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ABSTRACT

This paper is the �rst part (out of two) of the �fth paper in a sequence on

the structure of sets of solutions to systems of equations in a free group,

projections of such sets, and the structure of elementary sets de�ned

over a free group. In the two papers on quanti�er elimination we use

the iterative procedure that validates the correctness of an AE sentence

de�ned over a free group, presented in the fourth paper, to show that the

Boolean algebra of AE sets de�ned over a free group is invariant under

projections, and hence show that every elementary set de�ned over a free

group is in the Boolean algebra of AE sets. The procedures we use for

quanti�er elimination, presented in this paper and its successor, enable

us to answer aÆrmatively some of Tarski's questions on the elementary

theory of a free group in the sixth paper of this sequence.

Introduction

In the �rst four papers in the sequence on Diophantine geometry over groups

we studied sets of solutions to systems of equations in a free group, and de-

veloped basic techniques and objects required for the analysis of sentences and

elementary sets de�ned over a free group.

In the �rst paper in this sequence we studied sets of solutions to systems

of equations de�ned over a free group and parametric families of such sets,

and associated a canonical Makanin{Razborov diagram that encodes the en-

tire set of solutions to the system. Later on we studied systems of equations
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with parameters, and with each such system we associated a (canonical) graded

Makanin{Razborov diagram that encodes the Makanin{Razborov diagrams of

the systems of equations associated with each specialization of the de�ning

parameters.

In the second paper we generalized Merzlyakov's theorem on the existence of

a formal solution associated with a positive sentence [Me]. We �rst constructed

a formal solution for a general AE sentence which is known to be true over some

variety, and then presented formal limit groups and graded formal limit groups

that enable us to collect and analyze the collection of all such formal solutions.

In the third paper we studied the structure of exceptional solutions of a para-

metric system of equations. We proved the existence of a global bound (inde-

pendent of the specialization of the de�ning parameters) on the number of rigid

solutions of a rigid limit group, and a global bound on the number of strictly

solid families of solutions of a solid limit group. Using these bounds we studied

the strati�cation of the \base" of the \bundle" associated with the set of solu-

tions of a parametric system of equations in a free group, and showed that the

set of specializations of the de�ning parameters in each of the strata is in the

Boolean algebra of AE sets.

In the fourth paper, we applied the structural results obtained in the �rst two

papers in the sequence to analyze AE sentences. Given a true sentence of the

form

8y 9x �(x; y; a) = 1 ^	(x; y; a) 6= 1

we presented an iterative procedure that produces a sequence of varieties and

formal solutions de�ned over them. Since in order to de�ne the completions

of a variety, and the closures of these completions, additional variables are re-

quired, the varieties produced along the iterative procedure are determined by

larger and larger sets of variables, and so are the formal solutions de�ned over

them. Still, by carefully analyzing these varieties, and properly measuring the

complexity of Diophantine sets associated with them, we were able to show

that certain complexity of the varieties produced along the iterative procedure

strictly decreases, which �nally forces the iterative procedure to terminate after

�nitely many steps.

The outcome of the terminating iterative procedure is a collection of varieties,

together with a collection of formal solutions de�ned over them. The varieties

are determined by the original universal variables y, and extra (auxiliary) vari-

ables. The collection of varieties gives a partition of the initial domain of the

universal variables y, which is a power of the original free group of coeÆcients,
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into sets which are in the Boolean algebra of universal sets, so that on each such

set the sentence can be validated using a �nite family of formal solutions. Hence,

the outcome of the iterative procedure can be viewed as a strati�cation theorem

that generalizes Merzlyakov's theorem from positive sentences to general AE

ones.

In the two papers on quanti�er elimination we apply the tools and techniques

presented in the previous four papers in the sequence, to prove quanti�er elim-

ination for the elementary theory of a free group. In order to prove quanti�er

elimination we show that the Boolean algebra of AE sets is invariant under

projections. The projection of a set that is in the Boolean algebra of AE sets

is naturally an EAE set, hence to show that the Boolean algebra of AE sets is

invariant under projections, we need to show that a general EAE set is in the

Boolean algebra of AE sets. Let

EAE(p) =9w 8y 9x (�1(x; y; w; p; a) = 1 ^	1(x; y; w; p; a) 6= 1) _ � � �

� � � _ (�r(x; y; w; p; a) = 1 ^	r(x; y; w; p; a) 6= 1)

be a general EAE set. The set EAE(p) is, by de�nition, the set of all special-

izations p0 of the de�ning parameters p, for which the corresponding sentence

9w 8y 9x (�1(x; y; w; p0; a) = 1 ^	1(x; y; w; p0; a) 6= 1) _ � � �

� � � _ (�r(x; y; w; p0; a) = 1 ^	r(x; y; w; p0; a) 6= 1)

is a true sentence. Hence, we start the analysis of the set EAE(p) by analyzing

the set of tuples (w0; p0) for which the corresponding sentence

8y 9x (�1(x; y; w0; p0; a) = 1 ^	1(x; y; w0; p0; a) 6= 1) _ � � �

� � � _ (�r(x; y; w0; p0; a) = 1 ^	r(x; y; w0; p0; a) 6= 1)

is a true sentence.

By the procedure for validation of an AE sentence, presented in the fourth

paper in this sequence, if (w0; p0) is a tuple for which the corresponding sentence

is a true sentence, then there exists a (�nite) collection of varieties and formal

solutions de�ned over these varieties that prove the validity of the sentence.

However, the �nite collection of varieties and formal solutions may depend on

the particular specialization (w0; p0). Therefore, our �rst goal in analyzing the

collection of tuples (w0; p0) that are in the true set is obtaining a \uniformization

of proof systems". To get such \uniformization", we present an iterative proce-

dure that is based on the iterative procedure for validation of an AE sentence,
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that starts with our given EAE predicate, and produces a �nite tree for which

in each vertex we place a variety that is graded with respect to the parameter

subgroup < w; p >, and a family of formal solutions de�ned over this variety,

so that if (w0; p0) is a specialization for which the corresponding sentence

8y 9x (�1(x; y; w0; p0; a) = 1 ^	1(x; y; w0; p0; a) 6= 1) _ � � �

� � � _ (�r(x; y; w0; p0; a) = 1 ^	r(x; y; w0; p0; a) 6= 1)

is a true sentence, then there exists a proof of the sentence that goes along

a �nite collection of paths in the �nite tree associated with the set EAE(p).

Hence, the �nite tree associated with the set EAE(p) encodes proofs of the

corresponding AE sentences for all the tuples (w0; p0) that are in the true set.

We call this �nite tree associated with the set EAE(p) the tree of strati�ed sets.

Having constructed such a �nite tree, to analyze the set EAE(p) we need

to look for all the specializations p0 of the de�ning parameters p for which

there exists a specialization w0 of the (existential) variables w, so that the

AE sentence corresponding to the tuple (w0; p0) has a proof that goes along a

collection of paths in the constructed �nite tree. To carry out the analysis of

this set of specializations p0 of the de�ning parameters p, we present an iterative

procedure which we view as a \sieve procedure", that produces an increasing

sequence of sets of specializations of the de�ning parameters p that are all in

the Boolean algebra of AE sets, and are all approximations of the set EAE(p),

and in particular are all contained in the set EAE(p). The sieve procedure we

present terminates after �nitely many steps, and the set it produces when it

terminates is equal to the set EAE(p), and is in the Boolean algebra of AE

sets, hence the sieve procedure �nally enables us to show that the set EAE(p)

is in the Boolean algebra of AE sets.

Since the iterative procedures are rather involved, we prefered to present

them �rst in a special case, which is conceptually and technically simpler, but

it already demonstrates some of the principles used in the general case. Hence,

in the �rst section we present the two iterative procedures used for the analysis

of an EAE set in the minimal rank (rank 0) case, i.e., for predicates for which

the limit groups involved in their analysis are all of minimal possible rank, i.e.,

limit groups that do not admit an epimorphism onto a free group so that the

coeÆcient group is mapped onto a proper factor. In the second section we

present the procedure for the construction of the tree of strati�ed sets, i.e.,

the tree associated with a general EAE set that encodes proofs for all tuples

(w0; p0) for which the correspondingAE sentence is a true sentence. In the third
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section we analyze a few special cases, in which it is possible to slightly modify

the procedure used for the construction of the tree of strati�ed sets to get a

sieve procedure, and hence prove quanti�er elimination. In the fourth section

we present core resolutions and some of their basic properties. Core resolutions

seem to be a basic tool in analyzing projections of varieties de�ned over a

free group (Diophantine sets), and they play an essential role in the (general)

sieve procedure that is �nally presented in the next paper, and concludes our

quanti�er elimination procedure.

Finally, we would like to thank Mladen Bestvina, Panos Papasoglu, Eliyahu

Rips and the referee whose comments helped us to adapt a more general point of

view on some parts of this paper, and assisted us in improving the presentation.

1. The minimal (graded) rank case

To obtain quanti�er elimination for elementary predicates over a free group,

our goal is to show that the Boolean algebra of AE sets is invariant under

projections. For presentation purposes, we will �rst present our approach to

the analysis of the projection of the Boolean algebra of AE sets assuming the

(graded) limit groups that appear in our procedure are of minimal (graded) rank

(graded rank 0), and then analyze the general case. We start with the following

immediate fact.

Lemma 1.1: Let Fk =< a1; : : : ; ak > be a free group, and let the EA set

EA(w; p) be de�ned as

EA(w; p) = 9y 8x (�1(x; y; w; p; a) = 1 ^	1(x; y; w; p; a) 6= 1) _ � � �

� � � _ (�r(x; y; w; p; a) = 1 ^	r(x; y; w; p; a) 6= 1):

Then the projection of EA(w; p), i.e., the set

�EA(p) = 9w (w; p) 2 EA(w; p);

is an EA set.

Proof: �EA(p) is de�ned by the EA predicate

�EA(p) = 9w; y 8x (�1(x; y; w; p; a) = 1 ^	1(x; y; w; p; a) 6= 1) _ � � �

� � � _ (�r(x; y; w; p; a) = 1 ^	r(x; y; w; p; a) 6= 1):

Unlike Lemma 1.1, the analysis of projections of a general set in the Boolean

algebra of AE sets requires the techniques and results obtained in our previous
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papers, graded limit groups and their Makanin{Razborov diagrams, the con-

struction of formal solutions and graded formal limit groups and the analysis of

iterated quotients of completed resolutions, similar to the one presented in an-

alyzing AE sentences presented in [Se4]. We start with the following reduction

of our main goal from general sets in the Boolean algebra of AE sets to AE

sets.

