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7. SELA

Abstract. This paper is the sixth in a sequence on the structure of sets
of solutions to systems of equations in a free group, projections of such
sets, and the structure of elementary sets defined over a free group. In
the two papers on quantifier elimination we use the iterative procedure
that validates the correctness of an AFE sentence defined over a free group,
presented in the fourth paper, to show that the Boolean algebra of AE sets
defined over a free group is invariant under projections, hence, show that
every elementary set defined over a free group is in the Boolean algebra
of AE sets. The procedures we use for quantifier elimination, presented in
this paper, enable us to answer affirmatively some of Tarski’s questions on
the elementary theory of a free group in the last paper of this sequence.

In the first 4 papers in the sequence on Diophantine geometry over
groups we studied sets of solutions to systems of equations in a free group,
and developed basic techniques and objects required for the analysis of
sentences and elementary sets defined over a free group. In the first pa-
per in this sequence we studied sets of solutions to systems of equations
defined over a free group and parametric families of such sets, and as-
sociated a canonical Makanin-Razborov diagram that encodes the entire
set of solutions to the system. Later on we studied systems of equations
with parameters, and with each such system we associated a (canonical)
graded Makanin—Razborov diagram, that encodes the Makanin—-Razborov
diagrams of the systems of equations associated with each specialization of
the defining parameters.

In the second paper we generalized Merzlyakov’s theorem on the ex-
istence of a formal solution associated with a positive sentence. We first
constructed a formal solution for a general AE sentence which is known
to be true over some variety, and then presented formal limit groups and
graded formal limit groups that enable us to collect and analyze the collec-
tion of all such formal solutions.
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In the third paper we studied the structure of exceptional solutions
of a parametric system of equations. We proved the existence of a global
bound (independent of the specialization of the defining parameters) on the
number of rigid solutions of a rigid limit group, and a global bound on the
number of strictly-solid families of solutions of a solid limit group. Using
these bounds we studied the stratification of the “base” of the “bundle”
associated with the set of solutions of a parametric system of equations
in a free group, and showed that the set of specializations of the defining
parameters in each stratum is in the Boolean algebra of AFE sets.

In the fourth paper we applied the structural results obtained in the
first two papers in the sequence, to analyze AFE sentences. Given a true
sentence of the form,

Vy 3z B(z,y,a) = 1A ¥(z,y,a) # 1,

we presented an iterative procedure, that produces a sequence of varieties
and formal solutions defined over them. Since in order to define the comple-
tions of a variety, and the closures of these completions, additional variables
are required, the varieties produced along the iterative procedure are deter-
mined by larger and larger sets of variables, and so are the formal solutions
defined over them. Still, by carefully analyzing these varieties, and prop-
erly measuring the complexity of Diophantine sets associated with them, we
were able to show that certain complexity of the varieties produced along
the procedure strictly decreases, which finally forces the iterative procedure
to terminate after finitely many steps.

The outcome of the terminating iterative procedure is a collection of
varieties, together with a collection of formal solutions defined over them.
The varieties are determined by the original universal variables y, and ex-
tra (auxiliary) variables. The collection of varieties gives a partition of the
initial domain of the universal variables y, which is a power of the orig-
inal free group of coefficients, into sets which are in the Boolean algebra
of universal sets, so that on each such set the sentence can be validated
using a finite family of formal solutions. Hence, the outcome of the iter-
ative procedure can be viewed as a stratification theorem that generalizes
Merzlyakov’s theorem from positive sentences to general AE ones.

In the two papers on quantifier elimination we apply the tools and
techniques presented in the previous 4 papers in the sequence, to prove
quantifier elimination in the elementary theory of a free group. In order
to prove quantifier elimination we show that the Boolean algebra of AE
sets is invariant under projections. The projection of a set that is in the
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Boolean algebra of AF sets, is naturally an FAF set, hence, to show that
the Boolean algebra of AE sets is invariant under projections, we need to
show that a general FAFE set is in the Boolean algebra of AF sets.

In the first section of the first paper on quantifier elimination [S5], we
presented a couple of terminating iterative procedures that together imply
that the Boolean algebra of AFE sets is invariant under projection in the
minimal rank (rank 0) case. Given a set of the form FAE(p), i.e. a set
which is a projection of a set that is in the Boolean algebra of AF sets, the
first (terminating) iterative procedure described in that section is devoted
to uniformization of proofs. The procedure constructs the tree of stratified
sets associated with the set FAE(p), that encodes all the (finitely many)
proof systems (i.e. forms of proofs) that are required in order to prove that
a given specialization of the defining parameters is indeed in the elemen-
tary set EAE(p) we started with (see Definition 1.20 in [S5]). The second
terminating iterative procedure that we call the sieve method, constructs
a (finite) sequence of bundles of proof statements (Definition 1.23 in [S5])
that are supposed to “testify” that a given specialization of the defining
parameters is in the set EAE(p). This finite sequence of bundles reduces
the question of the existence of a possible witness with a valid proof state-
ment (Definition 1.19 in [S5]) for any given specialization of the defining
parameters, to the structure of the bases of these bundles of proof state-
ments. Since by section 3 of [S3] it is possible to stratify the base of such
a bundle, and the existence of a witness for a given specialization of the
defining parameters depends only on the stratum (and not on the spe-
cific specialization), the set EAE(p) is the union of finitely many strata in
the stratifications of the constructed bundles. Since every stratum in the
stratification is in the Boolean algebra of AFE sets, we were finally able to
conclude that the original FAFE set is in the Boolean algebra of AFE sets.

Our approach towards the analysis of a general EAF set is conceptually
similar to the one applied in the minimal rank case, although it is technically
much more involved. In the second section of the first paper [S5], we used
the techniques and the iterative procedure presented in section 4 of [S4] for
validation of a general AF sentence, and presented a (terminating) iterative
procedure for the construction of the tree of stratified sets for general FAE
predicates, omitting the minimal rank assumption. In the third section
in [S5] we have generalized some of the notions presented in the minimal
rank case, and showed that in few cases the procedure used to construct the
tree of stratified sets can be slightly modified to give a terminating iterative
procedure for the analysis of the bundles of proof statements, which implies
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that in these cases the FAFE sets we started the procedures with are in the
Boolean algebra of AE sets.

In the fourth section in [S5] we have presented the (graded, multi-
graded) core resolution, which is the major additional tool needed in order
to further modify the iterative procedure used for the construction of the
tree of stratified sets, to give a (terminating) iterative procedure for the
analysis of the bundles of proof statements for general FAFE sets, which
finally implies that every FAFE set is in the Boolean algebra of AE sets.

In this second paper on quantifier elimination, that presents the sieve
method in the general case, we will keep the notions and the notation
that were used in the first paper on quantifier elimination [S5]. Since the
iterative procedure we use is rather involved we present it as we did in
presenting the iterative procedure for validation of a sentence in section 4
of [S4]. We start by presenting the first step of the procedure, then the
second step, the general step, and finally we prove its termination. Then we
apply the procedure we constructed to conclude the proof of Theorems 1.4
and 1.3 in [S5] (Theorems 40 and 41 in this paper), that were proved there
in the minimal rank case, to finally show that the Boolean algebra of AE
sets is invariant under projection, which is the main goal of this paper. For
the benefit of the reader, we add an appendix at the end of the paper, that
briefly summarizes the sieve method and describes some of the objects it
uses.

I am deeply grateful to my former advisor Eliyahu Rips and to the
referees, who read carefully an earlier version of this paper, suggested to put
parts of it in more general perspective, and assisted me a lot in improving
the presentation of this paper and some of the previous papers in this
sequence.

The First Step of the Sieve Procedure

Let P = (p) be the group of defining parameters. We start the first step of
the sieve procedure with each of the PSS limit groups PSHGH; in parallel,
hence, we omit its index (see section 1 in [S5] for the notion of a PS limit
group). Given a PS limit group PSHGH, we associate its canonical taut
graded Makanin-Razborov diagram (with respect to the parameter sub-
group P) with it, which contains finitely many graded resolutions which we
denote PSHGH Resj, and each graded resolution PSHGH Res; is defined
over the rigid or solid limit group PB;(b,p,a). In the sequel, we will treat
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each stratum in the singular locus of the graded resolutions PSHGH Res
separately, and do it in parallel.

As we did in the minimal rank case and in the few cases presented in
section 3 in [S5], we start our analysis of the set of valid PS statements by
associating with (the completion of) the graded PS resolution PSHGH Res
a (canonical) finite collection of Non-rigid and Non-solid PS limit groups
(Definition 1.25 in [S5]), which we call the non-rigid PS limit groups as-
sociated with the PSS resolution PSHGHResj, NRgdPS],..., NRgdPSj,
and the non-solid PS limit groups associated with PSHGH Res;,
NSIdPS?,...,NSIdPS].

Recall (Definition 1.25 in [S5]) that the graded formal closures associ-
ated with the collection of non-rigid and non-solid PS limit groups, deter-
mine those “generic” specializations that factor through and are taut with
respect to the various PS resolutions PSHGH Resj, but fail to be valid
PS statements with respect to the (fixed) proof system, because certain
specializations that are part of the proof statement, and are required to be
rigid or strictly-solid (with respect to a given set of closures — see Defi-
nition 2.12 in [S3]) specializations of the groups WPHG according to the
fixed proof system, actually factor through closures of resolutions that are
associated with flexible quotients of the corresponding rigid or solid limit
groups.

We continue by collecting all the test sequences that factor through the
completion of one of the PS resolutions PSHGH Res;, Comp(PSHGH Res;),
and for which for at least one of the tuples: (h7(n),gf(n), hi(n), Wy, pn,a)
there exists some specialization g7 (n) so that the (combined) specialization:
(g2(n), h?(n), gt (n), h1(n), wn, pn,a) factors through (at least) one of the
limit groups W P(HG)? (Definition 1.26 in [S5]).

The collection of all these (graded) test sequences factor through a
(canonical) collection of mazimal left PS limit groups, LeftPSi,....Le ftPSf,LJ_.
The analysis of graded formal limit groups presented in section 3 of [S2]
associates (canonically) with each Left PS limit group LeftPS! a graded
formal Makanin—-Razborov diagram, and each such graded formal resolu-
tion is in fact a one level graded resolution, which is a graded formal closure
of the graded resolution PSHGH Res;, GFCI(PSHGH Res;). Clearly, no
specialization (virtual proof statement) that factors through the completion
of the resolution PSHGHRes;, Comp(PSHGH Res;), and which is a valid
PS statement with respect to our fixed proof system, factors through one
of the LeftPS limit groups LeftPS], ... ,LeftPS?nj, and their associated

resolutions.
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To a valid PS statement we have added additional variables, so that
their specializations are supposed to be primitive roots of the specializations
of pegs of abelian groups that appear in the graded formal closures asso-
ciated with the groups W PHGH, in order to demonstrate that the given
sets of closures (specified by the proof system) form a covering closure (for
the specializations given by the proof statement). This demonstration re-
mains valid if the orders of the specializations of the variables, that are
supposed to be primitive roots, are prime to the indices of the finite index
subgroups associated with the (finitely many) closures. The demonstra-
tion may fail to be valid if the orders of these specializations are not prime
to the order of the finite index subgroups. To check if this failure occurs
for a generic specialization of a PS resolution, PSHGH Res, we construct
Root PS limit groups and resolutions, precisely as we did in the minimal
rank case (Definition 1.27 in [S5]). We denote the Root PS limit groups,
RootPS, and the Root PS resolutions, RootPS Res.

No specialization (r, (h%,g%),...,(hg(ps),gé(ps)),h(l),wo,po,a) that fac-
tors through the resolution PSHGH (a virtual proof statement), and which
is a valid PS statement with respect to our fixed proof system, factors
through one of the RootP S limit groups RootPS1,. .., RootPS,,, and their
associated Root PS resolutions.

So far, we have constructed bundles for which, if in a given fiber a
“generic” PS statement fails to be a valid PS statement, then any PS
statement in that fiber fails to be a valid PS statement, i.e. the whole
fiber can be avoided. The next bundles, that we construct using “generic”
specializations that fail to be valid P.S statements, have the same structure
as the previous ones, however, in these bundles it may be that even though
“generic” PS statements in a given fiber fail to be valid PS statements,
the fiber may contain (non-“generic”) valid PS statements.

“Generic” specializations that factor through the PS resolutions
PSHGH Res can fail to be valid PS statements also if there exist additional
rigid or strictly-solid specializations of the limit groups PSHG (g1 ,h1,w,p,a)
that are not specified by the given specializations. As in the minimal
rank case and the few cases treated in section 3 of [S5], the “generic”
specializations for which there exists “surplus” in rigid or strictly-solid spe-
cializations are collected in Extra PS (graded) limit groups and graded reso-
lutions (Definition 1.28 in [S5]). We denote the Eztra PS limit groups asso-
ciated with the graded PS resolution PSHGH Res;, ExtraPSi,..., ExtraPSjj .

The Extra PS limit groups and their associated graded formal closures
collect all the “generic” specializations (i.e. all the test sequences) of the PS
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resolutions PSHGH Res for which there exist rigid or strictly-solid families
in addition to those specified by the generic specializations. For a general
specialization of the P.S limit groups PSHGH, i.e. a specialization (virtual
proof statement) which is not necessarily “generic”, it may as well be that
the additional rigid or strictly-solid specializations, collected by the Extra
PS limit groups and their associated graded formal closures, do become
flexible or do coincide with the rigid or strictly-solid families of the various
specializations (g}, h§,wo,po), specified by the (virtual) proof statement.

Let ExtraPSRes be one of the Extra PS graded resolutions associated
with one of the Extra PS graded limit groups ExtraPS!. We will say
that a specialization (virtual proof statement) that factors through and
is taut with respect to the Extra PS graded resolution ExtraPSRes is
collapsed if the variables added for each of the additional rigid or strictly-
solid specializations (i.e. the ones that were not specified by the (virtual)
proof statement) satisfy one of the following;:

(1) A specialization of the variables that were added for one of the addi-
tional rigid specializations becomes flexible.

(2) A specialization of the variables that were added for one of the
additional rigid specializations becomes equal to one of rigid
specializations specified by the (virtual) proof statement,
i.e. with one of the specializations g; in the specialization,
(u’ v,T1, (h%ag%)a R (hg(ps)’gi(ps))’ h(l)’ wo,po)-

(3) A specialization of the variables that were added for one of the addi-
tional strictly-solid families of specializations becomes flexible.

(4) A specialization of the variables added for one of the additional strictly
solid families of specializations belongs to one of strictly-solid families
of specializations specified by the (virtual) proof statement, i.e. with
a family of one of the strictly-solid families of specializations g; in the
specialization, (u,v,r, (h?,g1),..., (hﬁ(ps), gi(ps)), h, wo, po).

Note that by definition there are only finitely many ways in which a spe-
cialization that factors through and is taut with respect to the Extra PS
resolution, ExtraPSRes, can become a collapsed specialization. We will
call each way a specialization can become collapsed a collapse form.

Having defined the finitely many possibilities for collapse forms, we
collect all the test sequences of specializations that factor through an
Extra PS resolution, ExtraPSRes, and are collapsed specializations, in
finitely many (graded) closures of the Extra PS resolutions, ExtraPSRes,
that are also (graded) closures of the resolution PSHGH Res; we started
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with, that we call Generic collapse FExtra PS (graded) resolutions,
GenericCollapseExtraPSRes, precisely as we did in the minimal rank
case, and in the cases presented in section 3 in [S5] ([S5, 3.4]).

Having collected all the “collapsed” test sequences in a finite collection
of generic collapse Extra PS resolutions, we still need to collect all the
collapsed specializations that factor and are taut with respect to a given
Extra PS resolution ExtraPSRes (but perhaps not through one of the
generic collapse ones). To do that, we first need to associate with each
Extra PS resolution its associated collection of auziliary resolutions and
their auziliary limit groups.

DEFINITION 1 (cf. Definition 2.1 in [S5]). Let ExtraPSRes be one of the
Extra PS resolutions, associated with a PS resolution PSHGH Res. With
the Extra PS resolution, ExtraPSRes, we associate a collection of (multi-
graded) auxiliary resolutions and (multi-graded) auxiliary limit groups.

Recall that an Extra PS resolution is a closure of the PS resolution
PSHGH Res, hence, it has the structure of a (graded) completed reso-
Iution. Suppose that the resolution ExtraPSRes contains £ levels. Let
Rlim(r, ho, g1, h1,w,p,a) be the image of the PS limit group PSHGH
in the limit group associated with ExtraPSRes, and let Rlim(z;,p,a)
be its image in the (graded) limit group associated with the i-th level in
ExtraPSRes, where 1 <1 < £.

With ExtraPS Res, we associate a taut multi-graded Makanin—Razborov
diagram of the limit group associated with the tower that contains all the
levels up to level 2, with respect to the non-QH, non-abelian vertex groups
and edge groups in the (given) graded abelian decomposition associated
with the top level of ExtraPSRes, i.e. the graded abelian decomposition
associated with Rlim(r, he, g1, h1,w,p,a). Similarly, with each level i in
ExtraPSRes, 1 < i < £ — 1, we associate a multi-graded taut Makanin—
Razborov diagram of the limit group associated with the tower that con-
tains all the levels up to level i+ 1, with respect to the non-QH, non-abelian
vertex groups and edge groups in the (given) graded abelian decomposition
associated with the i-th level in ExtraPSRes, i.e. the graded abelian de-
composition associated with the subgroup Rlim(z;,p,a).

We call each of the resolutions in these multi-graded diagrams a (multi-
graded) auxiliary resolution, and its terminating solid or rigid limit group a
(multi-graded) auxiliary limit group, which we denote: Auxz(ExtraPSRes).
Naturally, with each auxiliary resolution we associate its modular groups,
that we call auxiliary modular groups. In the sequel, we call the auxiliary
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resolutions associated with the tower containing all the levels up to level 2
(all the levels except the top level), highest level.

Note that since an auxiliary limit group is associated with the limit
groups that appear in all the levels of ExtraPSRes up to level i + 1,
and it is multi-graded with respect to the non-abelian, non-QH vertex
groups and edge groups in the abelian decomposition associated with the
i-th limit group, Rlim(z;,p,a), it can be naturally extended to the limit
group associated with (the ambient resolution) ExtraPSRes, by sequen-
tially adding to the auxiliary limit group the limit groups that appear in
level i and above, according to the (tower-like) structure of the completed
resolution, ExtraPSRes, i.e. by sequentially adding abelian and QH ver-
tex groups as they appear in the level i and above in ExtraPSRes. We
call the obtained limit group (which is a quotient of the limit group as-
sociated with ExtraPSRes), the extended auxiliary limit group. By con-
struction, the PS limit group, PSHGH, that is associated with the PS
resolution, PSHGH Res (that is associated with ExtraPSRes), is mapped
into the extended auxiliary limit group, and so are the subgroups associ-
ated with the extra rigid and strictly-solid solutions that are associated
with ExtraPSRes.

By construction, the multi-graded auxiliary resolution that terminates
in the auxiliary limit group, extends to the graded extended auxiliary reso-
lution that terminates in the extended auxiliary limit group, and is graded
with respect to the subgroup generated by all the limit groups associated
with levels 1 down to level i in ExtraPS Res.

LEMMA 2. Let ExtraPSRes be one of the Extra PS graded resolutions
associated with a PS resolution, PSHGH Res. According to Definition 1,
with the resolution ExtraPSRes we can associate its canonical collection
of (multi-graded) auxiliary resolutions.

With the Extra PS resolution, ExtraPS Res, we associate one of its as-
sociated multi-graded auxiliary resolutions, hence, its associated extended
auxiliary resolutions, and one of its possible collapse forms. Recall that
the PS limit group, PSHGH, that is associated with the PS resolu-
tion, PSHGH Res (that is associated with ExtraPSRes), is mapped into
the extended auxiliary limit group, and so are the subgroups associated
with the extra rigid and strictly-solid solutions that are associated with
ExtraPSRes. Furthermore, the auxiliary resolution naturally extends to
the extended auxiliary resolution which is graded with respect to the col-
lection of subgroups that appear in all the (top) levels of ExtraPSRes,
from level 1 down to level i. Then:
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(i)

(iii)
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If the subgroup corresponding to an extra rigid specialization is not el-
liptic along the entire (extended) graded auxiliary resolution, then in
any specialization that factors through the Extra PS resolution and
through its associated graded auxiliary resolution, the correspond-
ing specialization of the subgroup corresponding to that extra rigid
specialization is not rigid (i.e. it is flexible).

If the subgroup corresponding to a non-abelian, non-Q H vertex group
or to an edge group in the abelian decomposition associated with an
extra strictly-solid specialization is not elliptic along the entire (ex-
tended) graded auxiliary resolution (i.e. contained in a non-abelian,
non-QH vertex group or an edge group along the entire extended aux-
iliary resolution), then in any specialization that factors through the
Extra PS resolution and through its associated graded auxiliary res-
olution, the corresponding specialization of the subgroup correspond-
ing to that extra strictly-solid specialization is not strictly solid.
Suppose that the subgroup associated with an extra rigid specializa-
tion is elliptic along the (extended) graded auxiliary resolution. Then
for any specialization that factors through our fixed graded auxiliary
resolution, and in which the specialization of this extra rigid special-
ization becomes flexible or coincides with one of the rigid special-
izations specified by the given collapse form, the corresponding spe-
cialization of the graded auxiliary limit group satisfies an additional
non-trivial relation (that does not hold in ExtraPSRes).

Suppose that the subgroups corresponding to all non-abelian, non-
QH vertex groups and edge groups in the abelian decomposition as-
sociated with an extra strictly-solid specialization are elliptic along
the entire (extended) graded auxiliary resolution. Then it is possi-
ble to add some additional variables that are associated with clo-
sures of flexible quotients of the corresponding solid limit groups
WPHG, or additional variables that are associated with the solid
limit group W PHG itself, so that every specialization that factors
through our fixed (extended) graded auxiliary resolution, and for
which the restriction of the specialization to the extra strictly-solid
specialization in ExtraPSRes is non-strictly solid or belongs to one
of the strictly solid families of specializations that are specified by
the the (virtual) proof statement and given collapse form, satisfies
an additional Diophantine condition that can be expressed in terms
of the variables of the extended graded auxiliary resolution and the
variables associated with the corresponding solid limit group W PHG



GAFA QUANTIFIER ELIMINATION II 11

and its flexible quotient. This additional Diophantine condition is
not valid for a “generic” specialization of the Extra PS resolution,
ExtraPSRes, we started with.

Proof. If the subgroup corresponding to an extra rigid specialization is not
elliptic along the entire extended graded auxiliary resolution, the graded
limit group associated with the extended auxiliary resolution and the par-
ticular extra rigid specialization is necessarily flexible, and we get part (i).
Part (ii) follows from Proposition 1.9 in [S3]. Part (iii) follows by defini-
tion. Part (iv) follows from the definition of strictly-solid solutions and
the equivalence relation that determines their families, which is given in
Definition 1.5 in [S3]. o

To start the first step of the sieve procedure, we go over all the multi-
graded auxiliary resolutions associated with the Extra PS resolutions,
ExtraPSRes, and their associated extended auxiliary resolutions (see Def-
inition 1). With each extended auxiliary resolution we associate all its
(finitely many) possible collapse forms. With each Extra strictly-solid spe-
cialization associated with the Extra PS resolution, ExtraPS Res, we nat-
urally associate its solid limit group W PHG.

Given a (graded) extended auxiliary resolution and a collapse form,
we add variables that are associated with the various solid limit groups
WPHG (that are associated with the extra strictly-solid specializations
in ExtraPSRes) and their flexible quotients, so that the added variables
and the extended auxiliary limit group enable us to express the addi-
tional Diophantine conditions imposed by the collapse form (see part (iv)
in Lemma 2).

The multi-graded abelian decomposition of our given multi-graded aux-
iliary limit group can get degenerate in finitely many ways (cf. section 11
of [S1] and section 3 of [S3]); each possible degeneracy gives rise to a set of
equations on the specializations of the graded auxiliary limit group. Hence,
with each possible degeneracy we associate a (canonical) finite collection
of maximal proper quotients of the given graded auxiliary limit group, and
treat each of these proper quotients in parallel (as we treated the non-
degenerate auxiliary limit group).

Given the extended auxiliary limit group or one of its degenerate quo-
tients, and the variables that were added to express the Diophantine con-
ditions imposed by the given collapse form, we look at all the rigid or
strictly-solid specializations of the extended graded auxiliary limit group
(or its degenerate quotient), and specializations of the additional variables,
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so that the combined specializations satisfy the Diophantine conditions im-
posed by the given collapse form.

By our standard method presented in section 5 of [S1], this collection
of specializations factor through a canonical (finite) collection of maximal
limit groups, which we call Collapse extra PS limit groups, and denote:

CollapseEa:traPSll, e CollapseEactraPSé .

Suppose that the auxiliary resolution that is associated with ExtraPSRes
is highest level (i.e. it is associated with the limit group that appears in the
second level of ExtraPSRes). Let (ug,vo,70,h2(0),g2(0),h1(0),wo,po,a)
be a specialization of the Extra PS resolution, ExtraPSRes, so that the
restriction of this specialization to the limit group that is associated with
the second level of ExtraPSRes, is a rigid or strictly-solid specialization
of the auxiliary limit group, and that the specialization can be extended to
a (combined) specialization that satisfies the Diophantine conditions im-
posed by the given collapse form. Let g be an element in the auxiliary
modular group that is associated with the (multi-graded) auxiliary res-
olution. g acts on specializations of the auxiliary limit group. Hence,
given the specialization (ug,vg, 70, h2(0), g2(0), h1(0),wy,po,a), v acts on
the restriction of this specialization to the subgroup associated with the
second level of ExtraPSRes. By the structure of ExtraPSRes, which is
a completed resolution, and the structure of the auxiliary resolution (that
is multi-graded with respect to the non-abelian, non-QQH vertex groups,
and edge groups in the given graded abelian decomposition of the sub-
group Rlim(z1,p,a)), and by the structure of the Diophantine conditions
imposed by the collapse form as described in Lemma 2, the specialization of
the limit group associated with the second level of ExtraPSRes obtained
by the action of g, can be naturally extended to a combined specializa-
tion that satisfies the Diophantine conditions imposed by the given collapse
form, without changing the specialization of the limit group associated with
the top level of ExtraPSRes, Rlim(z1,p,a) = Rlim(r,ha,g1,h1,w,p,a).
Clearly, the same holds for general auxiliary resolutions, associated with
some level 7 of ExtraPSRes, that are not necessarily highest level.

Hence, if a specialization of the Extra PS resolution, ExtraPSRes,
(u,v,r, ho,g1,h1,w,p,a), extends to a specialization that factors through
one of the collapse Extra P limit groups, CollapseExtraPS', and restricts
to a rigid or strictly-solid specialization of the associated auxiliary resolu-
tion, then the same is true for all the specializations in the same strictly-
solid family of the extended auxiliary limit group. Hence, in analyzing the



GAFA QUANTIFIER ELIMINATION II 13

Collapse extra PS limit groups, we consider the non-abelian, non-QH ver-
tex groups and edge groups in the multi-graded abelian JSJ decomposition
of the auxiliary limit group, as determined only up to (appropriate) conju-
gacy, and the abelian and QH vertex groups as “formal”, i.e. we are allowed
to act on these with their associated modular groups. Adapting this point
of view, which is essential along the entire iterative procedure presented in
this section (as in the construction of the tree of stratified sets in section
2 of [S5]), replaces the role of restricting to shortest form specializations
in the ungraded case (Definition 4.1 in [S4]), and enables us to exclude
the variables that belong to lower levels of the Extra P.S resolution from
taking part in the analysis of the (top part of the) Collapse extra PS limit
group, CollapseExtraPS', i.e. it allows us to get (certain) “separation of
variables” (of different levels) in the analysis of Collapse extra PS limit
groups (and in analyzing Diophantine sets in general).

By construction, if py € T5(p) then there must exist a valid PS state-
ment of the form, (r, (h%,g%),...,(h?j(ps),gi(ps ), hy, wo,po, a) that factors
through one the of the PS resolutions PSHGH Resj, that are associated
with the Zariski closure of all the valid proof statements of depth 2. By
Proposition 3.7 in [S5], the sets T'SPS(p) associated with the various PS
resolutions PSHGH Res, i.e. the sets of specializations py of the defining
parameters P = (p) for which there exists a test sequence of specializations,

(Una Tn, (h%(n)a g% (n))’ ey (hz(ps) (TL), gi(ps) (n))a hl (TL), Wn,, PO, a) )
that factor through the completion of one of the the PS resolution
PSHGH Res;, Comp(PSHGH Res;), and restricts to valid PS statements:

((h% (n)a Q% (n))’ ceey (h’?i(ps) (n)a gi(ps) (n))a hi (n), Wn,, PO, a)
is in the Boolean algebra of AFE sets.

By Theorem 3.6 in [S5], if there exists a valid PS statement that
can be extended to a specialization that factors through a PS resolution
PSHGH Resj, then either py € TSPS(p), or the valid PS statement can
be extended to a specialization that factors through one of the Collapse ex-
tra PS limit groups, that restricts to a rigid or strictly-solid specialization
of its associated extended auxiliary limit group.

To analyze the remaining set of valid PS statements we construct an it-
erative procedure that produces a sequence of multi-graded well-separated
resolutions (Definition 2.1 in [S4]), their completions and core resolutions.
The iterative procedure is based on the iterative procedure used for the con-
struction of the tree of stratified sets, presented in section 2 of [S5], which
is based on the iterative procedure for validation of a sentence, presented
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in section 4 of [S4]. We start the iterative procedure with each of the
PS limit groups PSHGH in parallel, and with each PS limit group we
associate its collection of PS resolutions, PSHGH Res;, their associated
Extra PS resolutions, ExtraPS Res, the associated multi-graded auxiliary
resolutions and auxiliary limit groups, and the associated Collapse extra
PS limit groups CollapseExtraPS"'. As in the iterative procedure for the
construction of the tree of stratified sets and the iterative procedure for val-
idation of a sentence, we divide the construction of the graded developing
resolution and the associated anvil constructed in the first step of our sieve
procedure into several cases, depending on the structure of the Extra PS
resolution we start the first step with, and the structure of the multi-graded
resolutions constructed along the first step.

We start the first step of the procedure with all the collapse Extra PS
limit groups, CollapseExtraPS', that are associated with P.S resolutions,
PSHGH Res, and with auxiliary resolutions associated with the tower con-
taining all the levels in an Extra PS resolution, ExtraPS Res, except the
top level (i.e. the highest level auxiliary resolutions). Since we analyze these
collapse Extra PS limit groups in parallel, we will omit their index.

As parts (1) and (2) of the first step of the sieve procedure indicate, we
will analyze only multi-graded resolutions of these collapse Extra PS limit
groups that are not of maximal complexity, i.e. resolutions for which their
core does not contain a single level with abelian decomposition that has
the same structure as the abelian decomposition associated with the top
level of the associated Collapse extra PS limit group, Collapse ExtraPS?.
To analyze (specializations that factor through) multi-graded resolutions of
maximal complexity we will need to use the Collapse extra PS limit groups
associated with auxiliary resolutions that are not of highest level (this is
done in parts (3) and (4) of the first step of the sieve procedure).

(1) Let CollapseExtraPS!(t,v,r, ha, g1, h1,w,p,a) be the Collapse ex-
tra PS resolution we started (this branch of the) first step with. Let
Q' (r,h2,91,h1,w,p,a) be the the subgroup generated by (r,hs,g1,h1,w, p,a) in
the Collapse extra PS limit group CollapseExtraPS* (t,v,r,h2,91,h1,w,p,a)-

Note that Q'(r,hg, g1, h1,w,p,a) is a quotient of the P.S limit group,
PSHGH, we started this branch with. If Q*(r, ke, g1, h1,w, p, a) is a proper
quotient of the PS limit group PSHGH, we continue this branch of the
iterative procedure, by starting the first step of the procedure with the PS
limit group Ql(r, ha, g1, h1,w,p, a)'
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(2) At this stage we may assume that Q'(r,hs,g1,hi,w,p,a) is
isomorphic to the PS limit group PSHGH. We set the subgroups

Baseé’i, . ,Base;’il to be the (image in CollapseExtraPS' of the) non-
) »U1

abelian, non-QH vertex groups in the abelian decomposition associated
with the top level of the Extra PS resolution ExtraPSRes (alternatively,
the image of the factors in the given free decomposition of the auxiliary
limit group Auz(EwxtraPSRes)). The notation, Base)’,, assumes that 7 is
the number of the current step, k is the level (or part) with which the aux-
iliary resolution is associated (the level we analyze plus 1), £ is the index of
the vertex group in the abelian decomposition associated with the current
level, and j is the index of the subgroup associated with the limit group
that is associated with the current level (the index is bounded by the step
number, and is updated whenever the complexity of the abelian decompo-
sition associated with the current level is reduced — see the description
of the general step). Note that the parameter subgroup, AP = (p,a), is,
by definition, a subgroup of Basey;. With the Collapse extra PS limit
group, CollapseExtraPS!(t,v,r,ha,g1,h1,w,p,a), we associate its taut

multi-graded diagram with respect to the subgroups Base;ﬁ, . ,Base;’il.

As we remarked earlier, in constructing the multi-graded diagram, ’V\;e
regard the QH and abelian vertex groups in the multi-graded abelian de-
composition associated with the auxiliary limit group (that is associated
with the Collapse extra PS resolution), that are all contained in the sub-
groups Base%ﬁ, ... ,Base;’il, as “formal”, i.e. the only relations they sat-
isfy are those coming from }che abelian decomposition associated with the
auxiliary limit group. We denote the completions of the multi-graded res-
olutions that appear in the taut multi-graded Makanin—-Razborov diagram

of CollapseExtraPSRes' by
MGQResl(t,v,r,hg,gl,hl,w,Base%ﬁ,...,Basel’l a),...

15
2,07

..., MGQRes4(t,v,r, ha, g1, h1,w, Base%j, . ,Baseé:j}%,a) .
We continue with each of the multi-graded resolutions in parallel, hence,
we omit the index of the specific resolution we continue with.

Since the Extra PS resolution ExtraPSRes, we started the first step
with, is well separated (Definition 2.1 in [S4]), with each QH vertex group
in one of the abelian decompositions associated with ExtraPSRes there is
an associated collection of s.c.c. that are mapped to the trivial element in
the next level of the Extra PS resolution FxtraPSRes.

Each QH vertex group in the graded abelian decomposition associated
with the top level of the Extra PS resolution, FxtraPSRes, naturally
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inherits a sequence of abelian decompositions from a multi-graded resolu-
tion MGQRes;. If, for some such QH vertex group @, this sequence of
multi-graded abelian decompositions is not compatible with the collection
of s.c.c. on @ that are mapped to the trivial element in the next level of
the Extra PS resolution EztraPS Res, we omit the multi-graded resolution
MGQRes; from the list of completions of resolutions of the Collapse extra
PS limit group CollapseExtraPS". Since the resolutions M GQRes; are
supposed to collect specializations that factor through EzxtraPSRes, and
can be extended to specializations that satisfy the Diophantine conditions
imposed by the collapse form (see Lemma 2), the multi-graded resolutions
MGQRes; that are left after omitting the multi-graded resolutions that
are not compatible with the taut structure associated with the top level of
ExtraPSRes, still collect all such (extended collapsed) specializations.
By Theorem 4.13 in [S5], the complexity of the multi-graded core of the

resolution M GQ Res,

MGCore ((r, ho,g1,h1,91,w,p,a), MGQRes) ,
is bounded by the complexity of the abelian decomposition associated with
the top level of the Extra PS resolution ExtraPSRes we started the first
step with, and if the complexities are equal, then the structure of the core,

MGCore ((r, h2,g1,h1,91,w,p,a), MGQRes) ,
is similar to the structure of the abelian decomposition associated with the
top level of the Extra PS resolution ExtraPSRes (see Definition 4.12 in
[S5] for the complexity of the core resolution). In this part of the first step
of the procedure we will also assume that the complexity of the core,

MGCore ((r, h2,91,h1,91,w,p,a), MGQRes) ,
is strictly smaller than the complexity of the abelian decomposition associ-
ated with the top level of the Extra PS resolution. The case of equal-
ity in these complexities is treated in Parts 3 and 4 of the first step.
In parallel with Proposition 2.4 in [S5], the image of the limit group
Q'(r, h2, g1, h1,w,p,a) in the terminal rigid or solid limit group of the multi-
graded resolution, M GQRes, is a proper quotient of Q' (ha, g1, h1,w,p,a),
unless the terminal limit group is rigid or solid with respect to the de-
fining parameters (p) (and not only with respect to the subgroups
Baseéj, ... ,Baseiv%).
PRrOPOSITION 3. Let MGQRes(t,v,r, ha, g1, h1,w, Baseéﬁ, ... ,Base;’il,a)
be one of the multi-graded resolutions constructed above. By construc,t}on,
the limit group Q*(r, ha, g1, h1,,w,p,a) is mapped into the limit group as-

sociated with each of the levels of the multi-graded resolution M GQRes.
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Let Qioppy (75 h2, 91, h1,w,p,a) be the image of Q' (r, ha, g1, h1,w, p,a) in the
terminal (rigid or solid) limit group of MGQRes.

Then the multi-graded resolution M GQ Res can be replaced by two fi-
nite collections of multi-graded resolutions, that are all compatible with the
top level of the resolution ExtraPSRes associated with the Collapse extra
PS limit group, CollapseExtraPS", and are all obtained from M GQRes
by adding at most a single (terminal) level. Furthermore, all the resolutions
in these collections are not of maximal complexity.

We denote each of the resolutions in these collections, MGQ' Res.

(i) In the first (possibly empty) collection of multi-graded resolutions,
the image of the subgroup Q' (r, ha, g1, h1,w, p,a) in the terminal limit
group of MGQ'Res, Q}orm(Tyh2,91,h1,w,p,a), is a proper quotient
of Q' (r,ha, g1, h1,w,p,a).

(ii) In the second (possibly empty) finite collection of multi-graded reso-
lutions, the terminal limit group of MGQ'Res is either a rigid or a
solid limit group with respect to the parameter subgroup (p), i.e. the
terminal limit group is rigid or solid with respect to the parameter
subgroup (p), and not only with respect to the multi-grading with
respect to the subgroups Base%ﬁ, . ,Base;’il, that was used in the
construction of the resolution, M GQ Res. o

Proof. Identical to the proof of Proposition 2.4 in [S5]. o

By Proposition 3 we can either omit the graded resolution M GQRes
from our list of graded resolutions, or we can replace the resolution
MGQRes by finitely many resolutions, that for brevity we still denote
MGQRes, and for each resolution we may assume that either the im-
age of the subgroup Q'(r, hg,g1,h1,w,p,a) in the terminal graded limit
group of MGQRes, Qi (T;h2,91,h1,w,p,a), is a proper quotient of
Q' (r,ha,g1,h1,w,p,a), or the terminal graded limit group of MGQRes
is rigid or solid with respect to the parameter subgroup P = (p).

To continue our treatment of multi-graded resolutions that are not of
maximal complexity we also need the following immediate lemma, that is
similar to Lemma 2.5 in [S5].

LEMMA 4. Let MGQRes(t,v,r, hg,gl,hl,w,Baseéﬁ,...,Base;’il,a) be
one of the multi-graded resolutions in our list, that is not of maxi;nlal com-

PIeXlt}’ Let Ql(ra h27glahlaw1p7a); Ql(t,U,T‘, h?aglahlawaBaseéﬁa

1,1
2,0}’

...,Base a), be the subgroups generated by (r,hs,gi,hi,w,p,a),

1,1 1,1 . .
(t,v,r, h2,g1,h1,Ba362:1,...,BaseZ:U%,a), in correspondence, in the col-
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lapse PS limit group CollapseExtraPS'. Let

Q%(Ta h?a g1, hla w, p, a)a Q%(ta v, T, hQa g1, hla w,p, (I)
be the images in the limit group associated with the second level of
MGQRes, GQlims(t,v,r,ha, g1, h1,w, Baseéj, ... ,Basel’1 a), of the sub-

2,’(1%’
groups, Q'(r,h2,91,h1,w,p,a) and Q'(t,v,r, ha,g1,h1,w,p,a), in corre-
spondence.
Then Q%(T’ h?a g1, hla w,p, a) is a QUOtient Ole(T, h23 a1, hla w, P, a) and
Q%(t’fuarahQaglahlawaPaa) is a proper quotient of Ql(t,’U,’l",hQ,gl,hl,w,p,a)-

Proof. The lemma is simply a basic property of a multi-graded resolution. o

Suppose that the image of Q'(r, ha, g1, h1,w,p,a) in the multi-graded
limit group associated with the second level of the multi-graded reso-
lution MGQRes, Qi(r,h2,g1,h1,w,p,a), is a proper quotient of
Q'(r,h2,g1,h1,w,p,a). In this case we use a “fiber product” similar to
the one used in the construction of the anvil in the first step of the con-
struction of the tree of stratified sets in [S5]. Note that in applying this
fiber product we do not decrease (at times we do increase) the set of virtual
proofs that factor through both the modular block, and the Diophantine
set, associated with the well-separated multi-graded resolution M GQ Res.

With the subgroup Qi(r, he, g1, h1,w,p,a) we associate the graded res-
olutions that appear in its graded taut Makanin-Razborov diagram with
respect to the parameter subgroup P = (p),

GQRes1(r,he, g1, h1,w,p,a),...,GQRest(r,ha, g1, h1,w,p,a).
We continue with each of the graded resolutions GQRes;(r,h2,91,h1,w,p,a)
in parallel.

If the subgroup generated by (r, hg,g1,h1,w,p,a) in the limit group
associated with the resolution GQRes;(r, h,91,h1,w,p,a) is a proper
quotient of Qi(r,hy,g1,h1,w,p,a), we replace the graded resolution
GQResj(r, ha, g1, h1,w,p,a) by starting part (2) of the the first step with
the multi-graded resolution obtained from the top level of the multi-
graded resolution MGQRes, by replacing its second-level limit group
Qi (t,v,7, ha,g1,h1,w,p,a) with the maximal limit groups obtained from
all specializations that factor through both Q(¢,v,r, ks, g1, h1,w,p,a) and
the subgroup generated by (r, ha, g1, h1,w,p,a) in the limit group associ-
ated with the graded resolution GQRes;(r, he, g1, h1,w, p, a).

If the subgroup generated by (t,v,r, he,g1,h1,w,p,a) in the obtained
(one level) resolution, QRIlim/(t,v,r, ha, g1, h1,w,p,a), is a proper quotient
of CollapseExtraPS', we replace the obtained resolution by starting
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the first step of our iterative procedure with the limit group
QRIim! (t,v,r,ha,g1,h1,w,p,a) instead of the limit group Collapse ExtraPS!.
Since the resolution M GQRes is not of maximal complexity, by applying
Theorem 4.18 in [S5], in analyzing the limit group QRlim’ we need to con-
sider only those resolutions in its multi-graded (taut) Makanin—Razborov
diagram that are not of maximal possible complexity, in addition to cer-
tain closures of maximal complexity resolutions that are themselves not of
maximal complexity (see Theorem 4.18 in [S5]).

Hence, for the rest of this part of the procedure we may assume that
the subgroup generated by (r, ha, g1, h1,w, p, a) in the limit group associated
with GQRes;(r, ha, g1, h1,w,p, a) is isomorphic to Q%(r, ho,g1,hi,w,p,a).

Let TMGQRes be a one-step resolution corresponding to the top level
of the multi-graded resolution M GQRes. Let CResj(r, ha, g1, h1,w,p,a) be
the graded resolution obtained from the resolution induced by the subgroup
(r,h2,91,h1,w,p,a) from the core, MGCore({r,ha,g1,h1,w,p,a), TMGQRes)
followed by the graded resolution GQRes;(r, ha, g1, h1,w,p,a). Note that
the subgroup generated by (r, hs,g1,h1,w,p,a) in the limit group corre-
sponding to CRes;(r,ha,91,h1,w,p,a) is isomorphic to Q' (r,ha,g1,h1,w,p,a).

We now treat each of the graded resolutions GQRes; and their asso-
ciated resolutions, C'Res;, in parallel. Let PB?(by,p,a) be the terminal
rigid or solid limit group of the graded resolution GQRes; (which is also
the terminal rigid or solid limit group of its associated resolution C'Res;).

The graded resolution CRes;(r, ha, g1, h1,w,p, a) is composed from the
resolution induced by the subgroup (r, ha, g1, h1, w, p, a) from the core of the
multi-graded resolution TM G'(Q)Res followed by the resolution GQRes;. In
particular, with every QQH vertex group in a graded abelian decomposition
associated with one of the levels of the graded resolution C'Res;, we can
naturally associate either a QH vertex group in an abelian decomposition
associated with one of the levels of GQRes;j, or a finite index subgroup of
a QH vertex group in the abelian decomposition associated with (the core
resolution of) the multi-graded resolution TMGQRes. Therefore, with
each QH vertex group of CRes; we can naturally associate a modular
group, which is the modular group of the QH vertex group in GQRes; or
TMGQRes it is associated with. This assignment of modular groups to
the QH vertex groups of C'Res; naturally extends to (reduced) modular
groups associated with each of the levels of the resolution C'Res;.

With the graded resolution C'Res;, equipped with these reduced mod-
ular groups, we associate a finite collection of framed resolutions.
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DEFINITION 5. Let Res(y,p,a) be a well-structured, complete graded res-
olution with reduced modular groups. By construction, with each QH
vertex group ) in one of the levels of Res(y,p,a), there is an associated
QH subgroup @', so that Q embeds into @)’ as a subgroup of finite index.
Let (yo, po,a) be a specialization that factors through the graded resolution
Res(y, p,a) with its reduced modular groups, let Q) be a QH subgroup in an
abelian decomposition associated with one of the levels of Res(y,p,a), and
let ' be the QH subgroup that contains @Q as a subgroup of finite index.
The specialization (yo, po,a) naturally gives rise to a specialization of the
QH vertex @, that may be extended to some subgroup Q, Q< Q < Q.

Let Q1,...,Q¢ be the collection of QH subgroups associated with the
various levels of Res(y, p,a), and let Q}, ..., Q) be the subgroups containing
them as subgroups of finite index. Let Ql, - Qg be subgroups for which
Qi< 0Q; < Q;, for every i, 1 <1i < £. We say that the collection Q1,...,Qy
is a frame for a specialization (yo,po,a), if the specialization (yg,pg,a)
extends to the SubgAroups Ql, N Qg, but not to any subgroup Q; < Q. that
properly contains Q;, for any i, 1 <1 < £. We denote the extension of the
specialization (yo, po,a) to the subgroups Q1,...,0u, (go, Yo, po,a), and say
that it is a framed specialization (with respect to the frame Q... ,Qg).
We say that a test sequence that factors through Res(y,p,a) (where a
test sequence is with respect to the reduced modular groups associated
with Res(y,p,a)) is framed with respect to the frame Q1,...,Qy, if each
specialization in the test sequence is framed with respect to the given frame.

Clearly, there are finitely many frames associated with the graded reso-
lution Res(y, p,a). Fixing a frame Q1,...,Qy associated with the resolution
Res(y, p,a), we look at the collection of framed test sequences associated
with it. By the techniques presented in [S2], the entire collection of framed
test sequences with respect to the given frame Q1,...,Qq, factor through
a (canonical) finite collection of graded resolutions obtained from closures
of the graded resolution Res(y,p,a) by enlarging each of the subgroups @Q;
to be Q;, and for each QH vertex group Q; its image in the lower lev-
els of the corresponding closure of the resolution Res(y,p,a). We call the
(finite) collection of the graded resolutions obtained from the entire collec-
tion of framed test sequences with respect to all possible frames, framed
resolutions associated with the resolution Res(y,p,a). With each framed
resolution we naturally associate its frame.

With the graded resolution CRes;(r, hg,g1,h1,w,p,a) we have asso-
ciated reduced modular groups. Hence, with C'Res; we can associate a
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(canonical) finite collection of framed resolutions. We treat the framed reso-
lutions associated with C'Res; in parallel. Let FrmCRes(q,r,h2,91,h1,w,p,0)
be such a framed resolution. The top part of FrmC Res corresponds to
the (core of the) multi-graded resolution 7'M GQRes, and its bottom part
corresponds to the various levels in the resolution GQRes;. If the limit
group associated with the top level of GQRes; in the framed resolution
FrmCRes is a proper quotient of the limit group @3, we replace the
framed resolution FrmCRes by starting part (2) of the first step, with
the graded resolution obtained from T'M GQRes by replacing its terminal
limit group Q3(t,v,r, ha,g1,h1,w,p,a) with the finite collection of maxi-
mal limit groups obtained from all specializations that factor through both
Q3(t,v,7,ha,91,h1,w,p,a) and the subgroup generated by (r,hs,g1,h1,w,p,a)
in the limit group associated with the top level of GQRes; in the framed
resolution F'rmC Res. Hence, for the continuation we may assume that the
limit group associated with the top level of GQRes; in the framed resolu-
tion FrmC Res is isomorphic to the limit group Q1 (r, ha, g1, h1,w,p, a).

The framed resolution FrmCRes is a well-separated resolution with re-
duced modular groups. Still, the techniques presented in section 1 of [S2],
that generalize Merzlyakov theorem on the existence of formal solutions
to AE sentences defined over an arbitrary variety and over well-structured
resolutions [S2, 1.18], and use test sequences extensively, generalize from
ordinary (well-structured) resolutions to (well-structured) resolutions with
reduced modular groups, assuming these resolutions are framed. These
are the techniques that enabled us to construct the various bundles asso-
ciated with the PS resolution, PSHGH Res, and start the first step of
the sieve procedure. Hence, we are able to repeat the construction of the
bundles associated with the PS resolution PSHGH Res we started the
sieve procedure with, and associate with the framed resolution F'rmC Res
a (canonical) finite collection of Non-Rigid and Non-Solid PS resolutions,
a collection of Left and Root PS resolutions, Extra PS resolutions, and
Generic collapse extra PS resolutions.

If every test sequence that factors through one of the Extra PS resolu-
tions associated with the framed resolution FrmC Res(q,r,ho,91,h1,w,p,a),
factors through a framed resolution with a bigger frame than the one asso-
ciated with the framed resolution FrmCRes(q,r, he, g1, h1,w,p,a), we ex-
clude this Extra P.S resolution from the finite collection of Extra P.S resolu-
tions associated with the framed resolution FrmCRes(q,r,h2,91,h1,w,p,a).

At this point we go over the Extra PS resolutions associated with
the framed resolutions FrmC Res, and with each Extra PS resolution we
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associate a developing resolution, and a finite collection of anvils, in a sim-
ilar way to what we did in constructing the tree of stratified sets in the
second section of [S5].

Let ExtraPSRes be one of the Extra PS resolutions associated with
one of the framed resolutions FrmCRes. With ExtraPSRes we asso-
ciate a developing resolution, that is set to be the Extra PS resolution
ExtraPSRes. We denote the developing resolution, Dvip(MGQRes). We
further set the anvils associated with the developing resolution to be the
(canonical) finite set of maximal limit quotients of the group obtained as
the amalgamated product of the completion of the developing resolution
and the completion of the one-step multi-graded resolution, TM GQ Res,
that corresponds to the top level of the multi-graded resolution M GQ Res,
amalgamated along the top part of the developing resolution, which was set
to be the resolution induced by the subgroup (r, ho, g1, h1,w, p, a) from the
top level of M GQRes, enlarged by replacing the subgroup associated with
the bottom level in the induced resolution with Q1(r, ho, g1, h1,w,p,a). We
denote each of the (finitely many) anvils, Anv(M GQRes). Note that the
completion of the developing resolution, Dvlp(MGQRes), is canonically
mapped into the anvil, Anv(MGQRes).

