test sequence of specializations
of Res(z,y) in its isomorphic image Fz. Suppose that our given sentence
is a true sentence over the group G. Then for each specialization of the
variables y from our given test sequence, there exists a specialization of the
variables z in G for which

(21(.’17,y) =1A \Ill(x,y) 7é 1) VeV (Zr(xay) =1A \I}T(‘Ccay) 7é 1)
where the equalities and inequalities are in the hyperbolic group G. Let X
be the Cayley graph of the hyperbolic group G. For each specialization of
the variables y from the given test sequence, we pick the specializations of
the variables z in GG, which are the shortest possible for which the above
disjunction of conjunctions of equalities and inequalities hold. Since the
Cayley graph X of G is d-hyperbolic, we can extract a subsequence of spe-
cializations of the variables (z, z,y) from our given sequence, that converges
in the Gromov-Hausdorff topology on metric spaces (after rescaling). Since
the specializations z,y form a test sequence, and since the specializations
of the variables x were taken to be the shortest possible, the subsequence
of specializations (z, z,y) converges into a faithful action of a limit group
of the form L = (z,z,y) = Cl(Res)(s,z,y) * M on a real tree Y (see the
argument used to prove Theorem 1.18 in [Se2| for the structure of L). In
the limit group L,

(21($,’y) =1A \Pl(xvy) a 1) VeV (Er(w’y) =1A ‘Ijr(xvy) # 1) .
The original test sequence of specializations in the non-abelian free group F
factors through the closure, Cl(Res)(s, z,y), hence, from the original test
sequence of specializations of the resolution Res(z,y) in the free group F,
it is possible to extract a subsequence, for which for the corresponding spe-
cializations of the variables y, there exist specializations of the variables z
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(in F'), obtained from homomorphisms from the limit group h:L(z,z,y)—F,
for which

in the free group F', and we get a contradiction. o

Proposition 9 proves that the AFE theories of non-abelian free groups
and non-elementary hyperbolic w-residually free towers are equivalent. To
prove the equivalence of the elementary theories of these groups, it re-
mains to prove that, for coefficient-free predicates, the quantifier elimina-
tion procedure constructed in [Se5] and [Se6], for predicates defined over a
free group, works for all non-elementary hyperbolic w-residually free tow-
ers. The quantifier elimination procedure presented in [Se5] and [Se6] is
composed of two parts, the procedure for the construction of the tree of
stratified sets (section 2 in [Se5]), and the sieve procedure ([Se6]). We start
by showing that the procedure for the construction of the tree of stratified
sets remains valid over the hyperbolic w-residually free tower G.

The procedure for the construction of the tree of stratified sets (section 2
in [Se5]) analyzes the remaining set of y’s using multi-graded resolutions,
and their associated developing resolutions and anvils, and then we asso-
ciate with each developing resolution, its entire collection of formal solu-
tions, which are encoded in the graded formal Makanin—-Razborov diagram.
Since the predicates we consider are all coefficient free, all the constructions
along the procedure for the construction of the tree of stratified sets are
coefficient free as well.

Lemma 8 proves that the set of the remaining 3’s over the group G can
be completed to specializations that factor through the completions (and
closures) of the multi-graded resolutions at each step of the procedure for
the construction of the tree of stratified sets. We have also argued that if
po is in the definable set of the given predicate, interpreted as a predicate
over G, then with each ungraded resolution associated with the (graded)
developing resolution and pg, there exists a formal solution (over G) that
satisfies the properties of Theorem 1.18 of [Se2].

The ungraded resolution defined over G can be approximated by a se-
quence of ungraded resolutions over the free group F'. From the existence
of a formal solution defined over the given ungraded resolution over F, it
follows that all the approximating resolutions over F' admit formal solutions
that approximate the formal solution over G. Hence, the given formal so-
lution defined over G, factors through the completion of at least one of the
graded formal resolutions associated with the given developing resolution
over the free group F'.
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The iterative procedure for validation of an AFE sentence, shows that if
an AFE sentence over a free group F' is a true sentence, then it has a proof
using a finite collection of formal solutions. By the proof of Lemma 8, the
same is true for sentences defined over G.

Let L(w,p) be a coefficient-free AE predicate. Let Qr(w,p) be the set
defined by L(w, p) over the free group F, and Q¢ (w, p) be the set defined by
L(w,p) over the hyperbolic w-residually free tower G. The tree of stratified
sets constructed over the free group F', shows that if (wg,pg) € Qr(w,p),
then the sentence corresponding to the specialization (wg, pg) can be proved
using a sequence of formal solutions according to one of the proof systems
given by the tree of stratified sets over F. The argument given above,
shows that if (wo,po) € Qc(w,p), then the sentence corresponding to the
specialization (wg,pg) can be proved using a sequence of formal solutions
encoded by one of the proof systems (over F') given by the same (coefficient-
free) tree of stratified sets (see Definition 1.20 in [Se5] for a proof system).