Lemma 1.2: Let Fk =< a1; : : : ; ak > be a free group, and let V (w; p) be a set

in the Boolean algebra of AE sets over Fk. If the projection of every AE set

de�ned over Fk is in the Boolean algebra of AE sets over Fk, then the projection

of V (w; p) is in the Boolean algebra of AE sets.

Proof: By ([Se3], 3.6) the set V (w; p) is the (�nite) union of some AE sets,

EA sets and sets which are the intersection of an AE and an EA set. The

projection of a union of sets is the union of the projections of the individual

sets. By Lemma 1.1 the projection of an EA set is in the Boolean algebra of EA

sets and by our assumptions so is the projection of every AE set. Therefore,

to prove the lemma we only need to show that under our assumption on the

projections of AE sets, the projection of the intersection of an EA set and an

AE set is in the Boolean algebra of AE sets.

Let V (w; p) be the intersection between an AE and an EA set. V (w; p) is

de�ned by the predicate

V (w; p) = 9w (8y 9x (�1(x; y; w; p; a) = 1 ^	1(x; y; w; p; a) 6= 1) _ � � �

� � � _ (�r(x; y; w; p; a) = 1 ^	r(x; y; w; p; a) 6= 1))^

^(9t 8u (�0

1(u; t; w; p; a) = 1 ^	0

1(u; t; w; p; a) 6= 1) _ � � �

� � � _ (�0

r0(u; t; w; p; a) = 1 ^	0

r0(u; t; w; p; a) 6= 1)):

Equivalently

V (w; p) = 9w 9t 8y 8u 9x �1(x; y; w; p; a) = 1 ^	1(x; y; w; p; a) 6= 1) _ � � �

� � � _ (�r(x; y; w; p; a) = 1 ^	r(x; y; w; p; a) 6= 1)^

^(�0

1(u; t; w; p; a) = 1 ^	0

1(u; t; w; p; a) 6= 1) _ � � �

� � � _ (�0

r0(u; t; w; p; a) = 1 ^	0

r0(u; t; w; p; a) 6= 1):

So, V (w; p) is the projection of an AE set, which under our assumption implies

that V (w; p) is in the Boolean algebra of AE sets.

Given Lemmas 1.1 and 1.2, the analysis of the projection of the Boolean

algebra of AE sets reduces to the analysis of the projection of AE sets.
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Theorem 1.3: Let Fk =< a1; : : : ; ak > be a free group, and let the AE set

AE(w; p) be de�ned as

AE(w; p) = 8y 9x (�1(x; y; w; p; a) = 1 ^	1(x; y; w; p; a) 6= 1) _ � � �

� � � _ (�r(x; y; w; p; a) = 1 ^	r(x; y; w; p; a) 6= 1):

Then the projection of the AE set AE(w; p), i.e., the set

EAE(p) = 9w 8y 9x (�1(x; y; w; p; a) = 1 ^	1(x; y; w; p; a) 6= 1) _ � � �

� � � _ (�r(x; y; w; p; a) = 1 ^	r(x; y; w; p; a) 6= 1);

is in the Boolean algebra of AE sets.

For presentation purposes we will �rst show that the projection of an AE set,

EAE(p), is in the Boolean algebra of AE sets in the case r = 1. The general-

ization to arbitrary r is fairly straightforward, and is presented afterwards.

Theorem 1.4: Let Fk =< a1; : : : ; ak > be a free group, and let EAE(p) be a

set de�ned by the predicate

EAE(p) = 9w 8y 9x �(x; y; w; p; a) = 1 ^	(x; y; w; p; a) 6= 1:

Then EAE(p) is in the Boolean algebra of AE sets.

Let Fy be the free group Fy =< y1; : : : ; y` >, and let

 1(x; y; w; p; a) = 1; : : : ;  q(x; y; w; p; a) = 1

be the de�ning equations of the system 	(x; y; w; p; a) = 1. By ([Se2], 1.2), for

every p0 2 EAE(p) there exists some w0 and a formal solution x = xw0;p0(y; a)

so that the words corresponding to the de�ning equations of the system

�(xw0;p0(y; a); y; w0; p0; a) = 1 are trivial in the free group Fy � Fk =< y; a >,

and the sentence

9y  1(xw0;p0(y; a); y; w0; p0; a) 6= 1 ^ � � � ^  q(xw0;p0(y; a); y; w0; p0; a) 6= 1

is a true sentence in Fk .

By the construction of graded formal limit groups presented in section 3 of

[Se2], viewingWP =< w; p > as the parameter subgroup, one can associate with

the free group Fy and the system of equations �(x; y; w; p; a) = 1 a (canonical)

�nite collection of graded formal limit groups

GFL1(x; y; w; p; a); : : : ; GFLr(x; y; w; p; a)
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so that every formal solution x = xw0;p0(y; a) of the system �(x; y; w; p; a) = 1

factors through one of the resolutions of the graded formal Makanin{Razborov

diagram of one of the graded formal limit groups

GFL1(x; y; w; p; a); : : : ; GFLr(x; y; w; p; a):

Viewing WP =< w; p > as the parameter subgroup, each graded formal

resolution in the graded formal Makanin{Razborov diagrams of the graded for-

mal limit groups GFL1(x; y; w; p; a); : : : ; GFLr(x; y; w; p; a) terminates in ei-

ther a rigid formal limit group of the form WPRgd(hR; w; p; a) � Fy , where

WPRgd(hR; w; p; a) is a rigid (not formal!) graded limit group (with respect

to WP ), or in a solid formal limit group of the form WPSld(hS; w; p; a) � Fy,

where WPSld(hS; w; p; a) is a solid (not formal!) graded limit group. Note

that by ([Se3], 2.5), for each specialization (w0; p0) there exists a global bound

(independent of the particular specialization (w0; p0)) on the number of rigid

solutions of the form (hR; w0; p0; a) of any of the rigid graded limit groups

WPRgd(hR; w; p; a), and by ([Se3], 2.9), for each specialization (w0; p0) there

exists a global bound on the number of strictly solid families of solutions of the

form (hS ; w0; p0; a) of any of the solid graded limit groups WPSld(hS; w; p; a).

LetWPRgd(hR; w; p; a)�Fy be one of the terminating limit groups in the for-

mal graded Makanin{Razborov diagram with respect to the de�ning parameters

WP =< w; p >, where the limit group WPRgd(hR; w; p; a) is rigid (see section

3 of [Se2] for the structure of the graded formal Makanin{Razborov diagram and

its resolutions). The tower of modular groups associated with each ungraded for-

mal resolution that terminates in a rigid specialization of the rigid graded limit

group WPRgd(hR; w; p; a), that lies outside its singular locus, is compatible

with the tower of modular groups associated with the graded formal resolution

that covers this ungraded formal resolution, i.e., the graded formal resolution

that terminates in the rigid graded formal limit groupWPRgd(hR; w; p; a)�Fy.

Therefore, using the tower of modular groups that lie \above" each of the rigid

formal graded limit groupsWPRgd(hR; w; p; a)�Fy, we can associate a (usually

in�nite) system of equations (in the variables (hR; y; w; p) and coeÆcients in Fk)

corresponding to each of the equations in the system 	(x; y; w; p; a) = 1. By

Guba's theorem [Gu], each such in�nite system of equations is equivalent to a

�nite system of equations �R(hR; y; w; p; a) = 1. Similarly, with each terminat-

ing solid formal graded limit group WPSld(hS ; w; p; a) � Fy we can associate a

system of equations �S(hS ; y; w; p; a) = 1.

From now on we work with each of the graded formal resolutions

WPGFResi(x; y; w; p; a) that appears in the graded formal Makanin{Razborov
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diagrams of GFL1; : : : ; GFLr, and its terminating rigid formal graded limit

group WPRgdi(hR; w; p; a) � Fy , or solid graded formal limit group

WPSldi(hS ; w; p; a) � Fy, in parallel, so we may restrict our attention

to one of these graded formal resolutions, omit its index and denote it

WPGFRes(x; y; w; p; a). Note that each of these formal resolutions is with

respect to the parameter subgroup WP =< w; p >.

Suppose that the graded formal resolution WPGFRes(x; y; w; p; a) termi-

nates in the rigid graded formal limit group WPRgd(hR; w; p; a) � Fy. Let

�WPRGL1(hR; y; w; p; a); : : : ; �WPRGLd(hR; y; w; p; a)

be the canonical collection of maximal graded limit groups (with respect to

the parameter subgroup WP =< w; p >) corresponding to the set of spe-

cializations (hR; y; w; p; a) for which (hR; w; p; a) is a rigid specialization of

WPRgd(hR; w; p; a), (hR; y; w; p; a) factors through the graded formal resolu-

tion WPGFRes(x; y; w; p; a), and through one of the systems of equations,

�R(hR; y; w; p; a) = 1, associated with the various equations in the system

	(x; y; w; p; a) = 1.

Similarly, if the graded formal resolution WPGFRes(x; y; w; p; a) terminates

in the solid formal graded limit groupWPSld(hS; w; p; a)�Fy , we associate with

the solid graded limit groupWPSld(hS ; w; p; a) and the (�nitely many) systems

of equations �S(hS ; y; w; p; a) the canonical collection of maximal graded limit

groups:

�WPSGL1(hS ; y; w; p; a); : : : ; �WPSGLd(hS ; y; w; p; a);

corresponding to the set of specializations (hS ; y; w; p; a), for which (hS ; w; p; a)

is a strictly solid specialization of WPSld(hS; w; p; a), (hS ; y; w; p; a) factors

through the graded formal resolution WPGFRes(x; y; w; p; a), and

�S(hS ; y; w; p; a) = 1

(for one of the systems associated with the equations in the system

	(x; y; w; p; a) = 1).