With each of the Extra PS resolutions (developing resolutions) asso-
ciated with the framed resolution, FrmCRes, we associate finitely many
collapse forms (see Lemma 2). As in our treatment of the graded PS
resolutions, PSHGH Resj, we started this procedure with, if a valid PS
statement can be extended to a specialization that factors through the
multi-graded resolution M GQ Res, then either there exists “generic” valid
PS statement, i.e. a test sequence of specializations that factor through one
of the framed resolutions, F'rmC Res, and restrict to valid PS statements,
or there exists a valid PS statement that can be extended to a specialization
that factors through one of the associated anvils, Anv(MGQRes), and it
satisfies the Diophantine conditions specified by one of the collapse forms
associated with the corresponding Extra PS resolution.

LEMMA 6. Suppose that for a specialization pg of the defining parameters p,
there exists a valid PS statement that can be extended to a specialization
that factors through the multi-graded resolution, M GQRes:

(ta v, T, (h%a g%)a R (hz(ps)’gi(ps))7 hb w, po, a) .
Then at least one of the following holds:

(1) There exists a test sequence of specializations that factor through one
of the framed resolutions associated with M GQRes, FrmC Res, and
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for which the specializations of the defining parameters are all py,
so that the specializations in the test sequence restrict to valid PS
statements.

(2) The valid PS statement can be extended to a specialization that
factors through one of the associated anvils, Anv(MGQRes), and
satisfies the Diophantine conditions imposed by one of the collapse
forms associated with the corresponding Extra PS resolution.

Proof. Similar to the proof of Theorems 3.6 and 1.33 in [S5]. o

As in our treatment of the PS resolutions PSHGH Res, at this point
we analyze the set of specializations of the defining parameters P = (p) for
which there exists a test sequence of specializations that factor through one
of the framed resolutions, FrmC Res, and restrict to valid PS statements.

PROPOSITION 7. Let TSPS(p) be the set of specializations py of the defin-
ing parameters P = (p), for which there exists a test sequence of special-
izations that factor through one of the framed resolutions, FrmC Res, and
restrict to valid PS statements. Then TSPS(p) is in the Boolean algebra
of AFE sets.

Proof. Identical to the proof of Propositions 3.7 and 1.34 in [S5]. o

By Lemma 6 and Proposition 7, given an Extra PS resolution asso-
ciated with the framed resolution F'rmC Res, one of its associated anvils,
Anv(MGQRes), and one of its associated collapse forms, we need to con-
tinue only with specializations that factor through the anvil, and satisfy
the Diophantine conditions imposed by the collapse form, i.e. with each
anvil and a collapse form, we need to associate a finite collection of collapse
Extra PS limit groups. In order to construct these collapse Extra PS limit
groups from the given set of anvils and collapse forms, we first need to as-
sociate a canonical collection of auxiliary resolutions and limit groups with
the anvil (see Definition 1).

DEFINITION 8 (cf. Definition 2.6 in [S5]). Recall that the developing res-
olution, which is always an Extra PS resolution, has the structure of a
completed resolution, and the subgroup associated with each level of the
developing resolution is naturally mapped into the subgroup associated
with the corresponding level in the anvil, Anv(MGQRes).

With the anvil, Anv(MGQRes), we associate a taut multi-graded
Makanin-Razborov diagram of the limit group associated with the tower
that contains all the levels up to level 2, with respect to the non-QH, non-
abelian vertex groups and edge groups in the (given) multi-graded abelian
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decomposition associated with the limit group that appears in the top level
of the anvil, Anv(MGQRes).

Similarly, with each level i in the anvil, we associate a multi-graded taut
Makanin—Razborov diagram of the limit group associated with the tower
that contains all the levels up to level i + 1, The multi-graded diagram is
multi-graded with respect to the non-QH, non-abelian vertex groups and
edge groups in the (given) multi-graded abelian decomposition associated
with the limit group that appears in the i-th level in the anvil.

We call each of the resolutions in these multi-graded diagrams a (multi-
graded) auxiliary resolution, and its terminating solid or rigid limit group
a (multi-graded) auxiliary limit group, which we denote Auz(MGQRes).
With each auxiliary resolution we associate its modular groups, that we call
auxiliary modular groups. In the sequel, we call the auxiliary resolutions
associated with the tower containing all the levels up to level 2 (all the
levels except the top level), highest level.

Since an auxiliary limit group is associated with the limit groups that
appear in all the levels of the anvil up to level i + 1, and it is multi-graded
with respect to the non-abelian, non-QQH vertex groups and edge groups
in the abelian decomposition associated with the i-th limit group, it can
be naturally extended to the limit group associated with the (ambient)
anvil, by sequentially adding to the auxiliary limit group the limit groups
that appear in level i and above, according to the (tower-like) structure
of the anvil. We call the obtained limit group (which is a quotient of
the anvil), the extended auxiliary limit group. By construction, the anvil,
Anv(MGQRes), the developing resolution, as well as the original PS limit
group, PSHGH, are mapped into the extended auxiliary limit group.

By construction, the multi-graded auxiliary resolution that terminates
in the auxiliary limit group, extends to the graded extended auxiliary reso-
lution that terminates in the extended auxiliary limit group, and is graded
with respect to the subgroup generated by all the limit groups associated
with levels 1 down to level i in ExtraPS Res.

QH and abelian vertex groups in the abelian decomposition associated
with the limit group, Aux(ExtraPSRes), that is associated with the Extra
PS resolution, ExtraPSRes, we started the first step with, are considered
“formal” along the analysis of a Collapse extra PS limit group, i.e. it is
possible to act on them with their modular group and still get a specializa-
tion that factors through the corresponding Collapse extra PS limit group.
When we construct the auxiliary resolution and modular groups associated
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with an anvil, the QH and abelian vertex groups associated with both the
previous auxiliary limit group and the newly constructed one are considered
“formal” in the same way.

Since the construction of the Collapse extra PS limit groups, from the
(extended) auxiliary limit groups and the collapse forms, does not depend
on the part of the first step in which the anvil was constructed, we present
the (uniform) construction of the Collapse extra PS limit groups at the
end of the first step of the procedure, after going through all the various
cases that we need to analyze.

So far we have assumed that Q3(r, ho,g1,h1,w,p,a) is a proper quo-
tient of Q' (r, ho, g1, h1,w,p,a). Suppose that Q1 (r, ha, g1, h1,w, p, a) is iso-
morphic to Q'(r, ha, g1, h1,w,p,a). In this case we continue to the next
level of the multi-graded quotient resolution MGQ@Res. Note that by
Corollary 4.16 in [S5], since the multi-graded resolution M GQRes is not
of maximal complexity, the (multi-graded) core associated with each of
its levels is not of maximal complexity as well. If, for some level j of
the multi-graded resolution M GQRes, the image of Q'(r, he, g1, h1,w,p, a)
in the limit group associated with this level, le-(r, ho,g1,h1,w,p,a), is a
proper quotient of Q'(r,ha,91,h1,w,p,a), then from the highest such level j,
we can continue as in case Q3(r,hs,g1,h1,w,p,a) is a proper quotient
of Q'(r,ha,g1,h1,w,p,a), and associate with the multi-graded resolution
MGQRes a finite collection of resolutions composed from the resolution
induced by the subgroup (r, ha, g1, h1,w,p,a) from the top j levels of the
multi-graded resolution MG Q) Res, followed by each of the various resolu-
tions in the taut graded Makanin—Razborov diagram of le- (r,ho,g91,h1,w,p,a).
With each such resolution, we (canonically) associate a finite collection of
framed resolutions, and with each framed resolution, a canonical collection
of Non-Rigid and Non-Solid PS resolutions, a collection of Root and Left
PS resolutions, Extra PS resolutions, and Generic collapse extra P.S reso-
lutions. We set each the Extra P.S resolutions to be a developing resolution,
and with it we associate a (canonical) finite collection of anvils and aux-
iliary resolutions, precisely as we did in case Q%(r, ho,g1,hi1,w,p,a) is a
proper quotient of Q!(r, ha, g1, h1,w,p, a).

Finally, suppose that for every level j, the image of Q' (r,ha,91,h1,w,p,a)
in the limit group associated with the j-th level of the multi-graded resolu-
tion M GQRes, Q}(T,hg,gl,hl,w,p,a), is isomorphic to Q*(r,ha,91,h1,w,p,a).
In this case, by Proposition 3, the terminal limit group of the multi-graded
resolution MGQRes, Qi (t,v,7, ho, g1, h1,w,p,a), is rigid or solid with
respect to the parameter subgroup P = (p).
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Let PB'(b1,p,a) be the terminal rigid or solid limit group of the graded
resolution MGQRes. We set the graded resolution C Res(r,ho,g1,h1,w,p,a),
to be the resolution induced by the subgroup generated by (r,ho,91,h1,w,p,a)
from the sequence of core resolutions associated with the various levels of
the resolution M GQRes, enlarged by setting its terminal limit group to be
(the rigid or solid limit group) PB* (b1, p,a) (i.e. we amalgamate the termi-
nal limit group of the corresponding induced resolution with the subgroup
PB(b,p,a)).

With the graded resolution C'Res(r, ha, g1, h1,w,p,a) we associate a fi-
nite (canonical) collection of framed resolutions (see Definition 5). With
each of the framed resolutions associated with CRes(r, ha, g1, h1,w,p,a),
we associate a (canonical) finite collection of Non-Rigid and Non-Solid PS
resolutions, a collection of Root and Left PS resolutions, Extra PS reso-
lutions, and Generic collapse extra PS resolutions. If every test sequence
that factors through an Extra PS resolution associated with the framed
resolution FrmC Res, factors through a framed resolution with a bigger
frame than the one associated with the framed resolution FrmC Res, we
exclude this Extra PSS resolution from the finite collection of P.S resolutions
associated with the framed resolution FrmC Res.

We set each of the Extra PS resolutions associated with one of
the framed resolution F'rmC Res to be a developing resolution, and with
each such developing resolution we associate a (canonical) finite collec-
tion of anvils, that we denote Anv(MGQRes), precisely as we did in
case Q3(r, ha,g1,h1,w,p,a) is a proper quotient of Q*(r, ha, g1, h1,w,p,a).
Note, once again, that by construction the developing resolution is natu-
rally mapped into the anvil. Finally, with each anvil we associate a finite
collection of auxiliary resolutions according to the construction presented
in Definition 8.

(3) By part (1) we may assume that Q'(r, he, g1, h1,w, p,a) is isomorphic
to the PS limit group PSHGH we started the first step with. part (2)
treats the case in which the multi-graded core of the multi-graded resolution
MGQRes is not of maximal possible complexity. Hence, the only case left in
presenting the first step of our procedure is the case of a multi-graded core,
MGCore({r,ha,g1,h1,w,p,a), MGQRes) of maximal possible complexity.
In this case, by Theorem 4.12 in [S5], the maximal complexity graded core
has the same structure as the graded abelian decomposition associated with
the top level of the Extra PS resolution, ExtraPS Res, we started the first
step with.
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Conceptually we start the treatment of this case in a similar way to
what we did in the first step of the construction of the tree of stratified
sets, i.e. we continue to lower levels of the anvil and analyze it in a similar
way to what we did with the top level. In parts (1) and (2), we analyzed
multi-graded resolutions, M GQ Res, of the Collapse extra PS limit group,
CollapseExtraPS", that is associated with a collapse form and with an
auxiliary resolution of highest level, i.e. an auxiliary resolution associated
with the tower containing all the levels in the associated Extra PS resolu-
tion up to level 2 (all levels except the top level).

An auxiliary resolution of highest level (Definition 1) is a multi-graded
resolution of the subgroup of the Extra PS resolution (associated with the
PS resolution PSHGH Res we started this branch of the procedure with),
that is associated with all its levels except the top one, with respect to the
subgroups which are the non-abelian, non-QQ H vertex groups in the graded
abelian decomposition of Q' (r, ha, g1, h1,w,p,a). Hence, such a resolution
can be extended to a graded resolution of the limit group associated with
the entire Extra PS resolution, ExtraPS Res, with respect to the subgroup
associated with the top level. In the same way, an auxiliary resolution
associated with all the levels up to level 3, can be extended to a graded
resolution of the limit group associated with the entire Extra PS resolution,
with respect to the subgroup associated with the top two levels of it.

Let (u,v,r, ha, g1, h1,w,p,a) be a specialization of the Extra P.S resolu-
tion, FxtraPSRes, and suppose that it can be extended to a specialization
that satisfies the Diophantine conditions imposed by the given collapse form
(associated with the Collapse extra PS limit group we started this branch
with). If in addition, for every Collapse extra PS limit group that is as-
sociated with the given collapse form, and with an auxiliary resolutions of
highest level, through which such a specialization factors, it factors only
through quotient resolutions of maximal complexity of that Collapse extra
collapse PS limit group, then by Theorem 4.18 in [S5], the specialization
of the Extra PS resolution can be extended to specializations that factor
through quotient resolutions of (top part) maximal complexity of Collapse
extra PS limit groups associated with the same collapse form and with
auxiliary resolutions that are associated with all the levels up to level 3.
Therefore, to analyze such specializations, we can replace the maximal
complexity quotient resolutions, M GQ Res, associated with auxiliary reso-
lutions of highest level, with (top part) maximal complexity resolutions of
Collapse extra PS limit groups, that are associated with the same collapse
form, and with auxiliary resolutions that are associated with all the levels
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up to level 3. Furthermore, by Theorem 4.19 in [S5], we can further assume
that the maximal complexity resolutions associated with auxiliary resolu-
tions that are associated with all the levels up to level 3, are composed from
two parts, the top being multi-graded with respect to the formed part of the
core resolution, and the bottom being a one step-resolution corresponding
to the formed part of the core resolution (see Theorem 4.19 in [S5]).

Hence, to analyze maximal complexity multi-graded resolutions, we first
replace the Collapse extra PS limit groups associated with the given col-
lapse form and with auxiliary resolutions of highest level, by those Collapse
extra PS limit groups associated with the Extra PS resolution, the given
collapse form, and with auxiliary resolutions that are associated with tow-
ers containing all the levels up to level 3, i.e. all the levels except the top
two. We continue with those Collapse extra PS limit groups in parallel,
hence, we will omit their index, and (still) denote the Collapse extra PS
limit group we continue with, Collapse ExtraPS".

We start with the multi-graded taut Makanin—-Razborov diagram of
the Collapse extra PS limit group, CollapseExtraPS', with respect to

1,1 11 1,1
the subgroups, Basey)y, . .., Base,’ 1, where the subgroups Basey;, 1 <
) yU1 )

j < v}, are the non-QH, non-abelian vertex groups in the graded abelian
decomposition associated with the top level of the Extra PS resolution,
EzxtraPSRes. We still denote these multi-graded resolutions M GQRes.

Since in this part we need to analyze specializations that factor through
and are taut with respect to maximal complexity multi-graded resolutions
of Collapse extra PS limit groups associated with auxiliary resolutions of
highest level, as we have already explained, we can continue only with
those multi-graded resolutions in the taut Makanin—-Razborov diagram of
CollapseExtraPS' that are of maximal complexity, i.e. with a core that
has the same structure as the abelian decomposition associated with the
the top level of the Extra PS resolution, FxtraPSRes.

If part (1) applies to such a multi-graded resolution M GQRes, i.e.
if the limit group generated by (r, he,g1,h1,w,p,a) in its completion is
a proper quotient of the subgroup Q'(r, ho, g1, h1,w,p,a) we started this
branch of the procedure with, we replace this resolution M GQRes, by
starting the first step of the procedure with the given proper quotient of
Q' (r,h2, 91, h1,w,p,a).

In case the multi-graded resolution M GQ Res is of maximal complexity,
i.e. the core has the same structure as the abelian decomposition associated
with the top level of ExtraPSRes, we use the modular groups associ-
ated with the abelian decomposition associated with the formed part of
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MGQRes to map the subgroup Q'(r,ha,g1,h1,w,p,a) into its image in

the second level of ExtraPSRes, that is mapped into Collapse ExtraPS?.

We now set the subgroups Baseé’%,...,Base;’;1 to be the subgroups of
) Uy

ExtraPSRes, corresponding to the non-abelian, non-QQ H vertex groups in
the abelian decomposition associated with its second level (alternatively,
the factors in the given free decomposition of the auxiliary limit group).

At this point we analyze the terminal limit group of the multi-graded
resolution, MG Res, associated with the top level of ExtraPSRes, with

respect to the subgroups Baseé’%, ... ,Basei’;, exactly as we analyzed the
bl b1

collapse Extra PS limit group, CollapseExtraPS', with respect to the
subgroups Base;ﬁ, ... ,Base;’qul in parts (1) and (2), i.e. we associate with
the terminal limit group of MIGQRes all its multi-graded quotient reso-
lutions with respect to the subgroups, Baseéj,...,Base;’ji that are its

subgroups, and analyze each of the obtained multi-graded quotient resolu-
tions according to parts (1) to (the first part of) (3). If the multi-graded
core of such a multi-graded resolution is of maximal possible complexity,
and its associated taut structure is identical to the one associated with the
second level of ExtraPSRes, i.e. if part (3) applies to an obtained quo-
tient multi-graded resolution, we continue in a similar way to our approach
in analyzing multi-graded resolutions that their top level is of maximal
complexity.

To analyze multi-graded resolutions that are of maximal complexity
in their top two levels, we replace the collapse Extra PS limit groups,
and analyze collapse Extra PS limit groups associated with the Extra PS
resolution, FrtraPSRes, and with auxiliary resolutions that are associated
with towers containing all the levels up to level 4, i.e. all the levels apart
from the top three.

Given such a quotient limit group, we start with its multi-graded
taut Makanin—-Razborov diagram with respect to the subgroups,
Base;:i, . ,Base;’il. We continue only with resolutions in this diagram
that are of maxirﬁzlll complexity and their taut structure is compatible
with that of the top level of EztraPSRes. We look at the multi-graded
taut Makanin—Razborov diagram of the terminal limit group of such max-
imal complexity multi-graded resolutions with respect to the subgroups
Baseéj,...,Baseé’ll (where the subgroups Baseé:} are the non-QH,
non-abelian vertex 1glroups in the abelian decomposition associated with
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the second level of ExtraPSRes). Again, we continue only with resolu-
tions that are of maximal complexity, and the taut structure associated
with their core is identical to the taut structure associated with the second
level of ExtraPSRes.

We continue with the terminal limit groups of the obtained multi-graded
resolutions (that are assumed to be with maximal complexity cores in their
top two parts, and with compatible taut structures). We set the subgroups
Base}d, . ,Basei’il to be the subgroups of limit groups associated with
ExtraPSRes, corr,eslponding to the non-abelian, non-Q H vertex groups in
the abelian decomposition associated with the third level of ExtraPSRes
(alternatively, the factors in the given free decomposition of the auxil-
iary limit group). At this point we analyze the terminal limit group of
a maximal complexity resolution (in its top two parts) with respect to

the subgroups Base}l’i, ... ,Base}l’il exactly as we analyzed the Collapse
) 1
extra PS limit group, CollapseExtraPS", with respect to the subgroups
Baseé’i, e ,Base;’il, i.e. we associate with the terminal limit group all its
) sV
multi-graded quotient resolutions with respect to the subgroups,
Base}l’%, . ,Basei’il ,
) 3T

that are its subgroups, and analyze each of the obtained multi-graded quo-
tient resolutions according to parts (1) to (the first part of) (3).

If the core of a multi-graded resolution with respect to the subgroups,
Base}d, e ,Baselll’i% is of maximal possible complexity, and its associated

taut structure is identical to the one associated with the third level of
EzxtraPSRes, we continue to the next levels of ExtraPSRes precisely in
the same way. At each level ¢, we consider the Collapse extra PS limit
groups associated with the given collapse form and with auxiliary resolu-
tions that are associated with the tower containing all the levels up to level
i+ 1. Then we analyze the taut Makanin—-Razborov diagrams of the limit
groups associated with the various levels (from level 1 to level i — 1), and
continue only with those resolutions that are of maximal complexity in all
these levels, and the taut structures associated with their core resolutions
are identical to those associated with the corresponding levels of the Ex-
tra PS resolution, ExtraPSRes. Finally we analyze the resolutions in the
taut Makanin—-Razborov diagram associated with the i-th level according
to parts (1), (2), or (the first part of) (3), and continue iteratively.

Let MGQRes be a multi-graded resolution obtained by the above it-
erative procedure. Suppose that there exists a level for which one of the
parts (1)—(2) applies. We first construct a resolution composed from the
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resolution induced by the subgroup (r, he, g1, h1,w,p, a) from the parts of
the resolution M GQRes above the level for which part (1) or (2) applies
(i.e. the parts that are of maximal complexity), followed by the graded res-
olution constructed at that level according to part (1) or (2) (note that the
obtained resolution is graded with respect to the parameter subgroup (p)).
With the obtained graded resolution we associate a canonical finite collec-
tion of framed resolutions (see Definition 5). With each framed resolution
we associate a finite collection of Non-Rigid, Non-Solid, Root and Left PS
resolutions, and a finite collection of Extra PS resolutions, and Generic
collapse extra PS resolutions, precisely as we did in part (2). We continue
only with Extra PS resolutions that are not “covered” by framed resolu-
tions with a bigger frame. Finally, we set each of the Extra PS resolutions
to be a developing resolution, and with it we associate a finite collection
of anvils (still denoted Anv(MGQRes)), and with each anvil we associate
a finite collection of auxiliary resolutions and limit groups, precisely as we
did in part (2) (Definition 8). Note that when a multi-graded resolution
(which is a part of the resolution M GQRes) is of maximal complexity, an
auxiliary resolution is associated only with its terminal level, and not with
each of the intermediate levels along the multi-graded resolution.

(4) Suppose that there exists a sequence of multi-graded core resolutions
of the multi-graded resolutions constructed by the process described in
part (3), that are all of maximal complexity, i.e. each of these multi-graded
core resolutions has the same structure (and taut structure) as the graded
abelian decomposition associated with the corresponding level of the Extra
PS resolution, FxtraPSRes, we started the first step of the procedure
with. Such sequences of multi-graded resolutions were not treated in parts
(1)-3).

Recall that by Theorem 4.18 of [S5], given a one level (well-separated)
resolution, Res, and two Diophantine sets D; C D5 that are both con-
tained in the Diophantine set associated with the completion of the one
level resolution, Comp(Res), the Diophantine sets associated with maxi-
mal complexity resolutions associated with (the smaller Diophantine set)
Dq are contained in the union of the Diophantine sets associated with
maximal complexity resolutions that are associated with (the bigger Dio-
phantine set) D,. However, although this “covering” property holds for
the Diophantine sets associated with maximal complexity resolutions, it
doesn’t seem to be necessarily true for the modular blocks associated with
these maximal complexity resolutions.
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The construction of the core resolution, the induced resolution, and the
complexity of a resolution, use the structure of the resolution (or its asso-
ciated modular block) and its taut structure in an essential way, and not
just the structure of the Diophantine set associated with the resolution.
For this reason, in order to analyze the specializations that factor through
resolutions obtained from a sequence of multi-graded resolutions with max-
imal complexity cores, we enlarge the set of resolutions (hence, the set of
specializations) that we are going to analyze.

We start the analysis with the collection of Collapse extra PS limit
groups obtained from the Extra PS resolution, EztraPSRes (and not with
any of its associated auxiliary limit groups), and its (finitely many) asso-
ciated collapse forms. We still denote each of the obtained Collapse extra
PS limit groups, CollapseExtraPS!.

We first analyze the Collapse extra P.S limit groups CollapseExtraPS?,
using an iterative process which is similar to the one used in part (3). We
start with the multi-graded taut Makanin-Razborov diagram of the Col-
lapse extra PS limit group, CollapseExtraPS", with respect to the sub-
groups, Base%;}, . ,Baseé’il, where the subgroups Base%j, 1 <j<wi, are
the non-Q)H, non-abelian x’/elrtex groups in the graded abelian decomposi-
tion associated with the top level of the Extra PS resolution, FxtraPS Res,
and with respect to the formed part of the abelian decomposition associated
with the top level of FxtraPSRes (i.e. the collection of abelian and QH
vertex groups that appear in the abelian decomposition associated with
the top level of ExtraPSRes). We proceed with the multi-graded taut
Makanin—Razborov diagram of the terminal (rigid or solid) limit group
with respect to the subgroups, Baseéﬁ,...,Base;’il. We continue only
with those multi-graded resolutions in the second tz;ult Makanin—Razborov
diagram that are of maximal possible complexity, i.e. those resolutions that
are one level and have the same structure, and the same taut structure, as
the formed part of the abelian decomposition associated with the top level
of ExtraPSRes. We (still) denote these (two parts) multi-graded resolu-
tions, for which the second part is one level and has the same structure as
the formed part of the abelian decomposition associated with the top level
of ExtraPSRes, MGQRes. We further use the modular groups associated
with the formed part of the top level of ExtraPSRes, to map the subgroup
associated with this formed part in the resolution M GQ Res, onto its image
in the subgroup associated with the second level of ExtraPSRes.

We proceed iteratively to the next levels. At each level 4, we start with
the terminal limit group of the resolution obtained from the top i —1 levels,
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with respect to the subgroups, Base;’&l Ioe-e ,BaseL1 1, where the sub-
) ’L+1,t1
groups, Base;’_l1 p1<7< t1, are the non-QH, non-abelian vertex groups

in the graded abelian decomposition associated with the i-th level of the
Extra PS resolution, ExtraPSRes, and with respect to the formed part
of the abelian decomposition associated with the i-th level of ExtraPS Res
(i.e. the collection of abelian and QH vertex groups that appear in the
abelian decomposition associated with the i-th level of EztraPSRes). We
proceed with the multi-graded taut Makanin—-Razborov diagram of the ter-
minal (rigid or solid) limit group with respect to the subgroups,
Base}fl’l, eee ,Base;’_lL it We continue only with those multi-graded reso-
lutions in the second taut Makanin—Razborov diagram that are of maximal
possible complexity, i.e. those resolutions that are one level and have the
same structure, and the same taut structure as the formed part of the
abelian decomposition associated with the ¢-th level of ExtraPSRes. We
(still) denote the resolutions obtained from the top i levels, M GQRes. We
further use the modular groups associated with the formed part of the i-th
level of ExtraPSRes, to map the subgroup associated with this formed
part in the resolution M GQ)Res, onto its image in the subgroup associated
with the ¢ 4+ 1 level of ExtraPSRes.

Let MGQRes be a multi-graded resolution obtained by the above iter-
ative procedure. With each part of the resolution M GQ Res, we associate
its core resolution with respect to the subgroup (r, ho, g1, h1,w,p,a). By
Theorem 4.13 in [S5], either there exists a part in which the complex-
ity of its associated core resolution is strictly smaller than the complexity
of the abelian decomposition associated with the corresponding level in
EzxiraPSRes, and the complexities of all the core resolutions associated
with the parts above it are identical to the complexities of the abelian de-
compositions associated with the corresponding levels of ExtraPSRes, or
the complexities of the core resolutions associated with the various parts
are identical to the complexities of the abelian decompositions associated
with the various levels of ExtraPSRes, and the structures of these core
resolutions are similar to the structures of the corresponding abelian de-
compositions in EztraPSRes (see Definition 4.12 in [S5] for the complexity
of a core resolution).

Suppose that there exists a part for which the complexity of the as-
sociated core is strictly smaller than the complexity of the corresponding
abelian decomposition in EzxtraPSRes. We set GRes to be the comple-
tion of the graded resolution composed from the sequence of multi-graded



34 Z. SELA GAFA

resolutions, M GQRes, constructed by the above iterative procedure. Note
that GRes is graded with respect to the parameter subgroup P = (p). We
set SCRes(s,r,ha,g1,h1,w,p,a) to be the image of the Extra PS resolu-
tion, ExtraPSRes, in the resolution G Res.

With each multi-graded resolution M GQ Res associated with a part of
GRes, we associate its core resolution with respect to (the corresponding
image of) the subgroup (r;h2,91,h1,w,p,a), MGCore((r;ha,91,h1,w,p,a),GRes).
We further replace each of these core resolutions with the corresponding
penetrated core resolutions (see Definition 4.20 in [S5]). Note that by con-
struction, the original core resolutions are embedded into the corres-
ponding penetrated core resolutions. We set the graded resolution
PenSCRes(u,r, ha, g1, h1,w,p,a) to be the resolution composed from the
resolutions induced by the subgroup (r, ho, g1, h1,w,p,a) from the pene-
trated core resolutions associated in the various levels with the subgroup
(ryho, g1, h1,w,p,a).

With the resolution PenSC Res we associate a finite collection of framed
resolutions, and with each framed resolution we associate a (canonical)
finite collection of Non-Rigid, Non-Solid, Root and Left PS resolutions,
and a finite collection of Extra PS resolutions, and Generic collapse extra
PS resolutions, precisely as we associated those with the PS resolution
PSHGH Res we started the first step of the procedure with. We fur-
ther associate with each framed resolution the graded resolution SCRes,
which we denote SC’Res}’l(sl, r,h2, 91, h1,w,p,a) and call the first sculpted
resolution (of width 1), and SC’Res%Q(sl,r, ho,g1,h1,w,p,a), and call the
first sculpted resolution (of width 2). We set each of the Extra PS reso-
lutions to be both a developing resolution, and a penetrated sculpted reso-
lution, which we denote PenSCRes%’Q(ul,r, h2,91,h1,w,p,a), and with it
we associate a finite collection of anvils, that are set to be the finite col-
lection of maximal limit groups associated with an amalgamation of the
resolution GRes with the Extra PS resolution (the developing resolution).
Finally, we associate with the anvil the resolution G Res and its associated
sequence of core and penetrated core resolutions, associated with the sub-
group (r, ha, g1, h1,w,p,a) and constructed in the various parts, which we
call a Carrier, and denote it Carrier] (the top index refers to the step
number and the bottom index refers to the width, which is the index of the
corresponding sequence of core resolutions).

Suppose that the sequence of core resolutions associated with the se-
quence of multi-graded resolutions constructed by the iterative procedure
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presented above, and the subgroup (r, ho, g1, h1,w, p, a), are all of maximal
complexity, i.e. each of these multi-graded core resolutions has the same
structure (and taut structure) as the graded abelian decomposition associ-
ated with the corresponding level of the Extra PS resolution, ExtraPS Res,
we started the first step of the procedure with.

We set SCRes(s,r, ha, g1, h1,w,p,a) to be the graded resolution induced
by the subgroup (r, ho, g1, h1,w, p, a) from the core resolutions of the multi-
graded resolutions constructed along the various levels of the process de-
scribed above.

If every ungraded resolution that factors through the graded resolution
SCRes(s,r,ha,g1,h1,w,p,a), factors through either one of the Non-Rigid,
Non-Solid, Root, Left PS or Generic collapse extra P.S resolutions associ-
ated with the Extra PS resolutions we started the first step of the sieve
procedure with, we do not continue to the next step of the sieve procedure
with the given sequence of multi-graded resolutions we have constructed,
and call them a terminal resolution. If there are ungraded resolutions that
factor through SCRes, but do not factor through any of the Non-Rigid,
Non-Solid, Root or Left PS resolutions or the Generic collapse extra PS
resolutions associated with the Extra PS resolutions we started the first
step of the procedure with; we do the following.

We start by replacing the core resolutions associated with the multi-
graded resolutions constructed in the various levels, and with the subgroup,
(ryh2,91,h1,w,p,a), by the corresponding penetrated core resolutions (see
Definition 4.20 in [S5]). Note that by construction, the original core res-
olutions are embedded into the corresponding penetrated core resolutions.
We set the graded resolution PenSC Res(u,r,ha,g1,h1,w,p,a) to be the
resolution composed from the resolutions induced by the subgroup
(r,yh2,91,h1,w,p,a) from the penetrated core resolutions associated in the
various levels with the subgroup (r,hs,g1,h1,w,p,a). From the corre-
sponding finite sequence of the constructed (maximal complexity) multi-
graded resolutions, M GQRes, we naturally obtain a graded resolution,
GRes(v,r,ha,g1,h1,w,p,a), which is graded with respect to the defining
parameter subgroup P = (p). By construction, the resolution PenSC Res
is embedded into the completion of the graded resolution G Res.

With the graded resolution GRes, we associate a (canonical) finite
collection of Non-Rigid, Non-Solid, Root and Left PS resolutions, and
a finite collection of Extra PS resolutions, and Generic collapse extra
PS resolutions, precisely as we associated those with the PS resolution
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PSHGH Res we started the first step of the procedure with. We set each
of the Extra PS resolutions to be both a developing resolution and its
associated anvil (that we still denote, Anv(MGQRes)). We further asso-
ciate with the anvil (Extra PS resolution) the graded resolution SC Res,
which we call first sculpted resolution (of widths 1 and 2), and denote as
SCRes%’l(s,r, h2,91,h1,w,p,a) and SCRes%ﬂ(s,r, ha,g1,h1,w,p,a), resp.,
and the graded resolution PenSCRes, which we call penetrated sculpted
resolution, and denote PenSCRes}g(u, r,ha, g1, hi,w,p,a).

As in the previous parts of the first step, we still need to associate with
each anvil a finite collection of (extended) auxiliary resolutions. In case
the anvil contains a sculpted resolution, we associate with the anvil two
finite collections of auxiliary resolutions. The first collection is associated
with the various levels of the sculpted resolution. The second collection is
associated with the levels of the developing resolution in case there is no
carrier, and with the levels of the carrier in case it exists. Both auxiliary
resolutions are constructed in a similar way to the constructions presented
in Definitions 8 and 1.

DEFINITION 9 (cf. Definition 8). With the anvil, Anv(MGQRes), we as-
sociate two finite collections of auxiliary resolutions. The first collection is
associated with each level of the sculpted resolution, and is constructed ac-
cording to the construction presented in Definition 8. We call the auxiliary
resolutions that are associated with the levels of the sculpted resolution,
auxiliary resolutions of width 1.

With each level of the anvil (which is the developing resolution in case
there is no carrier, and the carrier otherwise) we further associate aux-
iliary resolutions of width 2. With the anvil we associate a taut multi-
graded Makanin—Razborov diagram of the limit group associated with the
tower that contains all the levels up to level 2. The defining parameters
for the construction of the diagram are taken to be the subgroup gener-
ated by the subgroup P = (p), the non-abelian, non-QH vertex groups
in the abelian decomposition associated with the top level of (the com-
pletion of) the sculpted resolution, and the vertex and edge groups in the
formed part of the abelian decomposition associated with the top level of
the sculpted resolution. Given the defining parameters, the diagram is
multi-graded with respect to the defining parameters, and the non-QH,
non-abelian vertex groups and edge groups in the (given) multi-graded
abelian decomposition associated with the limit group that appears in the
top level of the anvil, Anv(MGQRes), i.e. the Collapse extra PS limit
group, CollapseExtraPS*.
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Similarly, with each level i in the anvil, we associate a multi-graded taut
Makanin—Razborov diagram of the limit group associated with the tower
that contains all the levels up to level ¢ + 1. The defining parameters for
the construction of the diagram are taken to be the subgroup generated
by the subgroup P = (p), the non-abelian, non-QH vertex groups in the
abelian decomposition associated with the corresponding level of (the com-
pletion of) the sculpted resolution (i.e. the top level of the completion of the
sculpted resolution for which its formed part lies in level i or below the anvil,
Anv(MGQRes)), and the vertex and edge groups in the formed part of the
abelian decomposition associated with that level of the sculpted resolution,
if this formed part lies in level i + 1 of the anvil, Anv(MGQRes), or below.
Given the defining parameters, the diagram is multi-graded with respect to
the defining parameters, and the non-QH, non-abelian vertex groups and
edge groups in the (given) multi-graded abelian decomposition associated
with the limit group that appears in level i of the anvil, Anv(MGQRes).

We call each of the resolutions in these multi-graded diagrams a (multi-
graded) auxiliary resolution of width 2, and its terminating solid or rigid
limit group a (multi-graded) auxiliary limit group (of width 2), which we
denote Auz(MGQRes). With each auxiliary resolution we associate its
modular groups, that we call auxiliary modular groups. In the sequel,
we call the auxiliary resolutions associated with the tower containing all
the levels up to level 2 (all the levels except the top level), highest level.
As we did in Definition 8, with each auxiliary resolution of width 2 we
naturally associate an extended auxiliary resolution. By construction, the
anvil, Anv(MGQRes), the developing and the sculpted resolution, as well
as the original PS limit group, PSHGH, are mapped into the extended
auxiliary limit group.

Before we conclude the first step of the sieve procedure, and prepare the
data-structure for starting the second step, we need to check that the iter-
ative procedure that was used in the first step, and the anvils constructed
along it together with the terminal resolutions, collect all the Collapse ex-
tra PS specializations that factor through the initial Extra PS resolutions,
ExtraPSRes, we started the first step with, and through the Diophantine
conditions imposed by their associated collapse forms.

Theorem 10. Let (7, ha,g1,h1,w,p,a) be a valid PS statement that fac-
tors through one of the PS limit group PSHGH, can be extended to a
specialization that factors and is taut with respect to one of the Extra PS
resolutions, ExtraPSRes, we started the first step with, and the extended
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specialization satisfies the Diophantine conditions imposed by one of the
collapse forms associated with the Extra PS resolutions. Then either:

(i) The specialization (r, ha, g1, h1,w,p,a) can be extended to a test se-
quence of one of the PS resolutions PSHGH Res, we started the first
step with, that projects to a collection of valid PS statements; or

(ii) (r, h2,91,h1,w,p,a) can be extended to a specialization that factors
through either one of the anvils or one of the terminal resolutions
constructed along the first step of the sieve procedure.

Proof. Suppose that (i) does not hold, i.e. suppose that the valid PS
statement (7, ho, g1, h1,w,p,a) cannot be extended to a test sequence of
one of the PS resolutions PSHGH Res, we started the first step with, that
projects to a collection of valid PS statements. In this case the valid PS
statement can be extended to a specialization that factors through one of
the Collapse extra P.S limit groups, Collapse ExtraPS!, that were analyzed
along the first step of the procedure.

If the extended specialization factors through a sequence of multi-graded
resolutions, M GQRes, so that an anvil was assigned with this sequence of
multi-graded resolutions according to one of the parts (1)—(3) of the first
step, then the valid PS statement (7, ho, g1, h1,w,p,a) can be extended to
a specialization that factors through an anvil constructed according to the
relevant part (1)-(3).

Otherwise, the extended specialization must factor through a sequence
of multi-graded resolutions, M GQRes, constructed according to part (3)
of the first step, so that all the core resolutions of the multi-graded resolu-
tions, MGQRes, are of maximal possible complexity. Note that with such
a sequence of multi-graded resolutions no anvil was assigned in part (3) of
the first step. However, by the construction of graded formal limit groups
and resolutions, presented in section (3) of [S2], all the specializations that
factor through and are taut with respect to a sequence of multi-graded
resolutions, M GQRes, that were constructed according to part (3) of the
first step and are all of maximal possible complexity, must factor through
at least one sequence of multi-graded resolutions constructed according to
part (4) of the first part of the sieve procedure. This follows since every test
sequence with respect to the formed parts of the core resolutions associ-
ated with the various levels of the sculpted resolution, must factor through
(at least one of) the multi-graded resolutions constructed in part (4) of
the first step of the procedure. Hence, in this case, the valid PS state-
ment (r, ha,g1,h1,w,p,a) can be extended to a specialization that factors
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through either one of the anvils or one of the terminal resolutions con-
structed according to part (4) of the first step of the sieve procedure. o

The collection of multi-graded resolutions, M GQRes, the developing
resolutions and (possibly) sculpted resolutions and carriers, and the anvils,
Anv(M GQRes), associated with them, and their collections of (extended)
auxiliary resolutions, limit groups, and modular groups, together with the
data-structure constructed before starting the first step of the procedure,
form the data-structure obtained as a result of the first step.

At this stage we continue in a similar way to what we did in the initial
part of the first step of the procedure. Given an anvil, Anv(MGQRes),
and an (extended) auxiliary resolution, we associate with them all their
(finitely many) possible collapse forms. With each extra solid specialization
associated with the developing resolution (which is an Extra PS resolution
by construction), we naturally associate its solid limit group W PHG.

Given an (extended) auxiliary resolution and a collapse form, we add
variables that are associated with the various solid limit groups WPHG
(that are associated with the extra solid specializations in the developing
resolution) and their flexible quotients, so that the added variables and the
extended auxiliary limit group enable us to express the additional Diophan-
tine conditions imposed by the collapse form (see part (iv) in Lemma 2).

Given the (extended) auxiliary limit group or one of its (finitely many)
degenerate quotients (see section 11 in [S1]), and the variables that were
added to express the Diophantine conditions imposed by the given col-
lapse form, we look at all the rigid or strictly-solid specializations of the
(extended) auxiliary limit group (or its degenerate quotient), and special-
izations of the additional variables, so that the combined specializations
satisfy the Diophantine conditions imposed by the given collapse form.

By our standard method presented in section 5 of [S1], this collection
of specializations factor through a canonical (finite) collection of maximal
limit groups, which we call collapse Extra PS limit groups, and denote

CollapseExtraPS2,. .., CollapseExtraPSﬁ .

As we have pointed out in constructing the Collapse extra PS limit groups
that serve as input to the first step of the sieve procedure, if a specializa-
tion of the anvil, Anv(MGQRes), extends to a specialization that factors
through one of the Collapse extra PS limit groups, CollapseExtraPS?,
and restricts to a rigid or strictly-solid specialization of the associated aux-
iliary resolution, then the same is true for all the specializations in the
same strictly-solid family of the (extended) auxiliary limit group. Hence,
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as in the analysis applied in the first step of the procedure, in analyzing the
Collapse extra PS limit groups associated with the auxiliary resolutions,
we consider the non-abelian, non-QH vertex groups and edge groups in
the multi-graded abelian JSJ decomposition of the auxiliary limit group,
as determined only up to (appropriate) conjugacy, and the abelian and
QH vertex groups as “formal”, i.e. we are allowed to act on these with
their associated modular groups. Adapting this point of view, which is
essential along the entire sieve procedure presented in this section (as in
the construction of the tree of stratified sets in section 2 of [S5]), replaces
the role of restricting to shortest form specializations in the ungraded case
(Definition 4.1 in [S4]), and enables us to exclude the variables that belong
to lower levels of the Extra PS resolution from taking part in the analysis
of the (top part) of the Collapse extra PS limit group, Collapse ExtraPS?,
i.e. it allows us to get (certain) “separation of variables” (of different lev-
els) in the analysis of Collapse extra PS limit groups (and in analyzing
Diophantine sets in general).

The Second Step of the Sieve Procedure

In the first step we constructed finitely many multi-graded resolutions and
their associated multi-graded core resolutions, and with each multi-graded
resolution we associated a (canonical) finite collection of Non-rigid, Non-
solid, Root and Left PS resolutions, a finite collection of Extra PS reso-
lutions, which are set to be the developing resolutions, a finite collection
of Generic collapse extra PS resolutions, and a finite collection of anvils.
Possibly, if there exists a sequence of multi-graded core resolutions that
are all of maximal possible complexity, we have associated with the anvil
a sculpted resolution (part (4) in the first step), and enlarged its algebraic
“envelope” (that is set to be the new developing resolution or the carrier).
With each anvil, we have associated a finite collection of auxiliary resolu-
tions and limit groups, a finite collection of collapse forms, and finally a
finite collection of Collapse extra PS limit groups.

In this part we present the second step of our iterative sieve procedure.
We start the second step of the sieve procedure with the Collapse extra
PS limit groups that are associated with auxiliary resolutions of highest
level (and width 1, in case there exists an associated sculpted resolution),
and analyze them in parallel. The analysis of such a Collapse extra PS
limit group considers (and depends on) the data-structure associated with
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it, i.e. the (finite) collection of multi-graded resolutions constructed in the
previous step, their core resolutions, and their associated developing (and
possibly sculpted and carrier) resolutions, the (extended) graded auxiliary
resolution and the anvil.

At each step of the iterative sieve procedure we analyze only Collapse
extra PS limit groups that are not associated with terminal resolutions
(see part (4) of the first step). Since we treat the Collapse extra PS limit
groups in parallel, we present the second step of the sieve procedure with
one of them, that we denote, Collapse ExtraP5?, and its associated anvil,
Anv(MGQRes). As in the first step of the sieve procedure, our aim is
to obtain a strict decrease in either the Zariski closure or the complexity
of the core resolution associated with some level of the data structure we
construct.

(1) Let Q*(r,h2,91,h1,w,p,a) be the graded limit group generated by
(r,h2,91,h1,w,p,a) in the Collapse extra PS limit group, CollapseExtraPS?,
associated with the anvil, Anv(MGQRes). If Q*(r, ha,g1,h1,w,p,a) is a
proper quotient of the PS limit group, PSHGH, we started the first step
with, we continue this branch of the iterative procedure, by starting the first
step of the sieve procedure with the graded limit group Q?(r,ha,91,h1,w,p,a)
instead of the PS limit group PSHGH.

(2) At this stage we may assume that Q*(r, ke, g1,h1,w,p,a) is isomor-
phic to PSHGH. At this part we assume that the core of the multi-
graded resolution MGQRes, MGCore({r,ha,g1,h1,w,p,a), MGQRes), is
of maximal possible complexity, i.e. it has the same structure as the graded
abelian decomposition associated with the top level of the Extra PS reso-
lution, ExtraPS Res, we started the first step with. We set the subgroups,
Basegj, . ,Basegzim to be the factors in the given free decomposition as-
sociated with the alixiliary limit group, Auz(MGQRes) (its construction
is presented in Definition 8). Let
MGQ?Res; (f, T, ha, g1, h1,w, Basegﬁ, ceey Base>! a), ...

29
2,07

. ,MGQQResq (f, r,ha, g1, h1,w, Basegﬁ, . ,Base2’1 a)

2,1}%’
be the completions of the multi-graded resolutions in the taut multi-
graded Makanin—Razborov diagram of the Collapse extra PS limit group,

CollapseExtraPS?, with respect to the subgroups Baseg’%, e ,Base;’ir
3 yU1

We will treat the multi-graded resolutions M GQQResj in parallel, hence,
we omit their index.
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Since the Extra PS resolution ExtraPSRes(v,r, ha,g1,h1,w,p,a), we
started the first step with, is well separated, with each QH vertex groups
in one of the abelian decompositions associated with ExtraPSRes, there
is an associated collection of s.c.c. that are mapped to the trivial element
in the next level of the Extra PS resolution EztraPSRes.

Each QH vertex group in the graded abelian decomposition associ-
ated with the top level of the Extra PS resolution ExtraPSRes naturally
inherits a sequence of abelian decompositions from a multi-graded resolu-
tion M GQQResJ-. If for some such QH vertex group (), this sequence of
multi-graded abelian decompositions is not compatible with the collection
of s.c.c. on @) that are mapped to the trivial element in the next level of
the Extra PS resolution FxtraPSRes, we omit the multi-graded resolu-
tion MGQ?Res from the list of completions of resolutions of the anvil,
Anv(MGQRes).

By Theorem 4.13 in [S5], the complexity of the core resolution
associated with the (second) multi-graded resolution MGQ?Res,
MGCore({r,ha, g1, h1,w,p,a), MGQ?Res), is bounded by the complexity
of the graded abelian decomposition associated with the top level of the Ex-
tra PS resolution, ExiraPS Res, we started the first step with, and if these
complexities are equal, then the structure of the core of M GQ?Res is iden-
tical to the structure of the multi-graded abelian decomposition associated
with the top level of ExtraPSRes. In this part of the second step of the
sieve procedure we will also assume that the complexity of the core of the
(second) multi-graded resolution MGQ?Res is strictly smaller than the
complexity of the graded abelian decomposition associated with the top
level of the Extra PS resolution, ExtraPSRes, we started the first step
with.

In this case, we treat the (second) multi-graded resolution M GQ?Res
precisely as we treated the multi-graded resolutions M GQRes in the first
step of sieve procedure, i.e. according to parts (1)—(2) of the first step.

(3) In this part we may assume that Q?(r, ha, g1, h1,w, p,a) is isomorphic
to the PS limit group PSHGH we started with. We also assume that the
complexity of the core resolution, M GCore((r,ha,91,h1,w,p,a), MGQRes),
is strictly smaller than the complexity of the graded abelian decomposition
associated with the top level of the Extra PS resolution, FxtraPSRes, we
started the first step with. Let Basegf, ey Baseg’i2 be the the non-abelian,
non-Q H vertex groups in the abelian decompos,it2ion associated with the
top level of the anvil, Anv(MGQRes) (alternatively, the factors in the free
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decomposition of the auxiliary limit group). Note that the image of the
subgroups Baseé’%, . ,Base;’il (that were used in constructing the multi-
3 yU1

graded resolutions MGQRes) can be naturally conjugated into the sub-

2,2 2,2
groups, Basey'],...,Base)”,. Let
) 2,’!}2
2 2,2 2,2
MGQ Resl(f,r, hg,gl,hl,w,Ba362:1,...,,Baseivg,a),...

2,2 2,2
...,MGQQResq(f, 7, h2, 91, h1,w, BaseyT, . .., Base) a)

2,1)%’
be the completions of the resolutions in the taut multi-graded Makanin—
Razborov diagram of the limit group associated with the anvil,
Anv(M GQRes), with respect to the subgroups Basegf, ..., Base>?,. Since

2,0
we treat these multi-graded resolutions in parallel, we will omit their2indices
in the sequel.

Let  Q%(t,v,7, ho,g1,h1,w,p,a) be the subgroup generated
by (t,v,7, ho,g1,h1,w,p,a) in the limit group corresponding to
the (second) multi-graded resolution MGQ?Res. By construction,
Q*(t,v,r, he,g1,h1,w,p,a) is a quotient of the collapse Extra PS limit
group, CollapseExtraPS' (t,v,r, ho, g1, h1,w, p, a), we started the first step
of the sieve procedure with. If Q?(¢,v,r, ha, g1, h1,w, p,a) is a proper quo-
tient of CollapseExtraPS', we replace the (second) multi-graded resolution
MGQ?Res, by starting the first step of the procedure with the subgroup
Q*(t,v,r, he, g1, h1, w,p,a).

By Theorem 4.18 in [S5], only multi-graded resolutions

MGQRes (t, v, 1, ho, g1, h1,w, Base%ﬁ, ey Basel! a)

20}?
with maximal complexity multi-graded core, i.e. with multi-graded core
that have the same structure as the graded abelian decomposition asso-
ciated with the top level of the Extra PS resolution, ErxtraPSRes, we
started the first step with, can be reference resolutions to those multi-
graded resolutions in the taut multi-graded Makanin—Razborov diagram
of Q?(t,v,r,ha, g1, h1,w,p,a) that have maximal complexity multi-graded
core (see Theorem 3.7 in [S4] for reference resolutions). Hence, all the
specializations of the subgroup (r, ha, g1, h1,w, p,a) that belong to the Dio-
phantine set associated with the completion of a multi-graded resolution
of Q*(t,v,r,ha, g1, h1,w,p,a) that have maximal complexity multi-graded
core, belong to the Diophantine set associated with at least one of the com-
pletions of the multi-graded resolutions M GQ Res in the taut multi-graded
Makanin-Razborov diagram of Collapse ExtraPS" that have maximal com-
plexity core. Since in this part we have assumed that the multi-graded
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resolution M GQRes associated with the anvil we started the second step
with, does not have a maximal complexity multi-graded core resolution, we
may replace the second multi-graded resolution MGQ?Res, by only those
multi-graded resolutions in the taut graded Makanin—Razborov diagram
of Q%(t,v,r, ha, g1, h1,w,p,a), for which their associated multi-graded core
are not of maximal complexity. We analyze these multi-graded resolutions
according to parts (1)—(2) of the first step of the sieve method.

(4) With the notation of part (3), at this part we assume that the multi-
graded resolution M GQ Res is not of maximal possible complexity, and that
for our given second multi-graded resolution M GQ?Res, the corresponding
subgroup Q?(t,v,r, ha, g1, h1,w,p,a) is isomorphic to the collapse PS limit
group we started the first step with.

Since the multi-graded resolution M GQRes that is associated with the
anvil, Anv(MGQRes), is well separated, with each QH vertex groups in
one the abelian decompositions associated with M G@QRes, there is an as-
sociated collection of s.c.c. that are mapped to the trivial element in the
next level of the multi-graded resolution M GQ Res.