Furthermore, if Rgd(z,p) (Sld(z,p)) is a (coefficient-free) rigid (solid)
limit group, then the maximal number of rigid (families of strictly solid) spe-
cializations of Rgd(z,p) (Sld(z,p)) for a specialization of the defining pa-
rameter p is identical over the free group F' and the hyperbolic w-residually
free tower F. Hence, the collection of proof systems associated with the
tree of stratified sets is identical over F' and over G, i.e. for the two sets

QF(wap) and QG(wap)

Since the tree of stratified sets over the free group F' is coefficient free,
so is the collections of varieties and resolutions associated with the sieve
procedure over F' (presented in [Se6]). The tree of stratified sets over F' is
coefficient free and is also the tree of stratified sets defined over G. The
collection of proof systems associated with the tree of stratified sets over F’
and over G are identical. Any valid PS statement over G (Definition 1.23
in [Se5]) can be approximated by a sequence of valid PS statements over F'.
Furthermore, any valid PS statement over G does not (extend to a spe-
cialization that) factor through any of the Non-Rigid, Non-Solid, Root or
Left PS resolutions constructed along the sieve procedure (over F), and
if it factors through an extra PS resolution (constructed along the sieve
procedure over F'), it has to factor through either one of the collapse extra
PS limit groups associated with it, or one of the generic collapse extra
PS resolutions associated with it. Hence, any valid PS statement over G
extends to a specialization that belongs to at least one of the TSPS(p)
sets constructed along the sieve procedure (over the free group F. See
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Definition 1.34 in [Se5] for the set TSPS(p)). Therefore, the reduction of
a coefficient-free predicate to a (coefficient-free) predicate in the Boolean
algebra of AFE sets can be done uniformly, for all non-elementary hyperbolic
w-residually free towers (by applying the corresponding reduction over the
a non-abelian free group F). Since the AFE theories of these towers are
equivalent by Proposition 9, the elementary theories of non-elementary hy-
perbolic residually free towers are equivalent, which implies that they are
all elementarily equivalent to a non-abelian free group. m

Appendix. A Brief Survey of Previous Results

In proving most of the theorems in this paper, we needed to use not only
the quantifier elimination over a free group [Se6, 1.41], but also some of
the constructions and results that were presented in the previous papers
in this sequence, and in particular the structures of the iterative procedure
for validation of an AF sentence, and the quantifier elimination process.

For the benefit of the reader, we summarize some of the required results
and procedures in this short appendix. However, for the precise construc-
tions, the detailed procedures, and the actual results, that are usually tech-
nically involved, the interested reader can check the indicated references.

In the first paper in the sequence on Diophantine geometry over groups,
we studied sets of solutions to systems of equations defined over a free
group and parametric families of such sets, and associated a canonical
Makanin-Razborov diagram that encodes the entire set of solutions to the
system [Sel, 5]. Later on we studied systems of equations with parameters,
and with each such system we associated a (canonical) graded Makanin—
Razborov diagram, that encodes the Makanin—-Razborov diagrams of the
systems of equations associated with each specialization of the defining
parameters [Sel, 10].

In the second paper we generalized Merzlyakov’s theorem on the ex-
istence of a formal solution associated with a positive sentence. We first
constructed a formal solution for a general AFE sentence which is known
to be true over some variety [Se2, 1.18], and then presented formal limit
groups and graded formal limit groups that enable us to collect and analyze
the collection of all such formal solutions [Se2, 2-3].

In the third paper we studied the structure of exceptional solutions of
a parametric system of equations (see Definitions 10.5 in [Sel] and 1.5 in
[Se3] for these exceptional solutions). We proved the existence of a global
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bound (independent of the specialization of the defining parameters) on the
number of rigid solutions of a rigid limit group [Se3, 2.5, and a global bound
on the number of strictly solid families of solutions of a solid limit group
[Se3, 2.9]. Using these bounds we studied the stratification of the “base”
of the “bundle” associated with the set of solutions of a parametric system
of equations in a free group, and showed that the set of specializations of
the defining parameters in each stratum is in the Boolean algebra of AE
sets [Se3, 3].

In the fourth paper we applied the structural results obtained in the
first two papers in the sequence, to analyze AF sentences. Given a truth
sentence of the form,

Vy Jz Z(‘Tayaa) =1A ‘If(ac,y,a) 7& 1,

we presented an iterative procedure, that produces a sequence of varieties
and formal solutions defined over them that together prove the validity of
the given sentence. The procedure uses a trial and error approach. It starts
with a formal solution that proves the validity of the given sentence in a
generic point of the affine set associated with the corresponding universal
(y) variables. If we substitute the given formal solution into the system
of equations . they hold over the whole affine set. However, the inequal-
ities ¥ fail on some proper subvariety V. Hence, in the second step of
the iterative procedure, we apply Theorem 1.18 in [Se3], and get formal
solutions that prove the validity of the given sentence in generic points of
(closures of) completions of resolutions in the Makanin-Razborov diagram
of the variety V. Again, if we substitute the given formal solutions into
the inequalities ¥, they fail to hold on some proper subvarieties of the va-
rieties associated with the (closures of) completions of resolutions in the
Makanin—Razborov diagrams associated with the variety V. We continue
iteratively by constructing formal solutions over each of (the closures) of
the completions of the resolutions associated with varieties that collect the
set of the remaining ¥’s at each step of the procedure.