At this point we need to collect the \remaining" set of specializations of the

variables y for each value of our parameters (w; p). Suppose that the terminating

graded limit group of the formal graded resolution WPGFRes(x; y; w; p; a) is

the rigid formal graded limit group WPRgd(hR; w; p; a) �Fy or the solid formal

graded limit group WPSld(hS; w; p; a) � Fy . With each of the graded limit

groups

�WPRGL1(hR; y; w; p; a); : : : ; �WPRGLd(hR; y; w; p; a)



10 Z. SELA Isr. J. Math.

or

�WPRGL1(hS ; y; w; p; a); : : : ; �WPRGLd(hS ; y; w; p; a)

(depending on whether the graded formal resolution WPGFRes(x; y; w; p; a)

terminates in a rigid or solid limit group with respect to WP =< w; p >) we

associate its taut graded Makanin{Razborov diagram with respect to the pa-

rameter subgroup < hR; w; p > or < hS ; w; p > in correspondence. Each graded

resolution �WPGRes(y; hR; w; p; a) (or �WPGRes(y; hS ; w; p; a)) in one of the

taut graded diagrams of the graded limit groups

�WPRGL1(hR; y; w; p; a); : : : ; �WPRGLd(hR; y; w; p; a)

(or

�WPRGL1(hS ; y; w; p; a); : : : ; �WPRGLd(hS ; y; w; p; a))

terminates in either a rigid graded limit group (with respect to < hR; w; p > or

< hS ; w; p >) which we denote

�WPRgd(gR; hR; w; p; a) (or �WPRgd(gR; hS ; w; p; a));

or a solid graded limit group which we denote

�WPSld(gS ; hR; w; p; a) (or �WPSld(gS ; hS; w; p; a)):

Before continuing with our iterative procedure for analyzing the structure

of an EAE set, we use the limit groups constructed in the �rst step of the

procedure to give a �rst approximation of an EAE set, an approximation which

is an EA set. To get the approximation we need to use the entire collection of

limit groups WPRgdi(hR; w; p; a);WPSldi(hS ; w; p; a) and

�WPRgdj(gR; hR; w; p; a);�WPSldj(gS ; hR; w; p; a);�WPRgdj(gR; hS ; w; p; a);

�WPSldj(gS ; hS ; w; p; a):

Lemma 1.5: Let the set U1(p) be de�ned as the union of two sets.

(1) p0 2 UR
1 (p) if for some w0, some index i and some hr0 (which is a given

specialization of the tuple of variables hR), (hr0; w0; p0) is a rigid special-

ization of the rigid limit group WPRgdi(hR; w; p; a), and for every index

j, there exists no specialization gr0 for which (gr0; hr0; w0; p0) is a special-

ization of �WPRgdj(gR; hR; w; p; a) and no specialization gs0 for which

(gs0; hr0; w0; p0) is a specialization of WPSldj(gS ; hR; w; p; a).

(2) p0 2 US
1 (p) if for some w0, some index i and some hs0 (which is a given

specialization of the tuple of variables hS), (hs0; w0; p0) is a strictly solid
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specialization of the solid limit group WPSldi(hS ; w; p; a), and for every

index j, there exists no specialization gr0 for which (gr0; hs0; w0; p0) is a

specialization of �WPRgdj(gR; hS ; w; p; a) and no specialization gs0 for

which (gs0; hs0; w0; p0) is a specialization of WPSldj(gS ; hS ; w; p; a).

(3) We de�ne U1(p) to be U1(p) = UR
1 (p) [ U

S
1 (p).

Then:

(i) U1(p) � EAE(p).

(ii) U1(p) is an EA set.

Proof: Both conditions (1) and (2) can be stated by an EA predicate (see

section 3 of [Se3]), so U1(p) is indeed an EA set. If w0 satis�es either (1) or (2),

then the sentence

8y 9x �(x; y; w0; p0; a) = 1 ^	(x; y; w0; p0; a) 6= 1

is a true sentence by construction, so U1(p) � EAE(p).

To construct the graded formal resolutions WPGFRes(x; y; w; p; a), we have

collected all the formal solutions x(w;p)(y; a), for which all the words corre-

sponding to the equations in �(x(w;p)(y; a); y; w; p; a) represent the trivial words

in Fa;y =< a; y >. By theorem 1.18 of [Se2], if p0 2 EAE(p) then there

must exist some \witness" w0 and a formal solution x(w0;p0)(y; a) so that the

maximal limit groups corresponding to each of the equations in the system

	(x(w0;p0)(y; a); y; w; p; a) = 1 are all proper quotients of the free group

< a; y >= Fk � Fy . Hence, for every p0 2 EAE(p) there must exist some

witness w0, and a rigid specialization (hr0; w0; p0) of one of the rigid limit

groupsWPRgd(hR; w; p; a), or a strictly solid specialization (hs0; w0; p0) of one

of the solid limit groups WPSld(hS; w; p; a), so that every ungraded resolu-

tion �WPGRes(y; hr0; w0; p0; a) (or �WPGRes(y; hs0; w0; p0; a)) does not cor-

respond to the entire set of y's but rather to a resolution of a limit group which

is a proper quotient of the free group < a; y >= Fk � Fy.

Therefore, the outcome of the �rst step of our \trial and error" procedure is

a decrease in the complexity (de�nitions 1.14 and 3.2 in [Se4]) of the ungraded

resolutions of (the remaining) y's associated with each p0 2 EAE(p), at least for

one rigid or strictly solid specialization (hr0; w0; p0), or (hs0; w0; p0). Each of

the next steps of the procedure is meant to sequentially decrease the complexity

of the ungraded resolutions of the remaining y's. Once the iterative procedure

terminates, we present a second iterative procedure that uses the outcome of

the �rst iterative procedure to sequentially approximate the set EAE(p) by sets
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which are all in the Boolean algebra of AE sets. Finally, we show that the

approximations we construct in the second iterative procedure become identical

with the set EAE(p) after �nitely many steps. Since the approximations are all

in the Boolean algebra of AE sets, this will imply that an EAE set is indeed in

the Boolean algebra of AE sets, which �nally proves Theorem 1.4.

In this section we present the iterative \trial and error" procedure, and the

proof of Theorem 1.4 under the minimal (graded) rank (graded rank 0) assump-

tion, i.e., from now on we will assume that if any of the graded limit groups

�WPGLj(y; hR; w; p; a) or �WPGLj(y; hS ; w; p; a) admits an epimorphism �

onto a free group Fk � F where �(< p >) < Fk , then F is the trivial group.

Under the minimal graded rank assumption, the termination of the \trial and

error" procedure is based on the analysis of iterative quotients of completed

resolutions in the minimal rank case, presented in section 1 of [Se4]. In the next

sections we will use the analysis of iterative quotients of completed resolutions

in the general case presented in section 4 of [Se4] to get a \trial and error"

procedure, hence a proof of Theorem 1.4, omitting the minimal graded rank

assumption.

For the continuation of the iterative procedure we will denote (for brevity)

each of the limit groups WPRgd(hR; w; p; a) or WPSld(hS ; w; p; a) as

WPH(h;w; p; a), and each of the limit groups

�WPRgd(gR; hR; w; p; a); �WPRgd(gR; hS ; w; p; a); �WPSld(gS; hR; w; p; a);

�WPSld(gS ; hS ; w; p; a)

as WPHG(g; h; w; p; a). Our treatment of these limit groups will be conducted

in parallel, so we don't keep the indices associated with each of these (�nite

collection of) limit groups. Also, the rest of our \trial and error" procedure does

not depend in an essential way on the type (rigid or solid) of the terminating

graded limit groups in the �rst two steps, hence we do not keep notation for the

type of each of these terminating limit groups.

For each tuple (p0; w0; h0; g0), which is either a rigid or a strictly solid spe-

cialization of the terminating limit group WPHG, there is an ungraded (well-

structured) resolution associated. The associated ungraded resolution depends

only on the strictly solid family of the specialization in case the corresponding

terminating limit group of the graded formal resolutionWPGFRes is solid (i.e.,

it is the same ungraded resolution for all the specializations that belong to a

given strictly solid family). Also, the ungraded resolution may be degenerate, so

we separate the �nitely many possible types of ungraded resolutions associated
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with a rigid or strictly solid specialization (p0; w0; h0; g0) of WPHG according

to the stratum of the corresponding singular locus (see section 12 of [Se1]), and

continue with each singular stratum separately. With the associated ungraded

well-structured resolution, we may associate its completion. Given a tuple

(p0; w0; h0; g0), which is a rigid or a strictly solid specialization of WPHG, we

collect all the formal solutions fx(p0;w0;h0;g0)(s; z; y; a)g for which the words cor-

responding to the equations in the system �(x(p0;w0;h0;g0)(s; z; y; a); y; w0; p0; a)

= 1 are the trivial words in some closure of the completion of the ungraded

resolution associated with the given specialization. Using the construction pre-

sented in section 3 of [Se2], and viewing the subgroup < p;w; h; g > as parame-

ters, from the entire collection of formal solutions for all possible specializations

(p0; w0; h0; g0) which are rigid or strictly solid specializations of WPHG, we

can construct a graded formal Makanin{Razborov diagram, so that any formal

solution de�ned over a closure of (a completion of) an ungraded resolution as-

sociated with a rigid or strictly solid specialization of WPHG factors through

one of the graded formal Makanin{Razborov resolutions.

Note that by the construction of formal graded limit groups and their asso-

ciated graded formal Makanin{Razborov diagrams, the collection of maximal

graded formal limit groups and their graded formal Makanin{Razborov dia-

grams associated with a given terminating limit group WPHG, depends only

on the strictly solid family from which the specialization of WPHG is taken,

and not on the particular specialization taken from this strictly solid family.

Let GFL1(x; z; y; g1; h1; w; p; a); : : : ; GFLr(x; z; y; g1; h1; w; p; a) be the max-

imal graded formal limit groups constructed from the collection of formal solu-

tions associated with the graded limit group WPHG. By section 3 of [Se2],

with each of the graded formal limit groups there is an associated graded

formal Makanin{Razborov diagram with respect to the parameter subgroup

< g1; h1; w; p >. By theorems 3.7 and 3.8 in [Se2], each of the graded formal

resolutions in the graded formal Makanin{Razborov diagram associated with

each of the graded formal limit groups

GFL1(x; z; y; g1; h1; w; p; a); : : : ; GFLr(x; z; y; g1; h1; w; p; a)

(with respect to the subgroup < g1; h1; w; p >) terminates in a group of the

form

WPHGRgd(hR2 ; g1; h1; w; p; a) �Term(ŝ;g1;h1;w;p;a) GFCl(s; z; y; g1; h1; w; p; a);

where WPHGRgd(hR2 ; g1; h1; w; p; a) is a graded (not formal!) limit group
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which is rigid with respect to the parameter subgroup < g1; h1; w; p >, and

GFCl(s; z; y; g1; h1; w; p; a)

is a graded formal closure of the graded resolution �WPGRes(y; g1; h1; w; p; a)

associated with the graded limit group WPHG. We will denote a terminating

rigid graded limit group WPHGRgd(hR2 ; g1; h1; w; p; a) by WPHGHR.