Each QH vertex group in the formed part of the core of the graded
abelian decomposition associated with the top level of the multi-graded
resolution M GQRes naturally inherits a sequence of abelian decomposi-
tions from a (second) multi-graded resolution M GQ?Res. If for some such
QH vertex group @, this sequence of multi-graded abelian decompositions
is not compatible with the collection of s.c.c. on () that are mapped to the
trivial element in the next level of the multi-graded resolution M GQRes,
we omit the multi-graded resolution M GQ?Res from the list of completions
of (multi-graded) resolutions of the anvil, Anv(MGQRes).

By Theorem 4.14 in [S5], the complexity of the (multi-graded) core of
the multi-graded resolution MGQ?Res, is bounded by the complexity of
the core of the multi-graded resolution M GQRes. In this part, we further
assume that

Cmplz(MGCore((r,hs, g1, h1,w,p,a), MGQZRGS))

< Cmplz (MGCore((r, h2,g1,h1,w,p,a), TMGQRes)) ,
where TM GQ Res is the one level resolution corresponding to the top level
of the multi-graded resolution M GQ Res. The case of maximal complexity
core will be treated in the next parts of the second step of the sieve proce-
dure. To treat a (second) multi-graded resolution which is not of maximal
possible complexity we need the following two observations, which are sim-
ilar to Proposition 3 and Lemma 4.
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LEMMA 11. Let MGQ?Res be one of the resolutions in our list of multi-
graded resolutions that is not of maximal possible complexity. Let
MGQ?limyerm be the terminal rigid or solid limit group of the multi-graded
resolution MGQ?Res, and let Q2,,,.(t,v,7, ha,g1,w,p,a) be the image of
Q*(t,v,r, he, g1, h1,w,p,a) in the terminal limit group MGQ*limyerm,.

Then the multi-graded resolution MGQ?Res can be replaced by two
finite collections of multi-graded resolutions, that are all compatible with
the top level of the resolution TMGQRes (the top level of MGQRes), and
are all obtained from M GQ?Res by adding at most a single (terminal) level.
Furthermore, all the resolutions in these collections are not of maximal
complexity.

We denote each of the resolutions in these collections, M GQ?Res'.

(i) In the first (possibly empty) collection of multi-graded resolutions,
the image of the subgroup Q*(t,v,r, ha, g1, h1,w,p,a) in the terminal
limit group of MGQ?Res', Q%,,,,(t,v,7,ha, g1, h1,w,p,a), is a proper
quotient of Q%(t,v,r, he, g1, h1,w,p,a).

(ii) In the second (possibly empty) finite collection of multi-graded reso-
lutions, the terminal limit group of MGQ?Res' is either a rigid or a
solid limit group with respect to the parameter subgroup (p), i.e. the
terminal limit group is rigid or solid with respect to the parameter
subgroup (p), and not only with respect to the multi-grading with

respect to the subgroups Base%’?, . ,Baseg’f}Q, that was used in the
) sUs
construction of the resolution, MGQ?Res.
Proof. Identical to the proof of Lemma 2.7 in [S5]. o

By Lemma 11 we can either omit the graded resolution MGQ?Res
from our list of multi-graded resolutions, or we can replace the resolu-
tion MGQ?Res by finitely many resolutions, that for brevity we still de-
note MGQ?Res, and for each resolution we may assume that either the
image of the subgroup Q?(¢,v,r,h, g1, h1,w,p,a) in the terminal graded
limit group of MGQ?Res, Q2,,,.(t,v,7,ha, g1, h1,w,p,a), is a proper quo-
tient of Q?(¢,v,r,hs,g1,h1,w,p,a), or the terminal graded limit group of
MGQ?Res is rigid or solid with respect to the parameter subgroup P = (p).

LEMMA 12. Let MGQ?Res be one of the resolutions in our list of (second)
multi-graded resolutions. Let Q3(r,ha,g1,h1,w,p,a), Q3(t,v,r,hogi,hi,w,p,a),
and Q3(f,r,h2,g1,h1,w,p,a), be the images of the subgroups
QQ(TahQaglahl,wap’a)a QQ(ta’UarahQ,gl7h17wap’a‘)7 and QQ(far,hQagl,hlaw,p’a)
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in the limit group,
: 2,2 2,2
MGQ*limy (f, 7, h2,91, h1,w, BaseyT, . .., Basey a) ,

2,113’
associated with the second level of the multi-graded resolution M GQ?Res.
Then Q3(r, ha,g1,h1,w,p,a) is a quotient of Q*(r,ha,g1,h1,w,p,a),
Q3(t,v, 7, ha, g1, h1,w,p,a) is a quotient of Q*(t,v,r, ha, g1, h1,w,p,a), and
Q%(fa T, h25 a1, hl, w,p, a) is a proper QUOtjent OfQQ(fa r, h23 a1, hla w,p, a)‘
Proof. The claim is simply one of the basic properties of a multi-graded
resolution. O
Suppose that Q%(r,h2,g1,h1,w,p,a) is a proper quotient of
Q?(r, ha, g1, h1,w,p,a). In this case we continue as we did in part (2) of the

first step of the sieve procedure. Let TM GQ?Res(f,r, ha, g1, h1,w, Basegﬁ,

2,2
2,1}%’

multi-graded resolution M GQ?Res. By Corollary 4.16 in [S5], since the
multi-graded resolution M GQ?Res is not of maximal complexity,

Cmplz(MGCore((r, hy, g1, h1,w,p,a), TMGQQRes))

< Cmplz (MGCore((r, h2,g1,h1,w,p,a), TMGQRes)) ,
where TMGQRes is the one level resolution that corresponds to the top
level of the multi-graded resolution M GQRes.

With Q%(r, hs, g1, h1,w,p,a) we associate the resolutions that appear
in its taut Makanin—Razborov diagram. Given a taut graded (Makanin—
Razborov) resolution GRes(r, ha, g1, h1,w,p,a) of Q3(r,ha, g1, h1,w,p,a),
we associate with it a taut graded resolution CRes(r,hsa,g1,h1,w,p,a),
constructed from the multi-graded resolution induced by the subgroup
(r,yh2,91,h1,w,p,a) from the multi-graded core,

MGCore((r, ha, g1, h1,w,p,a), TMGQQRGS) ,

followed by the graded resolution GRes. As we did in part (2) of the first
step of the sieve procedure, with the graded resolution C'Res we associate a
(canonical) finite collection of framed resolutions FrmCRes(q,r,hz,91,h1,w,p,a),
and with each framed resolution we associate a (canonical) finite collection
of Non-Rigid, Non-Solid, Root and Left PS resolutions, Extra PS reso-
lutions, and with each Extra PS resolution, a finite collection of generic
collapse PS resolutions. We set each of the Extra PS resolutions to be a
developing resolution, and with it we associate a finite collection of anvils.
With each anvil we associate a finite collection of (extended) auxiliary res-
olutions, according to the construction presented in Definition 8, precisely
as we did in the corresponding case in part (2) of the first step of the sieve
procedure.

...,Base a) be the resolution that corresponds to the top level of the
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Suppose that Q% (TahQagl ahl awapaa) is iSOIIlOI‘phiC to Q2 (rahZ g1 ,hlawapaa)a
In this case we do the following. With the subgroup Q3 (t,v,r,ha,91,h1,w,p,a)
we associate the collection of completions of the multi-graded resolutions
that appear in its taut multi-graded Makanin-Razborov diagram with re-

1,1 1,1
spect to the subgroups Base,';,. .. , Base, .,
3 sV

1,1 1,1
MGQRes:(t,v,7, ha, g1, h1,w, Basey’y, . .. ,BaseQ:v1 ,a), ...

1

.« MGQRese(t,v,r, ha,g1,h1,w, Base%:i, ..., Basel! a).

2,11}’
We continue with each of the multi-graded resolutions M GQRes; in par-
allel.
We set the multi-graded resolution

1,1 1,1
DRes; (t, v,1,h2, 91, h1,w, Baseyy, . ... ,Baseivi ,a)

to be the multi-graded resolution induced by the subgroup
(t,v,7,ho, g1, h1,w,p,a) from (the corresponding core of) the multi-graded
resolution TM GQ?Res, followed by the multi-graded resolution M GQRes Iz

If the subgroup generated by (r, hs,g1,h1,w,p,a) in the limit group
corresponding to the resolution DRes;, Qp(r, ha, g1, hi,w,p,a), is a proper
quotient of the PS limit group PSHGH(r, hs, g1, hi,w,p,a) we started
with, we replace the multi-graded resolution M G(QRes; by starting a new
branch of the sieve procedure with Qp(r, he, g1, hi,w,p,a) instead of the
PS limit group PSHGH.

If the subgroup generated by (t,v,r, ha, g1, h1,w,p,a) in the limit group
corresponding to the resolution DRes;, Qp(t,v,r, ho,g1,h1,w,p,a), is a
proper quotient of the Collapse extra P.S limit group,

CollapseExtraPS'(t,v,r, ha, g1, h1,w,p,a),
we started the first step with, we replace the multi-graded resolution
MGQRes; by starting the first step of the procedure with the limit group
Qp(t,v,r,ha,g1,h1,w,p,a) instead of the Collapse extra PS limit group
CollapseExtraPS'.

Since the Extra PS resolution, ExtraPSRes, we started the first step
with, is well separated, with each QH vertex group in one of the abelian
decompositions associated with ExtraPS Res there is an associated collec-
tion of s.c.c. that are mapped to the trivial element in the next level of the
Extra PS resolution EztraPSRes.

Each QH vertex group in the graded abelian decomposition associ-
ated with the top level of the Extra PS resolution ExtraPSRes natu-
rally inherits a sequence of abelian decompositions from a multi-graded
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resolution DRes;. If for some such QH vertex group (), this sequence of
multi-graded abelian decompositions is not compatible with the collection
of s.c.c. on () that are mapped to the trivial element in the next level of the
Extra PS resolution ExtraPSRes, we omit the multi-graded resolution
MGQRes; from the list of completions of resolutions of the limit group
Q3(t,v, 7, h2,g1,h1, w,p, a).

Suppose that the core of a multi-graded resolution MGQRes;,
MGCore((r,h2,91,h1,w,p,a), MGQRes;), or the core of the associated
multi-graded resolution DRes;, are of maximal possible complexity, i.e.
the core has the same structure as the multi-graded abelian decomposition
associated with the top level of the Extra PS resolution, ExtraPSRes, we
started the first step of the sieve procedure with. By Theorem 4.15 in [S5], if
the core of the multi-graded resolution M G(Q) Res; is of maximal complexity,
so is the multi-graded core of the associated multi-graded resolution D Res,
MGCore((r,h2,g1,h1,w,p,a), DRes;). Hence, by Theorem 4.18 in [S5],
every specialization of the PS limit group, PSHGH (r, hs, g1, h1,w,p,a),
that belongs to the Diophantine set associated with the multi-graded reso-
lution DRes;, belongs at least one of the Diophantine sets associated with
the multi-graded resolutions with maximal complexity core, M GQRes, of
the Collapse extra P.S limit group Q' (¢,v,7, ha,g1,h1,w,p,a), we started
the first step of the sieve procedure with. Since the multi-graded resolution
MGQRes, associated with the anvil we started the second step of the sieve
procedure with, is assumed to have a core which is not of maximal complex-
ity, we may omit those multi-graded resolutions of Q%(t,v,r,hg,gl,hl,w,p,a),
MGQRes;, for which the core of the associated resolution DRes; has a
maximal complexity core.

Suppose that the multi-graded resolutions M GQRes; and D Res; do not
have a maximal complexity core resolution. If the image of the subgroup
Q?(r, ha, g1, h1,w, p,a), in the limit group associated with the multi-graded
resolution M G(@Q)Res;, is a proper quotient of Q%(r,ha, g1, h1,w,p,a), we as-
sociate with it a finite collection of developing resolutions, anvils, and auxil-
iary resolutions precisely as we did in case the subgroup Q3 (r,hs,g1,h1,w,p,a)
is a proper quotient of Q2(r, ha, g1, h1,w,p,a), i.e. as in case (2) of the first
step of the sieve procedure.

Since we may assume that the image of the subgroup, Q2(r,hs,g1,h1 ,w,p,a),
in the limit group associated with the multi-graded resolution M GQ Res;,
is isomorphic to Q2(r, he, g1, h1,w,p,a), and the core associated with the
multi-graded resolution M GQRes; is not of maximal possible complexity,
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we can apply the construction that appears in part (2) of the first step of the
sieve procedure, and associate with the multi-graded resolution M GQ Res;,
a finite collection of graded resolutions:

GRes1(r,h2,g91,h1,w,p,a),...,GResy(r,h2,g1,h1,w,p,a).

With each of these graded resolutions GRes;(r, ha, g1, h1,w,p,a), we asso-
ciate a graded resolution CRes;(r, ha, g1, h1,w,p,a), constructed from the
resolution induced by the subgroup (r, hs, g1, h1,w,p,a) from the (corre-
sponding core of the) multi-graded resolution TMGQ?Res (which is the
top part of the multi-graded resolution M GQ?Res), followed by the graded
resolution GRes;(r, ha, g1, h1,w,p,a). With each graded resolution
CRes;(r, ha,g1,h1,w,p,a) we can naturally associate a finite collection of
framed resolutions as we did in part (2) of the first step of the sieve pro-
cedure. We continue with each of these framed resolutions in parallel, and
denote each of them FrmCRes(q,r, ho,g1,h1,w,p,a).

If the limit group generated by (r,hso,g1,h1,w,p,a) associated with
a framed resolution FrmCRes(q,r,ha,g1,h1,w,p,a) is a proper quotient
of Q%(r, ha, g1, h1,w,p,a), we replace the framed resolution FrmC Res by
starting the first step of the sieve procedure with that limit group (which
is a proper quotient of the P.S limit group we started the first step with).
Otherwise, we follow what we did in part (2) of the first step of the sieve
procedure, and associate with the framed resolution FrmC Res a (canoni-
cal) finite collection of Non-Rigid, Non-Solid, Root and Left PS resolutions,
Extra PS resolutions, and with each Extra PS resolution, a finite collection
of generic collapse PS resolutions. We set each of the Extra PS resolutions
to be a developing resolution, and with it we associate a finite collection of
anvils and auxiliary resolutions, precisely as we did in part (2) of the first
step of the sieve procedure.

Suppose that Q3(r,h2,g1,h1,w,p,a) is isomorphic to Q2 (r,ha,g1,h1,w,p,a),
and suppose further that Q%(t,v, r,ho, g1, h1,w,p,a) is isomorphic to
Q?(t,v,r, ha,g1,h1,w,p,a). In this case we continue to the next level of
the (second) multi-graded quotient resolution MGQ?Res. Note that by
Corollary 4.16 of [S5], since the multi-graded resolution MGQ?Res is not
of maximal complexity, the (multi-graded) core associated with each of its
levels is not of maximal complexity as well. If for some level j of the multi-
graded resolution, M GQ?Res, the image of Q?(r, ha, g1, h1,w,p,a) in the
limit group associated with this level, Q?(r, ho,g1,h1,w,p,a), is a proper
quotient of Q%(r,ha,g1,h1,w,p,a), or the image of Q%(t,v,r,ha,g1,h1,w,p,a)
in the limit group associated with this level, Q?(t,v,r, ho, g1, h1,w,p,a),
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is a proper quotient of Q?(r, he, g1, h1,w,p,a), then from the highest such
level j, we can continue as in case Q3(r, ha, g1, h1,w,p,a) is a proper quo-
tient of Q2(r,ha,g1,h1,w,p,a), or Q3(t,v,r, ha,g1,h1,w,p,a) is a proper
quotient of Q?(t,v,r,ha,g1,h1,w,p,a), in correspondence, and associate
with the (second) multi-graded resolution MGQ?Res a (canonical) finite
collection of framed resolutions, developing resolutions (that are set to be
Extra PS resolutions), anvils, and auxiliary resolutions, precisely as we did
in case Q3(r, ha, g1, h1,w, p, a) is a proper quotient of Q?(r, ho, g1, h1,w, p, a),
or Q%(t,’U,T,hg,gl,hl,W,p,a) is a proper quotient of QQ(taUar,hQaglahlawap’a)'

Finally, suppose that for every level j, the image of Q?(r,ha,91,h1,w,p,a)
in the limit group associated with the j-th level of the multi-graded resolu-
tion MGQ?Res, Q? (r,h2,91,h1,w,p,a), is isomorphic to Q?(r,ha,g1,h1,w,p,a),
and for every level j, the image of Q?(t,v,r, ha,g1,h1,w,p,a) in the limit
group associated with the j-th level of the multi-graded resolution
MGQ?Res, Q5 (t,v,r,h2,91,h1,w,p,a), is isomorphic to Q?(t,v,r,h2,91,h1,w,p,a).
In this case, by Lemma 11, the terminal limit group of the multi-graded res-
olution MGQ?Res, Q2,,,,(u,t,v,7, ha, g1, h1,w,p,a), is rigid or solid with
respect to the parameter subgroup P = (p).

We continue as in part (2) of the first step of the sieve procedure. Let
PB?(by,p,a) be the terminal rigid or solid limit group of the multi-graded
resolution M GQ?Res. We set the graded resolution C'Res(r,ha,g1,h1,w,p,a),
to be the resolution induced by the subgroup (r, ha, g1, h1, w, p,a) from the
sequence of core resolutions associated with the various levels of the multi-
graded resolution M GQ?Res, enlarged by setting its terminal limit group
to be (the rigid or solid limit group) PB?(by,p,a) (i.e. we amalgamate
the terminal limit group of the corresponding induced resolution with the
subgroup PB2(by, p,a)).

With the graded resolution C'Res we associate a finite (canonical) col-
lection of framed resolutions (see Definition 5), and with each framed res-
olution we associate a (canonical) finite collection of Non-Rigid and Non-
Solid PS resolutions, a collection of Root and Left P.S resolutions, Extra
PS resolutions, and generic collapse Extra PS resolutions, a developing
resolution, a finite collection of anvils, and a finite collection of auxiliary
resolutions (constructed according to Definition 8).

(5) By part (1) we may assume that Q2(r,h2,g1,h1,w,p,a) is isomor-
phic to the limit group Q'(r,h2,91,h1,w,p,a) associated with the anvil,
Anv(MGQRes). parts (1)-(4) treat all the cases in which the core associ-
ated with the second multi-graded resolution, M GQ?Res, is not of maximal
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complexity. In this part we assume that the core associated with the multi-
graded resolution MGQ?Res is of maximal complexity, i.e. that the core
of the multi-graded resolution MGQ?Res has the same structure as the
core associated with the top level of the multi-graded resolution M GQ Res.
We further assume that there is no sculpted resolution associated with the
anvil, Anv(MGQRes). We treat this case by slightly modifying the way
we treated the case of a maximal complexity core in part (3) of the first
step of the sieve procedure.

In parts (1)—(4), we have analyzed multi-graded resolutions, M GQ? Res,
of the Collapse extra PS limit group, Collapse ExtraPS?, that is associated
with a collapse form and with an auxiliary resolution of highest level, i.e.
an auxiliary resolution associated with the tower containing all the parts
in the associated anvil, Anv(MGQRes), up to part 2 (all parts except the
top part).

To analyze specializations of the PS limit group PSHGH, that be-
long to the Diophantine set associated with such a Collapse extra P.S limit
group, Collapse ExtraPS?, and belong only to Diophantine sets associated
with maximal complexity multi-graded resolutions, M GQ?Res, we first re-
place the Collapse extra PS limit groups associated with the given collapse
form and with auxiliary resolutions of highest level, by those Collapse extra
PS limit groups associated with the Extra PS resolution, the given col-
lapse form, and with auxiliary resolutions that are associated with towers
containing all the parts up to part 3, i.e. all the parts except the top two.
We continue with those Collapse extra PS limit groups in parallel, hence,
we will omit their index, and (still) denote the Collapse extra PS limit
group we continue with, Collapse ExtraPS?.

As we did in part (3) of the first step, we start with the multi-graded
taut Makanin—-Razborov diagram of the Collapse extra PS limit group,
CollapseExtraPS?, with respect to the non-QH, non-abelian vertex groups
in the graded abelian decomposition associated with the top part of the
anvil, Anv(MGQRes). We still denote these multi-graded resolutions
MGQ?Res.

Since in this part we need to analyze specializations that factor through
and are taut with respect to maximal complexity multi-graded resolutions
of Collapse extra P.S limit groups, we continue only with those multi-graded
resolutions in the taut Makanin-Razborov diagram of Collapse ExtraPS?
that are of maximal complexity, i.e. with a core that has the same structure
as the core associated with the top part of the resolution, M GQRes.
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If part (1) applies to such a multi-graded resolution M GQ?Res, i.e.
if the limit group generated by (r, ho,g1,h1,w,p,a) in its completion is
a proper quotient of the subgroup Q'(r, ho, g1, h1,w,p,a) we started this
branch of the procedure with, we replace this resolution MGQ?Res, by
starting the first step of the procedure with the given proper quotient of
Q' (r, ha, g1, h1,w,p,a).

If the core of the top part of M G(Q Res, the resolution constructed in the
first step of the procedure and associated with the anvil, Anv(MGQRes),
is not of maximal complexity, and the limit group generated by
(t,v,7,ha, g1, h1,w,p,a) in the completion of MGQ?Res, is a proper quo-
tient of the Collapse extra PS limit group we started this branch of the
first step with, CollapseExtraPS', we replace this resolution, M GQ?Res,
by starting the first step of the procedure with the given proper quotient
of CollapseExtraPS", and analyze only the resolutions that appear in its
taut multi-graded Makanin-Razborov diagram that are not of maximal
complexity (according to part (2) of the first step).

In case the core of the multi-graded resolution M GQ?Res is of maximal
complexity, i.e. the core has the same structure as the core of the top part
of MGQRes, we map the formed part of the core of MGQ?Res into the
subgroup of MGQ?Res that correspond to its image in the second part
of MGQRes. At this point we analyze the terminal limit group of the
multi-graded resolution, M GQ?Res, with respect to the factors in the given
free decomposition of the auxiliary limit group, Auz(MGQRes), exactly
as we analyzed the Collapse extra PS limit group, CollapseExtraPS? in
parts (1)—(4). If the multi-graded core of such a multi-graded resolution is
of maximal possible complexity, and its associated taut structure is identical
to the one associated with the second part of MGQRes, i.e. if part (5)
applies to an obtained quotient multi-graded resolution, we continue in
a similar way to our approach in analyzing multi-graded resolutions that
their top part is of maximal complexity (cf. part (3) in the first step of the
procedure).

At each part i, we consider the Collapse extra PS limit groups associ-
ated with the given collapse form and with auxiliary resolutions that are
associated with the tower containing all the parts up to part ¢ + 1. Then
we analyze the taut Makanin—Razborov diagrams of the limit groups asso-
ciated with the various parts (from part 1 to part 7 — 1), and continue only
with those resolutions that are of maximal complexity in all these parts, and
the taut structures associated with their core resolutions are identical to
those associated with the corresponding parts of the resolution, M GQRes.
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Finally we analyze the resolutions in the taut Makanin-Razborov diagram
associated with the i-th part according to parts (1)—(4), or (the first part
of) (5), and continue iteratively.

Let MGQ?Res be a multi-graded resolution obtained by the above it-
erative procedure. Suppose that there exists a level for which one of the
parts (1)—(4) applies. We first construct a resolution composed from the
resolution induced by the subgroup (r, hg, g1, h1,w,p, a) from the parts of
the resolution M GQ?Res above the level for which parts (1)-(4) apply (i.e.
the parts that are of maximal complexity), followed by the graded reso-
lution constructed at that level according to parts (1)-(4) (note that the
obtained resolution is graded with respect to the parameter subgroup (p)).
With the obtained graded resolution we associate a canonical finite collec-
tion of framed resolutions, a finite collection of Non-Rigid, Non-Solid, Root
and Left PS resolutions, and a finite collection of Extra PS resolutions,
and Generic collapse extra PS resolutions, precisely as we did in part (4).
We continue only with Extra PS resolutions that are not “covered” by
framed resolutions with bigger frame. Finally, we set each of the Extra PS
resolutions to be a developing resolution, and with it we associate a finite
collection of anvils (still denoted Anv(MGQ?Res)) precisely as we did in
part (4), and auxiliary resolutions (according to the construction presented
in Definition 8).

Suppose that the sequence of multi-graded core resolutions of the multi-
graded resolutions constructed by the process described above, are all of
maximal complexity, i.e. each of these multi-graded core resolutions have
the same structure as the core associated with the corresponding level of
the developing resolution, in the first step of the procedure, which means
that none of the parts (1)—(4) applies to any of these multi-graded reso-
lutions. In this case we examine the structure of the corresponding de-
veloping resolution. The developing resolution is a framed resolution of a
resolution built from a sequence of resolutions induced from corresponding
core resolutions. Each of the induced resolutions is a resolution induced
by the (image of the) subgroup (r, ha,g1,h1,w,a) from the corresponding
core resolution, and with each level of the induced resolution there is an
associated (framed) multi-graded abelian decomposition (see section 3 of
[S4] for the construction of the induced resolution, and Definition 5 for the
construction of framed resolutions).

PROPOSITION 13. Suppose that all the core resolutions associated with
the multi-graded resolutions used for the construction of the developing



54 Z. SELA GAFA

resolution are of maximal possible complexity. Let {(q,r, h2,g1,h1,w,p,a)
be the subgroup generated by the closure of the developing resolution
in the anvil Anv(MGQRes). From each of the core resolutions associ-
ated with the multi-graded resolutions used to construct the developing
resolution, there is a resolution induced by the (image of the) subgroup
(g,7,h2, 91, h1,w,p,a).

Then either the structure of the resolution composed from the resolu-
tions induced by the subgroup (q,r, ha, g1, h1,w,p,a) from the core resolu-
tions associated with the various multi-graded resolutions used to construct
the developing resolution, is identical to the structure of the developing res-
olution we started the second step with, or there exists some level j, so that
the structure of the graded abelian decompositions associated with the res-
olutions induced by the subgroup (q,r, ha,g1,h1,w,p,a) above level j are
identical to the structure of graded abelian decompositions associated with
the corresponding levels of the developing resolution, and in level j, either
the number of factors in the (graded) free decomposition associated with
the graded abelian decomposition associated with the resolution induced
by (q,r, ha,g1,h1,w,p,a) is strictly smaller than the number of factors in
the corresponding (graded) free decomposition associated with the corre-
sponding level of the developing resolution, and in case of equality in the
number of factors, the complexity of the graded abelian decomposition
associated with the resolution induced by (q,r, h2, g1, h1,w,p,a) is strictly
smaller than the complexity of the graded abelian decomposition associated
with that level in the developing resolution.

Proof. Identical to the proof of Proposition 4.11 of [S4]. o

If the structure of the resolution composed from the resolutions induced
by the subgroup (g, r, he, g1, h1, w, p, a) from the various core resolutions as-
sociated with the multi-graded resolutions used to construct the developing
resolution in the second step of the procedure, is not identical to the struc-
ture of the developing resolution associated with the anvil Anv(MGQRes),
Proposition 13 implies that there exists some level j for which the struc-
ture of the graded abelian decomposition associated with the resolutions
induced by the subgroup (q,r, ha, g1, h1,w,p,a) above level j are identical
to the structure of the graded abelian decompositions associated with the
corresponding levels in the developing resolutions we started the second
step with, and in level j, either the number of factors in the graded free
decomposition associated with the graded abelian decomposition associated
with the resolution induced by (g, r, ha, g1, h1,w, p, a) is strictly smaller than
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the number of factors in the corresponding graded free decomposition asso-
ciated with the corresponding level in the developing resolution we started
the second step with, and in case of equality in the number of factors, the
complexity of the graded abelian decomposition associated with the resolu-
tion induced by (g, 7, ha, g1, h1,w, p,a) is strictly smaller than the complex-
ity of the graded abelian decomposition associated with the corresponding
level of that developing resolution. In this case we do the following.

With the graded resolution constructed from the various resolutions in-
duced by the subgroups (q,r, h2,g1,h1,w,p,a) from the core resolutions
associated with the various multi-graded resolutions constructed along the
various levels of the second step of the sieve procedure, we associate a
(canonical) finite collection of framed resolutions (Definition 5). With each
framed resolution we associate a finite collection of Non-Rigid, Non-Solid,
Root and Left PS resolutions, and a finite collection of Extra PS resolu-
tions and generic collapse PS resolutions. Finally, we set each of the Extra
PS resolutions to be a developing resolution, and with it we associate a
finite collection of anvils and graded auxiliary resolutions and limit groups,
according to the construction presented in Definition 8.

(6) Suppose that the sequence of core resolutions associated with the se-
quence of multi-graded resolutions constructed in part (5) are all of maximal
possible complexity, and the structure of the resolution composed from the
resolutions induced by the subgroup (g, r, ho, g1, h1,w,p,a) from the vari-
ous core resolutions associated with the multi-graded resolutions used to
construct the developing resolution in the second step of the procedure, has
the same structure as that of the developing resolution associated with the
anvil Anv(MGQRes). In this case we modify the analysis that was applied
in part (4) of the first step.

We start the analysis, with the collection of Collapse extra PS limit
groups obtained from the anvil, Anv(MGQRes) (and not with any of its
associated auxiliary limit groups), and its (finitely many) associated col-
lapse forms. We still denote each of the obtained Collapse extraPS§ limit
groups, CollapseExtraPS?.

We first analyze the Collapse extra PS limit groups, CollapseExtraPS?,
using an iterative process which is similar to the one used in part (5).
We start with the multi-graded taut Makanin—-Razborov diagram of the
Collapse extra PS limit group, CollapseExtraPS?, with respect to the
subgroups Basegﬁ, e ,Baseﬁ’ih where the subgroups Basegﬁ, 1<j <03,
are the non-QH, non—abeli,a2n vertex groups in the graded abelian
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decomposition associated with the top part of the anvil, Anv(MGQRes),
and with respect to the formed part of the core resolution,
MGCore({(r,ho,g1,h1,w,p,a) MGQRes), associated with the top level
of the anvil, Anv(MGQRes). We proceed with the multi-graded taut
Makanin—Razborov diagram of the terminal (rigid or solid) limit group
with respect to the subgroups Base%ﬁ,...,Base We continue only

with those multi-graded resolutions in the second tf,ﬂ21t Makanin—-Razborov
diagram that are of maximal possible complexity, i.e. those resolutions that
are one level and have the same structure, and the same taut structure, as
the formed part of the core, MGCore((r, ha,g1,h1,w,p,a), MGQRes). We
(still) denote these (two parts) multi-graded resolutions, for which the sec-
ond part is one level and has the same structure as the formed part of the
core resolution associated with the top part of Anv(MGQRes), MGQ?Res.
We further use the modular groups associated with the formed part of the
core resolution associated with the top part of the anvil, Anv(MGQRes),
to map the subgroup associated with this formed part in the resolution
MGQ?Res, onto its image in the subgroup associated with the second
level of Anv(MGQRes).

We proceed iteratively to the next levels. At each level i, we start
with the Makanin—Razborov diagram of the terminal limit group of the
resolution obtained from the top i — 1 levels, with respect to the subgroups,
Base?fl’l, ... ,Base?flyt%, where the subgroups Base?fl,j, 1<j <t are
the non-Q H, non-abelian vertex groups in the graded abelian decomposi-
tion associated with the i-th part of the anvil, Anv(MGQRes), and with
respect to the formed part of the core resolution associated with the i-th
part of Anv(MGQRes). We proceed with the multi-graded taut Makanin—
Razborov diagram of the terminal (rigid or solid) limit group with respect
to the subgroups, Base?_fl,l, . ,Base?fur We continue only with those
multi-graded resolutions in the second taut Makanin Razborov diagram
that are of maximal possible complexity, i.e. those resolutions that are
one level and have the same structure, and the same taut structure, as the
formed part of the core resolution associated with the i-th level of the anvil,
Anv(MGQRes). We (still) denote the resolutions obtained from the top i
levels, MGQ?Res. We further use the modular groups associated with the
formed part of the core associated with the i-th part of Anv(MGQRes),
to map the subgroup associated with this formed part in the resolution
MGQ?Res, onto its image in the subgroup associated with the i + 1 level
of Anv(MGQRes).
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The outcome of the above terminating procedure is a (telescopic) se-
quence of multi-graded resolutions, that we (still) denote MGQ?Res. Let
(c,r,ha,91,h1,w,p,a) be the subgroup generated by the image of the de-
veloping resolution, Dvlp(q,r, ho, g1, h1,w,p,a), associated with the anvil,
Anv(MGQRes), and the elements associated with the Diophantine condi-
tions imposed by the given collapse form in the Collapse extra PS limit
group, CollapseExtraPS?. With each level of a multi-graded resolution
constructed in one of the parts, MGQ?Res, we associate its core resolu-
tion with respect to the (image of the) subgroup (c, r, h2, g1, h1,w, p, a), and
the resolution induced from this (one level) core resolution by the (image
of the) subgroup (c,r, ha,g1,h1,w,p,a). The collection of these induced
resolutions, associated with the various levels of the multi-graded resolu-
tion MGQ?Res, gives rise to a resolution (that is embedded in the multi-
graded resolution M GQ?Res), that we denote MGQ?Res,, of the image
of the subgroup (c,r, ho, g1, h1,w, p,a), that is canonically associated with
MGQ?Res. We denote the graded resolution (with respect to the defin-
ing parameters P = (p)) obtained as the compositions of these (induced)
resolutions, M GQ? Res,, associated with the (telescopic) sequence of multi-
graded resolutions MGQ?Res, GRess(e,c,r, ha, g1, h1,w,p,a). By Propo-
sition 13, we may iteratively repeat this construction of induced resolutions
with the subgroup associated with the completion of the obtained resolu-
tion G Ress, until we obtain a graded resolution, that we still denote G Resa,
which is embedded in the sequence of completions of the multi-graded res-
olutions M GQ?Res.

With each resolution MGQ?Res, associated with a multi-graded res-
olution MGQ?Res, we associate its core resolution with respect to (the
image of) the subgroup (r, he, g1, h1,w,p, a). By Proposition 13 and Theo-
rem 4.13 in [S5], either there exists a resolution M GQ?Res,. for which the
complexity of its associated core resolution (with respect to the subgroup
(ryhe2,g1,h1,w,p,a)) is strictly smaller than the complexity of the abelian
decomposition associated with the corresponding level of the developing
resolution, Dvlp, that is associated with the anvil, Anv(MGQRes), and
the complexities of all the core resolutions associated with the resolutions
MGQ?Res, that are associated with the parts above it, are identical to the
complexities of the abelian decompositions associated with the correspond-
ing levels of the developing resolution, Dvlp, or the complexities of the core
resolutions associated with the various resolutions M GQ?Res, are all iden-
tical to the complexities of the abelian decompositions associated with the
corresponding levels of Dvlp, and the structures of these core resolutions
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are similar to the structures of the corresponding abelian decompositions
in Dvlp (see Definition 4.12 in [S5] for the complexity of a core resolution).

Suppose that there exists a part for which the complexity of the as-
sociated core of MGQ?Res. (with respect to the image of the subgroup
(r,yh2,91,h1,w,p,a)) is strictly smaller than the complexity of the abelian
decomposition that is associated with the corresponding level of the de-
veloping resolution, Dvlp. We set SCRes(s,r, ha,g1,h1,w,p,a) to be the
image (in the sequence of completions of the resolutions MGQ?Res) of the
developing resolution, Dvlp(q,r, ha, g1, h1,w, p,a), which is associated with
the anvil, Anv(MGQRes). We replace the core resolutions associated with
the resolutions M GQ?Res., constructed in the various parts, and with the
image of the subgroup (r, he, g1, h1,w, p, a), by the corresponding penetrated
core resolutions (see Definition 4.20 in [S5]). Note that by construction, the
original core resolutions are embedded into the corresponding penetrated
core resolutions. Then we study the structure of the graded resolution
composed from resolutions induced by the (images of the) completion of
the developing resolution, Duvlp, from the corresponding penetrated core
resolutions.

We set the graded resolution, GResi(q,, ho, g1, h1,w,p,a), to be the
resolution composed from the resolutions induced by the (images of the)
subgroup (r, ho, g1, h1,w,p,a) from the penetrated core resolutions asso-
ciated in the various parts with that completion. With the resolution
GRes; we associate a finite collection of framed resolutions, and with
each framed resolution we associate a (canonical) finite collection of Non-
Rigid, Non-Solid, Root and Left PS resolutions, and a finite collection
of Extra PS resolutions, and Generic collapse extra PS resolutions, pre-
cisely as we associated those with the PS resolution PSHGH Res we
started the first step of the procedure with. We further associate with
each framed resolution the graded resolution SCRes, which we denote
SCRes?’l(sl,r, ha,g1,h1,w,p,a) and call the first sculpted resolution (of
width 1). and SCRes%Q(sl,r, h2,g1,h1,w,p,a), and call the first sculpted
resolution (of width 2). With it we associate a finite collection of devel-
oping resolutions (that are set to be the Extra PS resolutions), where
each of the developing resolutions is also set to be a penetrated sculpted
resolution, which we denote PenSC’Res%Q(ul,r, h2,g1,h1,w,p,a), and a
finite collection of anvils, that we denote Anv(MGQ?Res). Finally, we
associate with the anvil the sequence of core resolutions, associated with
the sequence of multi-graded resolutions, MGQ?Res, and the subgroup
(e, ha,g1,h1,w,p,a), and the resolutions, MGQ?Res,, which we call a
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Carrier, and denote it Carrier3 (the top index refers to the step number
and the bottom index refers to the width, which is the index of the corre-
sponding sequence of core resolutions), and the sequence of core resolutions
associated with the resolutions M GQ?Res., and the images of the comple-
tion of Duvlp, that are embedded in the carrier. With each anvil we further
associate a finite collection of auxiliary resolutions, using a construction
that generalizes the one presented in Definition 9.

DEFINITION 14 (cf. Definition 9). With the anvil, Anv(MGQ?Res), we
associate two finite collections of auxiliary resolutions, in a similar way to
the auxiliary resolutions constructed in Definition 9. The first collection is
associated with each level of the (first) sculpted resolution according to the
construction presented in Definition 8. We call the auxiliary resolutions
that are associated with the levels of the sculpted resolution, auxiliary
resolutions of width 1.

With each level of the anvil, Anv(MGQ?Res), we further associate
auxiliary resolutions of width 2. With the anvil we associate a taut multi-
graded Makanin—-Razborov diagram of the limit group associated with the
tower that contains all the levels up to level 2. The defining parameters
for the construction of the diagram are taken to be the subgroup gener-
ated by the subgroup P = (p), the non-abelian, non-QH vertex groups
in the abelian decomposition associated with the bottom level of the top
part of the anvil, Anv(MGQRes), which is the anvil with which the (first)
sculpted resolution was associated as a developing resolution (note that
the top part of Anv(MGQRes) is the part associated with the top part
of the (first) sculpted resolution), and the vertex and edge groups in the
formed part of the core resolution associated with the top part of the
anvil, Anv(MGQRes). Given the defining parameters, the diagram is
multi-graded with respect to the defining parameters, and the non-QH,
non-abelian vertex groups and edge groups in the (given) multi-graded
abelian decomposition associated with the limit group that appears in the
top level of the anvil, Anv(MGQ?Res), i.e. the Collapse extra PS limit
group, CollapseExtraPS>.

Similarly, with each level i in the anvil, we associate a multi-graded taut
Makanin-Razborov diagram of the limit group associated with the tower
that contains all the levels up to level i+ 1. The defining parameters for the
construction of the diagram are taken to be the subgroup generated by the
subgroup P = (p), the non-abelian, non-QH vertex groups in the abelian
decomposition associated with the bottom level of the corresponding part
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of the anvil, Anv(MGQRes) (i.e. the top part of Anv(MGQRes) for which
the formed part of its core resolution lies in level ¢ or below of the anvil,
Anv(MGQ?Res)), and the vertex and edge groups in the formed part of the
core resolution associated with that part, if this formed part lies in level i+1
of the anvil, Anv(MGQ?Res), or below. Given the defining parameters, the
diagram is multi-graded with respect to the defining parameters, and the
non-QH, non-abelian vertex groups and edge groups in the (given) multi-
graded abelian decomposition associated with the limit group that appears
in level i of the anvil, Anv(MGQ?Res).

We call each of the resolutions in these multi-graded diagrams a (multi-
graded) auxiliary resolution of width 2, and its terminating solid or rigid
limit group a (multi-graded) auxiliary limit group (of width 2), which we
denote Auz(MGQRes). With each auxiliary resolution we associate its
modular groups, that we call auxiliary modular groups. In the sequel, we
call the auxiliary resolutions associated with the tower containing all the
levels up to level 2 (all the levels except the top level), highest level. As we
did in Definition 8, with each auxiliary resolution of width 2 we naturally
associate an extended auxiliary resolution. By construction, the anvils,
Anv(MGQ?Res) and Anv(MGQRes), the developing and the sculpted
resolution, as well as the original PS limit group, PSHGH, are mapped
into the extended auxiliary limit group.

Suppose that the sequence of core resolutions associated with the se-
quence of multi-graded resolutions M GQ?Res., that are associated with the
multi-graded resolutions, MGQ?Res, constructed by the iterative proce-
dure presented above, and the images of the subgroup (r, ha, g1, h1,w, p,a),
are all of maximal complexity, i.e. each of these multi-graded core resolu-
tions have the same structure (and taut structure) as the abelian decompo-
sition associated with the corresponding level in the developing resolution
Dulp, that is associated with the anvil, Anv(MGQRes).

We set SCRes(s,r, he, g1, h1,w,p,a) to be the graded resolution (graded
with respect to the parameter subgroup P = (p)), composed from the
resolutions induced by the subgroup (g, r, ha, g1, h1,w, p, a) from the various
core resolutions associated with the multi-graded resolutions, M GQ?Res,.
(with respect to the image of the subgroup (r, ha, g1, h1,w,p,a)).

If every ungraded resolution that factors through the graded resolution
SC Res, factors through either one of the Non-Rigid, Non-Solid, Root, Left
PS or Generic collapse extra PSS resolutions associated with the developing
(Extra PS) resolutions we started the second step of the procedure with, or
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through a framed resolution, FrmSC Res, associated with SCRes, where
the frame associated with the framed resolution F'rmSCRes strictly con-
tains the frame associated with the graded resolution SC Res, we call the se-
quence of multi-graded resolutions from which the graded resolution SC Res
was constructed, a terminal resolution, and do not continue with it to the
next step of the procedure. Otherwise, we do the following.

We replace the core resolutions associated with the multi-graded reso-
lutions MGQ?Res. and with the subgroup (g, 7, ha, g1, h1,w,p,a), by the
corresponding penetrated core resolutions (see Definition 4.20 in [S5]). Note
that by construction, the original core resolutions are embedded into the
corresponding penetrated core resolutions. We denote the graded resolu-
tion composed from resolutions induced by the (images of the) subgroup
(q,7, ha,g1,h1,w,p,a) from the corresponding penetrated core resolutions,
GRes;.

With the graded resolution G Resy we associate a (canonical) finite col-
lection of framed resolutions, and with each framed resolution we associate
a (canonical) finite collection of Non-Rigid, Non-Solid, Root and Left PS
resolutions, and a finite collection of Extra PS resolutions, and Generic
collapse extra PS resolutions, precisely as we associated those with the
PS resolution PSHGH Res we started the first step of the procedure with.
We further associate with the graded resolution GReso the graded resolu-
tion SCRes which we call first sculpted resolution, and denote both as
S’CRes%’l(s,r, hsa,g1,h1,w,p,a) and SCRes%Q(s,r, ha,g1,h1,w,p,a), and
the resolution GRes; which we call first penetrated sculpted resolution,
and denote PenSCResf’z(ul,r, ho,g1,h1,w,p,a). Finally, we set each of
the Extra PS resolutions to be a developing resolution, which we denote
Dvlp(q,r, ha,g1,h1,w,p,a), and with it we associate a finite collection of
anvils. With each anvil we associate a finite collection of auxiliary resolu-
tions of width 1 and 2, according to Definition 14.

Before we continue to part (7) of the second step of the sieve procedure,
we present a basic property of framed resolutions of graded resolutions
composed from resolutions induced from penetrated core resolutions, that
is used repeatedly in the sequel.

PRrROPOSITION 15. Let Q be a QH vertex group in one of the abelian
decompositions associated with the various levels of the first penetrated
sculpted resolution GResy, and suppose that () is conjugate to a subgroup
of finite index in a QH subgroup Q' in an abelian decomposition associated
with one of the levels of the associated resolution M GQ?Res. Suppose that
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Q is not a QH vertex group in the (multi-graded) core resolution associated
with MGQ?Res, MGCore({r, ha, g1, h1,w,p,a), MGQ? Res).

Let FrmGRes be a framed resolution associated with the graded resolu-
tion GRes1. Then the QH subgroup containing () in the framed resolution
FrmGRes is Q itself, i.e. () is not properly contained in a QH vertex group
in the framed resolution FrmGRes.

Proof. By Theorem 4.20 in [S5], in a penetrated core resolution, each of
the QH vertex groups that do not belong to the formed part of the core
resolution associated with the penetrated core, is mapped isomorphically
into the limit group associated with the terminal level of the penetrated
core. Furthermore, each of the abelian decompositions associated with the
various levels of the penetrated core, gives rise to a corresponding abelian
decomposition of the limit group associated with its terminal level. Hence,
the QH vertex group ) is mapped onto a QH vertex group (J; in some
abelian decomposition of the limit group associated with the terminal level
of the penetrated core. Since the limit group associated with the terminal
level of the penetrated core is a free product of the formed part of the
core resolution with some additional finitely generated (f.g.) free group, in
any framed resolution of the resolution GRes;, non-trivial elements of the
subgroup ; that do not have non-trivial roots in @, do not have non-
trivial roots in the subgroup associated with the framed resolution. If in a
framed resolution FrmGRes of GResy, the QH vertex group ) in GRes;
is a finite index subgroup in a QH vertex group @ in the framed resolution
FrmGRes, and Q properly contains (), then there are non-trivial elements
in @ that do not have non-trivial roots in ) but have non-trivial roots in
(. Hence, there are non-trivial elements in Q; that do not have non-trivial
roots in (J; but have non-trivial roots in the limit group associated with the
framed resolution FrmGRes, a contradiction. Therefore, the QH vertex
group Q is not properly contained in a QH vertex group Q in a framed
resolution of the resolution GRes;. O

(7) Parts (1)-(4) treat all the cases in which the core associated with the
second multi-graded resolution M GQ?Res is not of maximal complexity.
Parts (5) and (6) treat the cases in which the core associated with the
second multi-graded resolution MGQ?Res is of maximal complexity, but
there is no sculpted resolution associated with the anvil, Anv(MGQRes).

In this part we treat the remaining case. We assume that there exists a
sculpted resolution associated with the anvil, Anv(M GQRes), i.e. that the
anvil, Anv(MGQRes), was constructed according to part (4) of the first
step of the procedure.
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According to Definition 9, if a sculpted resolution is associated with
an anvil, Anv(MGQRes), then a finite collection of auxiliary resolutions
of both width 1 and width 2 is associated with it. We start by analyzing
Collapse extra PS limit groups associated with highest level auxiliary res-
olutions of width 1. Parts (1)—(4) already analyze multi-graded resolutions
of such Collapse extra PS limit groups, M GQ?Res, that are not of max-
imal complexity. To analyze specializations that factor through maximal
complexity resolutions, M GQ?Res, we continue analyzing Collapse extra
PS limit groups associated with width 1 auxiliary resolutions according to
part (5).

If there is no sequence of multi-graded resolutions, M GQ?Res, obtained
using the iterative procedure presented in part (5), that do all have core
resolutions (with respect to the subgroup (r, ha, g1, h1,w, p,a)), that are of
maximal possible complexity, we have concluded the second step of the sieve
procedure. Otherwise, we continue using the procedures that are presented
in part (4) of the first step, and part (6) of the second step.

We continue the analysis by replacing the Collapse extra PS limit
groups that were associated with auxiliary resolutions of width 1, by those
associated with auxiliary resolutions of width 2 (see Definition 9).

We start with Collapse extra PS limit groups, Collapse ExtraPS?, as-
sociated with highest level auxiliary resolutions of width 2, and we an-
alyze them in parallel. We apply parts (1)-(4) to study limit groups
and core resolutions associated with the top level of the carrier or the
developing resolution (depending whether a carrier was associated with
the anvil, Anv(MGQRes), in part (4) of the first step), i.e. the core
associated with the image of CollapseExtraPS' in CollapseExtraPS?,
and with multi-graded resolutions of such Collapse extra PS limit group,
CollapseExtraPS?, with respect to the various factors in the associated
(width 2) auxiliary limit group (which, according to Definition 9, is as-
sumed to be rigid or solid multi-graded limit group, with respect to the
(multi) parameter subgroups which are the non-QH, non-abelian vertex
groups and edge groups in the (given) multi-graded abelian decomposi-
tion associated with the limit group that appears in the top level of the
anvil, Anv(MGQRes), the various vertex and edge groups in the abelian
decomposition associated with the formed part of the core resolution that
is associated with the top level of the sculpted resolution, and the non-
abelian, non-QH vertex groups in the abelian decomposition associated
with the top level of (the completion of) the sculpted resolution).
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Suppose that one of the parts (1)—(4) applies to such a multi-graded
resolution (that we still denote MGQ?Res), and to the limit group as-
sociated with the carrier or the developing resolution (the image of
CollapseExtraPS'). In this case the construction presented in the parts
(1)—(4) that applies, terminates in a limit group M GTerm;, which is a rigid
or solid multi-graded limit group with respect to the non-abelian, non-QH
vertex groups in the abelian decomposition associated with the top level of
(the completion of) the sculpted resolution, and the vertex groups in the
abelian decomposition associated with the formed part of the core resolu-
tion that is associated with the top level of the sculpted resolution.

We continue with the multi-graded resolutions of the terminal rigid or
solid limit group of the resolution M GQ?Res, MGTerm,, with respect to
the non-abelian, non-Q H vertex groups in the abelian decomposition as-
sociated with the top level of (the completion of) the sculpted resolution.
Like in part (6), in this part we need to analyze only resolutions associated
with CollapseExtraPS? (that is associated with a width 2 auxiliary reso-
lution), for which the multi-graded resolution of the terminal limit group
of MGQ?Res, MGTerm;, is identical to the formed part of the abelian
decomposition associated with the top level of the sculpted resolution (for
more details on why we can restrict to these resolutions see Theorem 18
below — it proves that the collection of anvils and terminal resolutions
constructed in the second step of the procedure covers the entire set of
Collapsed extra PS specializations). We further use the modular groups
associated with the formed part of the top level of the sculpted resolution,
to map the subgroup associated with this formed part in the resolution
MGQ?Res, onto its image in the subgroup associated with the second
level of the sculpted resolution.

We proceed to lower levels in a similar way to what we did in part (4)
of the first step, i.e. we proceed iteratively. At each level ¢ of the sculpted
resolution associated with the anvil, Anv(MGQRes), we start with the
terminal limit group of the resolution obtained from the top ¢ — 1 levels,
and analyze its multi-graded resolutions with respect to the non-QQH, non-
abelian vertex groups in the graded abelian decomposition associated with
the i-th level of the sculpted resolution, and with respect to the formed part
of the abelian decomposition associated with the i-th level of the sculpted
resolution (i.e. the collection of abelian and QH vertex groups that appear
in the abelian decomposition associated with the i-th level of the sculpted
resolution). We proceed with the multi-graded taut Makanin-Razborov di-
agram of the terminal (rigid or solid) limit group of such a resolution, with
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respect to (only) the non-QH, non-abelian vertex groups in the graded
abelian decomposition associated with the i-th level of the sculpted resolu-
tion. We continue only with those multi-graded resolutions in the second
taut Makanin—Razborov diagram that are of maximal possible complexity,
i.e. those resolutions that are one level and have the same structure, and
the same taut structure, as the formed part of the abelian decomposition
associated with the i-th level of the sculpted resolution. We (still) denote
the resolutions obtained from the top i levels, M GQ?Res. We further use
the modular groups associated with the formed part of the i-th level of the
sculpted resolution, to map the subgroup associated with this formed part
in the resolution M GQ?Res, onto its image in the subgroup associated with
the 7 4+ 1 level of the sculpted resolution.