Since in order to define the completions of the resolutions associated
with a variety, and the closures of these completions, additional variables
are required, the varieties produced along the iterative procedure are deter-
mined by larger and larger sets of variables, and so are the formal solutions
defined over them. Still, by carefully analyzing these varieties and the
Diophantine sets associated with them, using induced resolutions [Se4, 3],
certain fiber products that we call anvils, and their associated developing
resolutions [Se4, 4] and properly measuring the complexity of Diophantine
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sets associated with them, we were able to show that certain complexity
of the varieties produced along the procedure strictly decreases, which fi-
nally forces the iterative procedure to terminate after finitely many steps.
It should be noted, that even at this stage we don’t know any conceptual
reason that explains the ability to find such a terminating procedure, except
for its existence.

The outcome of the terminating iterative procedure is a collection of
varieties, together with a collection of formal solutions defined over them.
The varieties are determined by the original universal variables y, and ex-
tra (auxiliary) variables. The collection of varieties gives a partition of the
initial domain of the universal variables y, which is a power of the orig-
inal free group of coefficients, into sets which are in the Boolean algebra
of universal sets, so that on each such set the sentence can be validated
using a finite family of formal solutions. Hence, the outcome of the iter-
ative procedure can be viewed as a stratification theorem that generalizes
Merzlyakov’s theorem from positive sentences to general AE ones.

In the two papers on quantifier elimination we apply the tools and
techniques presented in the previous 4 papers in the sequence, to prove
quantifier elimination in the elementary theory of a free group. In order to
prove quantifier elimination we show that the Boolean algebra of AFE sets is
invariant under projections. The projection of a set that is in the Boolean
algebra of AF sets, is naturally an EAFE set, hence, to show that the
Boolean algebra of AFE sets is invariant under projections, we need to show
that a general EAE set is in the Boolean algebra of AE sets [Se6, 1.41].

To prove that an EAFE set is in the Boolean algebra of AE sets we
use a couple of terminating iterative procedures that are based on the pro-
cedure for validation of an AE sentence presented in the fourth paper.
Given an FAFE set, the first (terminating) iterative procedure is devoted
to uniformization of proofs, i.e. it produces finitely many (graded) families
of formal solutions together with (graded) varieties on which these formal
solutions are defined, so that each AF sentence associated with a specializa-
tion of the defining parameters and a specialization of the first existential
variables, which is a truth sentence, can be proved using part of the con-
structed families of formal solutions, in a similar way to our validation of
a (single) AE sentence obtained in the fourth paper.

Each step of this procedure [Se5, 2] is divided into two parts. In
the first part we collect all the formal solutions defined over the (finitely
many, graded) varieties that collect the set of those values of the universal
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variables, for which the corresponding AFE sentence is yet to be proved.
The second part uses the constructed formal solutions to get a proof for
a subset of the relevant values of the universal variables, and collect those
values for which the proof is yet incomplete. We call the outcome of this
procedure, i.e. the families of formal solutions and the varieties on which
they are defined, the tree of stratified sets. Both its construction and its
termination are uniformizations of the procedure for validation of a single
AF sentence, presented in [Se4, 4].

The procedure for uniformization of proofs constructs the tree of strat-
ified sets, that leaves us with finitely many forms of proof, i.e. possible
(finite) subsets of the families of formal solutions encoded by this tree, for
all the truth AF sentences associated with the set EAE. We call each such
form of proof a proof system [Se5, 1.20].

To analyze an EAE set we start with the Zariski closures of all the valid
proof statements associated with each of the (finitely many) proof systems
[Se5, 1.23]. The second terminating iterative procedure that we call the
sieve procedure, presented in [Se6], starts with each of these Zariski closures
and constructs a (finite) sequence of bundles of (virtual) proof statements
that are supposed to “testify” that a given specialization of the defining
parameters is in the set FAE. This finite sequence of bundles reduces
the question of the existence of a possible witness (i.e. a value of the first
existential variables) with a valid proof statement [Se5, 1.19] for any given
specialization of the defining parameters, to the structure of the bases of
these bundles of proof statements. Since by section 3 of [Se3] it is possible
to stratify the base of such a bundle, and the existence of a witness for a
given specialization of the defining parameters depends only on the stratum
(and not on the specific specialization), the set EAFE is the union of finitely
many strata in the stratifications of the constructed bundles. Since every
stratum in the stratification is in the Boolean algebra of AFE sets [Se3, 3],
we are finally able to conclude that the original EAFE set is in the Boolean
algebra of AFE sets.

We should note that like the procedure for validation of a sentence, pre-
sented in the fourth paper, we still do not know a conceptual reason for
obtaining quantifier elimination, and for the ability to construct a terminat-
ing procedure like our sieve procedure, apart from its existence. Indeed, the
construction of the sieve procedure and its termination are technically the
heaviest part of our work, and require techniques and methods to handle
Diophantine sets.
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