Alternatively, the terminating graded formal limit group of a graded formal

resolution in one of the graded formal Makanin{Razborov diagrams associated

with the graded formal limit groups

GFL1(x; z; y; g1; h1; w; p; a); : : : ; GFLr(x; z; y; g1; h1; w; p; a)

is of the form

WPHGSld(hS2 ; g1; h1; w; p; a) �Term(ŝ;g1;h1;w;p;a) GFCl(s; z; y; g1; h1; w; p; a);

whereWPHGSld(hS2 ; g1; h1; w; p; a) is a graded (not formal!) limit group which

is solid with respect to the parameter subgroup < g1; h1; w; p >, and

GFCl(s; z; y; g1; h1; w; p; a)

is a graded formal closure of the graded resolution �WPGRes(y; g1; h1; w; p; a)

associated with the graded limit groupWPHG. We will denote the terminating

solid graded limit group WPHGSld(hS2 ; g1; h1; w; p; a) by WPHGHS.

At this point we continue as in the �rst step, i.e., we analyze the set of y's for

which for all the formal solutions x = x(s; z; y; h2; g1; h1; w; p; a), at least one of

the equations in the system 	(x(s; z; y; h2; g1; h1; w; p; a); y; w; p; a) = 1 holds.

Since we have assumed that all the limit groupsWPHG are of minimal (graded)

rank, we will be able to use the analysis of quotient resolutions presented in

section 1 of [Se4], to analyze the resolutions containing the entire set of the

remaining y's. In the next section we will modify this part of the iterative

procedure in order to prove Theorem 1.4 in the general case, using the analysis
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of quotient resolutions that appear in section 4 of [Se4].

WPHGH

WPHGH

WPRgdλ

Let

WPHGRgd(hR2 ; g1; h1; w; p; a) �Term(ŝ;g1;h1;w;p;a) GFCl(s; z; y; g1; h1; w; p; a)

or

WPHGSld(hS2 ; g1; h1; w; p; a) �Term(ŝ;g1;h1;w;p;a) GFCl(s; z; y; g1; h1; w; p; a)

be the terminating rigid or solid limit group (with respect to the parameter

subgroup < g1; h1; w; p >) of the graded formal resolution

WPHGFRes(x; s; z; y; g1; h1; w; p; a):

As we pointed out in the �rst step, the (formal) modular groups associated with

each ungraded formal resolution that is covered by the graded formal resolution

WPHGFRes(x; s; z; y; g1; h1; w; p; a)
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that terminates in the rigid or solid graded limit group WPHGH , so that the

rigid or strictly solid specialization of WPHGH in which the ungraded resolu-

tion terminates does not belong to the singular locus, are compatible with the

graded formal modular groups of the graded formal resolution WPHGFRes.

Therefore, using the \tower" of graded formal modular groups associated with

the graded formal resolution WPHGFRes, a \tower" that lies \above" the

terminating rigid or solid graded limit group WPHGH , we can associate a

(usually in�nite) system of equations (in the variables (s; z; y; h2; g1; h1; w; p)

and coeÆcients in Fk) corresponding to each of the equations in the system

	(x; y; w; p; a) = 1, imposed on all specializations of the tuple (x; y; w; p; a)

in the same (formal) modular block as a given specialization of the tuple

(h2; g1; h1; w; p; a). By Guba's theorem [Gu] this in�nite system of equations is

equivalent to a �nite system of equations �(s; z; y; h2; g1; h1; w; p; a) = 1.

At this stage we need to collect all the remaining y's, i.e., those values of the

variables y that satisfy one of the systems of equations �(s; z; y; h2; g1; h1; w; p; a)

= 1. As we did in our iterative procedure for validation of a sentence in section

1 of [Se4], our aim is to collect all the remaining y's for all p0 2 EAE(p), and

all possible tuples (w0; p0), in �nitely many graded resolutions which will be of

complexity not bigger than the complexity of the corresponding graded resolu-

tion WPHGRes(y; h1; g1; w; p; a) with which we have started the second step.

To be able to collect all the remaining y's in graded resolutions of complexity

bounded by the complexity of the resolution WPHGRes with which we have

started the second step, we need to apply the same techniques used for that

purpose in section 1 of [Se4], modi�ed slightly to be suitable for the graded

set-up.

The collection of all specializations of the variables y that can be extended to

a specialization that factors through the graded formal resolution

WPHGFRes(x; s; z; y; g1; h1; w; p; a)

and satis�es the system of equations �(s; z; y; h2; g1; h1; w; p; a) = 1 factors

through a canonical collection of maximal graded limit groups

QGlim1(s; z; y; h2; g1; h1; w; p; a); : : : ; QGlimq(s; z; y; h2; g1; h1; w; p; a):

Let WPHGRes(y; h1; g1; w; p; a) be the graded resolution (with respect to the

parameter subgroup < h1; g1; w; p; a >) of y's that remained after the �rst step

with which we have started the second step. Our analysis of the well-structured

resolutions of the graded limit groups, QGlimi, is conducted in parallel, hence
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we will omit the index and denote the quotient graded limit group under con-

sideration QGlim(s; z; y; h2; g1; h1; w; p; a).

Let zbase be a generating set of the limit group associated with all the levels of

the graded formal closureWPHGFCl(s; z; y; g1; h1; w; p; a) except the top level

(i.e., the distinguished vertex group in the abelian decomposition associated

with the top level of the graded formal closure WPHGFCl). We will call this

set of generators the basis of the graded formal closure

WPHGFCl(s; z; y; g1; h1; p; a):

Following the construction of the strict Makanin{Razborov diagram ([Se2],

1.10), we construct the (canonical) strict graded Makanin{Razborov diagram of

the graded limit group QGlim(s; z; y; h2; g1; h1; w; p; a) viewed as a graded limit

group with respect to the parameter subgroup < zbase; h2; g1; h1; w; p >. Let

WPHGHRes1(s; z; y; zbase;h2; g1; h1; w; p; a); : : : ;

WPHGHResv(s; z; y; zbase; h2; g1; h1; w; p; a)

be the well-structured graded Makanin{Razborov resolutions that appear in the

strict graded Makanin{Razborov diagram of the (graded) limit group

QRlim(s; z; y; zbase; h2; g1; h1; w; p; a)

with respect to the parameter subgroup < zbase; h2; g1; h1; w; p >, where each

graded resolution is terminating in either a rigid or a solid graded limit group

(with respect to the parameter subgroup < zbase; h2; g1; h1; w; p >).

We will treat the graded resolutions

WPHGHRes1(s; z; y; zbase;h2; g1; h1; w; p; a); : : : ;

WPHGHResv(s; z; y; zbase; h2; g1; h1; w; p; a)

in parallel, so for the continuation we will restrict ourselves to one of them which

we denote WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a) for brevity. Let

WPHGHRlim(s; z; y; zbase; h2; g1; h1; w; p; a)

be the graded limit group corresponding to the graded resolution

WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a):

Let Glimj(s; z; y; zbase; h2; g2; h1; w; p; a) be the graded limit group that

appears in the j-th level of the graded resolution

WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a):
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Let WPHGRlim(y; h1; g1; w; p; a) be the graded limit group associated with

the graded resolution WPHGRes(y; g1; h1; w; p; a) with which we have started

the second step. Naturally, there exists a canonical map

�j :WPHGRlim(y; h1; g1; w; p; a)! Glimj(s; z; y; zbase; h2; g1; h1; w; p; a):

Let �j be the graded quadratic decomposition of

Glimj(s; z; y; zbase; h2; g1; h1; w; p; a);

i.e., the graded cyclic decomposition of Glimj(s; z; y; zbase; h2; g1; h1; w; p; a)

obtained from the graded abelian JSJ decomposition of

Glimj(s; z; y; zbase; h2; g1; h1; w; p; a)

by collapsing all the edges connecting two non-QH subgroups. Let Q be a

quadratically hanging subgroup in the graded abelian JSJ decomposition of

WPHGRlim(y; h1; g1; w; p; a), and let S be the corresponding (punctured) sur-

face. Since the boundary elements of Q are mapped by �j to either the trivial ele-

ment or elliptic elements in �j , the (possibly trivial) cyclic decomposition inher-

ited by �j(Q) from the cyclic decomposition �j can be lifted to a (possibly triv-

ial) cyclic decomposition of the QH subgroupQ ofWPHGRlim(y;h1;g1; w; p; a),

which corresponds to some decomposition of the (punctured) surface S along

a (possibly trivial) collection of disjoint non-homotopic s.c.c. Let �j(Q) be the

corresponding cyclic decomposition of the QH subgroup Q, and let �j(S) be a

maximal associated collection of non-homotopic essential s.c.c. on S. Note that,

by construction, every s.c.c. from the de�ning collection of �j(S) is mapped by

�j to either a trivial element or to an elliptic element in �j .

Lemma 1.6:

(i) Every s.c.c. from the collection �j(S) is mapped by �j to either the trivial

element or to a non-trivial elliptic element in �j .

(ii) Every non-separating s.c.c. on the surface S is mapped to a non-trivial

element by the homomorphism �j .

(iii) Let Q0 be a quadratically hanging subgroup in �j and let S0 be the corre-

sponding (punctured) surface. If �j maps non-trivially a connected subsur-

face of Sn�j(S) into Q
0, then genus(S0) � genus(S) and j�(S0)j � j�(S)j.

Furthermore, in this case �j maps the fundamental group of a subsurface

of S into a �nite index subgroup of Q0.

Proof: Identical to the proof of lemma 1.3 in [Se4].
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Part (iii) of Lemma 1.6 bounds the topological complexity of those QH sub-

groups Q0 that appear in the graded abelian JSJ decompositions associated with

the various levels of the graded resolution

WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a)

into which a QH subgroup Q that appears in the graded abelian JSJ decompo-

sition of WPHGRlim(y; h1; g1; w; p; a) is mapped non-trivially. To show that

Lemma 1.6 can be applied to bound the topological complexity of all the QH

subgroups Q0 that appear in the graded abelian decompositions associated with

the various levels of WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a), we need the

following proposition.

Proposition 1.7: LetGlimj(s; z; y; zbase; h2; g1; h1; w; p; a) be the graded limit

group that appears in the j-th level of the graded resolution

WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a);

and let Q0 be a QH subgroup that appears in the graded JSJ decomposition

associated with Glimj(s; z; y; zbase; h2; g1; h1; w; p; a) and S
0 be its correspond-

ing punctured surface. Let �j be the natural map

�j :WPHGRlim(y; h1; g1; w; p; a)! Glimj(s; z; y; zbase; h2; g1; h1; w; p; a):

Then there exists a QH subgroup Q in the graded abelian JSJ decomposition

of WPHGRlim(y; h1; g1; w; p; a) with corresponding punctured surface S, so

that a subsurface S1 of the punctured surface S is mapped by �j into a �nite

index subgroup of a conjugate of Q0. In particular, genus(S0) � genus(S) and

j�(S0)j � j�(S)j.