As in the iterative procedure used in part (6), the outcome of the above
terminating procedure is a (telescopic) sequence of multi-graded resolu-
tions, that we (still) denote MGQ?Res. Let (c,r, ha,g1,h1,w,p,a) be the
subgroup generated by the image of the first sculpted resolution associated
with the anvil, Anv(MGQRes), and the elements associated with the
Diophantine conditions imposed by the collapse form associated
with it in Anv(MGQRes), i.e. the image of CollapseExtraPS' in
CollapseExtraPS?. With each level of a multi-graded resolution con-
structed in one of the parts, MGQ?Res, we associate its core resolution
with respect to the (image of the) subgroup (c,r, ho, g1, h1,w,p,a), and
the resolution induced from this (one level) core resolution by the (image
of the) subgroup (c,r, ha,g1,h1,w,p,a). The collection of these induced
resolutions, associated with the various levels of the multi-graded resolu-
tion MGQ?Res, gives rise to a resolution (that is embedded in the multi-
graded resolution MGQ?Res), that we denote MGQ?Res,, of the image
of the subgroup (c,r, ho, g1, h1,w,p,a), that is canonically associated with
MGQ?Res. We denote the graded resolution (with respect to the defin-
ing parameters P = (p)) obtained as the compositions of these (induced)
resolutions, M GQ? Res,, associated with the (telescopic) sequence of multi-
graded resolutions MGQ?Res, GRes(e,c,r, ha, g1, h1,w,p,a). By Proposi-
tion 13, we may iteratively repeat this construction of induced resolutions
with the subgroup associated with the completion of the obtained resolu-
tion GRes, until we obtain a graded resolution, that we still denote GRes,
which is embedded in the sequence of completions of the multi-graded res-
olutions M GQ?Res.

With each resolution MGQ?Res, associated with a multi-graded res-
olution MGQ?Res, we associate its core resolution with respect to (the
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image of) the subgroup (r, he, g1, h1,w,p,a). By Theorem 4.13 in [S5], ei-
ther there exists a resolution M GQ?Res, for which the complexity of its
associated core resolution (with respect to (r, ho, g1, h1,w,p,a)) is strictly
smaller than the complexity of the abelian decomposition associated with
the corresponding level in the sculpted resolution that is associated with
Anv(MGQRes), SCResy?, and the complexities of all the core resolutions
associated with the resolutions MGQ?Res. that are associated with the
parts above it, are identical to the complexities of the abelian decompo-
sitions associated with the corresponding levels of the sculpted resolution
that is associated with Anv(MGQRes), or the complexities of the core res-
olutions associated with the various resolutions M GQ?Res, are all identical
to the complexities of the abelian decompositions associated with the corre-
sponding levels of the sculpted resolution, and the structures of these core
resolutions are similar to the structures of the corresponding abelian decom-
positions in the sculpted resolution that is associated with Anv(M GQRes)
(see Definition 4.12 in [S5] for the complexity of a core resolution).

Suppose that there exists a part for which the complexity of the associ-
ated core of MGQ?Res. (with respect to the subgroup (r, hy, g1, h1,w, p, a))
is strictly smaller than the complexity of the abelian decomposition
associated with the corresponding part in the sculpted resolution,
SCResi’Q, that is associated with the anvil, Anv(MGQRes). We set
SCRes(s,r, ho,g1,h1,w,p,a) to be the image of the sculpted resolution
associated with the anvil, Anv(MGQRes), in the resolution G Res.

We further replace the core resolutions associated with the resolutions,
MGQ?Res., and the subgroup (r, hs, g1, h1,w,p,a), with the correspond-
ing penetrated core resolutions (see Definition 4.20 in [S5]). Note that by
construction, the original core resolutions are embedded into the corres-
ponding penetrated core resolutions. We set the graded resolution
PenSCRes(u,r,ha, g1, h1,w,p,a) to be the resolution composed from the
resolutions induced by the subgroup (r, hg, g1, h1,w,p,a) from the pene-
trated core resolutions associated with the resolutions M GQ?Res, and with
the subgroup <Ta ha, g1, h1,w, p, a)'

With the resolution PenSC Res we associate a finite collection of framed
resolutions, and with each framed resolution we associate a (canonical)
finite collection of Non-Rigid, Non-Solid, Root and Left PS resolutions,
and a finite collection of Extra PS resolutions, and Generic collapse extra
PS resolutions, precisely as we associated those with the PS resolution
PSHGH Res we started the first step of the procedure with. We further
associate with each framed resolution the graded resolution SC Res, which
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we denote SCRes%l(sl, r,h2, g1, h1,w,p,a) and call the first sculpted reso-
lution (of width 1), and SCR@S%Q(Sl,T, ha,g1,h1,w,p,a), and call the first
sculpted resolution (of width 2). We set each of the Extra PS resolutions
to be both a developing resolution, and a penetrated sculpted resolution,
which we denote PenSC’Res%g(ul,r, h2,91,h1,w,p,a), and with it we as-
sociate a finite collection of anvils, that are constructed in a similar way to
the constructions presented in sections 4 and 5 of the second step of the
procedure. Finally, we associate with the anvil the sequence of core reso-
lutions with respect to the subgroup (c,r, ho, g1, h1,w, p, a), the resolution
GRes (and its parts, MGQ?Res.), and the sequence of core and and pen-
etrated core resolutions, associated with the subgroup (r, ha, g1, h1,w,p, a)
and constructed in the various parts, which we call a Carrier, and denote
it Carrier? (the top index refers to the step number and the bottom index
refers to the width, which is the index of the corresponding sequence of core
resolutions).

Suppose that the sequence of core resolutions associated with the se-
quence of resolutions MGQ?Res. and the subgroup (r, hy, g1, h1,w,p,a),
are all of maximal complexity, i.e. each of these multi-graded core resolu-
tions have the same structure (and taut structure) as the graded abelian
decomposition associated with the corresponding level of the sculpted res-
olution that is associated with the anvil, Anv(MGQRes).

We set SCRes(s,r,ha,g1,h1,w,p,a) to be the graded resolution in-
duced by the subgroup (7, he,g1,h1,w,p,a) from the core resolutions of
the multi-graded resolutions, MGQ?Res., with respect to the subgroup
(r, h2, 91, w,p, a).

If every ungraded resolution that factors through the graded resolution
SCRes(s,r,ha,g1,h1,w,p,a), factors through either one of the Non-Rigid,
Non-Solid, Root, Left PS or Generic collapse extra P.S resolutions associ-
ated with the sculpted resolution we started the second step of the sieve
procedure with, we do not continue to the next step of the sieve procedure
with the given sequence of multi-graded resolutions we have constructed,
and call them a terminal resolution. If there are ungraded resolutions that
factor through SCRes, but do not factor through any of the Non-Rigid,
Non-Solid, Root nor Left PS resolutions nor the generic collapse Extra PS
resolutions associated with the sculpted resolution we started the second
step of the procedure with, we do the following.

We set the graded resolution PenSCRes(u,r,ha,g1,h1,w,p,a) to be
the resolution composed from the resolutions induced by the subgroup
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(ryh2,91,h1,w,p,a) from the penetrated core resolutions associated
with the various resolutions MGQ?Res., and with the subgroup
<7", h?;gl,hlawapa Cl)-

Recall that the resolution GRes was set to be the composition of the
sequence of resolutions M GQ?Res,.. By construction, GRes is graded with
respect to the parameter subgroup P = (p), and the resolution PenSC Res
is embedded into the completion of the graded resolution G Res.

With the graded resolution G Res, we associate a (canonical) finite col-
lection of framed resolutions, and with each framed resolution we associate
a finite collection of Non-Rigid, Non-Solid, Root and Left PS resolutions,
and a finite collection of Extra PS resolutions, and Generic collapse ex-
tra PS resolutions, precisely as we associated those with the PS resolu-
tion PSHGH Res we started the first step of the procedure with. We
set each of the Extra PS resolutions to be a developing resolution, and
with it we associate a finite collection of anvils (according to the construc-
tion used in sections (4) and (5)), that we still denote, Anv(MGQ?Res).
We further associate with the anvil the graded resolution SCRes, which
we call first sculpted resolution (of widths 1 and 2), and denote both as
SCRes?’l(s,r, ha,g1,h1,w,p,a) and SC’Resf’Q(s,r,hz,gl,hl,w,p,a), and
the graded resolution PenSC Res, which we call penetrated sculpted res-
olution, and denote PenSCResf’Q(u, r,ho, g1, hi,w,p,a).

So far we have analyzed multi-graded resolutions of Collapse extra PS
limit groups, CollapseExtraPS?, that are associated with highest level
width 2 auxiliary resolutions, and for which one of the parts (1)—(4) applies
to them (where parts (1)—(4) are applied with respect to the subgroup
(e, ha,g1,h1,w,p,a) (the image of CollapseExtraPS")).

Suppose that none of the parts (1)—(4) applies to such a multi-graded
resolution, M GQ? Res, with respect to the subgroup (c, 7, ha, g1, h1,w, p, a).
In this case we proceed as in part (3) of the first step and part (5) of the
second step. For each level i of the anvil, Anv(MGQRes), we analyze
Collapse extra PS limit groups, CollapseExtraPS?, that are associated
with width 2 auxiliary resolutions that are associated with the limit group
that is associated with all the levels of the anvil, Anv(MGQRes), except
the top 7 levels. As in part (5), given such a Collapse extra PS limit group,
CollapseExtraPS?, we analyze its multi-graded resolutions so that none
of the parts (1)—(4) applies to the multi-graded resolutions associated with
the top i — 1 levels (with respect to the subgroup (c,r, hs, g1, h1,w,p,a),
the image of CollapseExtraPS'), and (at least) one of the parts (1)—(4)
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applies to the multi-graded resolution associated with the i-th part of the
anvil.

Given such a multi-graded resolution, we treat it as we treated multi-
graded resolutions associated with highest level width 2 auxiliary resolu-
tions. We continue the analysis of the terminal rigid or solid limit group of
the obtained multi-graded resolution, and continue only with those multi-
graded resolutions for which the abelian decompositions associated with the
parts corresponding to the formed parts of the core resolutions associated
with the anvil, Anv(MGQRes), and the subgroup (r, hs,g1,h1,w,p,a),
have the same structure as these formed parts. Finally, with each such
multi-graded resolution (that we still denote MGQ?Res), we associate
sculpted resolutions, (possibly) a carrier, and developing resolutions and
anvils, precisely as we constructed these in case one of the parts (1)-(4)
applies to the multi-graded resolution, MGQ?Res, associated with the top
level of the anvil, Anv(MGQRes) (i.e. precisely as we did in the beginning
of part (7)).

Suppose that for a Collapse extra PS limit group, Collapse ExtraPS?,
associated with the anvil, Anv(MGQRes), itself (and not with a width 2
auxiliary resolution associated with it), there exists a sequence of multi-
graded resolutions constructed by the above iterative procedure, for which
none of the parts (1)—(4) applies to the various levels (with respect to the
subgroup (¢, r, ha, g1, h1,w, p,a)). In particular, all the core resolutions as-
sociated with the subgroup (c,, ho, g1, h1,w,p,a) are of maximal complex-
ity. We first suppose that in part (4) of the first step of the procedure, a car-
rier was associated with the anvil, Anv(MGQRes) (i.e. a carrier and not a
developing resolution associated with the subgroup (c, 7, h2, g1, h1,w,p, a)).

In this case we first examine the structure of the corresponding devel-
oping resolution. The developing resolution is a framed resolution of a
resolution built from a sequence of resolutions induced from corresponding
core resolutions. Each of the induced resolutions is a resolution induced
by the (image of the) subgroup (r, ha,g1,h1,w,a) from the corresponding
core resolution, and with each level of the induced resolution there is an
associated (framed) multi-graded abelian decomposition (see section 3 of
[S4] for the construction of the induced resolution, and Definition 5 for the
construction of framed resolutions).

Let (q,7,ha, 91, h1,w,p,a) be the subgroup associated with the develop-
ing resolution, Dvlp(q, T, he, g1, h1,w, p,a), that is associated with the anvil,
Anv(MGQRes). If the structure of the resolution composed from the res-
olutions induced by the subgroup (q,r, ho, g1, h1,w,p,a) from the various
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core resolutions associated with the multi-graded resolutions M GQ?Res.
(with respect to the image of the subgroup (g, , ho, g1, h1,w,p,a)), is not
identical to the structure of the developing resolution associated with the
anvil Anv(MGQRes), Proposition 13 implies that there exists some level j
for which the structure of the graded abelian decomposition associated
with the resolutions induced by the subgroup (g, 7, he, g1, h1,w,p,a) above
level j are identical to the structure of the graded abelian decompositions
associated with the corresponding levels in the developing resolutions we
started the second step with, and in level j, either the number of factors in
the graded free decomposition associated with the graded abelian decom-
position associated with the resolution induced by (g,r, ha, g1, h1,w,p,a)
is strictly smaller than the number of factors in the corresponding graded
free decomposition associated with the corresponding level in the develop-
ing resolution we started the second step with, and in case of equality in
the number of factors, the complexity of the graded abelian decomposition
associated with the resolution induced by (g, r, hs, g1, h1,w, p,a) is strictly
smaller than the complexity of the graded abelian decomposition associated
with the corresponding level of that developing resolution. In this case we
do the following.

With the graded resolution constructed from the various resolutions
induced by the subgroups (q,r, ho, g1, h1,w,p,a) from the core resolutions
associated with the various multi-graded resolutions, M GQ?Res,, and with
respect to the images of the subgroup (q,r, ha, g1, h1,w,p,a), we associate
a (canonical) finite collection of framed resolutions (Definition 5). With
each framed resolution we associate a finite collection of Non-Rigid, Non-
Solid, Root and Left PS resolutions, and a finite collection of Extra PS
resolutions and generic collapse PS resolutions. Finally, we set each of
the Extra PS resolutions to be a developing resolution, and with it we
associate a finite collection of anvils. With each anvil, Anv(MGQ?Res),
we associate the sculpted resolution, and the carrier that are associated
with the anvil, Anv(MGQRes), with which we started this branch of the
second step of the procedure, as well as the resolution GRes, and its various
parts MGQ?Res,.

Suppose that the sequence of core resolutions associated with the
sequence of multi-graded resolutions, MGQ?Res, and the subgroup
(¢, ho,g1,h1,w,p,a), are all of maximal complexity, and either there is
no carrier associated with the anvil, Anv(MGQRes), or in case there is an
associated carrier, the structure of the resolution composed from the res-
olutions induced by the subgroup (q,r, he, g1, h1,w,p,a) from the various
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core resolutions associated with the multi-graded resolutions, M GQ?Res.,
is the same as that of the developing resolution associated with the anvil,
Anv(MGQRes). In this case we proceed in a similar way to what we did
in part (4) of the first step, and part (6) of the second step.

We start the analysis with the collection of Collapse extra PS limit
groups obtained from the anvil, Anv(MGQRes) (and not with any of its
associated auxiliary limit groups), and its (finitely many) associated col-
lapse forms. We (still) denote each of these Collapse extra P.S limit groups,
CollapseExtraPS?.

We first analyze the Collapse extra PS limit groups, Collapse ExtraPS?,
using an iterative process which is similar to the one used in part (6).
We start with the multi-graded taut Makanin-Razborov diagram of the
Collapse extra PS limit group, CollapseExtraPS?, with respect to the
non-@Q H, non-abelian vertex groups in the graded abelian decomposition
associated with the top level of the anvil, Anv(M GQRes), and with respect
to the formed part of the abelian decomposition associated with the top
level of the anvil, Anv(MGQRes). We proceed with the multi-graded taut
Makanin-Razborov diagram of the terminal (rigid or solid) limit group with
respect to the non-QQH, non-abelian vertex groups in the graded abelian
decomposition associated with the top level of the anvil, Anv(MGQRes).
We continue only with those multi-graded resolutions in the second taut
Makanin—-Razborov diagram that are of maximal possible complexity, i.e.
those resolutions that are one level and have the same structure, and the
same taut structure, as the formed part of the abelian decomposition as-
sociated with the top level of the anvil, Anv(MGQRes). We (still) denote
these (two parts) multi-graded resolutions, for which the second part is one
level and has the same structure as the formed part of the abelian decom-
position associated with the top part of the anvil, MGQ?Res. We further
use the modular groups associated with the formed part of the abelian
decomposition associated with the top part of the anvil, Anv(MGQRes),
to map the subgroup associated with this formed part in the resolution
MGQ?Res, onto its image in the subgroup associated with the second
level of Anv(MGQRes).

We proceed iteratively to the next levels. At each level i, we start
with the Makanin—Razborov diagram of the terminal limit group of the
resolution obtained from the top 7 — 1 levels, with respect to the non-
QH, non-abelian vertex groups in the graded abelian decomposition asso-
ciated with the i-th level of the anvil, Anv(MGQRes), and with respect
to the formed part of the abelian decomposition associated with the i-th
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level of Anv(MGQRes). We proceed with the multi-graded taut Makanin—
Razborov diagram of the terminal (rigid or solid) limit group with respect
to the non-Q H, non-abelian vertex groups in the abelian decomposition as-
sociated with the i-th level of the anvil, Anv(M GQRes). We continue only
with those multi-graded resolutions in the second taut Makanin-Razborov
diagram that are of maximal possible complexity, i.e. those resolutions that
are one level and have the same structure, and the same taut structure, as
the formed part of the abelian decomposition associated with the i-th level
of the anvil, Anv(MGQRes). We (still) denote the resolutions obtained
from the top i levels, MGQ?Res. We further use the modular groups asso-
ciated with the formed part of the abelian decomposition associated with
the i-th level of Anv(MGQRes), to map the subgroup associated with this
formed part in the resolution MGQ?Res, onto its image in the subgroup
associated with the i 4+ 1 level of Anv(MGQRes).

Let GQ?Res be a graded resolution obtained by the above iterative
procedure (note that the sequence of multi-graded resolutions constructed
by the above procedure form a resolution which is graded with respect to the
defining parameters P = (p)). We divide our treatment of the resolution
GQ?Res, depending on whether there is a carrier, Carriers, associated
with the anvil, Anv(MGQRes), or not. We first assume that there is no
carrier associated with the anvil, Anv(MGQRes).

With each part of the graded resolution GQ?Res, we associate its core
resolution with respect to (the image of) the subgroup (r, ha, g1, h1, w, p, a).
By Theorem 4.14 in [S5], either there exists a part in which the complexity
of its associated core resolution is strictly smaller than the complexity of the
core resolution associated with the corresponding part in Anv(MGQRes),
and the complexities of all the core resolutions associated with the parts
above it are identical to the complexities of the core resolutions associated
with the corresponding parts of Anv(MGQRes), or the complexities of
the core resolutions associated with the various parts are identical to the
complexities of the core resolutions associated with the various parts of
Anv(M GQRes), and the structures of these core resolutions are similar to
the structures of the corresponding core resolutions in Anv(MGQRes) (see
Definition 4.12 in [S5] for the complexity of a core resolution).

Suppose that there exists a part for which the complexity of the as-
sociated core is strictly smaller than the complexity of the corresponding
core resolution in Anv(MGQRes). We set SCRes(s,r, ha, g1, h1,w,p,a) to
be the image, in the completion of the resolution GQ?Res, of the sculpted
resolution that is associated with the anvil, Anv(MGQRes).
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With each multi-graded resolution MGQ?Res associated with a part
of GQ?Res, we associate its core resolution with respect to
(the corresponding image of) the subgroup (r,ho,g1,h1,w,p,a),
MGCore({r,h2, g1, h1,w,p,a), GQ?Res). We further replace each of these
core resolutions with the corresponding penetrated core resolutions (see Def-
inition 4.20 in [S5]). Note that by construction, the original core resolutions
are embedded into the corresponding penetrated core resolutions. We set
the graded resolution PenSC Res(u, 1, h2, g1, h1,w,p,a) to be the resolution
composed from the resolutions induced by the subgroup (r, he, g1, h1,w, p, a)
from the penetrated core resolutions associated in the various levels with
the subgroup (r, he, g1, h1,w,p, a).

With the resolution PenSC Res we associate a finite collection of framed
resolutions, and with each framed resolution we associate a (canonical)
finite collection of Non-Rigid, Non-Solid, Root and Left PS resolutions,
and a finite collection of Extra PS resolutions, and generic Collapse ex-
tra P.S resolutions, precisely as we associated those with the P.S resolution
PSHGH Res we started the first step of the procedure with. We further as-
sociate with each framed resolution the graded resolution SC Res, which we
denote SCRes?’l(sl, ryhe, g1, hi,w,p,a), SCRes%Z, and SCResfﬁ, and call
the first sculpted resolution of widths 1,2,3, in correspondence. We set the
image of the developing resolution associated with the anvil,
Anv(MGQRes), to be the second sculpted resolution of width 2, and de-
note it, SCRess””. We set each of the Extra PS resolutions to be both a
developing resolution, and a penetrated sculpted resolution, which we de-
note PenSCRes%’?’(ul, r,ho, g1, h1,w,p,a), and with it we associate a finite
collection of anvils, that are set to be the finite collection of maximal limit
groups associated with an amalgamation of the resolution GQ? Res with the
Extra PS resolution (the developing resolution). Finally, we associate with
the anvil the resolution GQ?Res and its associated sequence of core and
penetrated core resolutions, associated with the subgroup (r,ho,g1,h1,w,p,a)
and constructed in the various parts, which we call a Carrier, and denote
it Carriers.

Suppose that the sequence of core resolutions associated with the se-
quence of multi-graded resolutions, M GQ?Res, constructed by the iterative
procedure presented above, and the subgroup (r, ho, g1, h1, w, p, a), are all of
maximal complexity, i.e. each of these multi-graded core resolutions have
the same structure (and taut structure) as the graded abelian decompo-
sition associated with the corresponding level of the sculpted resolution
associated with the anvil, Anv(MGQRes).
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We set SCRes1(s1,7, he, g1, h1,w,p,a) to be the graded resolution in-
duced by the subgroup (r, ha, g1, h1,w, p,a) from the core resolutions of the
multi-graded resolutions constructed along the various levels of the process
described above.

If every ungraded resolution that factors through the graded resolu-
tion SCRes1(s1,7, ha, g1, h1,w, p,a), factors through either one of the Non-
Rigid, Non-Solid, Root, Left PS or Generic collapse extra PS resolutions
associated with the Extra PS resolutions we started the first step of the
sieve procedure with, we do not continue to the next step of the sieve
procedure with the given sequence of multi-graded resolutions we have
constructed, and call them a terminal resolution. If there are ungraded
resolutions that factor through SCRes;, but do not factor through any
of the Non-Rigid, Non-Solid, Root or Left P.S resolutions or the Generic
collapse extra PS resolutions associated with the Extra PS resolutions we
started the first step of the procedure with, we do the following.

With each part of the graded resolution GQ?Res, we associate its core
resolution with respect to (the image of) the subgroup CollapseExtraPS!
= (¢,r,ha2,91,h1,w,p,a). By Theorem 4.14 in [S5], either there exists a
part in which the complexity of its associated core resolution is strictly
smaller than the complexity of the abelian decomposition associated with
the corresponding level in Anv(MGQRes), and the complexities of all the
core resolutions associated with the parts above it are identical to the com-
plexities of the abelian decompositions associated with the corresponding
levels of Anv(MGQRes), or the complexities of the core resolutions associ-
ated with the various parts are identical to the complexities of the abelian
decompositions associated with the various levels of Anv(MGQRes), and
the structures of these core resolutions are similar to the structures of
the corresponding abelian decompositions in Anv(MGQRes) (see Defini-
tion 4.12 in [S5] for the complexity of a core resolution).

Suppose that there exists a part for which the complexity of
the associated core is strictly smaller than the complexity of the
corresponding abelian decomposition in Anv(MGQRes). We  set
SCRess(s2,r,ha,g1,h1,w,p,a) to be the image, in the completion of the
resolution GQ?Res, of the developing resolution that is associated with the
anvil, Anv(MGQRes) (which is Anv(MGQRes) itself).

With each multi-graded resolution M GQ?Res associated with a part of
GQ?Res, we associate its core resolution with respect to (the correspond-
ing image of) the subgroup CollapseExtraPS'. We further replace each
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of these core resolutions with the corresponding penetrated core resolutions
(see Definition 4.20 in [S5]). Note that by construction, the original core
resolutions are embedded into the corresponding penetrated core resolu-
tions. We set the graded resolution PenSCResy(usg,r, ha, g1, h1,w,p,a) to
be the resolution composed from the resolutions induced by the subgroup
CollapseExtraPS" from the penetrated core resolutions associated in the
various levels with the subgroup CollapseExtraPS?.

With the resolution PenSCResy we associate a finite collection of
framed resolutions, and with each framed resolution we associate a (canon-
ical) finite collection of Non-Rigid, Non-Solid, Root and Left PS resolu-
tions, and a finite collection of Extra PS resolutions, and Generic collapse
extra PS resolutions. We further associate with each framed resolution the
graded resolution SC Res1, which we denote SC’Res?’l(sl,r,hg,gl,m,w,p,a),
SCRes%Q, and SCRes?’?’, and call the first sculpted resolution of widths
1,2,3, in correspondence. With each sculpted resolution we associate the
corresponding penetrated sculpted resolution. We set the image of the
developing resolution associated with the anvil, Anv(MGQRes), to be
the second sculpted resolution of widths 2,3 and denote it, SC’R@S%’2 and
SCResg’s. We set each of the Extra PS resolutions to be both a devel-
oping resolution, and a penetrated sculpted resolution, which we denote
PenSCResg’?’(ug, r,h2, g1, h1,w,p,a), and with it we associate a finite col-
lection of anvils, that are set to be the finite collection of maximal limit
groups associated with an amalgamation of the resolution GQ?Res with
the Extra PS resolution (the developing resolution). Finally, we asso-
ciate with the anvil the resolution GQ?Res and its associated sequence
of core and penetrated core resolutions, associated with the subgroups
(r,ha,g1,h1,w,p,a) and CollapseExtraPS", constructed in the various
parts, which we call a Carrier, and denote it Carrier%.

Suppose that the sequence of core resolutions associated with the se-
quence of multi-graded resolutions, M GQ?Res, constructed by the iterative
procedure presented above, and the subgroup Collapse ExtraPS*, are all of
maximal complexity, i.e. each of these multi-graded core resolutions has the
same structure (and taut structure) as the graded abelian decomposition
associated with the corresponding level of the anvil, Anv(MGQRes).

We set SCResa(s2,1, he, g1, h1,w,p,a) to be the graded resolution in-
duced by the subgroup CollapseExtraPS! from the core resolutions of the
multi-graded resolutions constructed along the various levels of GQ?Res.

If every ungraded resolution, that factors through the graded reso-
lution SCResy(s9,1, ha,g1,h1,w,p,a), factors through either one of the
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Non-Rigid, Non-Solid, Root, Left PS or Generic collapse extra PS res-
olutions associated with the developing resolution we started the second
step of the sieve procedure with, we do not continue to the next step of the
sieve procedure with the given sequence of multi-graded resolutions we have
constructed, and call them a terminal resolution. If there are ungraded res-
olutions that factor through SC Ress, but do not factor through any of the
Non-Rigid, Non-Solid, Root or Left P.S resolutions or the Generic collapse
extra PS resolutions associated with the developing resolution we started
the first step of the procedure with, we do the following.

With the ambient resolution GQ?Res we associate a (canonical) fi-
nite collection of Non-Rigid, Non-Solid, Root and Left PS resolutions,
and a finite collection of Extra PS resolutions, and Generic collapse ex-
tra PS resolutions. We further associate with it the graded resolution
SC Res1, which we denote SCRes%’l(sl, r,ha, g1, hi, w, p,a), SCRes%’Q, and
S CRes?’s, and call the first sculpted resolution of widths 1,2,3, in correspon-
dence. We set the image of the developing resolution associated with the
anvil, Anv(MGQRes), to be the second sculpted resolution of widths 2,3
and denote it, S C’Resg’2 and S CResg’?’. With each sculpted resolution we
associate the corresponding penetrated sculpted resolution. We set each of
the Extra PS resolutions to be both a developing resolution, and an anvil,
that we denote, Anv(MGQ?Res).

So far we have treated the case in which no carrier is associated with the
anvil, Anv(M GQRes). In this case we could have used Theorem 4.14 in [S5]
in order to bound the complexities of the core resolutions associated with
the various multi-graded resolutions, M GQ?Res. In case there is a carrier
associated with Anv(M GQRes), we need to bound the complexities of the
core resolutions associated with the multi-graded resolutions M GQ?Res,
in terms of the complexities of the core resolutions associated with the
various multi-graded resolutions M GQRes that are associated with the
anvil, Anv(MGQRes).

1

Theorem 16. In case there exists a carrier, Carriersy, associated with the
anvil, Anv(MGQRes), one of the following two possibilities holds:
(i) The complexities of the core resolutions associated with the sequence
of multi-graded resolutions, MGQ?Res, and with the (image of the)
PS limit group, (r, hs, g1, h1,w,p,a), are equal to the complexities of
the core resolutions associated with the corresponding multi-graded
resolutions, MGQRes, associated with the anvil, Anv(MGQRes),
we started the second step with. In this case the structures of the
corresponding core resolutions are similar.
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(ii) There exists some level j, for which the core resolutions associated
with the subgroup (r,hg,g1,h1,w,p,a), and with the multi-graded
resolutions, MGQ?Res, in all the levels above level j, have the same
structure as the corresponding core resolutions associated with the
multi-graded resolutions M GQ Res, and in level j, the core resolution
associated with the corresponding multi-graded resolution M GQ? Res
has strictly smaller complexity than the core resolution associated
with the corresponding multi-graded resolution, M GQRes.

Proof. The iterative procedure that was used to construct the multi-graded
resolutions, MGQ?Res, preserves all the formed parts of the abelian de-
compositions associated with the various levels of the multi-graded resolu-
tions M GQRes, associated with the anvil, Anv(MGQRes), we started the
second step with.

When we construct the core resolution of a multi-graded resolution,
MGQ?Res, associated with the top level of the sculpted resolution, using
the construction presented in section 4 in [S5], we start with the image of
the core resolution associated with the corresponding multi-graded resolu-
tion M GQRes, associated with the anvil, Anv(MGQRes), we started the
second step with. Since the formed parts in the abelian decompositions
associated with the multi-graded resolution, M GQRes, are preserved in
the multi-graded resolution, M GQ?Res, either the core of MGQ?Res has
the same structure as that of the core of MGQRes, or the complexity of
the core associated with M GQ?Res is strictly smaller than the complexity
of the core associated with M G@QRes. If the structures of the core resolu-
tions of MGQ?Res and MGQRes are similar, we continue inductively to
multi-graded resolutions M GQ?Res associated with lower levels, and the
theorem follows. o

Suppose that there is a carrier, Carriers, associated with the anvil,

Anv(MGQRes). With each part of the graded resolution GQ?Res, we
associate its core resolution with respect to (the image of) the subgroup
(ryh2,91,h1,w,p,a). By Theorem 16, either there exists a part in which
the complexity of its associated core resolution is strictly smaller than the
complexity of the core resolution associated with the corresponding part
in Anv(MGQRes), and the complexities of all the core resolutions associ-
ated with the parts above it are identical to the complexities of the core
resolutions associated with the corresponding parts of Anv(MGQRes), or
the complexities of the core resolutions associated with the various parts
are identical to the complexities of the core resolutions associated with the
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various parts of Anv(MGQRes), and the structures of these core resolu-
tions are similar to the structures of the corresponding core resolutions in
Anv(MGQRes).

Suppose that the complexities of the core resolutions associated with
the various parts of GQ?Res, and the subgroup (r, ho, g1, h1,w,p,a), are
identical to the complexities of the core resolutions associated with the
various parts of the anvil, Anv(MGQRes). In this case we set PenScRes
to be the resolution induced by image of the subgroup associated with
the developing resolution, (g,r,ho,g1,h1,w,p,a), that is associated with
the anvil, Anv(MGQRes), from the penetrated core resolutions associated
with the subgroup, (gq,r, h2,91,h1,w,p,a), and the various parts of the
resolution GQ?Res. To study the structure of the resolution PenSC Res
we need the following proposition, which is similar to Proposition 13.

ProrosITION 17. Let (q,7,h2,91,h1,w,p,a) be the subgroup generated
by the developing resolution in the anvil, Anv(M GQRes). From each part
of the penetrated core resolutions associated with the multi-graded reso-
Iutions, MGQ?Res, constructed along the levels of the second step of the
procedure, and with the subgroup (q,r, ha, g1, h1,w,p,a), there is a reso-
lution induced by the (image of the) subgroup (q,r, ho,g1,h1,w,p,a). By
Proposition 13, we may repeat the construction of the induced resolution
using the subgroup associated with the composition of the resolutions asso-
ciated with the various parts, until we obtain an induced resolution that is
embedded in the completion of the resolution GQ?Res. Let A4, ..., Ay be
the graded abelian decompositions associated with the obtained (induced)
resolutions and the terminal levels of the penetrated core resolutions asso-
ciated with the various parts.

Then, either the structures of the graded abelian decompositions A; are
identical to the structures of the corresponding graded abelian decomposi-
tions in the developing resolution we started the second step with, or there
exists some level j, so that the structures of the abelian decompositions
above level j remain unchanged, and either the number of factors in the
(graded) free decomposition associated with A; is strictly smaller than the
number of factors in the corresponding (graded) free decomposition associ-
ated with the corresponding level of the developing resolution, or, in case of
equality in the number of factors, the complexity of the graded abelian de-
composition A; is strictly smaller than the complexity of the graded abelian
decomposition associated with that level in the developing resolution.

Proof. 1dentical to the proof of Proposition 13 and Proposition 4.11
in [S4]. o
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By Propositions 13 and 17, either the structure of the obtained reso-
lution is identical to the structure of the developing resolution associated
with the anvil, Anv(MGQRes), or there exists some level j, so that the
structure of the graded abelian decompositions associated with the reso-
lutions induced by the subgroup (q,r, h2,g1,h1,w,p,a) above level j are
identical to the structure of graded abelian decompositions associated with
the corresponding levels of the developing resolution; and in level j, either
the number of factors in the (graded) free decomposition associated with
the graded abelian decomposition associated with the resolution induced by
(q,7, ha,g1,h1,w,p,a) is strictly smaller than the number of factors in the
corresponding (graded) free decomposition associated with the correspond-
ing level of the developing resolution, or in case of equality in the number of
factors, the complexity of the graded abelian decomposition associated with
the resolution induced by (g, r, ha, g1, h1, w, p,a) is strictly smaller than the
complexity of the graded abelian decomposition associated with that level
in the developing resolution.

Suppose that either there exists a part of GQ?Res for which the com-
plexity of the associated core is strictly smaller than the complexity of the
corresponding core resolution in Anv(MGQRes), or in case the structure of
the core resolutions associated with the various parts are identical to those
associated with the various parts of the anvil, Anv(MGQRes), suppose
that there is a reduction in the complexity of an abelian decomposition as-
sociated with the resolution induced by the subgroup (q, 7, he, g1, h1,w, p, a)
from the various penetrated core resolutions that are associated with the
various parts of GQ?Res.

If there exists a part of GQ?Res for which the complexity of the associ-
ated core is strictly smaller than the complexity of the corresponding core in
Anv(MGQRes), we set PenSCRes to be the graded resolution composed
from resolutions induced by the images of the subgroup (r, h, g1, h1, w, p, a)
from the penetrated core resolutions associated with the various parts of
GQ?Res and with the images of the subgroup (r, ha, g1, k1, w, p, a).

In case the structure of the core resolutions associated with the various
parts of GQ?Res are identical to those associated with the various parts of
the anvil, Anv(MGQRes), and there is a reduction in the complexity of an
abelian decomposition associated with the resolution induced by the sub-
group (q,r,ha,91,h1,w,p,a) from the various penetrated core resolutions
that are associated with the various parts of GQ?Res, we set PenScRes
to be the resolution induced by the subgroup (q,r, ha,g1,h1,w,p,a) from
the penetrated core resolutions associated with this subgroup,
{q,r,h2,91,h1,w,p,a), and the various multi-graded resolutions, M GQ? Res.
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With the resolution PenSC Res we associate a finite collection of framed
resolutions, and with each framed resolution we associate a (canonical)
finite collection of Non-Rigid, Non-Solid, Root and Left PS resolutions,
and a finite collection of Extra PS resolutions, and Generic collapse extra
PS resolutions, precisely as we associated those with the PS resolution
PSHGH Res we started the first step of the procedure with. We further
associate with each framed resolution the graded resolution SC Res;, which
we denote SCRes%’l(sl,r, he2,g1,h1,w,p,a), SCRes?Q, and SC’Res%’?’, and
call the first sculpted resolution of widths 1,2,3, in correspondence. We
set each of the Extra PS resolutions to be both a developing reso-
lution, and a penetrated sculpted resolution, which we denote
PenSCResf’?’(ul, r,ho, g1, h1,w,p,a), and with it we associate a finite col-
lection of anvils, that are set to be the finite collection of maximal limit
groups associated with an amalgamation of the resolution GQ?Res with the
Extra PS resolution (the developing resolution). Finally, we associate with
the anvil the resolution GQ?Res and its associated sequence of core and
penetrated core resolutions, associated with the subgroup (r,ho,g91,h1,w,p,a)
and constructed in the various parts, which we call a Carrier, and denote
it Carrz'er%, and the image of the carrier, Carrierl, that is associated with
the anvil, Anv(MGQRes), that we also denote Carriers.

Suppose that the sequence of core resolutions associated with the vari-
ous parts of the resolution, GQ?Res, and the subgroup (r, ha, g1, h1,w, p, a),
are all of maximal complexity, and the abelian decompositions associated
with the various levels of the resolution induced by the image of the develop-
ing resolution, (g, r, ho, g1, h1,w, p,a), from the penetrated core resolutions
that are associated with GQ?Res and the subgroup {(q,7, ha, g1, h1,w,p, a),
have the same structure as the abelian decompositions associated with the
various levels of the developing resolution Duvlp, that is associated with the
anvil, Anv(MGQRes). In this case we proceed as in the case in which no
carrier is associated with the anvil, Anv(MGQRes).

We set PenSC Res(u,r,ha,g1,h1,w,p,a) to be the graded resolution
induced by the subgroup (g,r, ha,g1,h1,w,p,a) from the penetrated core
resolutions of the various parts of GQ?Res (with respect to the subgroup
<7", h2;glah17wapa Cl))

If every ungraded resolution that factors through the graded resolution
PenSCRes(u,r,ha, g1, h1,w,p,a), factors through either one of the Non-
Rigid, Non-Solid, Root, Left PS or Generic collapse extra PS resolutions
associated with the anvil, Anv(MGQRes), we do not continue to the next
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step of the sieve procedure with the given sequence of multi-graded resolu-
tions we have constructed, and call them a terminal resolution. Otherwise
we do the following.

With the ambient resolution GQ?Res we associate a (canonical) finite
collection of Non-Rigid, Non-Solid, Root and Left PS resolutions, and a
finite collection of Extra PS resolutions, and Generic collapse extra PS
resolutions. We further associate with it the sculpted resolution that is as-
sociated with Anv(M GQRes), that which we denote SCRes%l, SCRes%Q,
and SCRes%’?’, and call the first sculpted resolution of widths 1,2,3, in cor-
respondence. We set the image of the developing resolution associated with
the anvil, Anv(MGQRes), to be the first penetrated sculpted resolution
of width 2, denoted PenSCRes;ﬂ, and the resolution PenSC Res to be the
first penetrated sculpted resolution of width 3, SC’Resg’?’. We set each of
the Extra PS resolutions to be both a developing resolution, and an anvil,
that we denote, Anv(MGQ?Res).

As in the previous parts of the first and second steps, we still need to as-
sociate with each anvil a finite collection of (extended) auxiliary resolutions.
Like in part (4) of the first step, with each anvil, Anv(MGQ?Res), we asso-
ciate either 2 or 3 collections of auxiliary resolutions (auxiliary resolutions
of widths 1,2 and possibly 3), according to Definition 14, and depending on
whether there are 2 or 3 algebraic envelopes associated with the constructed
anvil, Anv(MGQ?Res).

Like in the first step, before we conclude the second step of the sieve pro-
cedure, and prepare the data-structure for starting the next step, we need to
check that the iterative procedure that was used in the second step, and the
anvils constructed along it together with the terminal resolutions, collect
all the Collapse extra PS specializations that factor through the initial de-
veloping resolutions, that are associated with the anvils, Anv(MGQRes),
we started the second step with, and through the Diophantine conditions
imposed by their associated collapse forms.

Theorem 18. Let (7, ho, g1, h1,w,p,a) be a valid PS statement that fac-
tors through one of the PS limit group PSHGH, and can be extended to
a specialization that factors and is taut with respect to one of the anvils,
Anv(MGQRes), that was constructed in the first step of the sieve proce-
dure, and the extended specialization satisfies the Diophantine conditions
imposed by one of the collapse forms associated with the developing reso-
lution associated with the anvil, Anv(MGQRes). Then either:
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(i) The specialization (r, ho, g1, h1,w,p,a) can be extended to a test se-
quence of one of the developing resolutions, we started the second
step with, that projects to a collection of valid PS statements.

(ii) (r, h2,91,h1,w,p,a) can be extended to a specialization that either
factors through and is taut with respect to one of the anvils or one
of the terminal resolutions constructed along the second step of the
sieve procedure.

Proof. The argument is essentially identical to the proof of Theorem 10.
Suppose that part (i) does not hold. In this case the valid PS statement
can be extended to a specialization that factors through one of the Collapse
extra PS limit groups, CollapseExtraPS?, that were analyzed along the
second step of the procedure.

If the extended specialization factors through a sequence of multi-graded
resolutions, M GQ?Res, so that an anvil was assigned with this sequence of
multi-graded resolutions according to one of the parts (1)—(5) of the second
step, then the valid PS statement (7, ho, g1, h1,w,p,a) can be extended to
a specialization that factors through an anvil constructed according to the
relevant parts (1)—(5).

Otherwise, the extended specialization must factor through a sequence
of multi-graded resolutions, M GQ?Res, constructed according to part (5)
of the second step, so that all the core resolutions (with respect to the
subgroup (r, ha, g1, h1,w, p, a)) of the multi-graded resolutions, M GQ?Res,
are of maximal possible complexity. Note that with such a sequence of
multi-graded resolutions no anvil was assigned in part (5) of the second
step. However, by the construction of graded formal limit groups and
resolutions, presented in section (3) of [S2], all the specializations that
factor through and are taut with respect to a sequence of multi-graded
resolutions, M GQ?Res, that were constructed according to part (5) of the
second step and are all of maximal possible complexity, must factor through
at least one sequence of multi-graded resolutions constructed according to
parts (6) or (7) of the second step of the sieve procedure. Like in the proof
of Theorem 10, this follows since every test sequence with respect to the
formed parts of the core resolutions associated with the various levels of
the sculpted resolution, must factor through (at least one of) the multi-
graded resolutions constructed in parts (6) or (7) of the second step of the
procedure. Hence, in this case, the valid PS statement (r, he, g1, h1,w,p, a)
can be extended to a specialization that factors through either one of the
anvils or one of the terminal resolutions constructed according to parts (6)
or (7) of the second step of the sieve procedure. o
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The collection of multi-graded resolutions, M GQ?Res, the graded reso-
lutions obtained from them, GQ?Res, the developing resolutions and (pos-
sibly) sculpted resolutions and carriers, and the anvils, Anv(MGQ?Res),
associated with them, and their collections of (extended) auxiliary resolu-
tions, limit groups, and modular groups, together with the data-structure
constructed before starting the second step of the procedure, form the data-
structure obtained as a result of the first step.

At this stage we continue in a similar way to what we did in the first
step of the procedure. Given an anvil, Anv(MGQ?Res), and an (extended)
auxiliary resolution of it, we associate with them all their (finitely many)
possible collapse forms. Given an (extended) auxiliary resolution and a
collapse form, we add variables that enable one to express the Diophantine
conditions imposed by the collapse form, so that with each (extended)
auxiliary resolution and one of its associated collapse forms, we finally
associate a finite collection of Collapse extra PS limit groups, that we
denote CollapseExtraPS? (see the corresponding construction at the end
of the first step for more details on this construction).

The General Step of the Sieve Procedure

In the first two steps of the sieve procedure, we have finally obtained finitely
many developing resolutions and anvils, with which we have possibly asso-
ciated a finite collection of sculpted resolutions, penetrated sculpted resolu-
tions, and carriers, and a finite collection of associated Non-rigid, Non-solid,
Root and Left PS resolutions, Extra P.S resolutions, Generic collapse extra
PS resolutions, multi-graded auxiliary resolutions, and Collapse extra PS
limit groups. After presenting the first steps, we finally present the general
step of the sieve procedure, and then prove that the procedure terminates
after finitely many steps.

We define the general step of the sieve procedure inductively. For
brevity we denote the multi-graded resolutions that were obtained in the
previous steps of the sieve procedure, MGQ™Res(fm,r, ha, 91, h1,w,p,a),
where m is the index of the step in which they were constructed. With each
such multi-graded resolution there is an associated developing resolution,
which we denote Dvlp™(gy,,r,he,g1,h1,w,p,a), an anvil that we denote
Anv(MGQ™ Res), and multi-graded auxiliary resolutions. With the de-
veloping resolution and the anvil, we associate a positive integer, called
width and denoted width(m), that denotes the number of algebraic en-
velopes associated with the anvil, i.e. the number of (nested) sequences of
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core resolutions associated with the anvil, Anv(MGQ™ Res). width(m)=1
if and only if no sculpted resolution is associated with the anvil. In case
width(m) > 1, for each width d, 1 < d < width(m), i.e. with the (nested)
collection of the first d algebraic envelopes (sequences of core resolutions as-
sociated with the anvil), there are associated sc(m,d) sculpted resolutions,
that we denote SCResZn’d(se,r, ho,g1,h1,w,p,a) for e = 1,...,s¢(m,d),
and corresponding penetrated sculpted resolutions, that we denote
PenSCResZn’d(ue,r, ho,g1,h1,w,p,a). At each width d, there is possibly
an associated carrier that we denote Carriery’, that represent the d-th al-
gebraic envelope, i.e. the d-th sequence of core resolutions associated with
the anvil. We start the general step of the sieve procedure with the (finite)
collection of multi-graded resolutions constructed in the previous step, and
their associated widths, developing resolutions, sculpted resolutions and
their penetrated sculpted resolutions and carriers, anvils, multi-graded aux-
iliary resolutions, and their associated collapse forms and Collapse extra PS
limit groups, Collapse ExtraPS™ (11,7, ha, g1, h1,w, p, a).

The ultimate goal of the general step of the iterative procedure is to
obtain a strict reduction in either the complexity of certain decompositions
and resolutions, or a strict reduction in the Zariski closures of certain limit
groups associated with the anvils constructed in the previous steps of the
procedure. If such reductions do not occur, then we are forced to increase
the number of algebraic envelopes associated with the constructed anvil,
i.e. to increase the width. Finally, the strict reduction in complexity and
Zariski closures, together with a global bound on the width associated with
the anvils constructed along the procedure, that we prove in the sequel,
will guarantee the termination of the iterative procedure after finitely many
steps.

Since we treat the anvils and Collapse extra P.S limit groups in parallel,
we present the general (n-th) step of the procedure with one of the anvils,
Anv(MGQ™ ' Res)(t, 1,7, h2, g1, h1,w,p,a) and one of its associated Col-
lapse extra PS limit groups, CollapseExtraPS™(f,,r, ha,g1,h1,w,p,a).
We construct iteratively the developing resolutions (penetrated) sculpted
resolutions, carriers and anvils, starting with the Collapse extra PS limit
group.

As we did in the first steps, we start the general step of the sieve pro-
cedure with the Collapse extra PS limit groups that are associated with
auxiliary resolutions of highest level (and width 1, in case there exists a
sculpted resolution associated with the anvil, Anv(MGQ™ !Res)), and
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analyze them in parallel. The analysis of such a Collapse extra PS limit
group considers (and depends on) the data-structure associated with it, i.e.
the (finite) collection of multi-graded resolutions constructed in the previ-
ous steps, their core resolutions, and their associated developing, sculpted,
and penetrated sculpted resolutions, and carriers, and the auxiliary resolu-
tions constructed in previous steps of the sieve procedure, in a similar way
to what we did in the first two steps of the sieve procedure.

(1) Let Q"(r,h2,g1,h1,w,p,a) be the limit group generated by
(ryho,91,h1,w,p,a) in the the Collapse extra PS limit group,
CollapseExtraPS™(fp,7,ha,91,h1,w,p,a) (that is associated with the
anvil, Anv(MGQ" ! Res)). If Q™(r, ha, g1, h1,w,p,a) is a proper quotient
of the PS limit group, PSHGH, we started the first step of the procedure
with, we continue this branch of the iterative procedure, by starting the first
step of the procedure with the graded limit group Q"(r, ha, g1, h1,w,p,a),
instead of the graded (PS) limit group PSHGH.

(2) At this stage we may assume that Q"(r, ha,g1,h1,w,p,a) is isomor-
phic to the PS limit group PSHGH. Along the sieve process used to con-
struct the anvil, Anv(MGQ" ' Res), we enlarge the subgroups that serve
as (multi) parameter subgroups for the multi-graded Makanin-Razborov
diagrams of the corresponding Collapse extra PS limit groups, each time
the complexity of the core associated with the corresponding multi-graded
resolution is being reduced. At step m, 1 < m < n—1, we set the parameter
subgroups to be Base;’fis(m,). .. ,Baseg?;f,(zm)), and the corresponding multi-

s(m

graded resolution to be
MGQ™Res (fm, r,ho, g1, h1,w, Basegfis(m), .. ,Base;rj;ﬁém)), a) .

For each index s, 1 < s < s(n — 1), we set f(s) to be the minimal
index m, 1 < m < n — 1, for which s = s(m), and £(s) to be the max-
imal index m for which s = s(m). For each couple of indices mq,ma,
1 <m < mg < n, let Q™(fm,,r,h2,91,h1,w,p,a) be the subgroup
generated by (f,,, 7, he, g1, h1,w,p,a) in the Collapse extra PS limit group
Collapse ExtraPS™(fm,,7, ha, g1, h1,w,p,a), which is associated with the
the mo — 1 anvil, Anv(MGQ™~! Res).

In this part of the general step of the sieve procedure we assume that
the core associated with the multi-graded resolution,

MGQn_lReS (fn—la T, h?a g1, hla w, BasegII,S(n_l)a R Base;;ifl(n_l)a Cl) s
’ Ws(n—1)

is of maximal possible complexity, i.e. it has the same structure as the core
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associated with the top part of
MGQ" 2Res (fn_g, r,ho, g1, h1,w, Baseg;2’s(n_2), e, Basen_2’s(n_2), a) .

27”:(;272)

Suppose that for some index s, 1<s<s(n—1)—1, Q"(fe(s),;h2,91,h1,w,p,a)
is a proper quotient of Q) (fe(s)> Ty h2, 91, b1, w,p,a), and let s be the min-
imal index for which this happens. Then we omit the Collapse extra PS
limit group, CollapseExtraPS™, from the list of Collapse extra PS limit
groups we started the n-th step with, and replace it by going back to
the £(s)-th step of the sieve procedure, and start it with the limit group
Q" (fu(s)» 75 ha, 91, h1, w, p, a) instead of the £(s)-th Collapse extra PS limit
group, CollapseExtraPS% ), that was used in the £(s)-th step of the pro-
cess that leads to the construction of the anvil, Anv(MGQ™ ! Res). Since
by the definition of the index £(s), the parameter subgroups were enlarged
at step £(s) + 1 (hence, the multi-graded resolution MGQ®) Res is not
of maximal complexity), by Theorem 4.18 in [S5] (that implies that the
Diophantine sets associated with maximal complexity resolutions cover the
Diophantine sets associated with maximal complexity resolutions of a quo-
tient), in analyzing the limit group Q"(fy(s),, h2, g1, h1,w,p,a), we need
to take into account only those multi-graded resolutions for which their
associated core resolutions are not of maximal complexity, i.e. only those
multi-graded resolutions for which their core resolution does not have the
same structure as the core associated with the top part of MGQY®)~! Res.