Proof: Identical with the proof of proposition 1.5 in [Se4].

De�nition 1.8: LetQ be a quadratically hanging subgroup in the graded abelian

JSJ decomposition of WPHGRlim(y; h1; g1; w; p; a) and let S be its corre-

sponding (punctured) surface. The QH subgroup Q (and the corresponding

surface S) is called surviving if for some level j, there exists some quadrat-

ically hanging subgroup Q0 in �j , the graded abelian JSJ decomposition of

Glimj(s; z; y; zbase; h2; g1; h1; w; p; a), with corresponding surface S0, so that �j

maps Q non-trivially into Q0, genus(S0) = genus(S) and �(S0) = �(S).

By de�nition, if Q is a non-surviving QH subgroup in the graded abelian JSJ

decomposition ofWPHGRlim(y; h1; g1; w; p; a), then every QH subgroup Q0 in
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every level of the graded resolutionWPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a)

into which a subsurface of Q is mapped non-trivially has either a strictly lower

genus or a strictly smaller (absolute value of the) Euler characteristic than that

of the QH subgroup Q. This would eventually \force" the complexity of the

graded resolution

WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a)

to be bounded by the complexity of the resolutionWPHGRes(y; h1; g1; w; p; a)

once one is able to \isolate" the surviving surfaces. This is the purpose of the

following theorem.

Theorem 1.9: Let Q1; : : : ; Qr be the surviving QH subgroups in the graded

abelian JSJ decomposition of WPHGRlim(y; h1; w; p; a). Then the graded

resolution

WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a)

can be replaced by �nitely many graded resolutions, each composed from two

consecutive parts. The �rst part is a graded resolution of

QRlim(s; z; y; h2; g1; h1; w; p; a)

with respect to the parameter subgroup < zbase; h2; g1; h1; w; p;Q1; : : : ; Qr >,

which we denoteWPHGHRes(s; z; y;(zbase; h2; g1; h1; w; p;Q1; : : : ; Qr);a). The

second part is a one-step resolution that maps the rigid (solid) terminal graded

limit group of WPHGHRes(s; z; y; (zbase; h2; g1; h1; w; p;Q1; : : : ; Qr); a) to the

rigid (solid) terminal graded limit group of the resolution

WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a):

The two consecutive parts of the graded resolution have the following properties:

(1) The graded decomposition corresponding to the second part of the reso-

lution contains a vertex stabilized by the terminal rigid (solid) graded

limit group of the resolution WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a)

connected to r0 surviving QH subgroups Qi1 ; : : : ; Qir0
, for some r0 � r,

and 1 � i1 < i2 < � � � < ir0 � r.

(2) If the terminal graded limit group of the graded resolution

WPHGHRes(s; z; y; (zbase; h2; g1; h1; w; p;Q1; : : : ; Qr); a)

is rigid (solid), so is the terminal graded limit group of the graded reso-

lution WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a). Furthermore, if they
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are both solid, their principal graded decompositions are in one-to-one

correspondence, i.e., the decomposition di�er only in the stabilizer of one

vertex, the vertex stabilized by < zbase; h2; g1; h1; w; p;Q1; : : : ; Qr > in the

�rst part, and by < zbase; h2; g1; h1; w; p > in the second part.

Proof: Identical to the proof of theorem 1.7 of [Se4].

We continue the analysis of the limit group QGlim(s; z; y; h2; g1; h1; w; p; a)

by reducing the set of de�ning parameters sequentially. Recall that in order

to obtain the graded resolution WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a) we

used the subgroup < zbase > as the parameter subgroup, where < zbase >

is the limit group associated with all the levels of the graded formal closure

WPHGHFCl(s; z; y; h2; g1; h1; w; p; a) except the highest level. For the next

step of the analysis we take z2base as the de�ning parameters, where z2base gen-

erate the limit group associated with all the levels of the graded formal closure

WPHGHFCl(s; z; y; h2; g1; h1; w; p; a) except for the two highest levels.

Let T1(s; z; y; h2; g1; h1; w; p; a) be the terminal rigid or solid graded limit

group in the graded resolutionWPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a) with

respect to the parameter subgroup < zbase >. From the collection of rigid

(strictly solid) specializations of T1(s; z; y; zbase; h2; g1; h1; w; p; a), that are ob-

tained (using our shortening procedure) from specializations that factor through

the graded resolutionWPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a), we construct

the graded strict Makanin{Razborov diagram of T1(s; z; y; h2; g1; h1; w; p; a),

viewed as a graded limit group with respect to the parameter subgroup

< z2base >. Let

WPHGHRes1(s; z; y; z
2
base;h2; g1; h1; w; p; a); : : : ;

WPHGHResm(s; z; y; z
2
base; h2; g1; h1; w; p; a)

be the resolutions that appear in the strict graded Makanin{Razborov diagram

of the (graded) limit group T1(s; z; y; z
2
base; h2; g1; h1; w; p; a) with respect to

the parameter subgroup < z2base >, where each graded resolution terminates

in either a rigid or a solid graded limit group (with respect to the parameter

subgroup < z2base >).

We will treat the graded resolutions

WPHGHResi(s; z; y; z
2
base; h2; g1; h1; w; p; a)

in parallel, so we will restrict ourselves to one of them which we denote

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a)
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for brevity. Let Glim(s; z; y; z2base; h2; g1; h1; w; p; a) be the graded limit group

corresponding to the graded resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a):

If the subgroup Glim(s; z; y; z2base; h2; g1; h1; w; p; a) is a proper quotient of the

subgroup T1(s; z; y; h2; g1; h1; w; p; a), we need to modify the graded resolution

WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a)

so that it becomes a strict graded Makanin{Razborov resolution terminating

with the limit group Glim(s; z; y; z2base; h2; g1; h1; w; p; a). Note that by modify-

ing the graded resolution WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a), we may

need to replace the quotient limit group QRlim(s; z; y; h2; g1; h1; w; p; a) or one

of the groups Glimj(s; z; y; zbase; h2; g1; h1; w; p; a) that appear in one of the

levels of the graded resolution WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a) by

a proper quotient of itself.

Let Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a) be a graded limit group that appears

in the j-th level of the graded resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a):

Let Zlim(zbase) be the limit group generated by zbase in the graded formal clo-

sure WPHGHFCl(s; z; y; h2; g1; h1; w; p; a). Naturally, there exists a canonical

map

�j : Zlim(zbase)! Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a):

Let �j be the graded quadratic decomposition of

Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a);

i.e., the graded cyclic decomposition of Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a)

obtained from the abelian graded JSJ decomposition of

Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a)

by collapsing all the edges connecting two non-QH subgroups. Let Q be a

quadratically hanging subgroup in the abelian graded JSJ decomposition of

Zlim(zbase) and let S be the corresponding (punctured) surface. Since the

boundary elements ofQ are mapped by �j to elliptic elements in �j , the (possibly

trivial) cyclic decomposition inherited by �j(Q) from the cyclic decomposition
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�j can be lifted to a (possibly trivial) cyclic decomposition of the QH subgroup

Q of Zlim(zbase), which corresponds to some decomposition of the (punctured)

surface S along a (possibly trivial) collection of disjoint non-homotopic s.c.c.

Let �j(Q) be the corresponding cyclic decomposition of the QH subgroup Q,

and let �j(S) be a maximal associated collection of non-homotopic essential

s.c.c. on S. Note that by construction, every s.c.c. from the de�ning collection

of �j(S) is mapped by �j to either a trivial element or to an elliptic element in

�j .

Lemma 1.10:

(i) Every s.c.c. from the collection �j(S) is mapped by �j to either the trivial

element or to a non-trivial elliptic element in �j .

(ii) Every non-separating s.c.c. on the surface S is mapped to a non-trivial

element by the homomorphism �j .

(iii) Let Q0 be a quadratically hanging subgroup in �j and let S0 be the corre-

sponding (punctured) surface. If �j maps non-trivially a connected subsur-

face of Sn�j(S) into Q
0, then genus(S0) � genus(S) and j�(S0)j � j�(S)j.

Furthermore, in this case �j maps the fundamental group of a subsurface

of S into a �nite index subgroup of Q0.

Proof: Identical to the proof of lemma 1.3 in [Se4].

The precise statement of Proposition 1.7 is not valid for the graded resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a). If Q
0 is a QH subgroup that ap-

pears in an abelian decomposition associated with one of the levels of the graded

resolution WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a), then it is not true that

there exists some QH subgroup Q in the principal graded JSJ decomposition

of Zlim(zbase), so that the fundamental group of a subsurface of the punctured

surface corresponding to Q is mapped non-trivially into Q0. However, we can

still de�ne surviving surfaces.

De�nition 1.11: Let Q be a quadratically hanging subgroup in the JSJ decom-

position of Zlim(zbase) and let S be its corresponding (punctured) surface. The

QH subgroup Q (and the corresponding surface S) is called surviving if for

some level j there exists some quadratically hanging subgroup Q0 in �j , the

JSJ decomposition of Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a), with corresponding

surface S0, so that �j maps Q non-trivially into Q0, genus(S0) = genus(S) and

�(S0) = �(S).
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To control the \complexity" of the graded resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a)

we need to \isolate" the surviving QH subgroups. This can be done in a similar

way to Theorem 1.9.

Theorem 1.12: Let Q1; : : : ; Qr be the surviving QH subgroups in the JSJ

decomposition of Zlim(zbase). Then the graded resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a)

can be replaced by �nitely many graded resolutions, each composed from two

consecutive parts. The �rst part is a graded resolution of T1(s; z; y; a) with

respect to the parameter subgroup < z2base; Q1; : : : ; Qr >, which we denote

WPHGHRes(s; z; y; (z2base; h2; g1; h1; w; p;Q1; : : : ; Qr); a):

The second part is a one step resolution that maps the rigid (solid) terminal

graded limit group of

WPHGHRes(s; z; y; (z2base; h2; g1; h1; w; p;Q1; : : : ; Qr); a)

to the rigid (solid) terminal graded limit group of the resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a):

The two consecutive parts of the graded resolution have the following properties:

(1) The graded decomposition corresponding to the second part of the resolu-

tion contains a vertex stabilized by the terminal rigid (solid) graded limit

group of the resolution WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a) con-

nected to the r0 surviving QH subgroups Qi1 ; : : : ; Qir0 , for some r0 � r,

and 1 � i1 < i2 < � � � < ir0 � r.