Suppose that for s = s(n — 1) — 1 (hence, for every index s, 1 <
s < s(n — 1) = 1), Q"(fys),7, h2,91,h1,w,p,a) is isomorphic to
CollapseExtraPS‘®). We set s(n) = s(n — 1). Let

MGQ"Resy (fn,r, ho, g1, h1,w, Baseg,’f(n), e ,Baseg’s(") ,a), ...

n
’Us (n

Tt ’MGQnResq (fn, r, h2a g1, h17 w, Base;”f(n)’ - 7Ba86n’8(n) 7(1)

2,11:(")

be the completions of the multi-graded resolutions in the multi-graded
taut Makanin—Razborov diagram of CompFExtraPS™ with respect to the
parameter subgroups Baseg,’f(n), ... ,Baseg”sgn) . We will treat the multi-
graded resolutions M GQ"Res; in parallel, hé(;():e, we omit their index.

Since the multi-graded resolution MGQ! (™)~ Res used in step
£(s(n) — 1) along the branch of the process that constructs the anvil,
Anv(MGQ" 1 Res), is well separated, with each QH vertex group in one
of the abelian decompositions associated with MGQ¢(™~1) Res there is an
associated collection of s.c.c. that are mapped to the trivial element in the
next level of the multi-graded resolution MGQ¥*(~1) Res.
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Each QH vertex group in the formed part of the core resolution that is
associated with the top level of the multi-graded resolution MGQ! (")~ Res
naturally inherits a sequence of abelian decompositions from an n-th multi-
graded resolution MGQ"Res. If for some such QH vertex group @, this
sequence of multi-graded abelian decompositions is not compatible with the
collection of s.c.c. on () that are mapped to the trivial element in the next
level of the multi-graded resolution MGQ! (™) ~1) Res, we omit the multi-
graded resolution M GQ" Res from the list of completions of resolutions of
the anvil, Anv(MGQ" ! Res).

By Theorem 4.14 in [S5], the complexity of the core associated with the
n-th multi-graded resolution M GQ" Res are bounded by the complexity of
the core associated with the multi-graded resolution M GQ™ ! Res, and if
the complexity of the two-core resolutions are equal, then the structure of
the core associated with M GQ™ Res is identical to the structure of the core
associated with MGQ" 'Res. In this part of the n-th step of the sieve
procedure we will also assume that the complexity of the core associated
with the multi-graded resolution M GQ"Res is strictly smaller than the
complexity of the core associated with M GQ™ 'Res, hence, we are able to
treat the multi-graded resolution M GQ™Res according to part (4) of step
n — 1 of the sieve procedure.

(3) At this stage we may assume that Q"(r, ho, g1, h1,w,p,a) is isomor-
phic to the PS limit group PSHGH, we started the first step with. In this
part we assume that the core associated with the multi-graded resolution
MGQ™ ! Res is not of maximal possible complexity.

Suppose that for some index s, 1<s<s(n—1), Q" (fy(s),7,h2,91,h1,w,p,a),
is a proper quotient of Qe(s)(fe(s),r, h2,91,h1,w,p,a), and suppose that s
is the minimal index for which this happens. Then we omit the Collapse
extra PS limit group, CollapseExiraPS", from our list, and replace it
by going back to the £(s)-th step of the sieve procedure, and start it with
the limit group Q" (fy(s), 7, h2,91,h1,w,p,a), which is the subgroup gen-
erated by (fy(s),7, k2,91, h1,w,p,a) in CollapseExtraPS", instead of the
£(s)-th limit group Q“®)(fys),7, h2, 91, k1, w, p, a) used in the £(s)-th step of
the process that leads to the construction of the anvil, Anv(MGQ™ 'Res).
Since by the definition of the index £(s), in case £(s) < n—1 the (multi) pa-
rameter subgroups were enlarged at step ¢(s) + 1, and in case £(s) =n —1
the core associated with the multi-graded resolution MGQ" ! Res is as-
sumed to be not of maximal possible complexity; in analyzing the limit
group Q"(fg(s), r,he, g1, h1,w,p,a) we need to take into account only those
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multi-graded resolutions for which their associated core are not of maxi-
mal complexity, i.e. those multi-graded resolutions for which their associ-
ated core resolutions have strictly smaller complexity than the complex-
ity of the core associated with the top level of the multi-graded resolu-
tion MGQUs1Res used in the process of the construction of the anvil
Anv(MGQ" ! Res).

(4) In this part we assume that the core associated with the
multi-graded resolution M GQ™ 'Res is not of maximal complexity, and
that Q™(r, ha,91,h1,w,p,a) is isomorphic to PSHGH. We set s(n) =

s(n—1)+1, and the (multi) parameter subgroups Baseg,’f(n), e Baseg’sgn)

to be the factors in the given free decomposition of the associated auxiliary
limit group, Auz(MGQ" ! Res). Let

MGQ"™Res (fn, r,ho, g1, h1,w, Baseg,’f("), ey Base;(:fn) , a), e

..., MGQRes, (fn, r, ha, g1, h1,w, Baseg”f(n), cen, Baseg’sy({g , a)

be the completions of the resolutions in the taut multi-graded Makanin—
Razborov diagram of CollapseExtraPS™ with respect to the parameter
s(n)

subgroups Baseg:l yooo, Baseyyn We analyze the n-th multi-graded
resolutions M G'Q"Res; in parallel, hence, we will omit their index.

Since the multi-graded resolution M GQ™ ! Res, used in step n—1 to
construct the anvil Anv(MGQ"™ 'Res), is well separated, with each
QH vertex group in one of the abelian decompositions associated with
MGQ" 'Res there is an associated collection of s.c.c. that are mapped
to the trivial element in the next level of the multi-graded resolution
MGQ" ! Res.

Each QH vertex group in the formed part of the core resolution that is
associated with the top level of the multi-graded resolution MGQ™ ' Res
naturally inherits a sequence of abelian decompositions from an n-th multi-
graded resolution MGQ"Res. If for some such QH vertex group @, this
sequence of multi-graded abelian decompositions is not compatible with
the collection of s.c.c. on ) that are mapped to the trivial element in the
next level of the multi-graded resolution M GQ" ' Res, we omit the multi-
graded resolution, M GQ"Res, from the list of completions of resolutions
of the anvil, Anv(MGQ" ' Res).

In this part we will also assume that the core associated with the n-th
multi-graded resolution M GQ™Res is not of maximal possible complexity,
i.e. it does not have the same structure as the core associated with the
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top level of the n — 1 multi-graded resolution, MGQ™ ' Res. The case of
maximal complexity will be treated in the next parts of the general step. To
treat an n-th multi-graded resolution that is not of maximal complexity, we
need the following two observations, that are similar to Lemmas 11 and 12.

LEMMA 19. Let MGQ"Res be an n-th multi-graded resolution that is not
of maximal complexity. Let QL,,,(fn—1,7, h2,91,h1,w,p,a) be the image of
Q"™ (fn—1,7,h2,91, h1,w,p,a) (which is the image of CollapseExtraPS™ ')
in the terminal (rigid or solid) limit group of M GQ" Res.

Then the multi-graded resolution M GQ" Res can be replaced by two
finite collections of multi-graded resolutions, that are all compatible with
the top level of the resolution MGQ™ 'Res, and are all obtained from
MGQ"Res by adding at most a single (terminal) level. Furthermore, all
the resolutions in these collections are not of maximal complexity.

We denote each of the resolutions in these collections, MGQ™ Res':

(i) In the first (possibly empty) collection of multi-graded resolutions, the
image of the subgroup Q™(f,—1,7,h2,91,h1,w,p,a) in the terminal limit
group of MGQ"Res', is a proper quotient of Q" ( f,—1,7,h2,91,h1,w,p,a).

(ii) In the second (possibly empty) finite collection of multi-graded reso-
lutions, the terminal limit group of MGQ™Res' is either a rigid or a
solid limit group with respect to the parameter subgroup (p), i.e. the
terminal limit group is rigid or solid with respect to the parameter
subgroup (p), and not only with respect to the multi-grading with

respect to the subgroups Baseg”f (n), .- ,Baseg,’i,({l)), that was used in
the construction of the resolution, M GQ" Res.
Proof. Identical to the proof of Lemma 2.7 in [S5]. o

LEMMA 20. Let MGQ™Res be one of the resolutions in our list of multi-
graded resolutions. Let Q% (fn—1,r,h2,91,h1,w,p,a) and Q% (fn,r,h2,91,h1,w,p,a),
be the images of the subgroups Q"(fn_1,7,h2,91,h1,w,p,a) and
Q" (fn,r,h2,91,h1,w,p,a) in the limit group, MGQ"lims(fy,r,h2,91,h1,w,p,a),
associated with the second level of the multi-graded resolution M GQ" Res.

Then Q% (fn_1,7,h2,91,h1,w,p,a) is a quotient of Q™(fn_1,7,h2,91,h1,w,p,a),
and Q% (fn,r, hs, g1, h1,w, p, a) is a proper quotient of Q™(f..,r, h2, g1, h1, w, p, a).

Proof. The claim is simply one of the basic properties of a multi-graded
resolution. o

By Lemma 19 we can either omit the graded resolution MGQ"Res
from our list of multi-graded resolutions, or we can replace the resolution
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MGQ™Res by finitely many resolutions, that for brevity we still denote
MGQ™Res, and for each resolution we may assume that either the image
of the subgroup Q"(fn—1,7, h2,91,h1,w,p,a), in the terminal graded limit
group of MGQ"Res, is a proper quotient of Q™(fn—_1,7,h2,91,h1,w,p,a),
or the terminal limit group of MGQ" Res is rigid or solid with respect to
the parameter subgroup P = (p).

Suppose first that the subgroup generated by (r, he,g1,h1,w,p,a) in
the limit group Q% (fn, 7, h2, 91, h1,w,p, a), denoted Q% (r, ha, g1, h1,w,p,a),
is a proper quotient of Q"(r,h2,91,h1,w,p,a). With the subgroup
Q5 (r, he,g1,h1,w,p,a) we associate the completions of the graded reso-
lutions that appear in its graded taut Makanin—Razborov diagram with
respect to the subgroup P = (p):

GQR@Sl(T‘, hQagla hla w,p, a)a .. ,GQReSc(Ta hZa a1, hla w, P, a) .

We continue with each of the graded resolutions GQRes;(r, ho, g1, h1,w, p, a)
in parallel.

Let TMGQ™Res be the (one level) resolution corresponding to the top
level of the multi-graded resolution M GQ™ Res. Note that by Corollary 4.16
in [S5], the complexity of the (multi-graded) core of TM GQ™ Res, is strictly
smaller than the complexity of the core of the multi-graded resolution
MGQ" ' Res, i.e. the multi-graded resolution TM GQ"Res is not of max-
imal complexity.

If the subgroup generated by (r, hs,g1,h1,w,p,a) in the limit group
associated with the resolution GQRes;(r, ho, g1, h1,w,p,a) is a proper quo-
tient of Q%(r, ha, g1, h1,w,p,a), we replace the graded resolution GQRes;
by starting part (4) of the the n-th step with the multi-graded resolution
obtained from TMGQ"Res by replacing its terminal limit group
Q% (fns7, b2, 91, h1,w,p,a) with the maximal limit groups obtained from
all the specializations that factor through both Q%(fn,r, he,g1,h1,w,p,a)
and the subgroup generated by (r, he, g1, h1,w,p,a) in the limit group as-
sociated with GQ Res;. Hence, for the rest of this part we may assume that
the subgroup generated by (r, ha, g1, h1,w,p,a) in the limit group associ-
ated with GQRes; is isomorphic to Q3 (r, ha, g1, h1,w,p,a).

Let CRes;(r, ha, g1, h1,w,p,a) be the graded resolution obtained from
the resolution induced by the subgroup (r, hs, g1, h1, w, p,a) from the (core
of the) multi-graded graded resolution 7'M GQ™ Res, followed by the graded
resolution GQRes;. With the resolution C'Res; we associate a finite collec-
tion of framed resolutions (see Definition 5), which we denote FrmC Res,
and continue with each of them in parallel.
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If the subgroup generated by (r, ha, g1, h1,w, p,a) in the limit group cor-
responding to a framed resolution, F'rmC Res, associated with the graded
resolution C'Res;, is a proper quotient of Q™ (r, ke, g1, h1,w, p, a), we replace
the framed resolution F'rmC Res by starting the first step of the procedure
with the subgroup generated by (r, ha, g1, h1,w,p,a) in the limit group cor-
responding to the framed resolution FrmC Res.

If the subgroup generated by (r, h2,g1,h1,w,p,a), in the limit group
associated with the second level of FrmC Res, which is the level asso-
ciated with the terminal (second) level of TMGQ"™Res, that we denote,
Qr(r,he, g1, h1,w,p,a), is a proper quotient of Q5 (r, he, g1, h1,w,p,a), we
replace the framed resolution FrmCRes by starting part (4) of the the
n-th step with the multi-graded resolution obtained from TMGQ™Res by
replacing its terminal limit group Q% (fy,r, he, g1, h1,w, p,a) with the max-
imal limit groups obtained from all specializations that factor through both
Q5 (fn,r,h2,91,h1,w,p,a) and Qp(r,ha,g1,h1,w,p,a). Hence, we may
assume that for the rest of this part the subgroup generated by
(ryh2,91,h1,w,p,a) in the limit group corresponding to FrmC Res is iso-
morphic to Q™(r, ha, g1, h1,w,p,a), and Qp(r, he,g1,h1,w,p,a) is isomor-
phic to Q5(r, he, g1, h1,w,p, a).

We now treat each of the framed resolutions FrmC Res in a similar
way to our treatment of multi-graded resolutions in part (4) of the second
step of the sieve procedure. With the framed resolution FrmCRes we as-
sociate a (canonical) finite collection of Non-Rigid, Non-Solid, Root and
Left PS resolutions, Extra PS resolutions, and Generic collapse extra PS
resolutions. We set each of the Extra PS resolutions to be a developing
resolution, and with it we associate a finite collection of anvils, that we
denote, Anv(MGQ"Res), and auxiliary resolutions (according to the con-
struction presented in Definition 8), precisely as we did in part (2) of the
first step of the sieve procedure.

Suppose that QF(r,ho,g1,hi,w,p,a) is isomorphic to Q™ (r,hg,g1,h1,w,p,a).
In this case we set s, 1 < s < s(n) — 1, to be the minimal index for which
Qg(fﬁ(s),TahQ,gl,hlaw,paa) is a proper quotient of Qn(ff(s)’T,hQ,gl,hlaw,paa)
= Q) (fe(s)s s P2, 91, h1,w,p,a) (we assume that there exists such an in-
dex s in this part). Let

Y4 2
MGQRes: (f[(s), r,ha, g1, h1,w, BaseQEi)’s, ceey Base;f}i) , a), .

)

¢ 4
..., MGQResy (fg(s), T, ha, g1, h1,w, Baseﬁ)’s, ceey BaseQ(ZZ’(i) , a)

)

be the completions of the resolutions in the taut multi-graded Makanin—



92 Z. SELA GAFA

Razborov diagram of Q% (fy(s), 7, h2, g1, h1,w, p, a) with respect to the (multi)
(8),8 (s),s

¢ . .
parameter subgroups BaseQ,i ,...,Ba362 o) We continue with each of

the multi-graded resolutions M G(Q)Res; in’psarallel.

We set the multi-graded resolution,

(s):s

DR@Sj (fe(s)aTa h2a91,h1awaBa3€g,i U Cl) ’

,...,BCL862 2
Vs

to be the multi-graded resolution induced by the subgroup (fy(s),r,h2,91,h1,w,p,a)
from the n-th multi-graded resolution TM GQ™ Res, followed by the multi-
graded resolution M G(Q)Res;.

If the subgroup generated by (r, ha, g1, h1, w, p,a) in the limit group cor-
responding to the resolution DResj, Qp(r,ha,g1,h1,w,p,a), is a proper
quotient of the PS limit group PSHGH(r, hs, g1, h1,w,p,a) we started
this branch of the sieve procedure with, we replace the multi-graded res-
olution MGQRes; by starting a new branch of the sieve procedure with
Qp(r,ha,91,h1, w,p,a) instead of PSHGH (r, hg, g1, h1,w,p, a).

If the subgroup generated by (fy(s), 7, h2, g1, b1, w, p, a) in the limit group
corresponding to the resolution D Res;, QD(fg(s),’r, ha,g1,h1,w,p,a), is a
proper quotient of Q™ (fy(s),ha,91,h1,w,p,a) = QX®)(fys),m,ha,91,h1,w,p,a)
we do the following.

We set b, 1 < b < s, to be the minimal index for which the subgroup
generated by (fys),7, he2, 91, h1,w,p, a) in the limit group corresponding to
the resolution DRes;j, Qp(fys),T,h2,91,h1,w,p,a), is a proper quotient
of Qn(ff(b)a 7, ha, g1, b1, w, p, a) = Qe(b) (.f@(b),ra ha, g1, h1,w,p, a)' Then we
replace the multi-graded resolution MGQRes; (of the limit group
Q5 (fe(s), T b2, 91, h1,w,p,a)), by going back to the £(b)-th step of the sieve
procedure, and start it with the limit group Qp(fys), 7, b2, g1, b1, w, p,a) in-
stead of the £(b)-th Collapse extra PS limit group, CollapseExtraPS®),
that was used in the £(b)-th step of the process that lead to the construction
of the anvil, Anv(MGQ™ ! Res). Since, by the definition of the index £(b),
the (multi) parameter subgroups were enlarged at step £(b) + 1, by Theo-
rem 4.18 in [S5], in analyzing the limit group Qp(few), 7 he, 91, h1,w,p, a)
we need to take into account only those multi-graded resolutions for which
their associated core resolutions are not of maximal complexity, i.e. only
those multi-graded resolutions for which their core resolution does not have
the same structure as the core associated with the top level of the multi-
graded resolution MGQ*~Y Res.

Suppose that Qp(fe(s), s b2, g1, h1,w,p,a) is isomorphic to

Qn(fe(s),ra ha, g1, h1,’lU,p,a) = QZ(S)(fE(s)ara ha,g1,h1,w,p, a)'
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Since the multi-graded resolution MGQ“*5~V Res used in step (s — 1)
to construct the anvil, Anv(MGQ! )~ Res), is well separated, with each
QH vertex group in one the abelian decompositions associated with
MGQ' 1) Res there is an associated collection of s.c.c. that are mapped to
the trivial element in the next level of the multi-graded resolution
MGQ!s~Y Res.

Each QH vertex group in the formed part of the core resolution that is
associated with the top level of the multi-graded resolution M GQ!s~Y Res
naturally inherits a sequence of abelian decompositions from the multi-
graded resolution DRes;. If for some such QH vertex group @, this
sequence of multi-graded abelian decompositions is not compatible with
the collection of s.c.c. on ) that are mapped to the trivial element in the
next level of the multi-graded resolution MGQ ¢~V Res, we omit the multi-
graded resolution M G(QRes; from the list of completions of resolutions of
the limit group Qg(fl(s)a 7, he, g1, h1,w, p, a)'

Suppose that the core of a multi-graded resolution MGQRes;,
MGCore((r,h2, g1, h1,w,p,a), MGQRes;), or the core of a multi-graded
resolution DRes;, is of maximal possible complexity, i.e. the core has the
same structure as the core associated with the top level of the multi-graded
resolution MGQ!*~Y) Res. By Theorem 4.15 in [S5], if the core associated
with the multi-graded resolution M GQRes; is of maximal possible com-
plexity, so is the core associated with the multi-graded resolution D Res;.
Hence, by Theorem 4.18 in [S5], every specialization of the PS limit group
(r,h2,91,h1,w,p,a) that is contained in the Diophantine set associated with
DResj, is contained in at least one of the Diophantine sets associated with
a multi-graded resolution with maximal complexity core, M GQY®) Res, of
the Collapse extra PSS limit group, Collapse ExtraPS%%). Since the multi-
graded resolution M GQY®) Res (that was constructed along the path that
leads to Anv(MGQ™ 'Res)) is assumed to have a core which is not of
maximal complexity, we may omit multi-graded resolutions with maximal
complexity core from the collection of multi-graded resolutions that appear
in the taut Makanin-Razborov diagram of Q3 (fy(), 7, h2, g1, h1,w,p, a).

Suppose that the multi-graded resolution M GQRes;, and its associated
multi-graded resolution, DRes;, do not have a maximal complexity core
resolution. We analyze the multi-graded resolution M GQRes; as we did
in step £(s) of our sieve procedure. According to the various parts of step
£(s) of the sieve procedure, we associate with the multi-graded resolution
MGQRes; a finite collection of graded resolutions,

GResi(r,h2,g91,h1,w,p,a),...,GResy(r,h2,g1,h1,w,p,a) .
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With each of these graded resolutions GRes;(r, ha, g1, h1,w,p,a), we asso-
ciate a graded resolution CRes;(r, ha,g1,h1,w,p,a), constructed from the
resolution induced by the subgroup (r, ha, g1, h1,w, p,a) from the top level
of the n-th multi-graded resolution M GQ"Res, T M GQ Res, followed by
the graded resolution GRes;(r, ho, g1, h1,w,p,a). With each graded resolu-
tion CRes;(r, ha, g1, h1,w,p,a) we can naturally associate a finite collection
of framed resolutions as we did in part (2) of the first step of the sieve pro-
cedure. We continue with each of these framed resolutions in parallel, and
denote each of them FrmCRes.

If the limit group generated by (r, ha, g1, h1,w,p,a) associated with a
framed resolution F'rmC Res is a proper quotient of Q™ (r, ha, g1, h1,w, p,a),
we replace the framed resolution F'rmC Res by starting the first step of the
sieve procedure with that limit group (which is a proper quotient of the
PS limit group, PSHGH, we started the first step with). Otherwise, we
follow what we did in part (2) of the first step of the sieve procedure,
and associate with the framed resolution FrmCRes a (canonical) finite
collection of Non-Rigid, Non-Solid, Root and Left PS resolutions, Extra
PS resolutions, and Generic collapse extra PS resolutions. We set each
of the Extra PS resolutions to be a developing resolution, and with it we
associate a finite collection of anvils (that we denote, Anv(MGQ"Res)),
precisely as we did in part (2) of the first step of the sieve procedure. With
each anvil we associate a finite collection of auxiliary resolutions, using the
construction presented in Definition 8.

Suppose that Q% (fn—1,7, ha, g1, h1,w,p,a) is isomorphic to

Q" (fn-1,7,h2,91, h1,w,p,a).
In this case we continue to the next level of the n-th multi-graded
quotient resolution MGQ"Res. Note that by Corollary 4.16 of [S5],
since the multi-graded resolution M GQ" Res is not of maximal complexity,
the (multi-graded) core associated with each of its levels is not of max-
imal complexity as well. If for some level j of the multi-graded resolu-
tion, the image of Q"(fn—1,7, h2,91,h1,w,p,a) in the limit group asso-
ciated with this level, Q7 (fn—1,7,h2,91,h1,w,p,a), is a proper quotient
of Q"(fn-1,7,h2,91,h1,w,p,a), then from the highest such level j, we
can continue as in case Q%(fn,—1,7, ha,91,h1,w,p,a) is a proper quotient
of Q"(fn—1,7,h2,91,h1,w,p,a), and associate with the n-th multi-graded
resolution M GQ™Res a (canonical) finite collection of framed resolutions,
and with each framed resolution a canonical finite collection of Non-Rigid
and Non-Solid, Root and Left PS resolutions, Extra PS resolutions, and
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Generic collapse extra PS resolutions. Each Extra PS resolution is set
to be a developing resolution, and with it we associate a finite collection
of anvils, and auxiliary resolutions (again, according to Definition 8), pre-
cisely as we did in case Q% (fn—1,7, h2, g1, h1,w,p,a) is a proper quotient of
Q" (fn-1,7,h2, 91, h1,w,p, a).

Finally, suppose that for every level j, the image of

Qn(fn_l,’l", h?agla hl”wapa G)

in the limit group associated with the j-th level of the multi-graded
resolution MGQ"Res, Q7(fa-1,7,h2,91,h1,w,p,a), is isomorphic to
Q" (fn-1,7,h2,91, h1,w,p,a). In this case, by Lemma 19, the terminal limit
group of the multi-graded resolution M GQ"Res, Q% (fn.r,hag1,h1,w,p,a),
is rigid or solid with respect to the parameter subgroup P = (p).

We continue as in part (2) of the first step of the sieve procedure. Let
PB™(b,,p,a) be the terminal rigid or solid limit group of the multi-graded
resolution M GQ™Res. We set the graded resolution C Res(r,h2,g1,h1,w,p,a),
to be the resolution induced by the subgroup (r, ho, g1, h1, w, p, a) from the
sequence of core resolutions associated with the various levels of the reso-
lution M GQ™Res, enlarged by setting its terminal limit group to be (the
rigid or solid limit group) PB"(b,,p,a) (i.e. we amalgamate the termi-
nal limit group of the corresponding induced resolution with the subgroup
PB"(b,,p,a)).

With the graded resolution C'Res(r, ha, g1, h1,w, p,a) we associate a fi-
nite (canonical) collection of framed resolutions (see Definition 5). With
each of the framed resolutions associated with C Res(r, ho, g1, h1,w,p, a) we
associate a (canonical) finite collection of Non-Rigid, Non-Solid, Root and
Left PS resolutions, Extra PS resolutions, and Generic collapse extra PS
resolutions. If every test sequence that factors through an Extra PS res-
olution associated with the framed resolution FrmC Res, factors through
a framed resolution with a bigger frame than the one associated with the
framed resolution FrmC Res, we exclude this Extra PS resolution from
the finite collection of Extra PS resolutions associated with the framed
resolution F'rmC Res.

We set each of the Extra PS resolutions to be a developing resolution,
and with it we associate a finite collection of anvils (denoted
Anv(MGQ™Res), and a finite collection of auxiliary resolutions (construc-
ted according to Definition 8), precisely as we did in part (2) of the first
step.
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(5) By part (1) we may assume that Q"(r, ha, g1,h1,w,p,a) is isomor-
phic to the PS limit group, PSHGH, we started the first step with.
Parts (2)—(4) treat all the cases in which the core associated with the
multi-graded resolution M GQ™Res is not of maximal complexity. In this
part we assume that the core associated with the multi-graded resolution
MGQ"Res is of maximal complexity, i.e. that the core of the multi-graded
resolution M GQ"Res has the same structure as the core associated with
the top part of the multi-graded resolution M GQ" ' Res. As in part (5) of
the second step of the procedure, in this part we also assume that there is no
sculpted resolution associated with the anvil, Anv(MGQ™ 'Res), i.e. that
one of the parts (1)—(4) applied to at least one of the core resolutions asso-
ciated with the multi-graded resolutions constructed along the n —1 step of
the sieve procedure, or that all these core resolutions are of maximal pos-
sible complexity, but the developing resolution composed from the various
resolutions induced by the subgroup (g,_o,r, h2, g1, h1,w,p,a), from this
sequence of core resolutions, is not identical to the corresponding (develop-
ing or sculpted) resolution associated with the anvil, Anv(MGQ™ %Res),
with which we started the n —1 step of the procedure (see Proposition 13).
In this case, as we will see in the sequel, width(n — 1) = 1, and no sculpted
resolution is associated with the anvil, Anv(MGQ™ ' Res).

We treat this case as we treated part (5) in the second step of the sieve
procedure. In parts (1)—(4), we have analyzed multi-graded resolutions,
MGQ"Res, of the Collapse extra P.S limit group, Collapse ExtraPS"™, that
is associated with a collapse form and with an auxiliary resolution of highest
level, i.e. an auxiliary resolution associated with the tower containing all
the parts in the associated anvil, Anv(MGQ" ! Res), up to part 2 (all parts
except the top part).

To analyze specializations of the PS limit group PSHGH, that be-
long to the Diophantine set associated with such a Collapse extra P.S limit
group, CollapseExtraPS™, and belong only to Diophantine sets associated
with maximal complexity multi-graded resolutions, M GQ" Res, we first re-
place the Collapse extra PS limit groups associated with the given collapse
form and with auxiliary resolutions of highest level, by those Collapse extra
PS limit groups associated with the Extra PS resolution, the given col-
lapse form, and with auxiliary resolutions that are associated with towers
containing all the parts up to part 3, i.e. all the parts except the top two.
We continue with those Collapse extra PS limit groups in parallel, hence,
we will omit their index, and (still) denote the Collapse extra PS limit
group we continue with, CollapseExtraPS".
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As we did in part (5) of the second step, we start with the multi-
graded taut Makanin—Razborov diagram of the Collapse extra PS limit
group, Collapse ExtraPS™, with respect to the non-QQH, non-abelian ver-
tex groups in the graded abelian decomposition associated with the top
part of the anvil, Anv(MGQ"™ 'Res). We still denote these multi-graded
resolutions M GQ" Res.

Since in this part we need to analyze specializations that factor through
and are taut with respect to maximal complexity multi-graded resolutions
of Collapse extra P.S limit groups, we continue only with those multi-graded
resolutions in the taut Makanin—Razborov diagram of CollapseExtraPS™
that are of maximal complexity, i.e. with a core that has the same structure
as the core associated with the top part of the resolution, M GQ" ! Res.

If part (1) or (3) applies to such a multi-graded resolution M GQ™ Res,
i.e. if for some index s, 1 < s < s(n — 1) — 1, the limit group generated
by (fe(s),m,h2,91, h1,w,p,a) in the completion of MGQ" Res is a proper
quotient of CollapseExtraPSY ) we replace this resolution MGQ" Res, by
starting the £(s)-th step of the procedure with the given proper quotient of
CollapseExtraPS4®).

If the core of the top part of MGQ™ ' Res, is not of maximal com-
plexity, and the limit group generated by (f,_1,7, he, g1, h1,w,p,a) in the
completion of MGQ"™Res, is a proper quotient of the Collapse extra PS
limit group CollapseExtraPS™ !, we replace this resolution MGQ" Res,
by starting the n—1 step of the procedure with the given proper quotient of
CollapseExtraPS™ ! (and consider only its multi-graded resolutions that
are not of maximal complexity).

In case the core of the multi-graded resolution M GQ™ Res is of maximal
complexity, i.e. the core has the same structure as the core of the top part
of MGQ™ ' Res, we map the formed part of the core of MGQ"Res into
the subgroup of M GQ"™ Res that correspond to its image in the second part
of MGQ™ 'Res. At this point we analyze the terminal limit group of the
multi-graded resolution, M GQ™ Res, with respect to the factors in the given
free decomposition of the auxiliary limit group, Auz(MGQ™ ! Res), exactly
as we analyzed the Collapse extra PS limit group, CollapseExtraPS™ in
parts (1)—(4). If the multi-graded core of such a multi-graded resolution is of
maximal possible complexity, and its associated taut structure is identical
to the one associated with the second part of MGQ" ! Res, i.e. if part (5)
applies to an obtained multi-graded resolution, we continue in a similar
way to our approach in analyzing multi-graded resolutions that their top
part is of maximal complexity.
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At each part 7, we consider the Collapse extra PS limit groups associ-
ated with the given collapse form and with auxiliary resolutions that are
associated with the tower containing all the parts up to part i+ 1. Then we
analyze the taut Makanin—Razborov diagrams of the limit groups associated
with the various parts (from part 1 to part 4 — 1), and continue only with
those resolutions that are of maximal complexity in all these parts, and the
taut structures associated with the formed part of their core resolutions are
identical to those associated with the formed parts of the core resolutions
associated with the corresponding parts of the resolution, MGQ" ! Res.
Finally we analyze the resolutions in the taut Makanin—Razborov diagram
associated with the i-th part according to parts (1)—(4), or (the first part
of) (5), and continue iteratively.

Let MGQ"Res be a multi-graded resolution obtained by the above it-
erative procedure. Suppose that there exists a level for which one of the
parts (1)—(4) applies. We first construct a resolution composed from the
resolution induced by the subgroup (r, ha, g1, h1,w,p,a) from the parts of
the resolution M GQ™Res above the level for which parts (1)—(4) applies
(i.e. the parts that are of maximal complexity), followed by the graded res-
olution constructed at that level according to part (1)—(4)(note that the
obtained resolution is graded with respect to the parameter subgroup (p)).
With the obtained graded resolution we associate a canonical finite collec-
tion of framed resolutions, a finite collection of Non-Rigid, Non-Solid, Root
and Left PS resolutions, and a finite collection of Extra PS resolutions,
and Generic collapse extra PS resolutions, precisely as we did in part (4).
We continue only with Extra PS resolutions that are not “covered” by
framed resolutions with bigger frame. Finally, we set each of the Extra PS
resolutions to be a developing resolution, and with it we associate a finite
collection of anvils (still denoted Anv(MGQ™Res)) precisely as we did in
part (4), and auxiliary resolutions (according to the construction presented
in Definition 8).

If the structure of the resolution composed from the resolutions in-
duced by the subgroup (gn_1,7, ho,g1,h1,w,p,a) (which is the comple-
tion of the developing resolution, Dvlp(MGQ™ 'Res) = Duvlp™ ') from
the various core resolutions associated with the multi-graded resolutions
used to construct the developing resolution in the n-th step of the pro-
cedure, is not identical to the structure of the developing resolution as-
sociated with the anvil, Anv(MGQ" 'Res), Proposition 13 implies that
there exists some level j for which the structure of the graded abelian
decomposition associated with the resolutions induced by the subgroup
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(gn—1,7,h2,91,h1,w,p,a) above level j are identical to the structure of
the graded abelian decompositions associated with the corresponding lev-
els in the developing resolution, Dvlp(MGQ™ ' Res), and in level j, either
the number of factors in the graded free decomposition associated with
the graded abelian decomposition associated with the resolution induced
by (gn—1,7,h2,91,h1,w,p,a) is strictly smaller than the number of fac-
tors in the corresponding graded free decomposition associated with the
corresponding level in Dvlp(MGQ" ! Res), and in case of equality in the
number of factors, the complexity of the graded abelian decomposition as-
sociated with the resolution induced by (g,—1,7, ho, g1, h1,w,p, a) is strictly
smaller than the complexity of the graded abelian decomposition associated
with the corresponding level of Dvlp(M GQ"™ ! Res). In this case we do the
following.

With the graded resolution constructed from the various resolutions in-
duced by the subgroups (g,—1,7, he, g1, h1,w, p,a) from the core resolutions
associated with the various multi-graded resolutions constructed along the
various levels of the n-th step of the sieve procedure, we associate a (canoni-
cal) finite collection of framed resolutions (Definition 5). With each framed
resolution we associate a finite collection of Non-Rigid, Non-Solid, Root
and Left PS resolutions, Extra PS resolutions, and Generic collapse extra
PS resolutions. Finally, we set each of the Extra PS resolutions to be a
developing resolution, and with it we associate a finite collection of anvils
(denoted Anv(MGQ™Res)), and auxiliary resolutions.

(6) Suppose that the sequence of multi-graded core resolutions of the
multi-graded resolutions constructed by the process described above, are
all of maximal complexity, and the sequence of abelian decompositions
induced by the subgroup (g1, 7, h2, g1, h1,w, p, a) is identical to the corre-
sponding abelian decompositions associated with the developing resolution,
Dvlp(MGQ™ ' Res). In this case we continue as in part (6) of the second
step of the procedure (note that in this part we still assume that there is
no sculpted resolution associated with the anvil, Anv(MGQ" ! Res), i.e.
width(n — 1) = 1).

We start the analysis, with the collection of Collapse extra PS limit
groups obtained from the anvil, Anv(MGQ" ! Res) (and not with any of
its associated auxiliary limit groups), and its (finitely many) associated
collapse forms. We still denote each of the obtained Collapse extra PS
limit groups, Collapse ExtraPS™.

We first analyze the Collapse extra P.S limit groups, Collapse ExtraPS",
using the iterative process that is presented in part (6) of the second step
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of the procedure. We start with the multi-graded taut Makanin—Razborov
diagram of the Collapse extra PS limit group, CollapseExtraPS™, with

(n) n,5(n)

yeee ,BaseQ,v:(n)

respect to the subgroups Baseg”f , where the subgroups

Basegy’]‘-”("), 1<5< v;‘(n), are the non-QQH, non-abelian vertex groups in
the graded abelian decomposition associated with the top part of the anvil,
Anv(MGQ™ ! Res), and with respect to the formed part of the core resolu-
tion, MGCore({r, ha, g1, h1,w, p,a), MGQ™ ! Res), associated with the top
part of the anvil, Anv(MGQ™ 'Res). We proceed with the multi-graded
taut Makanin—Razborov diagram of the terminal (rigid or solid) limit group

with respect to the subgroups Baseg”f (n), . ,Base;,’jgn)

with those multi-graded resolutions in the second taut Makanin—Razborov
diagram that are of maximal possible complexity, i.e. those resolutions that
are one level and have the same structure, and the same taut structure,
as the formed part of the core, MGCore((r, ha,g1,h1,w,p,a), MGQRes).
We (still) denote these (two parts) multi-graded resolutions, for which the
second part is one level and has the same structure as the formed part
of the core resolution associated with the top part of Anv(MGQ™ 'Res),
MGQ"Res. We further use the modular groups associated with the formed
part of the core resolution associated with the top part of the anvil,
Anv(MGQ" ! Res), to map the subgroup associated with this formed part
in the resolution M GQ™Res, onto its image in the subgroup associated
with the second part of Anv(MGQ™ ! Res).

We proceed iteratively to the next levels. At each level i, we start with
the Makanin—-Razborov diagram of the terminal limit group of the reso-
lution obtained from the top ¢ — 1 parts, with respect to the subgroups,

n,s(n n,s(n n,s(n .
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are the non-@QQH, non-abelian vertex groups in the graded abelian decom-
position associated with the i-th part of the anvil, Anv(MGQ" ! Res), and
with respect to the formed part of the core resolution associated with the
i-th level of Anv(MGQ™ 'Res). We proceed with the multi-graded taut
Makanin-Razborov diagram of the terminal (rigid or solid) limit group with
n,s(n) n,s(n)

1,10 LT
with those multi-graded resolutions in the second taut Makanin-Razborov
diagram that are of maximal possible complexity, i.e. those resolutions that
are one level and have the same structure, and the same taut structure, as
the formed part of the core resolution associated with the i-th part of the
anvil, Anv(MGQRes). We (still) denote the resolutions obtained from

. We continue only

respect to the subgroups, Base ., Base We continue only
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the top 7 levels, MGQ"Res. We further use the modular groups asso-
ciated with the formed part of the core associated with the i-th level of
Anv(MGQ" ! Res), to map the subgroup associated with this formed part
in the resolution M GQ™Res, onto its image in the subgroup associated
with the i + 1 level of Anv(MGQ™ !Res).

The outcome of the above terminating procedure is a (telescopic) se-
quence of multi-graded resolutions, that we (still) denote M GQ™Res. Let
(¢, ha,g1,h1,w,p,a) be the subgroup generated by the image of the de-
veloping resolution, Dvlp™~!(gn_1,7, h2, g1, h1,w, p,a), associated with the
anvil, Anv(MGQ™ ! Res), and the elements associated with the Diophan-
tine conditions imposed by the given collapse form in the Collapse extra PS
limit group, Collapse ExtraPS™. With each level of a multi-graded resolu-
tion constructed in one of the parts, MGQ" Res, we associate its core res-
olution with respect to the (image of the) subgroup (c,r, h2, g1, h1,w,p,a),
and the resolution induced from this (one level) core resolution by the
(image of the) subgroup (c,r, ha, g1, h1,w,p,a). The collection of these in-
duced resolutions, associated with the various levels of the multi-graded
resolution M GQ"Res, gives rise to a resolution (that is embedded in the
multi-graded resolution M GQ" Res), that we denote MGQ"Res,, of the
image of the subgroup (c,, ha,g1,h1,w,p,a), that is canonically associ-
ated with MGQ™Res. We denote the graded resolution (with respect to
the defining parameters P = (p)) obtained as the compositions of these (in-
duced) resolutions, MGQ™Res,, associated with the (telescopic) sequence
of multi-graded resolutions M GQ™Res, GRes(e,c,1, ha, g1, h1,w,p,a). By
Proposition 13, we may iteratively repeat this construction of induced res-
olutions with the subgroup associated with the completion of the obtained
resolution GRes, until we obtain a graded resolution, that we still denote
GRes, which is embedded in the sequence of completions of the multi-
graded resolutions M GQ" Res.

With each resolution M GQ™ Res, associated with a multi-graded resolu-
tion MGQ"™Res, we associate its core resolution with respect to (the image
of) the subgroup (r, h2, g1, h1,w,p,a). By Theorem 4.13 in [S5], either there
exists a resolution M GQ"Res. for which the complexity of its associated
core resolution (with respect to the image of (r, ho, g1, h1,w, p, a)) is strictly
smaller than the complexity of the abelian decomposition associated with
the corresponding level of the developing resolution, Duvlp™~!, associated
with the anvil, Anv(MGQ" ! Res), and the complexities of all the core
resolutions associated with the resolutions M GQ"™Res. that are associated
with the parts above it, are identical to the complexities of the abelian
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decompositions associated with the corresponding levels of Dvlp™~!, or
the complexities of the core resolutions associated with the various reso-
lutions M GQ" Res, are all identical to the complexities of the abelian de-
compositions associated with the corresponding levels of Dvip™ !, and the
structures of these core resolutions are similar to the structures of the corre-
sponding abelian decompositions in Anv(MGQ™ ! Res) (see Definition 4.12
in [S5] for the complexity of a core resolution).

Suppose that there exists a part for which the complexity of the associ-
ated core of M GQ™Res. (with respect to the subgroup (r, ho, g1, h1,w, p, a))
is strictly smaller than the complexity of the abelian decomposition asso-
ciated with the corresponding level in the developing resolution, Dvlp™~!.
In this case we associate with the resolution MGQ"Res a finite collec-
tion of developing resolutions and anvils, and with each anvil we asso-
ciate sculpted resolutions (of widths 1 and 2), a carrier, that we denote
Carriery, and auxiliary resolutions, precisely as we did in this case in
part (6) of the second step of the procedure. In this case, width(n) = 2,
and sc(n,1) = sc(n,2) = 1.

Suppose that the sequence of core resolutions associated with the se-
quence of multi-graded resolutions M GQ"Res,., that are associated with
the multi-graded resolutions, M GQ" Res, constructed by the iterative pro-
cedure presented above, and the subgroup (r, ha, g1, h1,w,p,a), are all of
maximal complexity, i.e. each of these multi-graded core resolutions has the
same structure (and taut structure) as the abelian decomposition associ-
ated with the corresponding level in Duvlp™ 1.

We set SCRes(s,r, ha, g1, h1,w,p,a) to be the graded resolution (graded
with respect to the parameter subgroup P = (p)), composed from the
resolutions induced by the subgroup (g, 1,7, ho, g1, h1,w,p,a) (that is as-
sociated with the developing resolution, Dvlp™~!) from the various core
resolutions associated with the multi-graded resolutions, M GQ™ Res, (with
respect to the images of the subgroup (r, ha, g1, h1, w, p,a)).

If every ungraded resolution that factors through the graded resolu-
tion SCRes, factors through either one of the Non-Rigid, Non-Solid, Root,
Left PS or Generic Collapse extra PS resolutions associated with the de-
veloping (extra PS) resolutions we started the n-th step of the procedure
with, or through a framed resolution, F'rmSC Res, associated with SC Res,
where the frame associated with the framed resolution F'rmSC Res strictly
contains the frame associated with the graded resolution SCRes, we call
the sequence of multi-graded resolutions from which the graded resolution
SC Res was constructed, a terminal resolution, and do not continue with it
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to the next step of the procedure. Otherwise, we do the following.

With the sequence of multi-graded resolutions, M GQ" Res, and their
associated resolution, G Res, we associate developing resolutions and anvils,
and with each anvil we further associate sculpted resolutions (of widths 1
and 2), and a penetrated sculpted resolution (of width 2), and auxiliary
resolutions, precisely as we did in this case in part (6) of the second step
of the procedure. In this case, width(n) = 2, and sc(n, 1) = sc(n,2) = 1.

(7) Parts (1)—(6) treat all the cases in which there is no sculpted resolu-
tion associated with the anvil, Anv(MGQ™ 'Res), i.e. the case in which
width(n — 1) = 1. In this part we treat the general case. We assume that
the anvil Anv(MGQ™ ! Res) has width, width(n—1) > 2, and with it there
are associated a developing resolution, Dvlp™~!(gn_1,7, ha, g1, h1,w,p,a),
sculpted resolutions, that we denote SCResg_l’d(se,r, ha,g1,h1,w,p,a),
and corresponding penetrated sculpted resolutions,
PenSCRes™ Vg, , ho, g1, h1,w, p,a),

where 1 < d < width(n — 1), and for each d, 1 < e < sc¢(n — 1,d), where
sc(n —1,d) is the number of sculpted resolutions in width d and step n — 1.
With the anvil, Anv(MGQ" ! Res), and a subset of the width indices d,
1 < d < width(n — 1), there are also associated carriers, Carrierg_l. Our
analysis of this general case is based on part (7) of the second step of the
procedure.

Recall, that according to Definition 14, if width(n — 1) > 1, then a
finite collection of auxiliary resolutions of widths 1 to width(n — 1) is asso-
ciated with the anvil, Anv(MGQ" ' Res). We start by analyzing Collapse
extra PS limit groups associated with highest level auxiliary resolutions
of width 1. Parts (1)—(4) already analyze multi-graded resolutions of such
Collapse extra PS limit groups, M GQ" Res, that are not of maximal com-
plexity. To analyze specializations that factor through maximal complex-
ity resolutions, M GQ" Res, we continue analyzing Collapse extra PS limit
groups associated with width 1 auxiliary resolutions according to part (5).

Suppose that there exists a Collapse extra PS limit group associated
with the anvil, Anv(MGQ™ !Res), itself (and not with a width 1 auxil-
iary limit group of it), and a sequence of multi-graded resolutions of it,
MGQ™Res, that are constructed according to the iterative process pre-
sented in part (5), for which none of the parts (1)—(4) applies to any
of the levels that are analyzed according to the iterative process (hence,
in particular, all the core resolutions associated with the multi-graded
resolutions M GQ"Res and the subgroup (r, he, g1, h1,w,p,a) are of max-
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imal possible complexity). Furthermore, suppose that the resolution in-
duced by the subgroup that is associated with the first sculpted resolution,
S’CRes?*l’l, from the various core resolutions that are associated with
the sequence of multi-graded resolutions, M GQ™Res, and the subgroup
(r,h2, 91, h1,w,p,a), has the same structure as the first sculpted resolution
S(Z’Res?_l’1 (i-e. no reduction in the complexity of the abelian decompo-
sitions associated with the induced resolution according to Proposition 13
occurs). These are precisely the assumptions on the sequence of multi-
graded resolutions, M GQ" Res, which the process presented in part (5) is
not built to handle. Hence, we proceed as in part (7) of the second step.

We continue the analysis by replacing the Collapse extra PS limit
groups that were associated with auxiliary resolutions of width 1, by those
associated with auxiliary resolutions of width 2 (see Definition 14). We
start with Collapse extra PS limit groups, CollapseExtraPS™, associated
with highest level auxiliary resolutions of width 2, and we analyze them in
parallel. We apply parts (1)—(4) to study limit groups and core resolutions
associated with the top level of the second algebraic envelope that is asso-
ciated with the anvil, Anv(MGQ" ! Res), i.e. the core associated with the
image of the limit group associated with the second algebraic envelope in the
anvil, Anv(MGQ" ' Res), in CollapseExtraPS™, and with multi-graded
resolutions of such Collapse extra PS limit group, CollapseExtraPS™,
with respect to the various factors in the associated (width 2) auxiliary
limit group (cf. part (7) in the second step).

Suppose that one of the parts (1)—(4) applies to such a multi-graded
resolution (that we still denote M GQ™Res), and to the limit group associ-
ated with the second algebraic envelope associated with the anvil,
Anv(MGQ" 'Res). 1In this case the construction, presented in the
parts (1)-(4) that apply, terminates in a limit group MGTerm;, which
is a rigid or solid multi-graded limit group with respect to the non-abelian,
non-Q H vertex groups in the abelian decomposition associated with the
top level of (the completion of) the first sculpted resolution of width 2 (i.e.
the first sculpted resolution that is associated with the second algebraic en-
velope), S CRes?_m, and the abelian and QH vertex groups in the formed
parts of the abelian decompositions associated with the core resolutions

that are associated with the various levels of the first sculpted resolution
of width 2, SCRes} 2.

We continue with the multi-graded resolutions of the terminal rigid or
solid limit group of the resolution M GQ" Res, M GTermy, with respect to
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the non-abelian, non-QH vertex groups in the abelian decomposition as-
sociated with the top level of (the completion of) the sculpted resolution,
S’CRes?*m, and the abelian and QH vertex groups in the formed parts
of the abelian decompositions associated with the core resolutions that
are associated with all the levels of the sculpted resolution, SCRes?_m,
except the top level. Like in part (6), and parts (6)—(7) in the second
step, in this part we need to analyze only resolutions associated with
CollapseExtraPS™ (that is associated with a width 2 auxiliary resolu-
tion), for which the multi-graded resolution of the terminal limit group of
MGQ"Res, MGTermyq, is identical to the formed part of the abelian de-
composition associated with the core resolution that is associated with the
top level of the sculpted resolution, ;S'C'Resa%l’2 (for more details on why
we can restrict to these resolutions see Theorem 21 below — it proves that
the collection of anvils and terminal resolutions constructed in the general
step of the procedure covers the entire set of Collapsed extra PS specializa-
tions). We further use the modular groups associated with the formed part
of the core resolution associated with the top level of the sculpted resolu-
tion, S CRes?fm, to map the subgroup associated with this formed part in
the resolution M GQ" Res, onto its image in the subgroup associated with
the second level of the sculpted resolution.

We proceed to lower levels in a similar way to what we did in part (4)
of the first step, i.e. we proceed iteratively. At each level ¢ of the sculpted
resolution, S CRes?il’Q, we start with the terminal limit group of the res-
olution obtained from the top ¢ — 1 levels, and analyze its multi-graded
resolutions with respect to the non-@Q)H, non-abelian vertex groups in the
graded abelian decomposition associated with the i-th level of the sculpted
resolution, and with respect to the formed parts of the abelian decomposi-
tions associated with the core resolutions that are associated with all the
levels of the sculpted resolution, SCRes’f_l’Q, up to level 7. We proceed
with the multi-graded taut Makanin—-Razborov diagram of the terminal
(rigid or solid) limit group of such a resolution, with respect to (only) the
non-Q H, non-abelian vertex groups in the graded abelian decomposition
associated with the i-th level of the sculpted resolution, SCResg_l, and
the formed parts of the abelian decompositions associated with the core
resolutions that are associated with all the levels of the sculpted resolution,
SCResgfl, up to level i + 1. We continue only with those multi-graded
resolutions in the second taut Makanin—Razborov diagram that are of max-
imal possible complexity, i.e. those resolutions that are one level and have
the same structure, and the same taut structure, as the formed part of the
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abelian decomposition associated with the core resolution that is associ-
ated with the i-th level of the sculpted resolution, SCRes?™"*. We (still)
denote the resolutions obtained from the top 7 levels, MGQ™Res. We fur-
ther use the modular groups associated with the formed part of the core
resolution that is associated with the i-th level of the sculpted resolution,
to map the subgroup associated with this formed part in the resolution
MGQ"™Res, onto its image in the subgroup associated with the i 4+ 1 level
of the sculpted resolution.

Given a (telescopic) sequence of multi-graded resolutions, M GQ" Res,
constructed by the above procedure, we continue as in part (7) of the sec-
ond step, and part (6) of the general step. Let (c,r, ha,g1,h1,w,p,a) be
the subgroup associated with the second algebraic envelope in the anvil,
Anv(MGQ™ ! Res), i.e. the subgroup generated by the image of the (com-
pletion of the) sculpted resolution, S CRes?_l’z, associated with the anvil,
Anv(MGQ" ! Res), and the elements associated with the Diophantine con-
ditions imposed by the given collapse form associated with this sculpted res-
olution in Anv(MGQ" ! Res). With each level of a multi-graded resolution
constructed in one of the parts, M GQ" Res, we associate its core resolu-
tion with respect to the (image of the) subgroup (c,r,h2,91,h1,w,p,a),
and the resolution induced from this (one level) core resolution by the
(image of the) subgroup (c,r, ha, g1, h1,w,p,a). The collection of these in-
duced resolutions, associated with the various levels of the multi-graded
resolution M GQ"Res, gives rise to a resolution (that is embedded in the
multi-graded resolution M GQ"Res), that we denote M GQ"Res,, of the
image of the subgroup (c,r, ha,g1,h1,w,p,a), that is canonically associ-
ated with MGQ™Res. We denote the graded resolution (with respect to
the defining parameters P = (p)) obtained as the compositions of these (in-
duced) resolutions, MGQ" Res,, associated with the (telescopic) sequence
of multi-graded resolutions M GQ™"Res, GRes(e,c,r, ha, g1, h1,w,p,a). By
Proposition 13, we may iteratively repeat this construction of induced res-
olutions with the subgroup associated with the completion of the obtained
resolution G Res, until we obtain a graded resolution, that we still denote
GRes, which is embedded in the sequence of completions of the multi-
graded resolutions M GQ™Res.

With each resolution M GQ™ Res, associated with a multi-graded resolu-
tion MGQ™Res, we associate its core resolution with respect to (the image
of) the subgroup (r, ho,g1,h1,w,p,a). By Theorem 4.13 in [S5], either
there exists a resolution M GQ" Res, for which the complexity of its asso-
ciated core resolution (with respect to the image of (r, he, g1, hi,w,p,a)) is
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strictly smaller than the complexity of the abelian decomposition associated
with the corresponding level of the sculpted resolution, SC’Res?_l’Q, and
the complexities of all the core resolutions associated with the resolutions
MGQ"Res. that are associated with the parts above it, are identical to
the complexities of the abelian decompositions associated with the corre-
sponding levels of SC’Res’f_l’Z, or the complexities of the core resolutions
associated with the various resolutions M GQ" Res, are all identical to the
complexities of the abelian decompositions associated with the correspond-
ing levels of SCResTf_l’Q, and the structures of these core resolutions are
similar to the structures of the corresponding abelian decompositions asso-
ciated with SCRes"? (see Definition 4.12 in [S5] for the complexity of a
core resolution).

Suppose that there exists a part for which the complexity of the associ-
ated core of M GQ" Res. (with respect to the subgroup (r, ha, g1, h1,w, p,a))
is strictly smaller than the complexity of the abelian decomposition associ-
ated with the corresponding level in SC’Res?_l’Q. In this case we associate
with the resolution M GQ™ Res a finite collection of developing resolutions
and anvils, and with each anvil we associate sculpted resolutions (of widths
1 and 2), a penetrated sculpted resolution (of width 2), a carrier, that we
denote Carriery, and auxiliary resolutions, precisely as we did in this case
in part (6) of the second step of the procedure. In this case, width(n) = 2,
and sc(n,1) = sc(n,2) = 1.

Suppose that the sequence of core resolutions associated with the se-
quence of multi-graded resolutions M GQ"Res,., that are associated with
the multi-graded resolutions, M GQ" Res, constructed by the iterative pro-
cedure presented above, and with respect to the subgroup (r,ha,g1,h1,w,p,a),
are all of maximal complexity, i.e. each of these multi-graded core resolutions
have the same structure (and taut structure) as the abelian decompo-
sition associated with the corresponding level of the sculpted resolution
SCRes?il’Q, that is associated with the anvil, Anv(MGQ" ! Res).

We set SCRes(s,r, ha, g1, h1,w, p,a) to be the graded resolution induced
by the image of the completion of the sculpted resolution, SCResTffl’Q,
from the core resolutions of the multi-graded resolutions, M GQ™ Res,, con-
structed along the various levels of the process described above, with respect
to the subgroup (r, ha, g1, w,p, a). Note that since we assume that the core
resolutions associated with the resolutions, M GQ™ Res., and the subgroup
(ryha, g1, h1,w,p, a), have the same structure as the abelian decompositions
associated with the various levels of the sculpted resolution, S CRes’ffm,
the resolution SC Res has the same structure as the sculpted resolution,

SCRes| 2.
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If every ungraded resolution that factors through the graded resolution
SC Res, factors through either one of the Non-Rigid, Non-Solid, Root, Left
PS or generic Collapse extra PS resolutions associated with the sculpted
resolution S CResTffm, or through a framed resolution, F'rmSC Res, asso-
ciated with SCRes?_l’Q, where the frame associated with the framed res-
olution F'rmSC Res strictly contains the frame associated with the graded
resolution SCRes’ffm, we do not continue to the next step of the sieve
procedure with the given sequence of multi-graded resolutions we have
constructed, and call them a terminal resolution. Otherwise we do the
following.

Recall that we denote the graded resolution composed from the sequence
of resolutions, M GQ" Res., that are associated with the multi-graded reso-
lutions, MGQ" Res, GRes. Note that GRes is a resolution of the subgroup
(c,7, ha, g1, h1,w,p,a) that is associated with the second algebraic envelope
in the anvil, Anv(MGQ" ' Res). With the resolution GRes we associate
developing resolutions and anvils, and with each anvil we further associate
sculpted resolutions (of widths 1 and 2), and a penetrated sculpted resolu-
tion (of width 2), and auxiliary resolutions, precisely as we did in this case
in part (6) of the second step of the procedure. In this case, width(n) = 2,
and sc(n,1) = sc(n,2) = 1.

So far we have analyzed multi-graded resolutions of Collapse extra PS
limit groups, Collapse ExtraPS"™, for which parts (1)—(4) are applied with
respect to the subgroup (c,r,hg,g1,h1,w,p,a) (the subgroup associated
with the second algebraic envelope in the anvil, Anv(MGQ" ! Res)).

Suppose that none of the parts (1)—(4) applies to such a multi-graded
resolution, M GQ™ Res, with respect to the subgroup (¢, r, ha, g1, h1, w, p, a).
In this case we proceed as in part (3) of the first step and part (5) of the
second step. For each level i of the anvil, Anv(MGQ™ ! Res), we analyze
Collapse extra PS limit groups, CollapseExtraPS™, that are associated
with width 2 auxiliary resolutions that are associated with the limit group
that is associated with all the levels of the anvil, Anv(MGQRes), except
the top ¢ levels. As in part (5) of the second step, given such a Collapse
extra PS limit group, CollapseExtraPS", we analyze its multi-graded
resolutions so that none of the parts (1)—(4) applies to the multi-graded
resolutions associated with the top i—1 levels (with respect to the subgroup
(c,r,ha, 91, h1,w,p,a)), and (at least) one of the parts (1)-(4) applies to the
multi-graded resolution associated with the i-th part of the anvil.

Given such a multi-graded resolution, we treat it as we treated multi-
graded resolutions associated with highest level width 2 auxiliary resolutions.
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We continue the analysis of the terminal rigid or solid limit group of the ob-
tained multi-graded resolution, and continue only with those multi-graded
resolutions for which the abelian decompositions associated with the parts
corresponding to the formed parts of the core resolutions associated with
the anvil, Anv(MGQ"™ ! Res), and the subgroup (r, ha, g1, h1,w, p, a), have
the same structure as these formed parts. Finally, with each such multi-
graded resolution (that we still denote M GQ"Res), we associate sculpted
resolutions, (possibly) a carrier, and developing resolutions and anvils, pre-
cisely as we constructed these in case one of the parts (1)—(4) applies to
the multi-graded resolution, M GQ™Res, associated with the top level of
the anvil, Anv(MGQ™ ' Res) (i.e. precisely as we did in the beginning of
part (7)).

Suppose that for a Collapse extra PS limit group, Collapse ExtraPS™,
associated with the anvil, Anv(MGQ" 'Res), itself (and not with a
width 2 auxiliary resolution associated with it), there exists a sequence
of multi-graded resolutions constructed by the above iterative procedure,
for which none of the parts (1)—(4) applies to the various levels (with respect
to the subgroup (c,r, hg, g1, h1,w,p,a)). In particular, all the core resolu-
tions associated with the subgroup (c,r, ho, g1, h1,w,p,a) are of maximal
complexity.

In this case we examine the structure of the resolution associated
with the second algebraic envelope that is associated with the anvil,
Anv(MGQ™ ! Res). Recall that (according to the construction presented
in part (6)) with the subgroup (c,r, ha, g1, h1,w,p,a), that is associated
with the second algebraic envelope in Anv(MGQ™ 'Res), and with the
sequence of multi-graded resolutions, M GQ" ! Res, that were constructed
in step n — 1, there are associated core resolutions, and a resolution that is
composed from resolutions induced by the subgroup (c, 7, he, g1, h1,w,p, a)
from the sequence of core resolutions. Let (e,c,r, h2, g1, h1,w,p,a) be the
completion of this composed (induced) resolution.

If the structure of the resolution composed from the resolutions induced
by the (image of the) subgroup (e, c,r, he, g1, h1,w,p,a) from the various
core resolutions associated with the resolutions MGQ"Res and the (im-
ages of the) subgroup (c,, ha, g1, h1,w,p,a), is not identical to the struc-
ture of the resolution that is associated with the second algebraic envelope
that is associated with the anvil, Anv(MGQ" ! Res), Proposition 13 im-
plies that there exists some level j for which the structure of the graded
abelian decompositions associated with the resolution induced by the sub-
group (e,c, 7, he, g1, h1,w,p,a) above level j are identical to the structure
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of the graded abelian decompositions associated with the corresponding
levels in the resolution that is associated with the second algebraic enve-
lope in Anv(MGQ" ' Res), and in level j, either the number of factors in
the graded free decomposition associated with the graded abelian decom-
position associated with the resolution induced by (e, ¢,r, h2, g1, h1,w,p, a)
is strictly smaller than the number of factors in the corresponding graded
free decomposition associated with the corresponding level in the resolution
that is associated with the second algebraic envelope, and in case of equality
in the number of factors, the complexity of the graded abelian decompo-
sition associated with the resolution induced by (e, c,r, ho, g1, h1,w,p,a) is
strictly smaller than the complexity of the graded abelian decomposition
associated with level j of that resolution.

In this case we treat the obtained induced resolution, as in the case one
of the cases (1)—(4) applies in one of the parts of the iterative procedure that
was used (in part (7)) to construct the sequence of multi-graded resolutions
MGQ"Res. In this case width(n) = 2, and sc(n, 2) is either 1 or 2.

Suppose that the structure of the resolution induced by the subgroup
(e,c,r,ho,g1,h1,w,p,a) from the various core resolutions associated
with the resolutions MGQ"Res and the (images of the) subgroup
(¢, ho,g1,h1,w,p,a), is identical to the structure of the resolution that
is associated with the second algebraic envelope that is associated with the
anvil, Anv(MGQ" ! Res).

Suppose that there is no carrier, Carm'erg_l, associated with the sec-
ond algebraic envelope in the anvil, Anv(MGQ™ ' Res). In this case we set
GRess to be the resolution induced by the subgroup (e, ¢, r, ha, g1, h1, w, p, a)
from the various core resolutions associated with the resolutions M GQ™ Res
and the (images of the) subgroup (c,r, ha,g1,h1,w,p,a). We further set
GRes; to be the resolution induced by the image of the first sculpted reso-
lution (of width 2), SCRes?_l’Q, from the core resolutions associated with
the (images of the) subgroup (r, ho, g1, h1,w, p, a) and the resolution GRess.
Note that by our assumptions GRes; has the same structure as the first

sculpted resolution, S CRes’ll_l’Q, and GResy has the same structure as the

second sculpted resolution, SCResy™ 2.
If every ungraded resolution that factors through the graded resolution
GRes; factors through either one of the Non-Rigid, Non-Solid, Root, Left

PS or Generic collapse extra PS resolutions associated with the sculpted
resolution SCRes]™ ' (SCResy '), or through a framed resolution as-
sociated with SC’R@S?il’2 (SCRes;L*m) that strictly contains the frame

associated with SCRes? "2, (SCRes? "), we do not continue to the next
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step of the sieve procedure with the given sequence of multi-graded reso-
lutions we have constructed, and call them a terminal resolution. Oth-
erwise we continue by studying Collapse extra PS limit groups associ-
ated with the next algebraic envelopes that are associated with the anvil,
Anv(MGQ™ ! Res).

Suppose that there is a carrier, Carm'erg_l, associated with the sec-
ond algebraic envelope associated with the anvil, Anv(MGQ™ 'Res). In
this case we study the structure of the resolution induced by the subgroup
associated with the penetrated core resolution, PenS C’Res?_l’Z, from the
core resolutions associated with that subgroup, and with the resolution in-
duced by the subgroup (e, ¢,r, h2, g1, h1,w,p,a) from the various core res-
olutions that are associated with the sequence of multi-graded resolutions,
MGQ"Res. We denote this induced resolution, PenSC Res. If the struc-
ture of this induced resolution, PenSC Res, is not identical to the structure
of the penetrated sculpted resolution, PenSCRes?_l’z, we proceed as we
did in the case that one of the parts (1)—(4) applies to the resolutions
MGQ"Res.

Suppose that the structure of the induced resolution, PenSC Res,
is identical to the structure of the penetrated sculpted resolution,
PenSCRes’ll_m. If every ungraded resolution that factors through the
graded resolution PenSC Res factors through either one of the Non-Rigid,
Non-Solid, Root, Left PSS or Generic collapse extra PS resolutions associated

with the sculpted resolution PenSCRes?_l’Z, or through a framed res-
olution associated with PenSCRes?_1’2 that strictly contains the frame

associated with PenSCRes?_l’Q, we do not continue to the next step of
the sieve procedure with the given sequence of multi-graded resolutions we
have constructed, and call them a terminal resolution. Otherwise we con-
tinue by studying Collapse extra PS limit groups associated with the next
algebraic envelopes that are associated with the anvil, Anv(MGQ™ 'Res).

So far we have analyzed the sculpted, and (possibly) penetrated sculpted
and developing resolutions associated with the first two algebraic envelopes
that are associated with the anvil, Anv(MGQ™ 'Res). For the rest of
this section, we assume that there exists a Collapse extra PS limit group,
CollapseExtraPS", that is associated with the anvil, Anv(MGQ" ! Res),
itself (and not with a width 2 auxiliary resolution associated with it), with
a resolution constructed by the iterative procedure presented in part (7)
of the general step, for which all the core resolutions, and the resolutions
induced by the subgroups that are associated with the sculpted, penetrated
sculpted and (possibly) developing resolutions of width at most 2, have the
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same structure as the corresponding resolutions that are associated with
the anvil, Anv(MGQ" ! Res).

We continue by induction on the index of the algebraic envel-
opes that are associated with the anvil, Anv(MGQ" 'Res). Recall
that we assume that the anvil Anv(MGQ" 'Res) has width,
width(n — 1) > 2, and with it there are associated a developing reso-
lution, Dvlp™ *(gn_1,7,h2, g1, h1,w,p,a), sculpted resolutions, which we
denote SC’Resg_l’d(se,r, hg,g1,h1,w,p,a), and corresponding penetrated
sculpted resolutions, PenSCResZﬁl’d(re,r, h2,g1,h1,w,p,a), where 1 <
d < width(n — 1), and for each d, 1 < e < s¢(n — 1,d), where sc(n — 1,d)
is the number of sculpted resolutions in width d and step n — 1. With the
anvil, Anv(MGQ™ 'Res), and a subset of the width indices d, 1 < d <

width(n — 1), there are also associated carriers, Carrier’) *.

We continue by induction on the index of the associated algebraic en-
velope, and for each index d, 2 < d < width(n — 1), we construct res-
olutions of Collapse extra PS limit groups, Collapse ExtraPS", that are
associated with width d auxiliary resolutions according to the iterative pro-
cedure presented in part (7). We further analyze each of the constructed
resolutions, with respect to the subgroups associated with the core reso-
lutions, penetrated core resolutions, and (possibly) developing resolution
that are associated with the first d algebraic envelopes that are associated
with the anvil, Anv(MGQ™ 'Res). If for such a resolution that is asso-
ciated with the anvil, Anv(MGQ™ !Res), itself (and not with a width d
auxiliary resolution) all the core resolutions, and the resolutions induced by
the subgroups that are associated with the sculpted, penetrated sculpted
and (possibly) developing resolution of width at most d, have the same
structure as the corresponding resolutions that are associated with the
anvil, Anv(MGQ™ 'Res), we continue by analyzing Collapse extra PS
limit groups associated with auxiliary resolutions of width d + 1.

Suppose that there exists a Collapse extra PS limit group,
CollapseExtraPS", that is associated with the anvil, Anv(MGQ" ! Res),
itself (and not with a width width(n — 1) auxiliary resolution of it), with
a resolution constructed by the iterative procedure presented in part (7)
of the general step, for which all the core resolutions, and the resolutions
induced by the subgroups that are associated with the sculpted, penetrated
sculpted and developing resolution of width at most width(n — 1), have the

same structure as the corresponding resolutions that are associated with
the anvil, Anv(MGQ" ! Res).
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We essentially generalize what we did in part (7) of the second step
in this case. We start the analysis with the collection of Collapse
extra PS limit groups, CollapseEzxtraPS", obtained from the anvil,
Anv(MGQ™ 'Res) (and not with any of its associated auxiliary limit
groups), and its (finitely many) associated collapse forms.

We first analyze the Collapse extra P.S limit groups, Collapse ExtraPS",
using an iterative process which is similar to the one used in part (6) and
in the beginning of part (7). We start with the multi-graded taut Makanin—
Razborov diagram of the Collapse extra PS limit group, Collapse ExtraPS",
with respect to the non-@Q H, non-abelian vertex groups in the multi-graded
abelian decomposition associated with the top part of the anvil,
Anv(MGQRes), and with respect to the formed part of the core res-
olution that is associated with the subgroup associated with the alge-
braic envelope of width, width(n — 1), and with the top part of the anvil,
Anv(MGQ" ' Res). We proceed with the multi-graded taut Makanin—
Razborov diagram of the terminal (rigid or solid) limit group with respect
to the non-QQH, non-abelian vertex groups in the multi-graded abelian de-
composition associated with the top part of the anvil, Anv(MGQRes).
We continue only with those multi-graded resolutions in the second taut
Makanin—-Razborov diagram that are of maximal possible complexity, i.e.
those resolutions that are one level and have the same structure, and the
same taut structure, as the formed part of the core resolution that is asso-
ciated with the subgroup associated with the algebraic envelope of width,
width(n — 1), and with the top part of the anvil, Anv(MGQ" ' Res). We
(still) denote these (two parts) multi-graded resolutions, M GQ™Res. We
further use the modular groups associated with the formed part of the core
resolution associated with the algebraic envelope of width, width(n—1), and
with the top part of the anvil, Anv(MGQ"™ ! Res), to map the subgroup as-
sociated with this formed part in the resolution M GQ™ Res, onto its image
in the subgroup associated with the second part of Anv(MGQ™ !Res).

We proceed iteratively to the next levels. At each part i, we start
with the Makanin—Razborov diagram of the terminal limit group of the
resolution obtained from the top 7 — 1 parts, with respect to the non-
QH, non-abelian vertex groups in the multi-graded abelian decomposition
associated with the i-th part of the anvil, Anv(MGQRes), and with re-
spect to the formed part of the core resolution associated with the alge-
braic envelope of width, width(n — 1), and with the i-th part of the anvil,
Anv(MGQ" 'Res). We proceed with the multi-graded taut Makanin-
Razborov diagram of the terminal (rigid or solid) limit group with respect
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to the non-QQH, non-abelian vertex groups in the abelian decomposition
associated with the i-th part of the anvil, Anv(MGQ™ 'Res). We con-
tinue only with those multi-graded resolutions in the second taut Makanin—
Razborov diagram that are of maximal possible complexity, i.e. those res-
olutions that are one level and have the same structure, and the same taut
structure, as the formed part of the core resolution associated with the
algebraic envelope of width, width(n — 1), and with the i-th part of the
anvil, Anv(MGQ" 'Res). We (still) denote the resolutions obtained from
the top 7 levels, MGQ™Res. We further use the modular groups associated
with the formed part of the corresponding core resolution (that is associated
with the i-th part of Anv(MGQ" ! Res)), to map the subgroup associated
with this formed part in the resolution M GQ"Res, onto its image in the
subgroup associated with the i + 1 part of Anv(MGQ" ! Res).

Given a (telescopic) sequence of multi-graded resolutions, M GQ" Res,
constructed by the above procedure, we continue as in analyzing the second
algebraic envelope. Let (¢, ¢,—1,7, h2,g1,h1,w,p,a) be the subgroup gener-
ated by the image of the (completion of the) developing resolution, Dvlp™ 1,
associated with the anvil, Anv(MGQ™ ' Res), and the elements associated
with the Diophantine conditions imposed by the given collapse form as-
sociated with this developing resolution in the Collapse extra PS limit
group, CollapseEztraPS™. With each level of a multi-graded resolution
constructed in one of the parts, M GQ™ Res, we associate its core resolution
with respect to the (image of the) subgroup (¢, ¢n—1,7, h2,91,h1,w,p,a),
and the resolution induced from this (one level) core resolution by the (im-
age of the) subgroup (c,gn—1,7, ho,g1,h1,w,p,a). The collection of these
induced resolutions, associated with the various levels of the multi-graded
resolution M GQ"Res, gives rise to a resolution (that is embedded in the
multi-graded resolution M GQ" Res), that we denote MGQ"Res,, of the
image of the subgroup (c, ¢gn—1,7, h2, 91, h1,w,p,a), that is canonically as-
sociated with M GQ" Res. We denote the graded resolution (with respect to
the defining parameters P = (p)) obtained as the compositions of these (in-
duced) resolutions, M GQ" Res,, associated with the (telescopic) sequence
of multi-graded resolutions M GQ™Res, GRes(e, ¢, qn 1,7, ha, g1, h1,w, p, a).
By Proposition 13, we may iteratively repeat this construction of induced
resolutions with the subgroup associated with the completion of the ob-
tained resolution GRes, until we obtain a graded resolution, that we still
denote GGRes, which is embedded in the sequence of completions of the
multi-graded resolutions M GQ" Res.

With each resolution M GQ"Res, associated with a multi-graded res-
olution MGQ™Res, we associate its core resolution with respect to (the
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image of) the subgroup (r, he, g1, h1,w,p,a). By Theorem 16 either there
exists a resolution M GQ"Res. for which the complexity of its associated
core resolution (with respect to the image of (r, ho, g1, h1,w, p,a)) is strictly
smaller than the complexity of the core resolution associated with the cor-
responding part (and the image of the subgroup (r, hs,g1,h1,w,p,a)) in
the resolution associated with the width(n — 1) algebraic envelope in the
anvil, Anv(MGQ™ ! Res), and the complexities of all the core resolutions
associated with the resolutions M GQ"Res. that are associated with the
parts above it, are identical to the complexities of core resolutions asso-
ciated with the corresponding parts in the resolution associated with the
width(n — 1) envelope in Anv(MGQ™ ! Res), or the structures of the core
resolutions associated with the various resolutions M GQ™ Res,. are all iden-
tical to the structures of the corresponding core resolutions associated with
the width(n — 1) algebraic envelope in Anv(MGQ"™ ! Res).

Suppose that there exists a part for which the complexity of the associ-
ated core of M GQ™Res. (with respect to the subgroup (r, he, g1, h1,w, p, a))
is strictly smaller than the complexity of the core resolution associated with
the corresponding part in the resolution associated with the width(n — 1)
algebraic envelope associated with the anvil, Anv(MGQ" ' Res). In this
case we associate with the sequence of resolutions M GQ"Res a finite col-
lection of developing resolutions and anvils, precisely as we associate these
in part (6), and with each anvil we associate the sculpted resolutions, pene-
trated sculpted resolutions, and carriers that are associated with the anvil,
Anv(MGQ"™ ! Res) (they are all of widths 1 to width(n — 1)). We further
set width(n) = width(n—1)+1, and with each anvil we associate a carrier,
that we denote Carrier™ In this case, sc(n,d) = sc(n — 1,d) for

width(n)"
1 < d < width(n — 1) — 1, sc(n,width(n — 1)) = se(n — 1, width(n — 1))
if there is a carrier, CGTT@'BTZ,;ﬁh(n,l), associated with Anv(MGQ" ! Res),

and sc(n,width(n — 1)) = sc(n — 1,width(n — 1)) + 1 otherwise, and
sc(n, width(n)) = 1.

Suppose that the sequence of core resolutions associated with the se-
quence of multi-graded resolutions M GQ™ Res,, and the images of the sub-
group (r, ho, g1, h1,w,p,a), have the same structure as the corresponding
core resolutions associated with the resolution that is associated with the
width(n — 1) algebraic envelope in the anvil, Anv(MGQ™ ! Res).

In this case we first examine the structure of the resolution induced
from the sequence of resolutions, MGQ" Res., by the image of the pen-

etrated core resolution, PenSCRes?_l’width("_l). If the structure of the
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resolution composed from the resolutions induced by the (image of the)
completion of PenSCRes?il’deth(nfl) from the various core resolutions
associated with the resolutions M GQ™Res., and with the images of this
completion, is not identical to the structure of the penetrated sculpted res-
olution, PenSCRes?_l’Mdth(n_l), Proposition 13 implies that there exists
some level j for which the structure of the graded abelian decomposition

associated with the resolutions induced by the image of the completion of
PenS CRes?_l’Mdth(n_l) above level j are identical to the structure of the
graded abelian decompositions associated with PenSCRes’f_l’Mdth(n_l),
and in level j, either the number of factors drops, or the complexity of the

associated abelian decomposition decreases.

In this case we associate with the (telescopic) sequence of resolutions
MGQ™Res a finite collection of developing resolutions and anvils, precisely
as we did in this case in part (7) of the second step of the procedure
(i.e. the developing resolutions are Extra PS resolutions associated with
framed resolutions of the resolution induced by the image of the comple-
tion of PenSCRes?_l’mdth(n_l)), and with each anvil we associate the
sculpted resolutions, penetrated sculpted resolutions, and carriers that are
associated with the anvil, Anv(MGQ" ! Res) (they are all of widths 1 to
width(n — 1)). We set the resolution induced by the image of the comple-
tion of PenSC’Res?il’Mdth(nfl) from the core resolutions associated with
the sequence of resolutions M GQ" Res., to be the first penetrated sculpted
resolution of width width(n — 1), that we denote, PenS CRes?’Width(n_l).
We further set width(n) = width(n — 1), and with each anvil we associate
a carrier, that we denote Carriery; ;. (and which is the width(n) =
width(n — 1) algebraic envelope). In this case, sc(n,d) = sc(n — 1,d) for
1 <d < width(n — 1) — 1, and sc(n, width(n)) = 1.

Suppose that the structure of the resolution composed from the resolu-
tions induced by the (image of the) completion of PenSC Res’ 1t (n=1)
from the various core resolutions associated with the resolutions MGQ™Res,,
and with the images of this completion, is identical to the structure of
the penetrated sculpted resolution, PenSCRes?_l’Mdth(n_l). We set
PenScRes to be the resolution induced by image of the completion of
PenSCRes?_l’width(n_l) from the penetrated core resolutions associated

with the image of this completion, and the various resolutions M GQ™ Res..

By Proposition 17, either the structure of the obtained resolution,

PenSC Res, is identical to the structure of PenSCResTf_l’Mdth(n_l), that is



GAFA QUANTIFIER ELIMINATION II 117

associated with the anvil, Anv(MGQ" ! Res), or there exists some level j,
so that the structure of the graded abelian decompositions associated with
PenSCRes above level j are identical to the structure of the graded abelian
decompositions associated with PenS CRes?il’Wdth(nfl), and in level j, ei-
ther the number of factors drops, or the complexity of the associated abelian
decomposition decreases.

In this case we associate with the (telescopic) sequence of resolutions
MGQ"Res, and with the resolution PenSC Res, a finite collection of devel-
oping resolutions and anvils, precisely as we did in this case in part (7) of
the second step of the procedure (i.e. the developing resolutions are Extra
PS resolutions associated with framed resolutions of PenSC Res), and with
each anvil we associate the sculpted resolutions, penetrated sculpted res-
olutions, and carriers that are associated with the anvil, Anv(MGQ" ! Res)
(they are all of widths 1 to width(n—1)). We set width(n) = width(n—1)4+1,
and the resolution PenSCRes to be the first penetrated sculpted resolu-
tion of width width(n), that we denote, PenSCRes!" "™ With each
anvil we associate a carrier, that we denote Carrier;, dth(n)" In this case,
se(n,d) = se(n —1,d) for 1 < d < width(n — 1) — 1, sc(n, width(n — 1)) =
sc(n—1,width(n—1)) if there is a carrier, Carrier:;;j;h(nfl), associated with
Anv(MGQ" ! Res), and sc(n, width(n — 1)) = sc¢(n — 1, width(n — 1)) + 1
otherwise, and sc(n,width(n)) = 1.

Suppose that the structure of the obtained resolution, PenSC Res,
is identical to the structure of the first penetrated resolution,
PenSCResTffl’W.dth(nfl). We first verify that the obtained resolution is
not a terminal resolution. In this case we inductively repeat the exam-
ination of the images of the first sculpted resolution and the first pene-
trated sculpted resolution (of width width(n—1)), by examining the images
of the e-th sculpted and penetrated sculpted resolutions of width(n — 1),
SCRes?il’mdth(nfl) and PenSCRes?il’mdth(nfl), for 2 < e <
sc(n — L width(n — 1)). Finally, if all the obtained resolutions associ-
ated with these sculpted and penetrated sculpted resolutions have the same
structures as those associated with the corresponding sculpted and pene-
trated sculpted resolutions, we examine the image of the developing res-
olution associated with the anvil, Anv(MGQ™ 'Res), if this developing
resolution is associated with the width(n — 1) algebraic envelope.

Suppose that all the resolutions obtained from the images of the scul-
pted, penetrated sculpted and (possibly) developing resolutions (of
width(n — 1) in Anv(MGQ" ' Res)), have the same structure as the cor-
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responding resolutions that are associated with these sculpted, penetrated
sculpted, and developing resolutions. We further assume that all the ob-
tained resolutions are not terminal resolutions (in case such a resolution is
a terminal resolution we do not continue with the sequence of multi-graded
resolutions M GQ™Res to the next step of our iterative procedure).

In this case we proceed as in part (7) of the second step, and associate
with the resolution GRes, that is composed from the sequence of multi-
graded resolutions, M GQ" Res., a (canonical) finite collection of framed
resolutions. With each framed resolution we canonically associate a finite
collection of Non-Rigid, Non-Solid, Root and Left PSS resolutions, and a
finite collection of Extra PS resolutions, and Generic collapse extra PS
resolutions. We set each of the Extra PS resolutions to be a developing
resolution, and with a developing resolution we associate a finite collection
of anvils. With each anvil we associate the sculpted resolutions, pene-
trated sculpted resolutions, and carriers that are associated with the anvil,
Anv(MGQ"™ ! Res) (they are all of widths 1 to width(n — 1)). We further
set width(n) = width(n — 1) + 1. In this case, sc(n,d) = sc(n — 1,d) for
1 < d < width(n — 1) — 1, se(n,width(n — 1)) = se(n — 1, width(n — 1))
if there is a carrier, Carrier:;;ﬁh(n_l), associated with Anv(MGQ" ! Res),
and sc(n,width(n — 1)) = sc(n — 1,width(n — 1)) + 1 otherwise, and
sc(n, width(n)) = sc(n, width(n — 1)).

As in the previous parts of the general step, we still need to associate
with each anvil a finite collection of (extended) auxiliary resolutions. Like
in part (4) of the first step, and part (7) of the second step, with each anvil,
Anv(MGQ™Res), we associate width(n) collections of auxiliary resolutions
(auxiliary resolutions of widths 1 to width(n)), according to Definition 14.

Like in the first and second steps, before we conclude the general step
of the sieve procedure, and prepare the data-structure for starting the next
step, we need to check that the iterative procedure that was used in the
general step, and the anvils constructed along it together with the ter-
minal resolutions, collect all the Collapse extra PS specializations that
factor through the initial developing resolutions, that are associated with
the anvils, Anv(MGQ" ! Res), we started the n-th step with, and through
the Diophantine conditions imposed by their associated collapse forms.

Theorem 21. Let (7, ho,g1,h1,w,p,a) be a valid PS statement that fac-
tors through one of the PS limit group PSHGH, and can be extended to
a specialization that factors and is taut with respect to one of the anvils,
Anv(MGQ" ! Res), that was constructed in the n — 1 step of the sieve
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procedure, and the extended specialization satisfies the Diophantine condi-
tions imposed by one of the collapse forms associated with the developing
resolution associated with the anvil, Anv(MGQ" ! Res). Then either:

(i) The specialization (r, ha, g1, h1,w,p,a) can be extended to a test se-
quence of one of the developing resolutions, we started the n-th step
with, that projects to a collection of valid PS statements; or

(ii) (7, h2,g1,h1,w,p,a) can be extended to a specialization that either
factors through and is taut with respect to one of the anvils or one of
the terminal resolutions constructed along the n-th step of the sieve
procedure.

Proof. Identical to the proof of Theorem 18. o

Termination of the Sieve Procedure

Defining the first, second and general steps of the sieve procedure, we are
still required to prove its termination. To prove termination of our iterative
procedure in the minimal rank case (section 1), we used the strict decrease
in the complexity of the resolutions associated with successive steps of the
procedure, a strict decrease that forces termination. In the procedures used
to construct the tree of stratified sets and to validate a general AFE sentence,
we proved termination by combining the decrease in either the Zariski clo-
sures or the complexities of the resolutions and decompositions associated
with successive steps of these procedures. In presenting the general step of
the sieve procedure, we have considered the possibility that both the Zariski
closures and the complexities of the various core resolutions and develop-
ing resolutions associated with an anvil do not decrease. In this case, if
the constructed developing resolution is not a terminal resolution, we have
associated additional sculpted resolutions, penetrated sculpted resolutions
and carriers with the corresponding anvil. As we will see in the sequel, in
addition to the arguments used to prove the termination of the procedure
for the construction of the tree of stratified sets, in order to prove termi-
nation of the sieve procedure, we will also need to obtain a global bound
on the number of sculpted resolutions (of given width) associated with an
anvil.

Theorem 22. The sieve procedure terminates after finitely many steps.

Proof. Suppose that the sieve procedure does not terminate after finitely
many steps, hence, the procedure must contain an infinite path. At step
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n along the infinite path of the sieve procedure, there are associated anvil
and developing resolution, a width, width(n), width(n) collections of core
resolutions, and possibly sculpted resolutions, penetrated sculpted resolu-
tions, and carriers. To get a contradiction to the existence of an infinite
path, we start by applying the arguments used to prove the termination
of the iterative procedure for validation of a sentence [Se4, 4.12], to show
that the subgroup and the sequence of core resolutions associated with a
given algebraic envelope along an infinite path, can be changed only finitely
many times, i.e. the subgroup associated with such an algebraic envelope,
and parts (1)—(3) of the general step of the sieve procedure, can be applied
to the subgroup associated with a fixed algebraic envelope and its associ-
ated sequence of core resolutions, only finitely many times. We continue,
by deducing from this “stabilization” of the subgroup and the sequence of
core resolutions associated with a given algebraic envelope, that the num-
ber of sculpted resolutions of the same width along the infinite path, i.e.
the set of non-negative integers {sc(n,d) | 1 < d < width(n)},, is not
bounded. To obtain a contradiction, we apply the approach used in [S3] to
obtain a global bound on the number of rigid and strictly-solid families of
solutions, to get a bound on the number of sculpted resolutions of the same
width along the infinite path, that clearly contradicts the unboundedness
of the set {sc(n,d) | 1 <d < width(n)}32,.

PROPOSITION 23. Let dy > 1 be an integer index, and let Mg, be either the
subgroup (r, ha, g1, h1,w, p,a), or a limit group (c, gny—1, 7, h2, 91, h1,w, p, a)
that is associated in step ng with the dy-th algebraic envelope that is as-
sociated with an anvil, Anv(MGQ™ Res), constructed at step ngy along
our given infinite path of the sieve procedure (i.e. the subgroup
(¢, qno—1,7,h2,91,h1,w,p,a) is generated by the resolution associated with
the dy — 1 algebraic envelope in Anv(MGQ™ ' Res), and elements associ-
ated with the collapse form that is associated with the Collapse extra PS
limit group, CollapseExtraPS™, along our given infinite path).

Suppose that the subgroup My, is associated with the do-th algebraic
envelope that is associated with the anvils, Anv(MGQ™Res), for alln > ng
(i.e. it is not being replaced after step ng, except perhaps by a proper quo-
tient). Then the structure of the core resolutions associated with My, (the
width dy sequence of core resolutions), can be changed in only finitely many
steps along the given infinite path of the sieve procedure, i.e. parts (1)—(4)
can be applied only in finitely many steps along the infinite path to the
core resolutions associated with the subgroup My, .
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Proof. Since for all n > ng, the width-dy sequence of core resolutions, is
the sequence of core resolutions associated with the subgroup My, either
dp = 1, in which case My, = (r, he, g1, h1,w,p, a), or the sequences of the
formed parts of the depth d core resolutions are unchanged for all n > ng
and d < dy. Hence, the claim of the proposition for dy > 1 is similar to the
case dg = 1. So, to prove the proposition it is enough to consider the case
dy = 1, in which case My = (r, ho, g1, h1,w,p,a). The argument we apply
in this case, is a modification of the argument used to prove the termination
of the iterative procedure for validation of a sentence [S4, 4.12].

Each time part (1) of the general step of the procedure is applied to the
subgroup M; along the given infinite path of the sieve procedure, the limit
group Q"(r,h2,91,h1,w,p,a) (the subgroup generated by (r,h2,91,h1,w,p,a)
in ExtraCollapsePS™) is replaced by its proper quotient. Hence, by the
descending chain condition for limit groups, for the rest of the argument
we may assume that part (1) of the general step is not applied to the the
subgroup M; along our given path of the procedure. If part (2) or (3) of
the general step is applied to the core resolution associated with the top
part and with the subgroup M; along the infinite path, then the limit
group Qe(s)(fg(s),ﬁ ho,g1,h1,w,p,a), is replaced by its proper quotient,
Q" (fu(s)» s ha, 91, h1,w,p,a), for some index s, 1 < s < s(n —1). Hence,
by the descending chain condition for limit groups, for any fixed s, parts
(2) and (3) can be applied to the limit group Q"(fy(s),, h2,g1,h1,w,p,a)
(associated with the top part and the subgroup M;) only finitely many
times along the infinite path.

Each time part (4) of the general step of the sieve procedure is applied
to a multi-graded resolution associated with the top part and the sub-
group M; along the infinite path, the index of the based subgroups, s(n),
is increased by 1, and the complexity of the associated (multi-graded) core
resolution strictly decreases. Since a strictly decreasing sequence of com-
plexities of (multi-graded) core resolutions terminates after finitely many
steps, parts (1)—(4), can be applied only finitely many times to the multi-
graded resolution associated with the top part and the subgroup M; in the
anvils, Anv(MGQ"™Res), along our given infinite path of the sieve proce-
dure.

Hence, there exists some step n; along the given path of the sieve pro-
cedure, so that for every step n > ny (for which one of the parts (1)—(4) is
applied to the core resolutions associated with the subgroup M;), and for
the (top part) core resolution associated with the subgroup Mj:

(i) s(n) = s(n1).
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(ii) For every 1 <s < s(n;) —1, Qe(s)(f@(s),r, h2,g1,h1,w,p,a) is isomor-
phic to Qn(fé(s), 7, ha, g1, h1, hi,w, p, a)'

(iii) The multi-graded core resolution associated with the top level of the
developing resolution and the subgroup M; constructed in step n of
the sieve procedure, M GCore(M;, MGQ™Res), is of maximal com-
plexity.

Since for every n > ny (for which one of the parts (1)-(4) is applied to
the core resolutions associated with the subgroup M), the multi-graded
core MGCore(M;, MGQ™Res) associated with the top part of the devel-
oping resolution and the subgroup M; is of maximal complexity, if we
restrict our attention to the core resolutions associated with the subgroup
M3, then for every such n > ni, the procedure is effectively applied to the
limit group associated with the terminal level of the maximal complexity
multi-graded resolutions, M GQ" Res (associated with the top part). By
construction, in the limit group associated with the terminal level of the
maximal complexity resolutions M GQ" Res, the image of the limit group
Qn(fl(s(nl)—l)a 7, h2, g1, h1,w,p, a)a Qtnerm(fﬁ(s(nl)—l) ,T,he, g1, h1,w, p, a)7 is
a proper quotient of Q%) (fe(s(ny)—1), 7> b2, 91, b1, w,p,a). If at some step
n > nq, the image of Q" (r,h2,91,h1,w,p,a) in the terminal level of MGQ"Res,
Q?e?‘m(r’ ha, g1, h1,w,p, a)a is a proper quotient of Ql(ra ha, g1, h1,w,p, a)a
then for some ng, for n > ngy (for which one of the parts (1)-(4) is applied to
the core resolutions associated with the subgroup M), the infinite path of
the iterative procedure is effectively applied to a proper quotient of the limit
group Q*(r, ha, g1, h1,w,p, a) we started with. Otherwise, let s; < s(n1)—1
be the minimal index s, for which Q% (fus),7,h2, 91, h1,w,p,a), is a
proper quotient of Q) ( fe(s)>y,a) for some step n > n; (for which one
of the parts (1)—(4) is applied to the core resolutions associated with Mj).
Repeating the arguments used for analyzing the multi-graded resolutions
associated with the top level of the first sculpted (or developing) resolution
along our infinite path, parts (1)—(4) can be applied only finitely many
times to the multi-graded resolutions associated with the second level of
the first sculpted (or developing) resolution associated with the subgroup
M3, along our given infinite path of the sieve procedure; hence, there must
exists some index ng, so that for every n > ny (for which parts (1)—(4)
are applied to the core resolutions associated with M;) the multi-graded
resolutions associated with the top two levels of the developing resolution,
that is associated with the subgroup M, along the given infinite path of
the sieve procedure, are of maximal complexity.
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Suppose that parts (1)—(4) are applied to the core resolutions associated
with the subgroup M at infinitely many steps along our given infinite path
of the sieve procedure. By the descending chain condition for limit groups
[S1, 5.1], if we repeat this argument inductively, we obtain either

(i) alevel 4, and an index ny, for which the multi-graded resolutions asso-
ciated with the top £ levels of the associated developing resolution as-
sociated with the subgroup M; are of maximal complexity at all steps
n > ny (for which parts (1)—(4) are applied to the core resolutions
associated with M), and the image of Q™ (r, ha,g1,h1,w,p,a) in the
limit group associated with the 41 level of the developing resolution
associated with My, is a proper quotient of Q! (r, ha, g1, b1, w, p,a) for
all such n > ny; or

(ii) an infinite sequence of limit groups Q(fy(s),, k2, g1, h1,w,p,a), s =
1,2,..., with a corresponding sequence of (multi-graded) core res-
olutions with respect to the subgroup Mj, so that the sequence of
complexities of these core resolutions is strictly decreasing.

Since a sequence of strictly decreasing complexities of core resolutions
terminates after finitely many steps, case (ii) cannot exist. Hence, case (i)
holds, so there exists some index n, for which for every step n > n, along
the infinite path of the sieve procedure (for which parts (1)—(4) are applied
to the core resolutions associated with Mj), the procedure is effectively
applied to a proper quotient of the limit group Q'(r, ha,g1,h1,w,p,a) we
started the procedure with. Therefore, the descending chain condition for
limit groups, contradicts the existence of an infinite path, for which the core
resolutions associated with the subgroup M; are being changed at infinitely
many steps using parts (1)—(4), and the proposition follows. u]

By inductively applying Proposition 23, and the descending chain condi-
tions for the complexities of core and induced resolutions, for each width d,
the subgroups and the sequences of core resolutions of widths at most d,
associated with the various anvils along our given infinite path of the sieve
procedure, stabilize after finitely many steps. After the subgroups and the
core resolutions stabilize, each time the resolution associated with the alge-
braic envelope of width d (which is a resolution composed from resolutions
induced from the sequence of (stable) core resolutions), the complexity of
at least one of the abelian decompositions along the associated resolution
decreases. Hence, by the descending chain condition for complexities of
abelian decompositions, for each width d, the resolutions associated with
all the algebraic envelopes of widths at most d, stabilize after finitely many
steps along a given infinite path of the sieve procedure.
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Similarly, by the descending chain condition for the complexities of core
resolutions, the core resolutions associated with a subgroup associated with
an algebraic envelope of width e < d, and the resolution associated with
the algebraic envelope of width d, stabilize after finitely many steps. By
Proposition 17 and the descending chain condition for the complexities of
resolutions, the penetrated sculpted resolutions of width at most d stabilize
after finitely many steps along an infinite path of the sieve procedure.

DEFINITION 24. Given an infinite path of the sieve procedure, and a posi-
tive integer d, the subgroups and the core resolutions associated with all the
algebraic envelopes of width at most d, as well as the resolutions associated
with these envelopes and the sculpted and penetrated sculpted resolutions
of width at most d do not change after finitely many steps along the given
infinite path. We call these subgroups, core resolutions, sculpted and pen-
etrated sculpted resolutions, stable.

By the structure of the general step of the sieve procedure, the first
sculpted and penetrated sculpted resolutions of arbitrary width are built
from the PS limit group (r, ha, g1, h1, w, p,a). By Theorem 16, for each step
d for which there exists a change in the stable core resolutions associated
with the subgroup (r, ha, g1, h1, w, p, a), and the stable resolution associated
with the algebraic envelope of width d, compared with the corresponding
stable core resolutions of width d — 1, a decrease in the complexity of the
associated core resolutions occurs. Similarly, by Proposition 17, for each
step d for which the stable core resolutions associated with the subgroup
(r,hg, g1, h1,w,p,a) remain unchanged, but there is a change in the struc-
ture of the stable first penetrated core resolution (of width d), compared
with the structure of the corresponding one of width d — 1, a decrease of the
complexity of at least one of the abelian decompositions associated with the
first penetrated sculpted resolution occurs. By the descending chain con-
dition for the complexities of core resolutions, and abelian decompositions,
there exists some width d;, for which the structure of the stable core resolu-
tions associated with the subgroup (r, he, g1, h1,w,p, a), and the structure
of the stable first penetrated sculpted resolution remain unchanged for all
algebraic envelopes of width d > d;.

Hence, a stable second sculpted resolution is associated with the alge-
braic envelope of width d; + 1. By the arguments used for the stable first
penetrated sculpted resolution, there exists some width dy > di, for which
the structure of the stable core resolutions associated with the first two
sculpted resolutions, and the structure of the first two stable penetrated
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sculpted resolutions, remain unchanged for all widths, d > ds. Continuing
inductively, for each positive integer m, there exists some width d,,, so
that the structure of the stable core resolutions associated with the first
m sculpted resolutions, and the structure of the first m stable penetrated
sculpted resolutions, remain unchanged for all widths, d > d,,.

DEFINITION 25. Given an infinite path of the sieve procedure, and a posi-
tive integer m, there exists a width d,, for which the structure of the first
m stable sculpted and penetrated sculpted resolutions of width d,;, do not
change for all d > d,,. We call this collection of (first m) stable sculpted
and penetrated sculpted resolutions, eventual.

The stabilization of the subgroups and core and penetrated sculpted
resolutions of width at most d along a given infinite path of the sieve pro-
cedure, together with the structure of the general step of the sieve proce-
dure, guarantee that for every given infinite path along it, there is no global
bound on the number of (eventual) sculpted resolutions of the same width
associated with the anvils constructed along the infinite path.

PROPOSITION 26. Given an infinite path of the sieve procedure, for each
positive integer m, there exists a step n,, and width d,,, so that the sculpted
and penetrated sculpted resolutions of width d,, at step n,,, are all eventual,
and the number of n,,, sculpted resolutions of width d,,,, sc(n,,d,,), satisfies
sc(nm,dm) = m (hence, sc(n,d,,) =m for alln > n,,).

Proof. Given an infinite path of the sieve procedure, for each integer m,
there exists a smallest width, d,,, so that all the first m stable sculpted and
penetrated sculpted resolutions of width d,,, are eventual. For each width d,
there exists some step ng along the given infinite path, for which for all
n > ng, the subgroups, core resolutions, and the sculpted and penetrated
sculpted resolutions, associated with all the algebraic envelopes of width at
most d are stable. Therefore, for every positive integer m, the subgroups,
core resolutions, sculpted and penetrated sculpted resolutions, and carriers,
associated with all the algebraic envelopes of widths at most d,,, are the
stable ones for n > ng4 , the first m sculpted and penetrated sculpted
resolutions are eventual, and sc(ng,,, dn)=sc(n,d,)=m for alln > ng, . O

Proposition 26 shows that if the sieve procedure does not terminate after
finitely many steps, there is no bound on the number of eventual sculpted
(and penetrated sculpted) resolutions of the same width associated with the
anvils along an infinite path of the sieve procedure. Therefore, to conclude
the proof of Theorem 22, i.e. to prove the termination of the sieve procedure
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after finitely many steps, we need to show the existence of a global bound
on the number of eventual sculpted resolutions of the same width associated
with the anvils along an infinite path of the procedure.

Theorem 27. Given an infinite path of the sieve procedure, there exists a
global bound (independent of the width) on the number of eventual sculpted
resolutions of the same width, i.e. on the numbers sc(n,d) associated with
the anvils along the infinite path, where n is large enough, so that all the
subgroups, core resolutions, sculpted and penetrated sculpted resolutions
associated with the first d algebraic envelopes are stable, and for which
the sc(n,d) sculpted and penetrated sculpted resolutions of width d are
eventual.

Proof. Our approach towards obtaining a bound on the number of eventual
sculpted resolutions with the same width along an infinite path of the sieve
procedure, is based on the argument used to obtain a bound on the num-
ber of rigid and strictly-solid families of solutions (with respect to a given
covering closure) of rigid and solid limit groups, presented in the first two
sections of [S3] (Theorems 2.5,2.9 and 2.13 in [S3]).

Suppose that there is no bound (independent of the width) on the num-
ber of eventual sculpted resolutions of the same width associated with an
anvil along the given infinite path of the sieve procedure. Then for each
positive integer m, there exists some index n,, and width d,, so that the
m-th stable sculpted resolution of width d,, constructed in the n,, step
along the given path, SCRestmdm ($Sm,7,h2,91, 91, h1,w,p,a), contains the
m — 1 eventual penetrated sculpted resolutions,

mjdm
PCTLSCRCS? (Tl,TghQaglahlawapaa’)a'"7
m;dm
PenSCResn (Tm—lara h2;glah1awapa Cl) ’

m—1
that are naturally (geometrically) embedded in the m-th stable sculpted res-
olution SCRes?,{”’dm (Sm,7s h2,91,h1,w,p,a). Each penetrated sculpted res-
olution added along the sieve procedure is an Extra PS resolution. Hence,
in constructing the 4-th (eventual) penetrated sculpted resolution,
PenSCRes?’”’d’“ (84,7, ho,g1,h1,w,p,a), several (boundedly many) extra
rigid and almost shortest strictly solid solutions are being added, while
the extra rigid solutions associated with the previously constructed even-
tual penetrated sculpted resolution become flexible, and extra strictly solid
solutions associated with previously constructed penetrated sculpted reso-
lutions become non-strictly solid, or belong to the families of strictly-solid
solutions that are declared in the proof statement (see Definition 2.8 in [S3]
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for almost shortest strictly-solid specializations). Note that by construc-
tion, the variables that represent an extra rigid or strictly-solid solution
that is being added to the i-th eventual penetrated sculpted resolution of
width d,,, PenSCRes?m’dm, (z3,h1,w,p,a), differ from the variables that
represent any other extra rigid or strictly-solid solution that is being added
to any of the previous eventual penetrated sculpted resolutions of the same
width that are embedded into it.