(2) If the terminal graded limit group of the graded resolution

WPHGHRes(s; z; y; (z2base; h2; g1; h1; w; p;Q1; : : : ; Qr); a)

is rigid (solid), so is the terminal graded limit group of the graded reso-

lution GRes(s; z; y; z2base; h2; g1; h1; w; p; a). Furthermore, if they are both

solid, their principal graded decompositions are in one-to-one correspon-

dence, i.e., the decomposition di�ers only in the stabilizer of one vertex,
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the vertex stabilized by < z2base; Q1; : : : ; Qr > in the �rst part and by the

subgroup < z2base > in the second part.

Proof: Identical to the proof of theorem 1.7 in [Se4].

Given Lemma 1.10 and Theorem 1.12, to complete the analysis of the struc-

ture of the graded resolution WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a) we

still need an appropriate analogue of Proposition 1.7, i.e., we need to associate

every QH subgroup that appears in one of the abelian graded JSJ decomposi-

tions of the di�erent levels of the graded resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a)

with a QH subgroup of either the graded JSJ decomposition of Zlim(zbase) or

a QH subgroup that appears in the abelian graded JSJ decomposition of the

terminal subgroup T1(s; z; y; zbase; h2; g1; h1; w; p; a) of the graded resolution

WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a)

in case T1(s; z; y; zbase; h2; g1; h1; w; p; a) is solid. We divide the �nal analysis of

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a) into two cases depending on

T1(s; z; y; h2; g1; h1; w; p; a)

being rigid or solid.

Proposition 1.13: Suppose that the terminal subgroup

T1(s; z; y; zbase; h2; g1; h1; w; p; a)

of the graded resolution WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a) is rigid.

Let Q0 be a QH subgroup that appears in the j-th level abelian graded JSJ

decomposition of the graded resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a)

and let S0 be its corresponding surface. Then:

(i) There exists a QH subgroup Q in the graded abelian JSJ decompo-

sition of Zlim(zbase), with an associated surface S, so that the map

�j : Zlim(zbase) ! Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a) maps the funda-

mental group of a subsurface of S onto a subgroup of �nite index of Q0.

(ii) genus(S0) � genus(S) and j�(S0)j � j�(S)j.
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(iii) genus(S0) = genus(S) and j�(S0)j = j�(S)j if and only if Q is a surviving

QH subgroup. In this last case, j is the bottom level of the graded resolu-

tion GRes(s; z; y; z2base; h2; g1; h1; w; p; a), and Q is mapped to the vertex

stabilized by < z2base > by the maps

�j : Zlim(zbase)! Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a)

in all the levels above the bottom one.

Proof: Identical to the proof of proposition 1.11 in [Se4].

Proposition 1.14: Suppose that the terminal subgroup

T1(s; z; y; zbase; h2; g1; h1; w; p; a)

of the graded resolution WPHGHRes(s; z; y; zbase; h2; g1; h1; w; p; a) is solid.

Let Q0 be a QH subgroup that appears in the j-th level abelian graded JSJ

decomposition of the graded resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a):

Then:

(i) There exists a QH subgroup Q with an associated surface S which is

either:

(1) a QH subgroup in the (graded) JSJ decomposition of Zlim(zbase),

so that the map

�j : Zlim(zbase)! Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a)

maps the fundamental group of a subsurface of S onto a subgroup

of �nite index of Q0; or

(2) a QH subgroup in the (graded) JSJ decomposition of (the solid

graded limit group) T1(s; z; y; zbase; h2; g1; h1; w; p; a), so that the

map

�j : T1(s; z; y; zbase; h2; g1; h1; w; p; a)! Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a)

maps the fundamental group of a subsurface of S onto a subgroup

of �nite index of Q0.

(ii) genus(S0) � genus(S) and j�(S0)j � j�(S)j.
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(iii) If Q is a QH subgroup in the JSJ decomposition of Zlim(zbase) and

genus(S0) = genus(S) and j�(S0)j = j�(S)j, then Q is a surviving QH

subgroup. In this last case, j is the bottom level of the graded resolution

WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a)

and Q is mapped to the vertex stabilized by < z2base > by the maps

�j : Zlim(zbase)! Glimj(s; z; y; z
2
base; h2; g1; h1; w; p; a)

in all the levels above the bottom one.

Proof: Identical to the proof of proposition 1.12 in [Se4].

We continue the analysis of the limit group QRlim(s; z; y; h2; g1; h1; w; p; a)

by further reducing the group of parameters sequentially. Recall that in order

to obtain the graded resolution WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a) we

�rst used the subgroup < zbase > as the parameter subgroup, where zbase is

a generating set of the limit group associated with all the levels of the graded

formal closure WPHGHFCl(s; z; y; h2; g1; h1; w; p; a) except the limit group

associated with the highest level, and then used the subgroup < z2base > as the

parameter subgroup, where z2base generates the limit group associated with all

the levels of the graded formal closure WPHGHFCl(s; z; y; h2; g1; h1; w; p; a)

except for the two highest levels. To continue the analysis of the resolutions of

the limit group QRlim(s; z; y; h2; g1; h1; w; p; a), we set z
`
base to be a generating

set of the limit group associated with all levels of the graded formal closure

WPHGHFCl(s; z; y; h2; g1; h1; w; p; a) except for the ` highest levels.

Let T2(s; z; y; z
2
base; h2; g1; h1; w; p; a) be the terminal rigid or solid graded

limit group in the graded resolutionWPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a)

with respect to the parameter subgroup < z2base >. We continue the graded

resolution WPHGHRes(s; z; y; z2base; h2; g1; h1; w; p; a) by viewing

T2(s; z; y; z
2
base; h2; g1; h1; w; p; a)

as a graded limit group with respect to the parameter subgroup < z3base >, the

obtained terminal rigid or solid graded limit group as a graded limit group with

respect to the parameter subgroup < z4base > and so on, until we exclude all

the limit groups associated with the various levels of the graded formal closure

WPHGHFCl(s; z; y; h2; g1; h1; w; p; a), except the bottom (base) level. Clearly,

Lemma 1.10 and Theorem 1.12 remain valid for all the steps of the procedure.
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Note that the �nal resolution we obtain terminates in a graded limit group which

is rigid or solid with respect to the parameter subgroup < h2; g1; h1; w; p >. We

denote this terminating limit group T (s; z; y; h2; g1; h1; w; p; a). Also, note that

the described procedure produces (canonically) �nitely many such resolutions

of the limit group QRlim(s; z; y; h2; g1; h1; w; p; a) or of a proper quotient of it.

To get the graded resolutions WPHGHRes(s; z; y; h2; g1; h1; w; p; a) we have

considered the subgroup < h2; g1; h1; w; p > as the parameter subgroup. To

complete the analysis of the set of the remaining y's we need to further decrease

the parameter subgroup to be the subgroup WP =< w; p >. We do that by

continuing the resolutionWPHGH with each of the graded resolutions that ap-

pear in the graded Makanin{Razborov diagram of the terminal limit group of the

resolution WPHGH with respect to the parameter subgroup WP =< w; p >.

This last technical change of the group of parameters is done for convenience

(and is not really necessary), and it does not change the ungraded resolutions

that are \covered" by the obtained graded resolution. In particular, it does not

change the complexity of the obtained graded resolutions.

The canonical (�nite) collection of graded resolutions

WPHGHRes(s; z; y; h2; g1; h1; w; p; a)

produced by the procedure described above contain the entire set of the remain-

ing y's. To be able to continue with our iterative procedure and collect all the

formal solutions de�ned over closures of the various multi-graded resolutions we

have constructed, we need these multi-graded resolutions to be well-structured.

Proposition 1.15: The graded resolutions

WPHGHRes(s; z; y; h2; g1; h1; w; p; a)

constructed by our procedure are well-structured (graded) resolutions.

Proof: Identical with the proof of theorem 1.13 of [Se4].

Having constructed the graded resolutionsWPHGH(s; z; y; h2; g1; h1; w; p; a)

that contain all the \remaining" specializations of the variables y, we are ready

to de�ne their complexity.

De�nition 1.16: LetWPHGHRes(s; z; y; h2; g1; h1; w; p; a) be one of the (well-

structured) graded resolutions constructed by the procedure for the collection

of the remaining y's. By construction, the complexities of the completions of

all non-degenerate ungraded resolutions covered by the graded resolution

WPHGHRes(s; z; y; h2; g1; h1; w; p; a)
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are identical (see de�nition 1.14 of [Se4] for the de�nition of the complexity

of an ungraded completed resolution). We set the complexity of the graded

resolution

WPHGHRes(s; z; y; h2; g1; h1; w; p; a);

denoted Cmplx(WPHGHRes(s; z; y; h2; g1; h1; w; p; a)), to be the complexity

of the completion of a non-degenerate ungraded resolution covered by the multi-

graded resolution WPHGHRes(s; z; y; h2; g1; h1; w; p; a).

In order to ensure the termination of our \trial and error" procedure, we

need the complexities of the graded resolutions obtained in its di�erent steps to

decrease.

Theorem 1.17: Let WPHRes(y; g1; h1; w; p; a) be one of the resolutions ob-

tained in the �rst step of our iterative procedure, and suppose that the graded

resolution WPHRes(y; h1; g1; w; p; a) does not correspond to the entire free

group Fy we have started with. Let

WPHGHRes(s; z; y; h2; g1; h1; w; p; a)

be one of the multi-graded resolutions obtained in the second step of our iterative

procedure staring with the graded resolution WPHRes(y; g1; h1; w; p; a). Then

Cmplx(WPHGHRes(s; z; y; h2; g1; h1; w; p; a))

� Cmplx(WPHRes(y; g1; h1; w; p; a))

and in case of equality the two graded resolutions are compatible, i.e., the

abelian decompositions that are associated with the two resolutions along their

various levels are in one-to-one correspondence, and the vertex groups in the

abelian decompositions associated with the resolution WPHRes are mapped

into corresponding vertex groups in the abelian decompositions associated with

the obtained resolution WPHGHRes.

Furthermore, suppose that a specialization p0 of the de�ning parameter p

satis�es p0 2 EAE(p), and w0 is a specialization of the variables w for which

the sentence

8y 9x �(x; y; w0; p0; a) = 1 ^	(x; y; w0; p0; a) 6= 1

is a true sentence over the free group Fk . Then there exists a specialization h10
of the variables h1 for which:

(i) For every (rigid or strictly solid) specialization g10 of the variables g1, its

corresponding ungraded resolution WPHGRes(y; g10; h
1
0; w0; p0; a), that
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is covered by one of the graded resolutions WPHGRes(y; g1; h1; w; p; a),

does not correspond to the entire free group Fy.

(ii) Let WPHG(g1; h1; w; p; a) be the (rigid or solid) terminal graded limit

group of one of the graded resolutions WPHGRes(y; g1; h1; w; p; a),

and let (g10 ; h
1
0; w0; p0; a) be a rigid or strictly solid specialization of

WPHG(g1; h1; w; p; a). Then there exists a specialization h20 of the

variables h2 so that every ungraded resolution

WPHGH(s; z; y; h20; g
1
0; h

1
0; w0; p0; a)

satis�es

Cmplx(WPHGHRes(s; z; y; h20; g
1
0; h

1
0; w0; p0; a))

< Cmplx(WPHGRes(y; g10; h
1
0; w0; p0; a)):

Proof: By the proof of theorem 1.15 in [Se4]

Cmplx(WPHGHRes(s; z; y; h1; w; p; ĥ2; ĝ1; a))

� Cmplx(WPHGRes(y; g1; h1; w; p; a));

and in case of equality the two graded resolutions are compatible, i.e., the

abelian decompositions that are associated with the two resolutions along their

various levels are in one-to-one correspondence, and the vertex groups in the

abelian decompositions associated with the resolution WPHRes are mapped

into corresponding vertex groups in the abelian decompositions associated with

the obtained resolution WPHGHRes.

Suppose that the specialization p0 of the de�ning parameter p satis�es p0 2

EAE(p), and w0 is a specialization of the variables w for which the sentence

8y 9x �(x; y; w0; p0; a) = 1 ^	(x; y; w0; p0; a) 6= 1

is a true sentence over the free group Fk. By the construction of the formal

resolutions WPFRes(x; y; w; p; a) constructed in the �rst step of our iterative

procedure, every formal solution x = x(w0;p0)(y; a) (for which

�(x(w0;p0)(y; a); y; w; p; a) = 1

in the free group Fk � Fy) factors through at least one of the formal resolutions

WPFRes(x; y; w; p; a). By theorem 1.2 of [Se2], there exists a formal solution

x = x(w0;p0)(y; a) for which �(x(w0;p0)(y; a); y; w; p; a) = 1 in the free group

Fk � Fy and there exists some specialization y0 of the variables y for which

	(x(w0;p0)(y0; a); y0; w0; p0; a) 6= 1:
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Suppose that this last formal solution factors through the formal resolution

WPFRes(x; y; w; p; a) that terminates in the rigid or solid graded limit group

(with respect to the parameter subgroup < w; p >) WPH(h1; w; p; a), and

let (h10; w0; p0) be the rigid or strictly solid specialization corresponding to the

ungraded formal resolution containing the formal solution x = x(w0;p0)(y; a).

Since there exists a specialization y0 of the variables y for which

	(x(w0;p0)(y0; a); y0; w0; p0; a) 6= 1;

every ungraded resolution WPHRes(y; g10; h
1
0; w0; p0; a) covered by one of the

graded resolutionsWPHRes(y; g1; h1; w; p; a) does not correspond to the entire

free group Fy, and we get part (i) of the theorem.

LetWPHRes(y; g10; h
1
0; w0; p0; a) be an ungraded resolution that is covered by

one of the graded resolutionsWPHRes(y; g1; h1; w; p; a) with rigid or solid ter-

minal graded limit group WPHG(g1; h1; w; p; a), and suppose (g10 ; h
1
0; w0; p0)

is the specialization of WPHG(g1; h1; w; p; a) corresponding to the ungraded

resolution WPHRes(y; g10; h
1
0; w0; p0; a). By the construction of the formal res-

olutions WPHGFRes(x; s; z; y; g1; h1; w; p; a) constructed in the second step

of our iterative procedure, every formal solution x = x(g10 ;h10;w0;p0)(s; z; y; a),

for which �(x(g10 ;h10;w0;p0)(s; z; y; a); y; w; p; a) = 1 in some closure of the un-

graded resolution WPHRes(y; g10; h
1
0; w0; p0; a), corresponding to the special-

ization (g10 ; h
1
0; w0; p0), factors through at least one of the formal resolutions

WPHGFRes(x; s; z; y; g1; h1; w; p; a). By theorem 1.18 of [Se2], there exists a

formal solution x = x(g10 ;h10;w0;p0)(s; z; y; a) for which

�(x(g10 ;h10;w0;p0)(s; z; y; a); y; w; p; a) = 1

over the corresponding closure of the ungraded resolution

WPHRes(y; g10; h
1
0; w0; p0; a)

that corresponds to the specialization (g10 ; h
1
0; w0; p0) of WPHG(g1; h1; w; p; a),

and for some specialization (s0; z0; y0; g
1
0 ; h

1
0; w0; p0) that factors through the

closure Cl(WPHGRes)(s; z; y; g10; h
1
0; w0; p0; a):

	(x(g10 ;h10;w0;p0)(s0; z0; y0; a); y0; w0; p0; a) 6= 1:

Suppose that this last formal solution factors through the graded formal

resolution

WPHGFRes(x; y; g1; h1; w; p; a)
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that terminates in the rigid or solid graded limit group (with respect to the

parameter subgroup < g1; h1; w; p >) WPHGH(h2; g1; h1; w; p; a), and let

(h20; g
1
0 ; h

1
0; w0; p0) be the rigid or strictly solid specialization corresponding to

the ungraded formal resolution containing the formal solution

x = x(g10 ;h10;w0;p0)(s; z; y; a):

Since there exists a specialization (s0; z0; y0; g
1
0 ; h

1
0; w0; p0) that factors through

the closure Cl(WPHRes)(s; z; y; g10; h
1
0; w0; p0; a) for which

	(x(g10 ;h10;w0;p0)(s0; z0; y0; w0; p0; a) 6= 1;

theorem 1.15 of [Se4] implies that every ungraded resolution

WPHGHRes(s; z; y; h20; g
1
0 ; h

1
0; w0; p0; a)

covered by one of the graded resolutionsWPHGHRes(s; z; y; h2; g1; h1; w; p; a)

satis�es

Cmplx(WPHGHRes(s; z; y; h20; g
1
0 ; h

1
0; w0; p0; a))

< Cmplx(WPHGRes(y; g10; h
1
0; w0; p0; a))

which proves part (ii) of the theorem.

Given the rigid or solid limit groups WPHG(g1; h1; w; p; a) and the graded

resolutions associated with each of their rigid or strictly solid specializations

with corresponding non-degenerate ungraded resolutions, we have collected all

the formal solutions, de�ned over some closures of these graded resolutions, in a

�nite collection of graded formal resolutions WPHGFRes(x; y; g1; h1; w; p; a),

each terminating in a rigid or solid graded limit group

WPHGH(h2; g1; h1; w; p; a):

Given the set of rigid or strictly solid specializations of

WPHGH(h2; g1; h1; w; p; a)

with corresponding non-degenerate ungraded formal closures, we used the

\towers" of graded formal modular groups associated with the graded formal

resolutionWPHGHFRes(x; z; y; h2; g1; h1; w; p; a) to get a system of equations

imposed on the remaining modular block of (the remaining) y's associated with

each of the rigid or strictly solid specializations of the limit group

WPHGH(h2; g1; h1; w; p; a):
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Given this system of equations, we have used an iterative procedure to construct

a �nite set of (well-structured) graded resolutions

WPHGHRes(s; z; y; h2; g1; h1; w; p; a)

each terminating in a rigid or solid graded limit group

WPHGHG(g2; h2; g1; h1; w; p; a):

These graded resolutions contain the entire set of the remaining y's for each

specialization of the tuple (w; p). By Theorem 1.17, the complexity of each of

the multi-graded resolutions WPHGHRes(s; z; y; h2; g1; h1; w; p; a) is bounded

above by the complexity of the graded resolution WPHGRes(y; h1; g1; w; p; a)

from which it was constructed, and if p0 2 EAE(p) there must exist some spe-

cialization w0 and a specialization h
1
0 of the variables h1 so that for every strictly

solid or rigid specialization (g10 ; h
1
0; w0; p0; a) of WPHG(g1; h1; w; p; a) there

exists a specialization h20 of the variables h2, so that the complexity of every

ungraded resolution WPHGH(s; z; y; h20; g
1
0 ; h

1
0; w0; p0; a) has strictly smaller

complexity than the complexity of the ungraded resolution

WPHGRes(y; g10; h
1
0; w0; p0; a):

The continuation of our \trial and error" procedure is de�ned iteratively,

where at each step we continue only with those graded resolutions that have

strictly smaller complexity than the graded resolutions they are associated with

in the previous step. Given a graded resolution WP (HG)n�1HRes with ter-

minating rigid or solid graded limit group WP (HG)n, and the set of rigid or

strictly solid specializations of a limit group WP (HG)n with non-degenerate

associated ungraded resolutions, we collect all the formal solutions de�ned over

a closure of an ungraded resolution associated with each of the rigid or strictly

solid specializations of the limit group WP (HG)n, and obtain �nitely many

formal multi-graded resolutionsWP (HG)nFRes, each terminating in a rigid or

solid graded limit group WP (HG)nH .

Given one of the graded formal resolutions WP (HG)nFRes and its termi-

nating rigid or solid graded limit group WP (HG)nH , we use the \tower" of

graded formal modular groups associated with the graded formal resolution

to get a system of equations imposed on the remaining set of y's associated

with each of the specializations of the terminating limit group WP (HG)nH .

Given this system of equations we use the iterative procedure presented above
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to construct a �nite set of (well-structured) graded resolutions (which we de-

note WP (HG)nHRes) that terminate in a rigid or solid graded limit group

WP (HG)n+1, that contain the set of y's remaining after the �rst n + 1 steps

of our \trial and error" procedure. Theorem 1.17 remains valid for all the steps

of the iterative procedure, so the complexity of each of the graded resolutions

WP (HG)nHRes is bounded above by the complexity of the graded resolution

WP (HG)n�1HRes it was constructed from, and if p0 2 EAE(p) there must

exist some specialization w0 for which there exists a strict reduction in the

corresponding complexities. Hence, for the purpose of our \trial and error"

procedure for the analysis of the set EAE(p), we need to continue only with

graded resolutions WP (HG)nHRes that have strictly smaller complexity than

the graded resolution WPHGn�1HRes they are associated with.

Like in the analysis of an AE sentence, the (strict) reduction in the complexity

of the graded resolutions containing the sets of the remaining y's stated in

Theorem 1.17 guarantees the termination of our \trail and error" procedure in

the minimal (graded) rank case.