Suppose that for some index 7 < m, to the i-th eventual penetrated
sculpted resolution of width d,,,, PenS CRes?"“d’" constructed along the in-
finite path, an additional extra rigid solution is being added. Since the even-
tual penetrated sculpted resolution PenSCRes?m’d’" is embedded in the
next eventual penetrated sculpted resolution of width d,,,, PenS CRes?fl’d’”,
the extra rigid solution that was added to the i-th eventual penetrated
sculpted resolution, PenSCRes?m’dm, does not become flexible when
embedded into the ¢ 4+ 1 eventual penetrated sculpted resolution,
PenS CRes?fl’dm, which clearly contradicts the properties of the 1+ 1 even-
tual penetrated sculpted resolution. Hence, the only extra solutions that
are being added to the various eventual penetrated sculpted resolutions
that are embedded in PenSCResfnm’dm, are almost shortest strictly-solid
solutions (with respect to the given covering closures associated with the
solid limit groups WPHG, see Definition 2.12 in [S3]).

Since our given path of the sieve procedure is infinite, none of the reso-
lutions constructed in the various steps along the infinite path are terminal
resolutions. Hence, at each step of the infinite path, there exists a test se-
quence that factors through the developing resolution constructed at that
step, so that for the corresponding test sequences that factor through each
of the penetrated sculpted resolutions associated with the given developing
resolution, the specialization of at least one of the variables associated with
an extra strictly-solid solution associated with that penetrated sculpted
resolution is indeed strictly solid.

The extra strictly-solid solutions that are being added to the vari-
ous penetrated sculpted resolutions along the infinite path of the sieve
procedure are strictly-solid solutions of a finite collection of solid limit
groups, WPHG(g1, h1,w,p,a), associated with the tree of stratified sets.
Hence, for each positive integer m, there exists an index n,,, width d,,,
and a sequence of integers, 1 < 43 < --- < 4, and an associated se-
quence of (variables corresponding to) extra strictly-solid specializations
(xiy, h1,w,p,a),...,(x;,,h1,w,p,a) that are being added to the stable pen-
etrated sculpted resolutions of width d,,,

PenSCResZm’dm ceny PenSCRes?:’dm
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in correspondence, so that these extra strictly-solid specializations are ex-
tra strictly-solid specializations of the same solid limit group WPHG,
and there exists a test sequence that factors through the n,,-th eventual
penetrated sculpted resolution of width d,,, SCResZ;”’ ™ and for each j,
1 < j < m, the specializations of the variables (x;,,h1,w,p,a) along the
corresponding test sequence of the eventual penetrated sculpted resolution
PenSCRes?jm’d’", are all strictly-solid specializations of the (same) solid
limit group WPHG.

Given such a test sequence that factors through the eventual pene-
trated sculpted resolution of width d,,,, PenS CRes?:’dm, we naturally asso-
ciate with it test sequences of the eventual penetrated sculpted resolutions,
PenSCResZm’dm, ... ,PenSC’ResZ:"d"‘ (by restricting the modular auto-
morphisms associated with the given (ambient) test sequence to each of the
penetrated sculpted resolutions). Given the corresponding test sequence
of the eventual penetrated sculpted resolution, PenSCResZm’dm, we fur-
ther associate with the eventual penetrated sculpted resolution,
PenS CRes?lm’dm, and the subgroup associated with the corresponding ex-
tra solid solution, (z;,,h1,w,p,a), a sequence of strictly-solid solutions,
{(giy, h1,w,p,a)e}, that are almost shortest in the strictly-solid families of
the solutions {(z;,,h1,w,p,a)¢} (where the metric according to which we
measure the length of a specialization, is the metric induced by the eventual
penetrated sculpted resolution from its embedding into the limit group as-
sociated with the eventual penetrated sculpted resolution PenS CResZ;"’dm
and the action of the limit group associated with this penetrated sculpted
resolution on a real tree obtained from the test sequence of specializations).

bl

Since penetrated sculpted resolutions are well separated, by passing to
a subsequence of the given test sequence, we may assume that the sequence
{(giy, h1,w,p,a)e} converge into a subgroup (g;,, h1,w,p,a) of a closure of
the eventual penetrated sculpted resolution, PenSCResZm’dm, and so are
the variables that impose the Diophantine condition that demonstrates that
specializations of the subgroups, (z;,,h1,w,p,a) and (g;,,h1,w,p,a), be-
long to same (strictly-solid) family of the solid limit group W PHG. Given
that subsequence, we associate a similar subgroup, (g;,, h1, w,p, a), in a clo-
sure of the eventual penetrated sculpted resolution PenSCResz;’"’ ™ and
so on, until we associate a subgroup, (g;..,h1,w,p, a), with the penetrated
sculpted resolution PenS CRes?:’ ™
DEFINITION 28. Given the test sequences of specializations associated
with the various eventual sculpted resolutions, we say that a sequence
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of integers {m,}52,, together with tuples of integers 1 < iy j, < iy j, <
crr <y, < My, and test subsequences that factor through the various

Nmy sy,

(eventual) sculpted resolutions, SC Resp,. , are a fenced subsequence,
if there exists a (fixed) proper quotient, WPHG'(g1,h1,w,p,a), of the
solid limit group WPHG, so that for every subgroup, (qu,,h1,w,p,a),

of an eventual penetrated sculpted resolution, PenSC’ResZ"{;“d’"“, that
is associated with an extra solid specialization, there exists a subgroup

(Guyi; > h1,w,p,a) of a closure of the same eventual penetrated sculpted res-

olution, PenSCResZ:;fJ?"d’”“, so that the specializations of the subgroups,
(qui; > h1,w,p,a) and (Gu,;,h1,w,p,a), represent elements that belong to
the same strictly-solid families of the solid limit group W PHG, (i.e. there
exist elements in the corresponding closure of PenS CResZ;j”’dm” that de-
monstrate the Diophantine condition that connects between (specializa-

tions of) the two subgroups), and all the subgroups (qu,i;, h1,w,p, a) factor
through the (fixed) proper quotient W PHG' of WPHG.

If given the test sequences of specializations we started with, the se-
quence of eventual sculpted and penetrated sculpted resolutions contains
a fenced subsequence, we continue with the fenced subsequence, replace
the solid limit group WPHG by the proper quotient corresponding to
the subsequence which we denote WPHG', and for each couple of in-
dices (u,i;), we replace the subgroup (Gu;,h1,w,p,a), by a subgroup
(Gu,i;, h1,w,p,a), obtained as a limit from a test sequence of specializa-
tions, {(Gu,i;, b1, w,p,a)e}72,, that are the almost shortest specializations
in the strictly-solid family of the corresponding sequence of specializations,
{(Gu,i;» h1,w,p,a)e}32,, with respect to the graded abelian decomposition
of the proper quotient WPHG' of WPHG (where the parameter sub-
group is (w,p)). To the subgroups (qu,;, h1,w,p,a), (Gu,;, h1,w,p,a), and
(Gu,i;, h1,w,p, a), of (the corresponding closure of) PenSCResZ:Zj”’dm“, we
add variables that demonstrate the Diophantine conditions their special-
izations have to satisfy (i.e. that force their specializations to belong to the
same strictly-solid family of the original solid limit group W PHG).

If the obtained sequence of eventual sculpted and penetrated sculpted
resolutions and their given test sequences, contain a further fenced subse-
quence, we continue with it and replace the obtained limit group W PHG'
by its corresponding proper quotient. Since limit groups satisfy the de-
scending chain condition, after finitely many replacements, we may assume
that our sequence of eventual sculpted and penetrated sculpted resolutions
and their given test sequences contain no fenced subsequence. We call the
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obtained collection that has no fenced subsequences, and its corresponding
limit group (still denoted W PHG), a stable collection and a stable (solid)
limit group in correspondence. We continue denoting the subgroups corre-
sponding to extra strictly- sohd solutions in the various penetrated sculpted
resolutions, PenSCRes""‘”’ ™ that factor through a stable limit group,
<qu,Z]‘7h1’w7p7 )

Let 1 be the natural quotient map from the original solid limit group
onto the stable limit group WPHG. Let ©g be the graded abelian de-
composition of the original solid limit group with respect to the parameter
subgroup APW = (w,p, a), and let © be the graded abelian decomposition
of the stable limit group WPHG. Suppose that © contains an abelian
vertex group V, that is not the distinguished vertex group (i.e. V' does
not contain the subgroup APW), and the subgroup generated by the edge
groups connected to the vertex stabilized by V in © is not of finite index
in V. By Proposition 1.9 in [S3], since the stable limit group W PHG is ob-
tained from a sequence of strictly-solid specializations of the original solid
limit group, every non-Q H, non-abelian vertex group and every edge group
in ©y must be mapped by the natural quotient map 7, into either a non-QH
vertex group or into an edge group in the graph of groups ©. Furthermore,
if a non-Q)H, non-abelian vertex group or an edge group in ©¢ is mapped
into (a conjugate of) the abelian vertex group V', then the image of that
vertex group or edge group in V intersects the subgroup generated by the
edge groups connected to V in a subgroup of finite index.

Since the sequence of eventual sculpted and penetrated sculpted resolu-
tions, and their associated test sequences, contain no fenced subsequence,
we can further pass to a subsequence of them, for which there is no subse-
quence of integers {m,}5° ;, together with a sequence of couples, {(u, j, )} 4,
1 < ju < u, and test sequences that factor through the various penetrated
sculpted resolutions, PenSC’Resnm“’dm“ that are inherited from subse-
quences of the given test sequences ‘that factor through the sculpted res-
olutions, SCResp* o , for which there exists a (fixed) proper quotient
WPH G' of the stable limit group WPHG, so that for every subgroup
(g, u? ,hi,w,p,a) of a penetrated sculpted resolution PenSCResnm“’ e
that is associated with an extra solid specialization, there exists a ‘sub-
group (G;, ;> h1,w,p,a) of a closure of the same penetrated sculpted res-

olution, PenSCResnm”’dm“, so that the subgroups (g;, ; ,h1,w,p,a) and

(qzu,“ hi,w,p,a), satlsfy a Diophantine condition that demonstrates that
their specializations belong to the same strictly-solid family of the original
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given solid limit group (of which the stable limit group WPHG is a quo-
tient), and all the subgroups (g, ; ,h1,w,p,a) factor through the (fixed)
proper quotient WPHG' of the stable limit group W PHG. We continue
with the corresponding subsequence of (fenced) eventual sculpted and pen-
etrated sculpted resolutions, and their associated test sequences.

To save notation, we will denote the eventual penetrated sculpted res-
olutions that we continue with, PenSCRes}, and the eventual sculpted
resolutions into which they are embedded, SCRes,,, for 1 < j < u.

Our approach towards obtaining a global bound on the number of even-
tual sculpted resolutions of the same width (Theorem 27), is based on the
arguments used to obtain a global bound on the number of rigid and fam-
ilies of strictly-solid solutions presented in the first two sections of [S3]. In
order to modify the arguments presented in [S3] to prove Theorem 27, we
first need to identify quasi-rooted and non-quasi-rooted (cyclic) edge groups.

Let © be the graded abelian decomposition of the stable limit group
WPHG with respect to the parameter subgroup APW = (w,p,a), and
let Ey,...,E4 be the edge groups in ©. The stable limit group W PHG is
mapped into each of the penetrated sculpted resolutions PenS CResg, and
we denoted its image (qyj, h1,w,p,a). In order to be able to modify the
arguments presented in [S3] to prove Theorem 27, we need to obtain global
bounds on the order of roots of images of the maximal abelian subgroups
containing the edge groups F1,...,FE,; in the penetrated sculpted resolu-
tions PenSCRes;*, when viewed as subgroups of the sculpted resolution
SCRes,. We start by demonstrating our approach for obtaining global
bounds on the order of roots, in case the graded abelian decomposition ©
of the stable limit group W PHG is an amalgamated product WPHG =
D x¢ E, where C is cyclic, E is non-abelian, and the parameter subgroup
APW is a subgroup of D.

PROPOSITION 29. Suppose that the graded abelian JSJ decomposition of
the stable limit group W PHG with respect to the parameter subgroup
APW = (w,p,a) is WPHG = D x¢ E, where C is cyclic and E is non-
abelian. Let C = (c), and for each couple (u,j), 1 < j < u, let c} be the im-
age of the element c in the penetrated sculpted resolution PenSCRes]. Let
{c}‘ (€)}72,, be the restriction of our given test sequence of specializations
that factors through the sculpted resolution SCResy, to the element cj.
Then there exists some global bound by, and an index ug, so that for
every u > ug, and every j, 1 < j < u, there exists some index £(u,j) so
that for every £ > {(u, j), the order of a root of c}J'(¢) is bounded by bo.
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Proof. Identical to the proof of Lemma 4.2 of [S3]. In case there is no such
bound by, the vertex group F admits a non-trivial abelian decomposition
in which the edge group C is elliptic. Such an abelian decomposition allows
one to further refine the amalgamated decomposition WPHG = D x¢ E,
a contradiction to the canonical properties of the (graded) JSJ decomposi-
tion. =

Proposition 29 gives a bound on the order of roots of cyclic edge groups
in the graded abelian decomposition © of the stable limit group W PHG,
in case © corresponds to a simple amalgamated product. For general graph
of groups ©, we naturally define the notion of a quasi-rooted and a non-
quasi-rooted edge group.

DEFINITION 30. Let © be the graded abelian JSJ decomposition of the
stable limit group W PHG with respect to the parameter subgroup APW .
Let E be either an edge group or an abelian vertex group in O, let A
be the maximal abelian subgroup containing E in the stable limit group
WPHG, and for each couple (u,j), 1 < j < u, let A} be the image of
the subgroup A in the penetrated sculpted resolution, PenSCRes?. Let
{a}(€)}32 1, be the generators of the cyclic images of AY that correspond to
the given test sequence of specializations that factors through the sculpted
resolution SC Res,,.

We say that the edge group (abelian vertex group) E, in the graph of
groups O, is non-quasi-rooted, if there exists some global bound bg, and
an index ug, so that for every u > ug, and every j, 1 < j < u, there exists
some index {(u, j) so that for every £ > {(u, j), the order of a root of a}(¢)
is bounded by bg.

We say that an edge group (abelian vertex group) E in ©, is quasi-
rooted, if for every positive integer b, there exists an index u,’f , so that for
every u > ubE, and every j, 1 < j < u, there exists some index {(u,j) so
that for every £ > {(u, j), a}(£) has a root of order at least b.

Note that since the limit group W PHG is assumed to be stable, every
abelian vertex group V' in the graph of groups ©, for which the subgroup
generated by the edge groups connected to V' is not of finite index in V, is
necessarily a quasi-rooted abelian vertex group.

Note that according to Definition 30, an edge group or an abelian vertex
group in © can be neither quasi-rooted nor non-quasi-rooted. Hence, before
we continue analyzing the sequence of eventual sculpted and penetrated
sculpted resolutions and their given test sequences, we replace them by a
subsequence, so that with respect to the chosen subsequence every edge
group and abelian vertex group in O is either quasi-rooted or non-quasi-
rooted.



GAFA QUANTIFIER ELIMINATION II 133

DEFINITION 31. Let © be the graded abelian decomposition of a stable
limit group WPHG. We define some (arbitrary) order on the (finite) sets
of edge groups and abelian vertex groups in ©.

We go over the the edge groups (abelian vertex groups) sequentially,
according to their prescribed order. By applying a simple diagonal argu-
ment and passing to an appropriate subsequence of the sequence of eventual
sculpted and penetrated sculpted resolutions and their test sequences, we
can assume that the first edge group (according to the prescribed order)
is either quasi-rooted or non-quasi-rooted. Continuing inductively, after
passing to a further subsequence, we can assume that all the edge groups
and abelian vertex groups in © are either quasi-rooted or non-quasi-rooted.

We set the non-quasi-rooted subgraph of ©, that we denote O ygr, to
be the subgraph that is obtained from the graph © by erasing the following:

(i) quasi-rooted edge groups that connect between two non-abelian ver-
tex groups;

(ii) quasi-rooted abelian vertex groups, and all the edges (that must all
be quasi-rooted as well) connected to it.

Note that according to (ii), every abelian vertex group in ©, for which the
subgroup generated by the edge groups connected to it is not of finite index
(such abelian vertex group must be quasi-rooted), is not in O yog. Finally
we denote the fundamental group of O ygr, W PHGNQR-

The following theorem generalizes Proposition 29 to a general stable
limit group.

Theorem 32. Let © be the graded abelian decomposition of a stable
limit group W PHG, with respect to the parameter subgroup APW . Then
O©nNqr, its non-quasi-rooted subgraph, is connected.

Proof. To construct the non-quasi-rooted subgraph ©nggr, we start with
the distinguished vertex Vp in O, i.e. the vertex stabilized by the subgroup
APW in the graph of groups ©. Since WPHG is a limit group, every
non-cyclic abelian vertex group in © is adjacent only to non-abelian vertex
groups in ©. Hence, if © contains no non-abelian vertex groups apart
from the distinguished one, © ygr is necessarily connected and contains
the distinguished vertex Vp.

Suppose that there are at least two non-abelian vertex groups in ©. We
start with the distinguished vertex Vp. We further assume that all the
edge groups that are connected to Vp in © are quasi-rooted, and are not
connected to abelian vertex groups that are not quasi-rooted. In this case
we argue that our sequence of test sequences contains a fenced subsequence
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(Definition 28), hence, obtain a contradiction to the assumption that the
limit group W PHG is stable.

Let T" be the subgraph of the graph of groups ©, obtained from © by
taking out from it the vertex Vp, all the abelian vertex groups A; adjacent
to Vp in © (that are all assumed to be quasi-rooted), and all the edges that
are connected to the vertices Vp and A; in ©. Note that I' is not empty,
since we assumed that © contains at least two non-abelian vertex groups.
Let I'; be a connected component of I', and let U; be its fundamental group.
By construction, every vertex group in I'y that is adjacent to Vp or one of
the vertices A; in © is non-abelian, and an edge group attached to an edge
that connects a vertex in I'y to Vp, or to one of the vertices A; in ©, is
quasi-rooted.

With the graph of groups I'y, we naturally associate a modular group
of automorphisms of its fundamental group Uy (that is a subgroup of the
modular group associated with the ambient graph of groups ©), that we
denote Mod(U;). Note that the automorphisms in Mod(U;) preserve, in
particular, the conjugacy classes of the (quasi-rooted) edge groups that
connect vertices in I'; to the vertex Vp or one of the (quasi-rooted) abelian
groups A; connected to it.

Given each of the penetrated sculpted resolutions, PenS C’Res}*, a corre-
sponding test sequence of specializations that factor through it, and the as-
sociated sequence of specializations, {(qy,;, b1, w,p, a)¢}, we replace each of
the specializations of the limit group U; associated with the specialization,
(Qu,j, h1,w,p,a)s, by a specialization (§y,j, b1, w, p, a)s, that is almost short-
est with respect to the action of the modular group Mod(U;). For each tuple
(u,7), 1 < j < m, we further pick a convergent subsequence (still denoted),
(Gu,j, h1,w, p, a)g, and we denote the associated limit group (Gy,j, h1, w, p, a).

Recall that by our assumptions on the sequence of eventual sculpted
and penetrated sculpted resolutions we started with, and their given test
sequences, there does not exist a subsequence of couples {(u¢, j(ut) }52;, for
which the corresponding subgroups, (cjut,j(ut),hl,w,p, a), are all quotients
of a proper quotient of the stable limit group WPHG.

Each of the limit groups (§y,j, h1,w, p,a) is obtained from a convergent
(test) sequence of specializations {(gy,;, b1, w, p,a),}, hence, there is an as-
sociated (faithful) action of it on some real tree. Therefore, by possibly
further passing to a subsequence, we may assume that the sequence of ac-
tions of the limit groups (still denoted) (g, ;, h1,w, p, a), on their associated
real trees, converges into a faithful action of the stable limit group WPHG
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on a real tree. In particular, the restricted actions of the images of the
subgroup Uj in (Gu,j, h1,w,p,a) converge into a faithful action of U; on
some limit (real) tree.

Let F1,...,Es be the edges in the graph of groups © that connect
vertices in I'; to either the vertex Vp, or to one of the (quasi-rooted) abelian
vertex groups A; connected to it. We set the group RU; to be RU; =
Uy % (r1) = --- % (rs) For each index u, the eventual penetrated sculpted
resolution PenSCRes] is naturally embedded into the eventual sculpted
resolution, SCRes. Hence, for each couple (u,j), the specializations of
the limit group U; associated with the sequence, {(gy,j,h1,w,p,a)s}, can
be extended to homomorphisms from the limit group RU;, by sending
each of the generators r; of RU; into a primitive root of the specialization
of its associated (quasi-rooted) edge group. By passing to corresponding
subsequences, we may assume that for each couple (u, j), the corresponding
sequence of homomorphisms of RU; converges into an action of RU; on
some limit tree, and by further passing to a subsequence of couples (u, j),
we may assume that this sequence of actions converges into an action of
RU; on some real tree Y. We denote the limit group corresponding to this
limit action RootU;. Clearly, RootU; is a (proper) quotient of RU7, and the
generators r; commute with their associated quasi-rooted edge groups in
RootU;. Also, by construction, the limit group U; is embedded in RootU; .

The limit group RootU; inherits a (non-trivial) abelian decomposition
A from its action on the real tree Y, and abelian decomposition in which
every non-cyclic abelian vertex group is elliptic. Since the generators r;
commute with the quasi-rooted edge groups associated with them, and
since the elements r; are mapped to primitive roots of the specializations of
the quasi-rooted edge groups, the generators r; and the quasi-rooted edge
groups associated with them, are elliptic in A.

Since U; is embedded in RootU;, and the quasi-rooted edge groups that
connect Uj to the vertex groups Vp, and to the quasi-rooted abelian vertex
groups A; connected to it in ©, are elliptic in A, if the graph of groups A is
not compatible with the graph of groups I'y of Uy, the graded abelian JSJ
decomposition © of the stable limit group W PHG can be further refined, a
contradiction to its canonical properties. Hence, A is compatible with the
graph of groups I'y of U;. But this implies that for large enough u, and for
large enough ¢, the specializations (gy,j, h1,w, p,a), are not almost shortest
with respect to the action of the modular group Mod(U;), a contradiction.
Hence, at least one of the edge groups connected to Vp is non-quasi-rooted,
or Vp is connected to a non-quasi-rooted abelian vertex group.



136 Z. SELA GAFA

Let A; be the subgraph of © that contains the distinguished vertex Vp,
the non-quasi-rooted edges and non-quasi-rooted abelian vertex groups con-
nected to Vp (and the edges connected to these abelian vertex groups),
and the vertices adjacent to those non-quasi-rooted edges and abelian ver-
tex groups. Clearly, Ay C Oygr and A; is connected. If there is no
non-abelian vertex group in the graph of groups © that is not in Aq, the
theorem follows. Suppose there is a non-abelian vertex group in © that is
not contained in A;. Then the same argument used for the edge groups
connected to the distinguished vertex group Vp, implies that there must
exist a non-quasi-rooted edge group F in ©, or a non-quasi-rooted abelian
vertex group in O, so that F or A is adjacent to Ay and F is not in A;.
We set Ay to be the union of A; with all the non-quasi-rooted edge groups
and abelian vertex groups that are adjacent to A;. By construction, As is
connected and contained in © ygr. Repeating the construction iteratively,
we can still enlarge the obtained subgraph A; as long as there exists a non-
abelian vertex group in © that is not contained in A;. Hence, for some k,
Ongr = Ak, Ongr is connected, and contains all the non-abelian vertex
groups in ©. o

The subgroups (g, h1,w,p,a) were chosen as limits of almost short-
est sequences of specializations. In defining almost shortest specializations
[S3, Definition 2.8], we have fixed an order on the edge groups and the
QH vertex groups of the graded abelian decomposition © of the stable
limit group WPHG. Fixing a non-quasi-rooted subgraph of the graph of
groups O, for each index u and each j, 1 < j < u, we modify the sub-
group (qu,j, b1, w,p,a) by replacing it with a corresponding subgroup that
is a limit of a sequence of almost shortest specializations of the eventual
penetrated sculpted resolution, PenSC Res}, where the order on the edges
and QH vertex groups of © starts with the edges and QH vertex groups
in the non-quasi-rooted subgraph ©ygr, and then the quasi-rooted edge
and abelian vertex groups. We still denote the obtained subgroups of the
corresponding sculpted resolutions, (g, ;, h1,w,p, a).

DEFINITION 33. Let F1,...,E; be the quasi-rooted edge groups of edges
that were taken out from the graph of groups ©, to obtain the non-quasi-
rooted graph of groups © ngr (if an edge that was taken out connects two
vertices in © NgR, then we take the two embeddings of the edge group to
be among the quasi-rooted edge groups F1,...,E;). Recall (Definition 31)
that we denote the fundamental group of O ngr, WPHGNgr. We set
GNOR = WPHG NgR * (1) * -+ x (s4). With each couple of indices (u, j),
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1 < j < w, and each specialization of the eventual sculpted resolution
SCRes,, we associate a natural specialization of the group GNQE, by
mapping its subgroup W PHG nqr to the specialization it inherits from the
corresponding specialization of the subgroup (gyj, h1,w, p, a), and mapping

the elements, s1,...,Sq, to the generators in the coefficient (free) group Fy,
of the images of the quasi-rooted edge groups, E1,...,E,, in correspon-
dence.

By our standard arguments presented in section 5 of [S1], the entire set
of specializations of the group GN9E factors through a canonical finite col-
lection of (maximal) limit groups GiVQR, e ,Gév QR (that correspond to the
Zariski closure of the collection). Hence, for some limit group G;-VQR there is
a subsequence of couples (still denoted) (u, j), 1 < j < u, and test sequences
that factor through the corresponding eventual sculpted and penetrated
penetrated sculpted resolutions (still denoted) SCRes, and PenSCRes},
so that the corresponding specializations of the subgroup GNQE all factor
through the limit group G} “*.

If there exists a subsequence of the couples (u, j), still denoted (u, j),
1 < j < u, and associated test sequences of specializations that factor
through the eventual sculpted resolutions SC Res,, so that the correspond-

ing specializations of the subgroup G;-VQR do all factor through a proper
quotient of G;-VQR, we pass to this subsequence (a fenced subsequence), and

replace the limit group G;-VQR by its corresponding proper quotient. We
iteratively replace the obtained subsequence by fenced subsequence, as long
as a fenced subsequence exists. By the descending chain condition for limit
groups, such an iterative process terminates after finitely many steps. We
call the obtained quotient of the limit group G;VQR, a stable rooted limit
group, and denote it RootW PHG ygr. Since the group WPHG is stable,
the non-quasi-rooted subgroup W PHG ngr that is naturally mapped into
RootW PHG nqr is naturally embedded into it.

Since the sequence of test sequences contain no fenced subsequence,
we can further pass to a subsequence of test sequences, for which there
is no subsequence of integers u, with a sequence of integers, {j(u)}32,,
1 < j(u) < u, and subsequences of the test sequences that factor through
the various eventual sculpted resolutions SC Res,,, for which there exists a
(fixed) proper quotient of the stable rooted limit group, RootW PHG Nqr,
so that the all the specializations of RootW PHGnqr that correspond
to the given test sequences factor through that fixed proper quotient of
ROOtWPHGNQR.
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In the formulation of the following theorem, recall (Definition 1.1 in [S3])
that if G(x,p, a) is a graded limit group with respect to the parameter sub-
group P = (p), then a specialization (zg,pg,a) of the subgroup G(z,p,a)
is said to be R-AP-covered, if the specialization of the (fixed) set of gener-
ators of G(z,p,a) is covered by the union of translates of the fixed set of
generators of the subgroup AP = (p,a), by elements in the R-ball of the
graded limit group G(z,p, a).

Theorem 34 (cf. [Se3, 1.7]). There exist a (global) constant R, and
an index wug, for which given any positive integer u > ug, and the test
sequence that factors through the eventual sculpted resolution SCRes,,
there exists an integer £(u), so that the sets of specializations of the sta-
ble rooted group RootW PHG nqr corresponding to the specializations
(Qu,j, h1,w,p,a)e, 1 < j < wu, are R-APW -covered for all £ > {(u).

Proof. Suppose that there is no such global constant R. Then for every pos-
itive integer ¢, there exists an index u(t) > ¢, an index j(t), 1 < j(t) < u(t),
and a test sequence that factors through the penetrated sculpted resolution
SCResy(y), for which the sequence of specializations of the stable rooted
group RootW PHG nqr, corresponding to the sequence of specializations,
{(qu(t),j)s M, w,p,a)e}2, are (all) not t-APW-covered. By Theorem 1.3
in [S3], for every t, we can pass to a subsequence that converges into an
action of the limit group RootW PHG ngr on a limit R*®-tree Y; (by The-
orem 1.3 in [S3], the action of RootW PHGNqr is in fact a free action of
a limit quotient of RootW PHG nr)- Since each specialization in this se-
quence is not t-APW-covered, the action of RootW PHG ngg on the limit
R3®)_tree Y; is not t-APW -covered.

By applying Theorem 1.3 in [S3] to a sequence of specializations,
{(qu(t),j)> h1,w, p,a)gs) }i21, that approximate the actions on the Rs().
trees Y;, from the sequence of actions of the limit group RootW PHG ygr on
the R*(")-trees Y}, it is possible to extract a subsequence (still denoted Y}),
that converges into a free action of the stable rooted limit group
RootW PHG ngr on a limit RF-tree Y. Since for each index ¢ the action
of RootW PHG ngr on the R3()_tree Y; is not t-APW covered, the action
of the stable limit group RootW PHG ngr on the limit RF-tree Y satisfies
the properties of the action obtained in proving Theorem 1.7 of [S3], i.e.
the orbit of the sub-RH*-tree Y pw in the limit R¥-tree Y misses either a
non-degenerate segment or a germ of a branching point in Y.

The continuation of our argument is a modification of the argument
used to prove Theorem 1.7 of [S3]. By the proof of Theorem 1.2 of [S3],
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from the free action of the stable rooted limit group RootW PHG ngr on
the real R*-tree Y, RootW PHG ngr inherits an abelian decomposition I,
a decomposition in which the image of the subgroup APW = (w,p,a), is
contained in a proper subgraph of groups I'V. Furthermore, since we have
added elements that represent (primitive) roots of each of the quasi-rooted
subgroups that are connected to (non-abelian) vertex groups in the graph
of groups Ongr, each quasi-rooted subgroup of WPHGngr is elliptic in
the graph of groups I', as well as the subgroups corresponding to their
primitive roots. Hence, in the graph of groups inherited by the non-quasi-
rooted subgroup WPHGNggr from the graph of groups I', every quasi-
rooted subgroup is elliptic as well.

Let A be the graph of groups obtained from I' by collapsing I to a
vertex. In A the (parameter) subgroup APW is contained in a vertex sta-
bilizer, each quasi-rooted subgroup is elliptic, hence, every non-QH vertex
group, and every edge group in the non-quasi-rooted decomposition O ygr
of the non-quasi-rooted subgroup W PG H ngr of RootW PHG g, is con-
tained in a non-Q H vertex group or an edge group in A. Furthermore, since
the graph of groups A is non-trivial, and since RootW PHG ygr is obtained
from WPHGngr by adding roots, the abelian decomposition inherited by
WPHGpNgR from A is non-trivial as well.

Therefore, the abelian decomposition inherited by W PHG ngr is non-
trivial and compatible with © ygr, so for large enough ¢, the specializations,
{(qu(t),j)s 1, w, pya) gy 21, are not almost shortest in their strictly-solid
families for large enough #, which clearly contradicts our assumptions. o

To prove Theorem 34 we modified the argument used to prove Theo-
rem 1.7 in [S3]. Given Theorem 34, to obtain a bound on the number of
eventual sculpted resolutions, i.e. to complete the proof of Theorem 27, we
modify the argument used to prove Theorems 2.9 and 2.13 of [S3]. In the
sequel, we continue with a subsequence of the eventual sculpted and pen-
etrated sculpted resolutions and their associated test sequences, for which
the associated specializations of the stable rooted limit group WPHGngr
satisfy the conclusion of Theorem 34, i.e. are R'-APW-covered for some
positive integer R'. These are still denoted SC Res,, and PenSCRes}.

Let B be a ball in the Cayley graph of the rooted stable limit group
RootWPHG ygr that contains all the defining relations of RootWPHG ngR-
By Theorem 34 there exists some constant R, so that for any positive in-
teger u, and the associated test sequence that factors through the even-
tual sculpted resolution SCRes,, there exists an index £(u), so that for
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every £ > {(u), and every j, 1 < j < u, the image of the ball B of
RootW PHG ngr corresponding to the specialization: (gy,j, b1, w,p)s is R'-
APW -covered.

Let R = 2- R'. Recall ([Se3, 2.3]) that we called the finite subtree T,
which is the union of the images of the edges in the ball Bg, that corre-
spond to a homomorphism from the stable limit group, RootW PHG nqr,
to the coefficient group, an R-state. The combinatorial type of an R-state
is the combinatorial (not metric) finite tree associated with an R-state,
including notation for the corresponding image of the vertices and edges
in the ball Br. Clearly, there exist only finitely many combinatorial types
of R-states. Hence, by possibly passing to a subsequence and changing
the indexing, we may further assume that for every index u, and every j,
1 < j < u, and every index ¢, the combinatorial types of the R-states as-
sociated with the specializations of RootW PHG ngr, that are associated
with the specializations (g, j, h1,w,p,a),, are identical.

For each index u, and each 7, 1 < j < u, the R-state of the rooted stable
limit group RootW PHG ngr corresponding to the sequences of specializa-
tions {(qu,j,h1,w,p,a)s} converge, after rescaling the metric on them by
dilatation constants that depend only on the specializations of the defining
parameters (w,p)g, into an R-state, which we denote Rstatesd (qu,j,h1,w,p,a).
Note that the R-state, Rstate’y , is an RM®I) _tree. By passing to a sub-
sequence and changing the indexing, we may further assume that any se-
quence of R-states {Rstateggj(u)(qu,j(u),hl,w,p, a)}o°,, where 1 < j < u,
converges in the Gromov—Hausdorff topology on metric spaces, and the
limit (finite) R*-tree Y is independent of the particular choice of indices.

Given a specialization of RootW PHG ngr corresponding to a special-
ization (gy.j, h1,w,p,a)s, for some j, 1 < j < u, we set p,(¢,j,u) to be
a segment in the R-state, Rstate(qy j, h1,w,p,a)¢, that is mapped to the
edge e, in the upper level of the R¥-tree Y (i.e. the length of the edge e,
in Y is not infinitesimal, and p, (¢, j,u) is a subword (fraction) of a special-
ization of one of the defining parameters). Recall (Definition 2.6 in [S3])
that we say that p. (¢, j,u) is pseudo-periodic if:

(i) pr(4, j,u) = via®ve and the equality is graphical (i.e. with no cancel-
lations);
(ii) s > 10 and the length of o is at least three quarters of the length of
pr(£, 5, u).
If p.(¢,j,u) is pseudo-periodic, we set period(p,(¢,j,u)) to be the short-
est length of an element o € Fj that satisfies condition (i) above. We
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call period(p,(¢,j,u)) the pseudo-period of the pseudo-periodic segment
pr(¢,j,u). We call the maximal possible s that appears in condition (i)
above, the pseudo-periodicity of p, (¢, j,u).

We continue by going over the segments in the RF-tree Y. If for
such segment e,, there exists a subsequence of indices {(j,u)}, 1 < j < u,
for which there exist subsequences of the given test sequences, for
which {p(¢,j,u)}5%_, is either not pseudo-periodic, or with boun-
ded pseudo—periodicity, or if for each fl,u and j, p.(¢,j,u) =
v1 (4, 4, w)a(l, §,u)* Gy (¢, . u), where the equation is graphical, (¢, j, )
is the pseudo-period of p, (¢, j,u) and s(¢, j,u) is the pseudo-periodicity of
pr(£, j,u), and there exists some € > 0 for which |”1(£’fz’)u)|;)f5(f’f’u)| > €, we
restrict our attention to this subsequence and declare "the particular seg-
ment in the finite tree Y not truly periodic. After possibly restricting our
attention to some subsequence, we may assume that the sequence of spe-
cializations corresponding to each segment is either not truly periodic, or
it is pseudo-periodic with no bounded subsequence of pseudo-periodicities.
We call these last segments truly periodic.

We have chosen the test sequences of specializations to have the same
combinatorial type of R-states, {Rstatesd}. Given indices v and j, and
an index £ in a test sequence that factors through and associated with
SCRes,, we set Mper®* to be the maximum among all pseudo-periods of
truly periodic segments in the R-state corresponding to the specialization
of RootW PHG ngr associated with (gy j, k1, w,p,a)e, after rescaling the
metric on the corresponding R-state (note that this maximum is indepen-
dent of the index 7, 1 < j < u). We denote by M pf’u the maximum between
Mper®*t and the maximum length (after rescaling the metric) of a segment
between branching points in the R-state corresponding to the specializa-
tion of RootW PHG g that is associated with (g, j, h1,w,p, a)e, which
is mapped to an infinitesimal segment in the limit R*-tree Y. For each
two specializations (qu,j,, b1, w,p, a)¢, (Qu,j,, b1, w, p,a), we have associated
R-states RState(¥, j1,u) and RState({,jo,u) in correspondence. Given a
branching point in these states and a copy of one of the defining parameters
that passes through this branching point, we can measure the difference
(after rescaling) in the placement of the branching point on the copy of
the defining parameter in the two different R-states, RState({,j1,u) and
RState(l, jo,u). We denote by M fluct(¥, j1, jo,u) the maximum among all
these (finite set of) differences. Note that by construction both M pﬁu and
M fluct(¥, j1, jo,u) are asymptotically o(1).
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Following Definition 2.2 in [S3], we say that a sequence of indices {u; }$2,,
together with tuples of integers 1 < ji(t) < jo(t) < ... < j¢(t) < uy, and
test sequences that factor through the various eventual sculpted resolutions
SC Res, ) are tame with respect to segments in the R-state that correspond
to edges in the upper level of the R¥-tree Y, if there exists a constant ¢ for
which ¢ - Mpfbl(t)’m > M fluct (€, jb, (), jbs (t),ut), for all possible indices
t,é, bl, b2, b3, 1 S bl, bg, b3 S Ut.

If the test sequences of specializations we started with contain a tame
subsequence, we continue with the tame subsequence of specializations.
By possibly passing to a further subsequence, we may assume that the
maximum M pf’u is always obtained for the same segment in the corre-
sponding R-state or for a pseudo-period of the same truly periodic seg-
ment, that the maximal fluctuation M fluct(¢,j1,71,u) is asymptotically
o(M pf,u), and that the ratios between the lengths of segments that are
mapped to infinitesimal segments in the limit R*-tree Y, and their length
is O(M pg,u), and pseudo-periods of truly periodic segments in the R-state
that are asymptotically O(M pﬁju), converge, where the limit is taken first
on the corresponding test sequences (the index £) and then on the indices
u of the sculpted resolutions.

If the original sequence of specializations is tame with respect to the
segments in R-state corresponding to edges in the upper level of the R-
tree Y (i.e. the non-infinitesimal edges in Y'), we declare each of the original
segments in the upper level of the R¥-tree Y that are truly periodic, and
for which their pseudo-period is O(Mpf’u) as not truly periodic for the
continuation. We also check which of the “newly uncovered” segments (i.e.
those that are mapped to infinitesimal segments in Y, and are of lengths
oM pf,u) are truly periodic, and pass to an appropriate subsequence. We
check if the obtained subsequence is tame with respect to segments in the
R-state corresponding to edges in the top two levels in the RM-tree Y.
Since there are only finitely many segments in the R-state, and since there
are u distinct specializations for each step u in our sequence, after finitely
many “uncoverings” we obtain a sequence which is not tame with respect to
the previously “uncovered” segments, and pseudo-periods of truly periodic
segments in the R-state.

Once we obtain a sequence of specializations with no tame subsequences
with respect to the previously “uncovered” segments and pseudo-periods
of truly periodic segments in the corresponding R-states, we can choose
a subsequence of indices (u,j), 1 < j < u, together with test sequences
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that factor through the various eventual sculpted resolutions SCRes,,
so that for every u and every index ¢ of the subsequence, u - M pﬁ,m <
M fluct(¥, jo, j3,u), for all possible indices jo, j3, and an index j' for which
the minimal M pﬁ,,u is obtained. We call such a sequence of specializations
a perturbed sequence.

Given a perturbed sequence, for each index u we construct the R-state
corresponding to the specialization of RootW PHG ngg that is associated
with (gy,j7, h1,w,p,a),, for which Mpﬁ,yu is minimal among all possible in-
dices j, 1 < 7 < u. Clearly, given such an R-state, we can present each of
the specializations of RootW PHG ngr that are associated with the vari-
ables ¢, ; in terms of fractions of specializations of few of the defining
parameters {hi,w,p,a}. Hence, for every integer u we can represent the
specialization of RootW PHG g that is associated with (g, j/, h1,w,p, a)e
in terms of fractions of specializations of the parameters {h1,w,p,a} that
appear in the R-state corresponding to this specialization; and for any other
possible index j, we can present the specialization of RootW PHGngR as-
sociated with (gy j, b1, w,p, a)e in terms of the same fractions of the special-
izations of the parameters that appear in the R-state associated with the
specialization (g, j, h1,w, p, a)¢, together with elements f, ;(j) that encode
the fluctuations in the corresponding branching points in the R-state asso-
ciated with the specialization (g j, b1, w,p,a); and the “reference” R-state
associated with the specialization (g, ', h1,w,p,a).

At this point we continue as we did in the proofs of Theorems 2.5, 2.9
and 2.13 of [S3]. Each relation from the defining relations of the limit group
RootW PHG ngr corresponds to a closed loop on the R-state, and since the
combinatorial type of the R-states associated with all specializations from
the perturbed sequence are assumed to be identical, the “combinatorial
type” of the loop corresponding to a given relation is identical for all the
specializations from the perturbed sequence.

Furthermore, by our “uncovering” procedure, every part of a loop that
starts at some point on any of the “uncovered” segments of the defining
parameters, which are not truly periodic, and get back to the same point,
represent the identity element in all R-states corresponding to specializa-
tions from our perturbed sequence. Also, every part of a loop that starts at
some point on any of the “uncovered” segments of the defining parameters,
which are truly periodic, and get back to the same point, represent an el-
ement that commutes with a pseudo-period of that truly periodic segment
in all R-states corresponding to the specializations from our perturbed se-
quence.
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Since for every index u such part of a loop of a defining relation represent
either the identity element or an element that commutes with a pseudo-
period of a truly periodic “uncovered” segment in the R-state associated
with the (distinguished) specialization of RootW PHG ngg that is associ-
ated with (g, h1,w,p,a)e, and the same holds for every other R-state
associated with the specialization (g, j, h1,w,p,a)¢, every such part of a
loop of one of the defining relations corresponds to a (parametric) equation
involving (possibly) coefficients from the free group Fj = (a), fractions of
parameters corresponding to segments in the R-state associated with the
(distinguished) specialization (g7, h1,w, p,a), that have not been uncov-
ered, and pseudo-periods of truly periodic “uncovered” segments, that we
denote p, and variables corresponding to the “fluctuations” f, ¢(j). Since
the combinatorics of the R-states associated with all the specializations
from our perturbed sequence is identical, the set of parametric equations
corresponding to different parts of (closed) partial loops corresponding to
the defining relations is identical for all specializations from the perturbed
sequence. We denote this system of equations by X1 (f,p,a) = 1.

To the system of equations X1(f,p,a) that involves the loops around
each of the branching points, we add equations that guarantee partial equiv-
ariance, i.e. the additional equations guarantee that the specializations of
each of the generators of RootW PHG ygr in all places they appear in the
image of the ball of radius R' = R/2, Bps, are identical. These equa-
tions can also be written in terms of the same fractions of the defining
parameters p, and the variables corresponding to the various fluctuations f
that were used in formulating the equations that involve the loops around
the branching points. We denote the system of equations that combine
the equations corresponding to the loops around branching points and the
equations coming from the partial equivariance condition by X(f,p,a) = 1.

By our standard arguments presented in section 5 of [S1], the specializa-
tions of the fluctuations and the “uncovered” fractions of parameters { f,p,a}
corresponding to the test sequences of specializations (gy.j, h1,w,p,a),
factor through a (canonical) finite collection of maximal limit groups
{M Lim(f,p,a)}. Hence, by passing to a further subsequence we may as-
sume that they factor through a unique maximal limit group M Lim(f, p, a).
By Theorem 2.5 of [S3] we may assume that this maximal limit group is
not rigid with respect to the parameter subgroup (p).

With the limit group MLim(f,p,a) we associate a limit group
MPLim(f,p,p',a), generated by the limit group M Lim(f,p,a), and the
fractions p’ that were “uncovered” through the process. By construction,
there exists a natural map 7 : RootW PHGNgr — MPLim(f,p,p’,a).
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The limit group M Lim(f,p,a) was obtained as a limit group from a
sequence of specializations of the eventual sculpted resolutions SC Res,,,
for which the corresponding specializations of the penetrated sculpted res-
olutions PenSC Res} were assumed to be almost shortest strictly-solid spe-
cializations (with respect to the given covering closure) that factor through
the stable limit group WPHG. If the limit group M Lim(f,p,a) admits
a non-trivial graded free decomposition, then its associated limit group
MPLim(u,p,p’,a) admits a non-trivial graded free decomposition (with
respect to the parameter subgroup (p,p’,a)), which implies that the rooted
stable limit group RootW PH G ngr admits a non-trivial graded free decom-
position in which all the quasi-rooted subgroups can be conjugated into the
various factors, which finally implies that the subgroup W PHG ngr admits
a non-trivial graded free decomposition in which all the quasi-rooted sub-
groups can be conjugated into the various factors. Hence, the stable limit
group WPHG admits a graded free decomposition, through which the cor-
responding specializations of the eventual penetrated sculpted resolutions
PenS CRes;* factor, a contradiction to our assumption that they represent
extra strictly-solid families. Hence, we may assume that the limit group
MLim(f,p,a) admits no non-trivial graded free decomposition.

The rooted stable limit group RootW PHG ngr is mapped into the limit
group MPLim(f,p,p’,a) by the homomorphism 7 : RootW PHG ngr —
MPLim(f,p,p',a). Recall that Ongr is the (graded) non-quasi-rooted
abelian decomposition associated with the non-quasi-rooted subgroup
WPHGN@R, and let I' be the graded abelian JSJ decomposition asso-
ciated with M PLim(f,p,p',a). By the construction of the limit group
MPLim(f,p,p',a), the image of the stable rooted limit group
RootW PHG ngR, n(RootW PHGnQgR), cannot be conjugated into the fun-
damental group of a proper subgraph of the graph of groups I', and every
quasi-rooted subgroup of WPHG yggr (which is naturally a subgroup of
RootW PHG ngr) is elliptic in ' (simply since every non-cyclic abelian sub-
group is elliptic). Since ©ngp is the graded non-quasi-rooted abelian de-
composition of the non-quasi-rooted subgroup WPHG ngr, the subgroup
generated by the edge groups that are connected to an abelian vertex group
in Ongr is of finite index in the abelian vertex group, and every quasi-
rooted subgroup of WPHG ygr is elliptic in I, every non-QH vertex group
and every edge group in © g is mapped by 7 into either a non-abelian,
non-Q H vertex group or into an edge group in [, or it is mapped into an
abelian vertex group and intersects the subgroup generated by the edge
groups connected to it in a subgroup of finite index.
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By Theorem 1.3 in [S3], we can pass to subsequences of the eventual
sculpted and penetrated sculpted resolutions and subsequences of their
associated test sequences, so that the specializations of the stable rooted
limit group RootWPHGyNgr associated with the specializations,
{(qu,j, h1,w,p,a)e}, converge into an action of the stable rooted limit group
RootW PHGNgr on an RF-tree T. Along our “uncovering” procedure,
we have uncovered fractions p' of the defining parameters (w, p), until we
reached a stage in which the size of the fluctuations are much bigger than
the size of the fractions p of the defining parameters that are not yet un-
covered.

From the action of the stable rooted limit group RootW PHG ngr on
the upper level of the R¥-tree T, it inherits an abelian decomposition Aj.
Each non-QH, non-abelian vertex group V in A;, stabilizes a point in
the upper level of the R*-tree T, hence, it acts on R* !-tree Ty,. The
vertex group V inherits an abelian decomposition Ag from its action on the
upper level of the R*~!-tree Ty,. By iteratively continuing with non-abelian,
non-Q H vertex groups in the newly obtained abelian decompositions, we
finally reach a level n for which the fluctuations are elliptic in the abelian
decompositions A, constructed at that level, and they are not all elliptic
in the various abelian decompositions A, 41 constructed at the n + 1 level.
Since there are only finitely many orbits of vertex stabilizers in each of the
abelian decompositions A;, and the abelian decompositions for conjugate
vertices are identical, with each level ¢, we associate only finitely many
abelian decompositions A;.

DEFINITION 35. Let V be a non-QH, non-abelian vertex group in one of
the abelian decompositions A,,. We say that an abelian decomposition I'y
of the vertex group V is a multi-graded compatible abelian decomposition
of V, if the following conditions hold:

(i) Every edge group connected to V' in A, is elliptic in T'y.

(ii) By condition (i), we can use the abelian decomposition Iy to refine
the decomposition A,,, and obtain an abelian decomposition Al,. Let
T',, be the abelian decomposition obtained from A!, by collapsing all
the edges in Al that correspond to edges in Ap, and let V;, be the
fundamental group of T',, (which is the fundamental group of A,).
Note that the structure of I'), is similar to the structure of T'y, i.e.
there is a one-to-one correspondence between the edges and the non-
QH, non-abelian vertex groups. Then every edge group connected to
V, in A, 1 is elliptic in T'y,.
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(iii) We continue by induction (decreasing i, from n to 1). Given the
abelian decomposition I'; of a vertex group V; in the abelian decom-
position A;_1, we refine the abelian decomposition A;_1, to obtain
an abelian decomposition Al_;. We further collapse all the edges in
A!_, that correspond to edges in A;, to obtain an abelian decompo-
sition I';_1 of the fundamental group of A;_1, which we denote V;_.
Then every edge group connected to V; 1 in A; o is elliptic in T';_,.

(iv) By condition (iii) we finally obtain an abelian decomposition I'; of
RootW PHG nggr. We further assume that the parameter subgroup
(w,p,a) is elliptic in the abelian decomposition T'1, that every non-
cyclic abelian subgroup of RootW PHG nqr is elliptic in the abelian
decomposition T'y, and that every quasi-rooted subgroup of
WPHG NgRr, which is a subgroup of RootW PHGnqr, is elliptic
in Fl-

Given a hierarchy of decompositions of vertex stabilizers in a tower
of graphs of groups associated with the rooted stable limit group
RootW PHGN@R, the collection of multi-graded decompositions of
RootW PHG ngr that are compatible with the given hierarchy of abelian
decompositions is encoded in a multi-graded compatible abelian decomposi-
tion of the (graded) stable rooted limit group RootW PHG ngrg-

Theorem 36. Let RootW PHG ygr be a multi-graded limit group, where
the parameter subgroups is taken to be (w,p) and Ei,...,E,, where
E,,...,E, are its quasi-rooted subgroups. Suppose that RootW PHGngr
admits no multi-graded free decompositions, i.e. RootW PHG ygr cannot
be decomposed into a free product in which the subgroups (w, p,a), E1, ..., E,
can be conjugated into the factors.

Let A1 be an abelian decomposition of the limit group RootW PHG ngr,
viewed as an ungraded limit group. With each non-QQH, non-abelian vertex
group V in Ay we further associate an abelian decomposition Ay, with each
non-Q) H, non-abelian vertex group in one of the abelian decompositions Aq
we associate an abelian decomposition Ag and so on, until we associate an
abelian decomposition A,, with each non-QH , non-abelian vertex group in
each of the abelian decompositions A, _1.

Then there exists a reduced (perhaps trivial) splitting of RootW PHGNgR
with abelian edge groups, which we call a multi-graded compatible abelian
JSJ decomposition of RootW PHGngr (with respect to the above se-
quence of hierarchical decompositions) with the following properties:



148 Z. SELA GAFA

(i) The multi-graded compatible abelian JSJ decomposition is com-
patible with the given sequence of hierarchical decompositions of
ROOtWPHGNQR.

(ii) Every (multi-graded compatible) canonical maximal QH subgroup
(CMQ) of RootW PHGngr is conjugate to a vertex group in the
multi-graded compatible JSJ decomposition. Every (multi-graded
compatible) QH subgroup of RootW PHGnqr can be conjugated
into one of the (multi-graded compatible) CMQ subgroups of
RootW PHG ngr. Every vertex group in the multi-graded compatible
JSJ decomposition which is not a CM(Q subgroup of RootW PHG nygr
is elliptic in any multi-graded compatible abelian splitting of
ROOtWPHGNQR.

(iii) A one edge (multi-graded compatible) abelian splitting RootWPHG ngR
= D x4 E or RootW PHGNgr = Dx*4, which is hyperbolic in an-
other such elementary multi-graded compatible abelian splitting, is
obtained from the multi-graded compatible abelian JSJ decomposi-
tion of RootW PHG ngr by cutting a 2-orbifold corresponding to a
(multi-graded compatible) CMQ subgroup of RootW PHG ngr along
a weakly essential s.c.c.

(iv) Let A be a one edge (multi-graded compatible) splitting along an
abelian subgroup RootWPH G ngr=D* 4 E or RootWPHG ngr=D* 4,
which is elliptic with respect to any other one edge (multi-graded
compatible) abelian splitting of RootW PHGngr. Then A is ob-
tained from the multi-graded compatible JSJ decomposition of
RootW PHG ngr by a sequence of collapsings, foldings, and conjuga-
tions.

(v) If JSJy is another multi-graded compatible abelian JSJ decompo-
sition of RootW PHGngR, then JSJy is obtained from the multi-
graded compatible abelian JSJ decomposition by a sequence of slid-
ings, conjugations and modifying boundary monomorphisms by con-
Jjugations (see section 1 of [RS] for these notions).

Proof. Given two multi-graded abelian decompositions A; and As of the
multi-graded limit group RootW PHG ngr, the “machine” for the construc-
tion of a JSJ decomposition, presented in [RS], constructs a multi-graded
abelian decompositions, A¢, which is a “common refinement” of A; and As.
If A1 and Ay are compatible with the given sequence of hierarchical decom-
positions of RootW PHG @R, so is the common refinement produced by
the “JSJ machine”. Therefore, the (canonical) multi-graded abelian de-
composition produced by the “JSJ machine” from the entire collection of
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multi-graded compatible abelian decompositions of RootW PHG ngr, is a
multi-graded compatible abelian decomposition of RootW PHGngRr. As
in the construction of the (multi-graded) abelian JSJ decomposition of a
limit group, the (canonical) multi-graded abelian decomposition produced
from the entire collection of graded compatible abelian decompositions of
RootW PHG ngr, satisfies properties (i)—(v) listed in the theorem. o

As we have already observed, from the action of the stable rooted
limit group RootW PHGngr on the upper level of the RF-tree T,
RootW PHG ngr inherits an abelian decomposition A;. Each non-QH,
non-abelian vertex group V in Ay, that stabilizes a point in the upper level
of T, acts on an R* !-tree Ty;. The vertex group V inherits an abelian
decomposition As from this action. By iteratively continuing with non-
abelian, non-QQH vertex groups in the newly obtained abelian decomposi-
tions, we finally reach a level n for which the fluctuations are contained
in non-QQH, non-abelian vertex groups in the abelian decompositions A,
constructed at that level, and they are not all elliptic in the various abelian
decompositions A, 41 constructed at the n + 1 level.

The stable rooted limit group RootW PHG ngr is embedded by 7 into
the limit group M PLim(f,p,p’,a). By construction, the graded abelian
JSJ decomposition of the limit group MPLim(f,p,p',a) is non-trivial,
hence, the abelian decomposition inherited by the stable rooted limit group
RootW PHG ngr from its embedding into M PLim(f, p,p’, a), is non-trivial,
every quasi-rooted subgroup of the non-quasi-rooted subgroup WPHGnNgr
(that is embedded in RootW PHG ngr) is elliptic in it, and by construction
this abelian decomposition of RootW PHG ngg is multi-graded (with re-
spect to the parameter subgroup (w,p), and the divisible subgroups), and
compatible with the hierarchical sequence of abelian decompositions the
Rooted stable limit group RootW PHG ygg inherits from its action on the
top n levels of the R*-tree T. Hence, the multi-graded compatible JSJ de-
composition of the rooted stable limit group RootW PHG ngr, with respect
to the sequence of abelian decompositions it inherits from its action on the
top n levels of the R¥-tree T is non-trivial, which implies that the multi-
graded compatible JSJ decomposition of the non-quasi-rooted subgroup
WPHGNgr (with respect to the hierarchical sequence of abelian decom-
positions it inherits from its action on the top n levels of the RF-tree T')
is non-trivial. Let 'y PHGNGR be the multi-graded compatible abelian JSJ
decomposition of the non-quasi-rooted limit group W PHG nqr, associated
with its action on the top n levels of the R¥-tree T.
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As we did in the proof of Theorems 2.9 and 2.13 in [S3], the prop-
erties of the restriction of the embedding 7, from the non-quasi-rooted
limit group WPHGNgr we started with, into the graded limit group
MPLim(f,p,p,a), allow us to bound the reduced complezity of the multi-
graded compatible abelian JSJ decomposition ' prG g, in terms of the
reduced complexity of the non-quasi-rooted graded abelian decomposition
Ongr of WPHGNgR. We start by recalling the definition of the reduced
complezity of a graded limit group (Definition 2.10 in [S3]).

Let Glim(y,p,a) be a (multi-) graded limit group, with respect to the
subgroup P = (p), and suppose that Glim(y,p,a) admits no non-trivial
graded free decomposition. Let I" be a graded abelian decomposition of

Glim(y,p,a).
Let Q1,...,Qn be the QH vertex groups in the graded abelian decom-
position I'; and let S1,...,S, be their corresponding (punctured) surfaces.

We set the complexity of a QH vertex group (), to be the ordered couple
(Ix(S;)|, genus(S;)). We set the reduced complezity of the graded abelian
decomposition I, denoted Rcomp(T'), to be the tuple

((Ix(S1)[, genus(S1)),- -, (1x(Sn)l, genus(Sn)), d) ,

where the sequence of couples (|x(S1)|, genus(S1)),-- -, (Ix(Sn)|, genus(Sy))
is ordered in a decreasing lexicographical order, and the integer d is set to
be d = e — a, where e is the number of edges between non-QQH vertex
groups in I', and a is the number of abelian vertex groups adjacent to the
collection of these edges.

Let T’y and I'y be two graded abelian decompositions of the graded
limit groups Glim(y,p,a) and Glimgy(y,p,a) in correspondence, and
Glim1(y,p,a), Glima(y,p,a) admit no non-trivial graded free decompo-
sitions. We say that Rcomp(T'1) < Rcomp(T'z) if the sequence associated
with I'; is not greater than the sequence associated with I'y in the nat-
ural lexicographical order on the above sequences. Clearly, the reduced
complexity of any two such graded decompositions can be compared.

PROPOSITION 37. Let I‘WPHGNQ » be the multi-graded compatible abelian
JSJ decompositions of the non-quasi-rooted limit group W PHGnqr, with
respect to the sequence of abelian decompositions it inherits from its action
on the top n levels of the R*-tree T, let © be the graded abelian decom-
position of the stable limit group WPHG, and let O ygr be the (origi-
nal) non-quasi-rooted multi-graded abelian decomposition of W PHGNQR.

Then,
Rcomp(FWpHGNQR) < Rcomp(©Ongr) < Rcomp(O) .
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Proof. The second inequality is immediate from the construction of the
non-quasi-rooted subgroup WPHG ygr. Since © ygg is the multi-graded
abelian JSJ decomposition of W PHG nygr, where all the quasi-rooted sub-
groups are supposed to be elliptic, and I'w prGyq5, being the compati-
ble abelian JSJ decomposition, is a multi-graded abelian decomposition
of WPHGNgr in which all the quasi-rooted subgroups are elliptic, O ygr
has to be a refinement (in the JSJ sense) of I'wpmGygg, hence,
Rcomp(FWpHGNQR) < Rcomp(©OngRr)-

Suppose that Rcomp(T'wprGyor) = Rcomp(©Ongr). Then the graph
of groups I'wprG v,y 18 identical to © ygr, which implies that all the edge
groups, and all the QH vertex groups in the graded abelian JSJ decom-
position O ygr, are contained in non-QH, non-abelian vertex groups, and
edge groups, in the abelian decompositions A, inherited by (subgroups of)
WPHG ngr from the n-th level of its action on the R¥-tree T'.

Since Oygr is the multi-graded abelian JSJ decomposition of
W PHG ngR, all the edge groups, and the boundary components of QQ H ver-
tex groups in ©yggr are mapped by n : WPHGNgr — RootW PHGNgR
into non-Q) H, non-abelian vertex groups or into edge groups in the graded
abelian JSJ decomposition of the limit group M PLim(u,p,p’,a). This
implies that for large enough u, 1 < j < u, and large enough £, for the
specializations, (gy,j, h1,w,p, a)s, the sizes of the corresponding specializa-
tions of edge groups, a (fixed) generating set of a non-distinguished, non-
QH vertex group, and the the boundary elements of QH vertex groups in
Ongr (after appropriate conjugation), are much smaller than either the
sizes of a corresponding specialization of a (fixed) generating set of at least
one of the QH vertex groups in O ygr, or than the size of an element that
conjugates the specialization of some non-abelian vertex group in ©Ongr
(and commutes with the corresponding edge group). This clearly contra-
dicts the assumption that the specializations (g, j, h1,w,p,a), are almost
shortest. Hence, Rcomp(T'w puGyor) < Recomp(OngRr)- o

By Proposition 37, the reduced complexity of FWPHGNQR is strictly
smaller than the reduced complexity of the non-quasi-rooted abelian de-
composition © ygg, which is bounded by the reduced complexity of the
graded abelian JSJ decomposition © of the stable limit group W PHG.

Since every quasi-rooted edge group in O is elliptic in 'wpHGyogs
the graded abelian decomposition PWPHGNQR can be naturally extended
to a graded abelian decomposition of the stable limit group WPHG, by
adding the edges and the abelian vertex groups that were removed from the
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abelian decomposition © to obtain the abelian decomposition O ngr. We
denote this graded abelian decomposition of the stable limit group W PHG,
that is obtained from Twphaygr, ©*. Since, Reomp(TwpHaygr) <
Recomp(©ngr), by Proposition 37, Rcomp(©?) < Rcomp(O).

With the graded abelian decomposition ©2 we associate its non-quasi-
rooted subgraph (of groups) according to Definition 31, which we denote
@%VQ gr- According to Definition 31, with the graph of groups @?VQ R We
also associate a collection of quasi-rooted edge groups and abelian ver-
tex groups, a collection that includes all the quasi-rooted edge groups and
abelian vertex groups in the (original) graded abelian decomposition ©.
With @?\,Q g We associate its fundamental group, which we call the (second)
non-quasi-rooted subgroup, and denote W PH G?VQ g- By construction, the
non-quasi-rooted subgroup, WPH G?VQ R> 18 a subgroup of the non-quasi-
rooted subgroup WPHG ngr associated with the graded abelian decom-
position ©.

According to Definition 31, along the construction of the (second) non-
quasi-rooted subgraph and subgroup, we pass to a subsequence of our
given sequence of eventual sculpted and penetrated sculpted resolutions
and their associated test sequences. In the sequel we continue to denote
them, SC Res,, and PenSC’Res}L.

Suppose that the number of (conjugacy classes of) quasi-rooted edge
groups, associated with the obtained decomposition ©2, is strictly bigger
than the number of quasi-rooted edge groups associated with the graded
abelian decomposition of the stable limit group WPHG, O, we started
with. Then we replace the graded abelian decomposition ©, by the multi-
graded abelian decomposition of the stable limit group W P H G with respect
to the parameter subgroup (w,p), and the obtained collection of quasi-
rooted edge groups, which we denote ©2. By construction, the number
of quasi-rooted edge groups associated with O, is strictly bigger than the
number of quasi-rooted edge groups associated with ©.

In this case, of larger number of quasi-rooted edge groups, we start
the entire procedure with the graph of groups ©2 instead of the graph
of groups ©. With ©, we associate a non-quasi-rooted subgraph, and a
non-quasi-rooted group, and a stable rooted limit group, for which the
corresponding specializations are R-APW -covered (Theorem 34), for some
positive integer R, that may be different than the integer R needed for the
original stable rooted limit group.

Therefore, we can analyze the action of the associated non-quasi-rooted
subgroup on a corresponding R¥ -tree. Note that in case the number of
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quasi-rooted edge groups is larger, the number of Bass—Serre generators
corresponding to the edges that are in ©2 but not in its associated non-
quasi-rooted subgraph, is strictly bigger than the number of Bass—Serre
generators corresponding to such edges in the original graph of groups ©.

Suppose that the number of (conjugacy classes of) quasi-rooted edge
groups and abelian vertex groups in ©? is identical to their number in ©.
For each couple of indices u and j, where 1 < j < u, and a specializa-
tion (qu,j, h1,w,p,a)e of the penetrated sculpted resolution PenSCRes},
we associate with the specialization (gyj,h1,w,p,a); a specialization
(Gu,j, h1,w, p, a)p which is an almost shortest specialization in the same solid
family of the specialization (gy;, 1, w, p, a),, with respect to the modular
groups associated with the graded abelian decomposition ©?, where the
order on the modular groups according to which the specializations are
almost shortest, starts with the modular groups associated with the non-
quasi-rooted subgraph @%VQ r» and then the modular groups associated with
the quasi-rooted edge and abelian vertex groups in ©2.

For each u and j, 1 < j < u, we replace the subgroup (g, h1,w,p, a)
of the penetrated sculpted resolution PenSCRes}‘, by a subgroup
(Gu,j, h1,w, p, a), where the subgroup (g, j, b1, w, p, a) is obtained as a limit
group from a subsequence of specializations, (gy,j, h1,w,p,a)e, that are al-
most shortest with respect to the action of the modular groups associated
with ©2, according to their prescribed order. To the subgroup (gu,j,h1,w,p,a)
of the (corresponding closure of the) penetrated sculpted resolution
PenSCRes}, we add elements that demonstrate the Diophantine condi-
tion that implies that specializations of the subgroups, (qy,;, h1,w,p, a) and
(Gu,j, h1,w,p,a), belong to the same family of specializations of the stable
limit group WPHG, that is associated with the abelian decomposition ©2
(see Definition 1.5 in [S3] for the Diophantine condition that defines such
family).

With the non-quasi-rooted subgroup @?VQ r> and the given sequence of
eventual sculpted and penetrated sculpted resolutions, and their associated
test sequences, we further associate a stable rooted limit group according
to Definition 33, which we denote, RootW PH G?VQ r- Note that in defining
the (second) rooted limit group we may need to pass a subsequence of our
given sequence of eventual sculpted and penetrated sculpted resolutions,
and their associated test sequences.

In Theorem 34 we have shown that there exist some global constant R,
and an index ug, and for any positive integer u > ug, an index £(u), so that
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for every u > ug, and j, 1 < j < u, and every £ > £(u), the specialization of
the (first) rooted stable limit group RootW PHG nr, associated with the
specialization (g j, b1, w,p,a)e, is R-APW-covered. A modified argument
shows that a similar statement holds for the sequences of specializations of
the (second) rooted stable limit group RootW PH G?VQ r» associated with
a specializatio {(gy,j, h1,w,p,a)¢} (which are almost shortest with respect
to the modular groups associated with ©? according to their prescribed
order).

Theorem 38. There exist a (global) constant R, and an index ug, for
which given any positive integers u > ug and j, 1 < j < u, and a test
sequence that factors through the eventual sculpted resolution SC Res,, and
associated with it, there exists an integer £(u), so that the specialization of
the (second) stable rooted limit group RootW PH G?VQ R corresponding to
the specialization, (Gy;, h1,w,p,a)¢, is R-APW -covered for all £ > {(u).

Proof. The argument we use is similar to the one used to prove Theorem 34.
Suppose that there is no such global constant R. Then for every positive
integer t, there exists an index u(t) > t, an index j(t), 1 < j(t) < u(t),
and a test sequence that factors through the penetrated sculpted resolu-
tion SCResy;), for which the sequence of specializations of the (second)
stable rooted limit group RootW PH G%VQ r» corresponding to the sequence
of specializations {(qu(s),j(1), b1, w,p,a)e}32, are not t-APW-covered. By
Theorem 1.3 in [S3], for every t, we can pass to a subsequence that con-
verges into an action of the stable rooted limit group RootW PH G?VQ R oD
a limit R*®_tree Y;. Since each specialization in this sequence is not ¢-
APW -covered, the action of RootW PH G%VQ g on the limit tree Y; is not
t-APW -covered.

Applying Theorem 1.3 in [S3] once again, from the sequence of ac-
tions of RootW PH G?VQ g on the RM®)_trees Y}, it is possible to extract
a subsequence that converges into a free action of RootW PH G%VQ R On
some RF-tree Y. Since for each index ¢ the action of RootW PH G%VQ R

on the RH®)_tree Y; is not --APW covered, the action of the limit group
RootW PH G?VQR on the limit R-tree Y satisfies the properties of the
action obtained in proving Theorem 1.7 of [S3], i.e. the orbit of the sub-
tree Yapw, which is the union of the orbits of the edges associated with
the given set of generators of the parameter subgroup (w,p,a) in the R*-
tree Y, misses either a non-degenerate segment or a germ of a branching
point in Y.
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The continuation of our argument is a modification of the argument
that was used in proving Theorem 34. The non-quasi-rooted limit group
WPH G%VQ g (that is assumed to be isomorphic to WPHG ngg) is em-
bedded into the rooted limit group RootW PH G%,QR. By the proof of
Theorem 1.2 in [S3], from the action of the rooted limit group
RootW PH G?VQ g on the R¥-tree Y, RootW PH G?VQ g inherits an abelian
decomposition in which all the quasi-rooted edge groups in RootW PH G?VQ R

are elliptic. Hence, its subgroup, WPHG?VQR, that is isomorphic to

2
WPHG% o’

sition in which the image of the parameter subgroup APW = (w,p,a) is
contained in a proper subgraph of groups, A’, and every quasi-rooted edge
group is elliptic.

WPH G%\,Q g» inherits an abelian decomposition, A a decompo-

Let A?/V PHGY g, be the graph of groups obtained from A%V PHG? by
2

NQR
collapsing A’ to a vertex. In Al p HGon the subgroup APW is contained
in a vertex stabilizer, each quasi-rooted subgroup is elliptic, and each edge
group is a non-trivial abelian subgroup of W PH G?VQ R

Since the limit group W PHG is assumed to be stable, and the quasi-
rooted edge groups in WPHGygr and WPH G?VQ g are assumed to be

identical, W PHG ygr is naturally isomorphic to W PH G?VQ r- The abelian

2
WPHG?

NQR

WPH G?VQ r (hence, of WPHGNgR) with respect to the parameter sub-
group (w,p), and the quasi-rooted edge groups in the graph of groups
Ongr. Therefore, every edge group and every non-QH vertex group in
Ongr (the graded abelian JSJ decomposition of the stable limit group

WPHG), is elliptic in A}, by a -

Furthermore, the second rooted limit group, W PH G%\,Q R» Was obtained
as a limit from a sequence of specializations, {(qu);j(),P1,w;DP, @)1}
of the stable limit group W PHG, that were chosen to be almost short-
est with respect to the abelian decomposition ©2, which was obtained
from the compatible JSJ decomposition of the non-quasi-rooted limit group
WPHGNgR- The compatible JSJ decomposition was obtained with re-
spect to the action of the non-quasi-rooted limit group WPHG ygr on the
top n levels of the limit R*-tree T.

Suppose first that the specializations of the defining parameters {w, p}
have bounded periodicity. In this case, of bounded periodicity, since the
shortenings are performed with respect to ©2 that is obtained from the

decomposition A is a multi-graded abelian decomposition of
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compatible JSJ decomposition with respect to the top n levels in T', changes
in the action of the (second) rooted limit group RootW PH G?VQ R on the
RF-tree Y, in comparison with the action of the (first) rooted limit group
RootW PHG ngr on the RF-tree T can occur only in levels n + 1 and
below. Hence, the top n levels in the R*-trees 7" and Y have the same
structure. In particular, since all these levels are APW -covered in T, they
are APW-covered in Y. Therefore, the multi-graded abelian decomposition

A%V prce. . hasto be compatible with the multi-graded compatible abelian
NQR

JSJ decomposition I'w prGyqps 80 it is compatible with the multi-graded
abelian decomposition ©? of the stable limit group WPHG (according to
which the shortenings are taken).

Suppose that the periodicity of the specializations of the defining pa-
rameters {w,p} are not necessarily bounded. In this case the actions of the
rooted limit groups RootW PHG ngr and RootW PH G?VQ g on the top n
levels in the R¥-trees T and Y, may differ, but the difference is caused by
shifting the points stabilized by (non-distinguished) vertex groups in the
compatible abelian JSJ decomposition I'w prGy o Therefore, even with
these possible changes in the actions on the top n levels, the abelian de-

composition A%,V puc2 . has to be compatible with the multi-graded com-
NQR

patible abelian JSJ decomposition ' pr G yq -, SO it is compatible with the
multi-graded abelian decomposition ©2 of the stable limit group WPHG
(according to which the shortenings are taken).

Hence, for large enough ¢, the specializations {(qu(s),j(r), b1, W, D, @)g(r) }
are not almost shortest with respect to the action of the modular group
associated with the graded abelian decomposition ©2, which clearly con-
tradicts our assumptions. O

We continue with the sequences of specializations {(§y,;, h1,w,p,a).} as
we continued with the specializations {(gy,j, b1, w,p,a),}. We sequentially
“uncover” fractions p’ of the defining parameters {w,p} until we obtain a
perturbed subsequence of specializations. With the perturbed subsequence
we associate limit groups, M Lim(f,p,a) and MPLim(f,p,p',a), where
f are variables representing fluctuations and p represent the parts of the
defining parameters which are not yet “uncovered”. With the limit group
MPLim(f,p,p',a) there is a natural embedding, 7, : RootWPHG?VQR —
MPLim(f,p,p',a), which maps the distinguished vertex group in Ongr
into the distinguished vertex group in the multi-graded abelian JSJ decom-
position of M PLim, and every quasi-rooted subgroup in RootW PHGngr
is mapped into a non-QH vertex group or into an edge group in the abelian
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JSJ decomposition of M PLim. Note that since the group M PLim was
obtained from a perturbed sequence, its multi-graded abelian JSJ decom-
position is necessarily non-trivial.

As we did with the sequences of specializations {(qy,j, h1,w,p,a)¢}, the
(finite) sequential “uncovering” process associates a sequence of (hierarchi-
cal) abelian decompositions with the stable rooted limit group
RootW PH G?VQ r- oince the graded abelian JSJ decomposition of
MPLim(f,p,p’,a) is non-trivial, and 7o embeds the rooted stable limit
group RootW PH G%VQ g into MPLim(f,p,p,a), the multi-graded compati-
ble abelian JSJ decomposition of the rooted graded limit group
RootW PH G?VQ g 1s non-trivial, and so is the multi-graded compatible abel-
ian JSJ decomposition obtained by the (second) non-quasi-rooted subgroup
WPHG?VQR from its action on the top n’ > n levels in the R*-tree Y (i.e.
from the levels in Y that lie above the fluctuations level). We denote the

obtained compatible abelian JSJ decomposition, F%/V PHG o

By the argument that was used in proving Theorem 36, since the se-
quences of specializations {(gy,j,h1,w,p,a);} were obtained by shorten-
ing the sequences of specializations {(qu,j, h1,w,p,a)e} with respect to the
multi-graded compatible abelian JSJ decomposition, I'wprGygs, that is
obtained with respect to the action of WPHG ygr on the top n levels in

the RM-tree T', the (new) abelian decomposition, P%VPHGZ , is a refine-
NQR

ment of the compatible abelian JSJ decomposition T'wprGyor (i.e. it is
compatible with it).
Therefore, every abelian edge group and every non-QH vertex group

. . ey . 2 2

in T'wpHGyor 18 elliptic in FWPHG’?VQR Hence, Rcomp(FWPHG%VQR) <
Rcomp(FWpHGNQR), and by the same argument used to prove Proposi-
tion 37, Rcomp(F%VPHG?VQR) < Rcomp(PWPHGNQR)'

By iteratively repeating these constructions, we either strictly increase
the number of (conjugacy classes of) quasi-rooted edge groups, or we ob-
tain a sequence of multi-graded (compatible) abelian decompositions of

the non-quasi-rooted limit group WPHG ngr: R , I‘%V PHG?
NQR N
I3 ,-.., for which

3
WPHGop

)
QR

Reomp(TwpHGNoR) > Rcomp(F%,VPHG?VQR) > Rcomp(A%VPHG?VQR) > ...

Any sequence of graded abelian decompositions of the limit group
W PHG ygr with strictly decreasing reduced complexity terminates in a fi-
nite time. Hence, we sequentially increase the number of (conjugacy classes
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of) quasi-rooted edge groups in the graphs of groups 6, 02, O3, ... But each
time we add an additional quasi-rooted edge group, we associate at least
one additional Bass—Serre generator corresponding to edges that are in the
graphs of groups ©; but not in their associated non-quasi-rooted subgraphs.
Since the number of Bass—Serre generators in 0; is (globally) bounded by
the first betti number of the stable limit group W PHG, the whole process
has to terminate in a finite time. This finally contradicts the existence of
an unbounded number of eventual sculpted resolutions of the same width
along an infinite path of the sieve procedure, which concludes the proof of
Theorem 27. O

The combination of Proposition 26 and Theorem 27 clearly gives a con-
tradiction, that finally proves the termination of the sieve procedure (The-
orem 22). o

Recall that T5(p) C EAE(p) is defined to be the set of specializations
of the defining parameters p, that have a witness with valid PS statement
that terminates after the first step of the procedure for the construction
of the tree of stratified sets (cf. Theorem 3.2 in [S5]). At this stage we
have all the tools needed for showing that the set T»(p) is in the Boolean
algebra of AFE sets. By construction, if pg € T5(p) then there must exist
a valid PS statement of the form ((h?,g1), ..., (hz(ps), gllj(ps)), h§,wo, pos, a),
that factors through one of the PS resolutions PSHGH Res constructed
with respect to all proof systems that terminate after the first step of the
procedure for the construction of the tree of stratified sets.

By Proposition 7, the sets TSPS(p) associated with the various PS
resolutions PSHGH Res, i.e. the sets of specializations py of the defining
parameters P = (p) for which there exists a test sequence of valid PS
statements that factor through any of the PS resolutions PSHGH Res, is
in the Boolean algebra of AE sets. By Lemma 6 if there exists a valid PS
statement that can be extended to a specialization that factors through
a PS resolution PSHGH Res, then either there exists a test sequence of
valid PS statements that factors through that PS resolution, or there must
exist a valid PS statement that can be extended to a specialization that
factors through one the of the Collapse extra PS limit groups associated
with the various PS resolutions PSHGH Res.

We continue with each of the collapse PS limit groups in parallel. Ex-
actly as we did with each of the PS resolutions PSHGH Res, we associate
(canonically) with each of the developing resolutions constructed along the
sieve procedure, a set T'SPS(p), that contains all the specializations of the
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defining parameters p, that have a test sequence of valid PS statements
that factor through the given developing resolution. By Proposition 7 ap-
plied to the developing resolutions constructed along the sieve procedure,
the sets T'SPS(p) associated with these developing resolutions are all in the
Boolean algebra of AFE sets. By Lemma 6 applied to the various developing
resolutions, if there exists a valid PS statement that can be extended to
a specialization that factors through a developing resolution, then either
there exists a test sequence of valid PS statements that factors through
that developing resolution, or there must exist a valid PS statement that
factors through one of the Collapse extra PS limit groups associated with
that developing resolution.

Hence, by iteratively applying Lemma 6 and Proposition 7 to the var-
ious developing resolutions constructed along the sieve procedure, if for
some specialization pg of the defining parameters p, there exists a valid PS
statement that can be extended to a specialization that factors through one
of the PS limit groups PSHGH we started the sieve procedure with, then
this specialization py is an element of at least one of the sets TSPS(p)
associated with the various developing resolutions constructed along the
sieve procedure.

The set Ty(p) is the union of the sets TSPS(p), associated with the
various developing resolutions constructed along the sieve procedures, cor-
responding to the finitely many possibilities of proof systems of depth 2
(i.e. proof systems that terminate after the first step of the construction of
the tree of stratified sets). Since each of the sets T'SPS(p) is in the Boolean
algebra of AF sets, and a Boolean algebra is closed under finite unions, we
have finally completed the proof of Theorem 3.2 in [S5] in the general case.

Theorem 39 (cf. [S5, 3.2]). Let To(p) C EAE(p) be the subset of all spe-
cializations pg € EAE(p) of the defining parameters p, that have witnesses
with a proof system that terminates after the first step of the procedure for
the construction of the tree of stratified sets. Then Ty(p) is in the Boolean
algebra of AE sets.

At this stage, we are finally ready to show that the entire set EAE(p)
is in the Boolean algebra of AFE sets. The tree of stratified sets has a finite
depth, which (by definition) bounds the depth of all possible proof systems
associated with the tree of stratified sets. For each integer d, we set T;(p)
to be the set of specializations pg of the defining parameters P = (p) for
which there exists a valid PS statement for some proof system of depth d.
Clearly, EAE(p) = Ti(p) UT(p) U ... U Ty, (p), where dy is the depth of
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tree of stratified sets. Since a Boolean algebra is closed under finite unions,
to show that the set EAE(p) is in the Boolean algebra of AFE sets, it is
enough to show that each of the sets Ty(p) is in the Boolean algebra of AE
sets.

By the structure of the tree of stratified sets, and the global bounds on
the possible numbers of disjoint rigid and strictly solid families associated
with each of the strata in the stratification associated with each rigid and
solid limit groups that appears in the tree of stratified sets, given a fixed
depth d, there exist finitely many possible proof systems of depth d. Given
a fixed proof system of depth d, which we denote PS, we collect all its
associated valid PS statements in a canonical collection of finitely many
PS limit groups which we denote PS(HG)%H. With each of the PS limit
groups PS(HG)?H we associate a sieve procedure, precisely as we did with
the PS limit groups PSHGH that contain all the valid proof statements of
depth 2. With each of the developing resolutions constructed along these
sieve procedures, we associate a set T'SPS(p), that contain the set of spe-
cializations of the defining parameters p that have a test sequence of valid
PS statements that factor through that developing resolution. By itera-
tively applying Lemma 6 and Proposition 7, the sets TSPS(p) associated
with the various developing resolutions constructed along these sieve pro-
cedures are all in the Boolean algebra of AE sets, and if a specialization pg
has a valid PS statement of depth d, i.e. if pg € Ty(p), then py is contained
in at least one of the sets T'SPS(p) constructed along the sieve procedures
associated with the PS limit groups PS(HG)%H.

The set Ty(p) is the union of the sets T'SPS(p) associated with the
various developing resolutions constructed along the sieve procedures cor-
responding to the finitely many possibilities of proof systems of depth d.
Since each of the sets TSPS(p) is in the Boolean algebra of AF sets, and
a Boolean algebra is closed under finite unions, for each depth d, the set
T,;(p) is in the Boolean algebra of AFE sets. Since the sets EFAFE(p) is the
union EAE(p) = T1(p)UTz(p)U. .. UTy,(p), where dp is the depth of tree of
stratified sets, the set EAE(p) itself is in the Boolean algebra of AE sets,
and we have finally completed the proof of Theorem 1.4 in [S5].

Theorem 40 (cf. [S5, 1.4]). Let Fy, = (a1,...,ax) be a free group, and let
EAE(p) be a set defined by the predicate

EAE(p) = JwVydz X(z,y,w,p,a) = LA ¥(z,y,w,p,a) # 1.
Then EAE(p) is in the Boolean algebra of AE sets.



GAFA QUANTIFIER ELIMINATION II 161

The proof of Theorem 40 shows that a set FAFE(p) defined using a
conjunction of a system of equalities and a system of inequalities,
EAE(p) = FwVy3dx X(z,y,w,p,a) =1 A ¥(x,y,w,p,a) # 1,
is in the Boolean algebra of AE sets. The generalization of that proof to a
set EAE(p) defined using a (finite) disjunction of conjunctions of a system
of equalities and a system of inequalities,

EAE(p) = EIVyEl.’L‘ (Zl(xayawapaa) =1A \Ijl('rayawapaa) 7é 1) V...

-~V (S (z,y,w,p,0) = 1AV (2,9, w,p,0) # 1),
is rather straightforward. Indeed, the only change required is in the con-
struction of the tree of stratified sets. In constructing the tree of stratified
sets when the predicate defining the set EAE(p) is the conjunction of a sys-
tem of equalities and a system of inequalities, we have constructed the tree
of stratified sets iteratively, where in each step we have first collected all the
formal solutions defined over closures of the resolutions of the remaining 3’s
from the previous step, and then applied the collections of formal solutions
to the set of the remaining g’s from the previous step, and analyzed the
set of y’s for which (at least) one of the inequalities from our given system
is in fact an equality when we substitute the families of formal solutions
we have collected, using an iterative procedure for the analysis of quotient
resolutions.

When the set FAE(p) is defined using a (finite) disjunction of con-
junctions of a system of equalities and a system of inequalities, we work in
parallel with each of the conjunctions in each step of the iterative procedure
that constructs the tree of stratified sets. In each step of this iterative pro-
cedure, we do the following for the indices j, 1 < j < r, in parallel. We first
collect all the formal solutions of the system of equalities ¥;(z,y,w,p, a),
that are defined over closures of the resolutions of the remaining y’s from
the previous step, and then apply the collections of these formal solutions to
the set of the remaining y’s from the previous step, and analyze the set of y’s
for which (at least) one of the inequalities from the system ¥;(z,y, w,p, a)
is in fact an equality when we substitute the families of formal solutions
we have collected, using the iterative procedure for the analysis of quotient
resolutions.

The termination of this modified procedure for the construction of the
tree of stratified sets follows using the same argument used in proving
Theorem 40 (Theorem 2.10 in [S5]). Given the tree of stratified sets, the
analysis of the set EAFE(p) is identical to the analysis described in proving
Theorem 40. This finally shows that the set EAFE(p) is in the Boolean
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algebra of AF sets, also when EAFE(p) is defined using a (finite) disjunction
of conjunctions of a system of equalities and a system of inequalities, hence,
concludes the proof of Theorem 1.3 of [S5] for general EAFE sets.

Theorem 41 (cf. [S5, 1.3]). Let Fy, = (a1,...,ax) be a free group, and let
the AE set AE(w,p) be defined as

AE(w,p) =Vydz (El(ﬂj,y,’w,p, a) =1A \Ijl('rayawapaa) 36 1) V...

-V (ZT(xayawapa a) =1A \PT(xayawapa a) 7é 1) .
Then the projection of the AE set AE(w,p), i.e. the set

EAE(p) = 3uwVy3z (T1(z,y,w,p,a) = 1 A Ui (z,y,w,p,a) #1) V...

-V (Zr(@,y,w,p,0) = 1A T (2, y, w,p,a) # 1)
is in the Boolean algebra of AFE sets.

Appendix: A Brief Survey of the Sieve Procedure

The sieve procedure presented in this paper concludes our analysis of de-
finable sets, and proves quantifier elimination over a free group. Since the
sieve procedure is technically involved, and it uses notions and construc-
tions from previous papers in this sequence, in this appendix we briefly
summarize our approach to quantifier elimination and the main principles
of the sieve procedure.

Let EAE(p) be a set defined by the predicate

EAE(p) = FwVydz E(z,y,w,p,a) = LAV (z,y,w,p,a) # 1.
A specialization wg of the variables w is said to be a witness for a special-
ization pg of the defining parameters p, if the following sentence:
Vy Jz X(x,y, we,po,a) =1 AV (z,y,wy,po,a) # 1
is a true sentence. Clearly, if there exists a witness for a specialization pg
then pg € EAE(p), and every pg € EAFE(p) has a witness.

By definition, in order to show that a specialization pg of the defining
parameters p is in the set EAE(p), we need to find a witness wy for the
specialization py. By the construction of the tree of stratified sets, given
a witness wg for a specialization pg, it is possible to prove the validity of
the AFE sentence corresponding to the couple (wg, pg), using a proof that
is encoded by a subtree of the tree of stratified sets, that is constructed in
section 2 of [S5], i.e. a proof built from a finite sequence of (families of)
formal solutions, constructed along a (finite) collection of paths in the tree
of stratified sets. By the finiteness of the tree of stratified sets there are only
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finitely many possibilities for such a collection of paths (a subtree). Hence,
there are only finitely many possibilities for the structure of a proof encoded
by the tree of stratified sets, and these finitely many structures of proofs
are sufficient for proving the validity of the AFE sentences corresponding to
all couples (wy, pg), where pg € EAE(p) and wy is a witness for py. We call
each possibility for the structure of a proof encoded by the tree of stratified
sets a proof system.

Given py € EAE(p), we are not able to say much about a possible
witness for py using the information encoded in the tree of stratified sets.
With each proof system encoded by a subtree of the tree of stratified sets
associated with the set FAE(p), we can naturally associate a subset of
EAE(p). This subset is defined to be all the specializations py € EAE(p),
for which there exists a witness wg so that the validity of the AE sentence
corresponding to the couple (wg,py) can be proved using a proof with the
structure of the given proof system. Our strategy towards proving quan-
tifier elimination is to show that the subset of EAE(p) associated with a
given proof system is in the Boolean algebra of AE sets. Since there are
only finitely many proof systems encoded by the tree of stratified sets as-
sociated with an FAF set, and the EAFE set itself is a union of the subsets
associated with its (finitely many) proof systems, this implies that the set
EAE(p) is in the Boolean algebra of AFE sets.

Suppose that a specialization py € EAE(p) has a witness wy with a
given proof system. The structure of the tree of stratified sets guarantees
the existence of a collection of elements (from the coefficient group Fy), that
include rigid and strictly solid specializations of the rigid and solid limit
groups along the subtree of the tree of stratified sets that corresponds to
the given proof system, and satisfies certain conditions that are all specified
by the proof system (Definition 1.23 in [S5]). This collection of elements
forms a proof for the validity of the AF sentence associated with the couple
(wo, po), and we call it a valid PS statement.

Note that the structure of a valid proof statement depends only on the
proof system, and not on the particular specialization. By the standard
arguments presented in section 5 of [S1], with the entire collection of valid
PS statements we can naturally associate its Zariski closure, that corre-
sponds to a (canonical) finite collection of maximal limit groups that we
call PS (proof system) limit groups. We call each specialization of a PS
limit groups (that has a structure of a proof, but perhaps is not) a virtual
proof.
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The PS limit groups are the input for the sieve procedure. The goal
of the sieve procedure is to show that the collection of specializations of
the defining parameters, for which there exists a valid PS statement that
factors through a given PS limit group, is in the Boolean algebra of AE
sets.

Let P = (p) be the group of defining parameters. We start the first step
of the sieve procedure with each of the PS limit groups in parallel. Given
a PS limit group PSHGH, we associate with it its canonical taut graded
Makanin—-Razborov diagram [Se4, 2.5], with respect to the parameter sub-
group P. We call these resolutions PSS resolutions.

We start our analysis of the set of PS resolutions, by associating with
each such resolution a finite collection of reference resolutions, that collect
all the “generic” points that factor through a given graded PS resolution
for which the corresponding virtual proof (associated with the “generic”
point) is in fact a fake proof. We do that by collecting all the test sequences
that factor through a PS resolution [S2, 1.19], for which the corresponding
virtual proofs are fake proofs, and apply the construction of graded formal
limit groups [S2, 3], to associate a finite collection of reference bundles with
this collection of test sequences.

By construction, every value pg of the defining parameters P, for which
there exists a “generic” point that does not factor through one of the “bad”
reference bundles, is necessarily in the set FAF(p) (since it has a test
sequence of valid PS statement). Indeed, by the results of section 3 of [S3],
the collection of such values of the defining parameters P is in the Boolean
algebra of AFE sets, and this is our first approximation for the given FAFE
set.

The constructed reference bundles collect all the “generic” points for
which the associated virtual proofs are in fact fake proofs. For some of
these reference bundles, if the virtual proof associated with a generic point
in a fiber is fake, the virtual proofs in the whole fiber are fake. For others
(called Exztra PS), it may be that a fiber contains valid PS statements,
though the virtual proofs associated with a generic point in the fiber is fake.
Hence, to continue the analysis of the set FAFE(p), we need to collect all
such valid PS statements. We do that by collecting all the virtual proofs
in such bundles, for which the reason that a generic virtual proof fails
evaporates (or rather collapses). Such a collapse can be described by the
union of finitely many Diophantine conditions, and the collection of virtual
proofs that satisfy one of these Diophantine conditions is a Diophantine
set, with which we naturally associate finitely many limit groups, that we
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call Collapse extra PS limit groups. We start the first step of the sieve
procedure with these groups.

The first step of the sieve procedure studies the structure of the obtained
Collapse extra PS limit groups (and their resolutions) in comparison with
the PS resolutions (of the PS limit groups) from which they were con-
structed. We start by looking at the Zariski closure of all the virtual proofs
that can be extended to specializations of a given Collapse extra PS limit
group. This Zariski closure is naturally contained in the variety associ-
ated with the PS limit group we started with. If it is strictly contained
in this variety, we continue by replacing the P.S limit group with the limit
group that is associated with the Zariski closure (which is in this case a
proper quotient of the PS limit group we started with), and apply the de-
scending chain condition (d.c.c.) for limit groups to guarantee that such a
replacement can occur only finitely many times along the entire procedure.
Otherwise for the rest of the first step we may assume that there is no drop
in the Zariski closure of the Diophantine set of virtual proofs.

By construction, there is a natural map from the completion of the P.S
resolution we started with to a given Collapse extra PS limit group. We
proceed by analyzing the multi-graded resolutions of the given Collapse ex-
tra PS limit group with respect to the (images of the) non-QH, non-abelian
vertex groups in the top level of the completion of the PS resolution we
started with (in practice we use auziliary resolutions to do it with respect
to the (images of the) non-QH, non-abelian vertex groups and edge groups
in the graded abelian JSJ decomposition of the original PS limit group).
Using core resolutions that were presented in section 4 in [S5], it is possible
to bound the complexity of each such multi-graded resolution by the com-
plexity of the top level of the completion of the PS resolution we started
with (which is essentially the complexity of the graded abelian JSJ decom-
position of the associated PS limit group).

If there is a drop in the complexity of an obtained multi-graded resolu-
tion (in comparison with the complexity of the top level of the completion of
the corresponding PSS resolution), we continue in a similar way to what we
did in this case in the procedure for validation of an AE sentence [Se4, 4].
In this case it is (essentially) guaranteed that the image of the original PS
limit group in the terminal limit group of an obtained multi-graded reso-
lution is a proper quotient of the original PS limit group we started with.
Hence, in this case, with a given multi-graded resolution we can associate a
finite collection of anwils, that are certain fiber-products of the completion
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of the given multi-graded resolution with a completion of a resolution from
the (graded) taut Makanin—Razborov diagram of the image of the PS limit
group in the terminal level of the given multi-graded resolution along this
image. To the anvil we can naturally map a developing resolution, which
is a resolution of the original PS limit group that is obtained from a reso-
lution induced by the original P.S limit group from the given multi-graded
resolution, followed by the resolution of the image of the PS limit group in
the terminal level of the given multi-graded resolution.

If there is no drop in the complexity of an obtained multi-graded reso-
lution, it is guaranteed that the structure of the core resolution associated
with such a multi-graded resolution is identical to the structure of the top
level of the completion of the PS resolution we started the first step with.
In this case we continue to multi-graded resolutions associated with lower
levels in the completion of the PS resolution we started with. If there is
a drop in complexity we associate anvils and developing resolutions with
the obtained multi-graded resolutions, precisely as we constructed them in
case of a complexity drop in the top level.

Suppose that there exists a multi-graded resolution for which there is no
drop in the complexity of the core resolutions associated with all its levels.
In this case we enlarge the collection of resolutions we consider, and examine
all the graded resolutions (with respect to the defining parameters P), for
which the formed part of the core resolutions associated with all their levels,
have the same structure as the formed part of the abelian decompositions
associated with the various levels of the completion of the PS resolution we
started the first step with (the formed part of an abelian decomposition is
the part containing its Q H and abelian vertex groups — see Definition 4.17
in [S5]).

We set the ambient resolution to be the anvil. For each such graded
resolution we look at the core resolutions associated with its various parts.
If for some part the complexity of a core resolution associated with it is
strictly smaller than the complexity of the corresponding level of the com-
pletion of the PS resolution, we set the ambient resolution to be a carrier,
and the resolution induced by the image of the original PS limit group to
be the developing resolution. If no reduction of complexity occurs, we set
the resolution associated with the image of the original PS limit group to
be a sculpted resolution, and set the developing resolution to be the ambient
resolution.

To conclude the first step, we associate with each developing resolution
(that is naturally mapped into the anvil), a finite collection of reference
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resolutions, in the same way we associated these with the original PSS res-
olutions. With each anvil we further associate a Collapse extra PS limit
groups, that collects those specializations of the bad reference fibers, for
which the reason for the failure of a “generic” virtual proof collapses, in
the same way we associated these with the original PS resolutions.

We continue with the sieve procedure iteratively, taking into account
all the constructions that were made along the different branches of the
procedure in all the previous steps. We suppose that with each anvil and
its associated developing resolution that were constructed in step n — 1 of
the sieve procedure, there is an associated positive integer called width that
denotes the number of algebraic envelopes associated with the anvil, i.e. the
number of (nested) sequences of core resolutions associated with the anvil.
width(n — 1)=1 if and only if no sculpted resolution is associated with the
anvil. In case width(n — 1) > 1, with the (nested) collection of algebraic
envelopes (sequences of core resolutions associated with the anvil), there are
associated sculpted resolutions and possibly carriers. We start the general
step of the sieve procedure with the (finite) collection of anvils constructed
at the previous step of the procedure, and their associated Collapse extra
PS limit groups.

The general step of the procedure is essentially similar to the first step,
though it is technically more involved since it has to take into account the
past of the procedure. Like in the first step, we start by looking at the
Zariski closure of all the virtual proofs that can be extended to specializa-
tions of a given Collapse extra PS limit group. If this Zariski closure is
strictly contained in the variety we started the first step with, we continue
by replacing the P.S limit group with the limit group that is associated with
the Zariski closure (which is in this case a proper quotient of the PS limit
group we started with), and start again the first step of the sieve procedure
with this Zariski closure. As we have already noted, by the d.c.c. for limit
groups this can happen at most finitely many times along a branch of the
sieve procedure.

By construction, there are natural maps from the completions of the
various resolutions constructed in previous steps of the procedure into the
Collapse extra PS resolution. As in the first step, we proceed by analyzing
the multi-graded resolutions of the given Collapse extra PS limit group
with respect to the images of these resolutions. If there is a drop in the
complexity of an obtained multi-graded resolution (in comparison with the
complexity of the top level of the completion of the corresponding resolu-
tion), we continue by associating with the multi-graded resolution a finite
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collection of anvils and developing resolutions in a similar way to what we
did in the first step.

If there is no drop in the complexity of an obtained multi-graded reso-
lution, it is guaranteed that the structure of the core resolution associated
with such a multi-graded resolution is identical to the structure of the core
resolution associated with the corresponding multi-graded resolution that
was constructed in the previous step of the procedure. In this case we con-
tinue to multi-graded resolutions associated with lower levels in the anvil
we started the general step with. If there is a drop in complexity we as-
sociate anvils and developing resolutions with the obtained multi-graded
resolutions, precisely as we constructed them in case of a complexity drop
in the top level.

Suppose that there exists a multi-graded resolution for which there is
no drop in the complexity of the core resolutions associated with all its
levels. In this case we proceed to study the resolutions associated with the
next sculpted resolution or algebraic envelope, if such are associated with
the anvil we started with. If there is a reduction in the complexity of the
a resolution associated with one of the algebraic envelopes associated with
the anvil we started with, we construct a finite collection of anvils, devel-
oping resolutions, sculpted resolutions, and carriers, in a similar way to the
construction used in the first step. If no reduction of complexity occurs,
we add an algebraic envelope to the collection of algebraic envelopes asso-
ciated with the anvil we started with, and either declare this new algebraic
envelope to be a carrier for a sculpted resolution (in case with this new alge-
braic envelope the complexity of a resolution associated with this sculpted
resolution drops), or we form a new (additional) sculpted resolution. In
both cases we construct a finite collection of anvils and developing resolu-
tions, with which we associate the newly constructed algebraic envelopes,
carriers, and sculpted resolutions.

As in the first step, to conclude the general step we associate with each
developing resolution (that is naturally mapped into the anvil), a finite
collection of reference resolutions, in the same way we associated these
with the original PS resolutions. With each anvil we further associate
Collapse extra PS limit groups, that collect those specializations of the bad
reference fibers, for which the reason for the failure of a “generic” virtual
proof collapses, in the same way we associated these with the original PS
resolutions.

After setting the sieve procedure, we are still required to prove it ter-
minates after finitely many steps. To prove termination of our iterative
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procedure in the minimal (graded) rank case (section 1 in [S5]), we used
the strict decrease in the complexity of the resolutions associated with suc-
cessive steps of the procedure, a strict decrease that forces termination. In
the procedures used to construct the tree of stratified sets and to validate
a general AF sentence, we proved termination by combining the decrease
in either the Zariski closures or the complexities of the resolutions and
decompositions associated with successive steps of these procedures. In
presenting the general step of the sieve procedure, we considered the pos-
sibility that both the Zariski closures and the complexities of the various
core resolutions and developing resolutions associated with an anvil do not
decrease. In this case, we have associated additional algebraic envelopes,
sculpted resolutions, and carriers with the corresponding anvil. Therefore,
in addition to the arguments used to prove the termination of the procedure
for the construction of the tree of stratified sets, in order to prove termi-
nation of the sieve procedure, we prove the existence of a global bound on
the number of sculpted resolutions associated with an anvil. The argument
used to prove this bound is based on the argument used to prove a global
bound on the number of rigid and strictly-solid families of specializations
of rigid and solid limit groups presented in the first two sections of [S3].

At this stage we are finally ready to show that the entire set EAFE(p)
is in the Boolean algebra of AFE sets. By the structure of the tree of
stratified sets (constructed in section 2 of [S5]), and the global bounds on
the possible numbers of distinct rigid and strictly solid families associated
with each of the strata in the stratification associated with each rigid and
solid limit groups that appears in the tree of stratified sets, there exist
finitely many possible proof systems associated with the set EAFE(p). Given
a fixed proof system, which we denote PS, we collect all its associated
valid PS statements in a canonical collection of finitely many PS limit
groups. With each of the PS limit groups we associate a (terminating)
sieve procedure. With each of the developing resolutions constructed along
these sieve procedures, we associate a set T'SPS(p), that contains the set
of specializations of the defining parameters P that have a test sequence
of valid PS statements that factor through that developing resolution (i.e.
a “generic” valid PS statement). The sets TSPS(p) associated with the
various developing resolutions constructed along these sieve procedures are
all in the Boolean algebra of AFE sets, and if a specialization py has a valid
PS statement then pg is contained in at least one of the sets T'SPS(p)
constructed along the sieve procedures associated with the PS limit groups.
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Hence, the set EAE(p) is the (finite) union of the sets T'SPS(p), and since
these are all in the Boolean algebra of AFE sets, so is the set EAFE(p), and
quantifier elimination is finally obtained.
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