Theorem 1.18: Suppose that if an initial graded limit group

�WPGLj(y; h1; w; p; a)

admits an epimorphism � onto a free group Fk � F where �(< p >) < Fk , then

F is the trivial group. Then the iterative \trial and error" procedure presented

above terminates after �nitely many steps.

Proof: Identical to the proof of theorem 1.18 of [Se4].

The outcome of the \trial and error" procedure gives us a �nite diagram

constructed along the various steps of the iterative procedure, a diagram which

is a directed tree in which on every vertex we place a rigid or solid limit group

of the form WP (HG)n or WP (HG)nH which is the basis of a bundle of the

set of the remaining y's or the set of formal solutions de�ned over the bundle of

the remaining y's analyzed along the iterative procedure, which we call the tree

of strati�ed sets. This tree encodes all the (�nitely many) possible sequences

of forms of formal solutions that are needed in order to validate that a certain

specialization p0 of the de�ning parameters p is indeed in the set EAE(p). This

tree and the strati�cation associated with its various rigid and solid limit groups
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is the basis for our analysis of the structure of the set EAE(p).

WPHGH

WPHGH

λWPHG

To explain the motivation for the way we analyze the structure of the set

EAE(p), we need the natural notion of a witness.

De�nition 1.19: Let Fk =< a1; : : : ; ak > be a free group and let EAE(p) be

the set de�ned by the predicate

EAE(p) = 9w 8y 9x �(x; y; w; p; a) = 1 ^	(x; y; w; p; a) 6= 1:

A specialization w0 of the variables w is said to be a witness for a specialization

p0 of the de�ning parameters p, if the following sentence:

8y 9x �(x; y; w0; p0; a) = 1 ^	(x; y; w0; p0; a) 6= 1

is a true sentence. Clearly, if there exists a witness for a specialization p0 then

p0 2 EAE(p), and every p0 2 EAE(p) has a witness.

By de�nition, in order to show that a specialization p0 of the de�ning param-

eters p is in the set EAE(p), we need to �nd a witness w0 for the specialization

p0. By the construction of the tree of strati�ed sets, given a witness w0 for a

specialization p0, it is possible to prove the validity of the AE sentence corre-

sponding to the couple (w0; p0), using a proof that is encoded by a subtree of

the tree of strati�ed sets, i.e., a proof built from a �nite sequence of (families

of) formal solutions, constructed along a (�nite) collection of paths in the tree

of strati�ed sets. By the �niteness of the tree of strati�ed sets there are only

�nitely many possibilities for such a collection of paths (a subtree). Hence,

there are only �nitely many possibilities for the structure of a proof encoded by
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the tree of strati�ed sets, and these �nitely many structures of proofs are suÆ-

cient for proving the validity of the AE sentences corresponding to all couples

(w0; p0), where p0 2 EAE(p) and w0 is a witness for p0. In the sequel, we call

each possibility for the structure of a proof encoded by the tree of strati�ed sets

a proof system.

Given p0 2 EAE(p), we are not able to say much about a possible witness

for p0 using the information we have collected so far. With each \proof system"

encoded by a subtree of the tree of strati�ed sets associated with the setEAE(p),

we can naturally associate a subset of EAE(p). This subset is de�ned to be all

the specializations p0 2 EAE(p) for which there exists a witness w0 so that the

validity of the AE sentence corresponding to the couple (w0; p0) can be proved

using a proof with the structure of the given \proof system". Our main goal

in proving Theorem 1.4, i.e., in proving that every EAE set de�ned over a free

group is in the Boolean algebra of AE sets, will be to show that the subset of

EAE(p) associated with a given proof system is in the Boolean algebra of AE

sets. Since there are only �nitely many proof systems encoded by the tree of

strati�ed sets associated with an EAE set, and the EAE set itself is a union of

the subsets associated with its (�nitely many) proof systems, this implies that

the set EAE(p) is in the Boolean algebra of AE sets.

De�nition 1.20: Let p0 2 EAE(p) be a specialization of the de�ning parame-

ters p and let w0 be a witness for p0. By the construction of the tree of strati�ed

sets, the validity of the AE sentence corresponding to the couple (w0; p0) can

be proved using a proof encoded by some subtree of the tree of strati�ed sets

associated with the set EAE(p). We call such a subtree, that encodes the struc-

ture of a proof, a proof system. Note that given a couple (w0; p0) there may

be several proof systems associated with it, but the construction of the tree of

strati�ed sets (i.e., its �niteness) guarantees that the number of possible proof

systems is bounded.

We will say that a given proof system associated with the couple (w0; p0) is

of depth d, if all the paths associated with the proof system terminate after d

steps (levels) of the tree of strati�ed sets (i.e., if the subtree associated with the

proof system is of depth d).

For presentation purposes, we will start demonstrating our approach for the

analysis of the set EAE(p) by analyzing those specializations of the de�ning pa-

rameters p that have witnesses with proof systems of depth 1. We will continue

by analyzing the specializations of the de�ning parameters p for which there are

witnesses with proof systems of depth at most 2, and then present the analysis
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of the entire set EAE(p) under the minimal (graded) rank assumption.

Lemma 1.21: Let T1(p) � EAE(p) be the subset of all specializations p0 2

EAE(p) of the de�ning parameters p that have witnesses with proof system of

depth 1. Then T1(p) is an EA set.

Proof: T1(p) is precisely the set U1(p), which is proven to be an EA set in

Lemma 1.5.

Lemma 1.21 proves that the set of specializations p0 of the de�ning parameters

p that have a witness with a proof system of depth 1 is an EA set. Before

analyzing the entire set EAE(p), we analyze the set of specializations p0 that

have witnesses with a proof system of depth 2. The analysis of specializations

p0 2 EAE(p) that have witnesses with proof systems of depth 2 is much more

complicated than the analysis of witnesses with proof systems of depth 1, and

will be presented in this section under the minimal (graded) rank assumption.

In the next sections we will use the general approach for validation of a sentence

presented in [Se4] to drop the minimal rank assumption.

Theorem 1.22: Let T2(p) � EAE(p) be the subset of all specializations p0 2

EAE(p) of the de�ning parameters p that have witnesses with proof system of

depth 2. Then T2(p) is in the Boolean algebra of AE sets.

Proof: In this section we present a proof of Theorem 1.22 under the minimal

(graded) rank assumption, i.e., we will assume that if any of the graded limit

groups �WPGL(y; hR; w; p; a) or �WPGL(y; hS ; w; p; a) admit an epimorphism

� onto a free group Fk � F where �(< p >) < Fk, then F is the trivial group.

Before we start with the proof of Theorem 1.22 under the minimal (graded)

rank assumption, we need the notion of a valid PS statement.

De�nition 1.23: Suppose that a specialization p0 2 EAE(p) has a witness w0

with a proof system of depth 2 (i.e., p0 2 T2(p)). The structure of the tree of

strati�ed sets guarantees the existence of a rigid or a strictly solid family of spe-

cializations (h10; w0; p0) of one of the rigid or solid limit groupsWPH(h;w; p; a)

with the following properties:

(i) For every rigid or solid limit group WPHG(g1; h1; w; p; a) there are at

most (globally) boundedly many rigid or strictly solid families of special-

izations of the form (g10 ; h
1
0; w0; p0; a) of WPHG(g1; h1; w; p; a), where the

strictly solid families are with respect to the given set of closures associated

with (some of the other (deeper in the Makanin{Razborov diagram)) limit
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groups WPHG(g1; h1; w; p; a), and their associated limit groups (their

successors in the tree of strati�ed sets) WPHGH(h2; g1; h1; w; p; a)

(strictly solid families with respect to a given set of closures are presented

in de�nition 2.12 in [Se3]). The elements (g10 ; h
1
0; w0; p0) that appear in a

proof statement are representatives for all the boundedly many classes in

the various strictly solid families that do not factor through the covering

closure associated with (some of) the other (deeper) limit groupsWPHG.

(ii) The specialization (h10; w0; p0; a) is a rigid or a strictly solid specialization

of the corresponding limit group WPH , and it cannot be extended to a

specialization that factors through a graded resolution associated with one

of the limit groups �WPGL(y; h; w; p; a), so that (a �ber of) this graded

resolution corresponds to the entire free group Fy.

(iii) For each of the (boundedly many) rigid or strictly solid families of special-

izations (g10 ; h
1
0; w0; p0; a) there exists a �nite collection of rigid or strictly

solid families of specializations (h20; g
1
0; h

1
0; w0; p0; a) of the rigid or solid

limit groups WPHGH(h2; g1; h1; w; p; a), so that the (ungraded) reso-

lutions corresponding to the specializations (h20; g
1
0 ; h

1
0; w0; p0; a) form a

covering closure of the (ungraded) resolution corresponding to the spe-

cialization (g10 ; h
1
0; w0; p0; a).

(iv) For each of the (boundedly many) rigid or strictly solid families of special-

izations (h20; g
1
0; h

1
0; w0; p0; a) there exists no specialization g20 of the vari-

ables g2 so that the specialization (g20 ; h
2
0; g

1
0 ; h

1
0; w0; p0; a) factors through

one of the (rigid or solid) limit groups WPHGHG(g2; h1; g1; h1; w; p; a).

We call a specialization of the form

((h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

that satis�es conditions (i){(iv) above, where the integer d(ps) depends on the

�xed proof system, a valid PS statement.

The tree of strati�ed sets guarantees that there are �nitely many proof sys-

tems of depth 2. Once we �x a proof system of depth 2, we have �xed the rigid or

solid limit groupWPH(h;w; p; a), the number of rigid or strictly solid families of

specializations of each of the limit groups WPHG(g1; h1; w; p; a) (with respect

to the associated set of closures), and the number of rigid or strictly solid families

of specializations of each of the limit groups WPHGH(h2; g1; h1; w; p; a). We

start the analysis of the set T2(p) by enumerating all the possible proof systems,

and for each proof system we collect all possible (con�gurations of) valid PS

statements ((h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a) (the integer d(ps) depends
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on the �xed proof system).

In the tree of strati�ed sets, each graded limit group WPHGH is a successor

of a graded limit group WPHG. With each graded limit group WPHG there

is an associated graded resolution, and with its successor WPHGH there is

an associated graded formal closure of that graded resolution (graded formal

closures are presented in de�nition 3.4 in [Se2]). In general, with a (graded)

closure we associate the closure domain (de�nition 1.16 in [Se2]), which is a

coset of a �nite index subgroup of the direct sum of the (pegged) abelian groups

that appear along the various levels of the closure. Note that by construction,

the closure domain is speci�ed by a system of (integer) Diophantine equations

that are associated with the closure ([Se2], 1.16).

To each valid PS statement ((h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a) we add

specializations that extend the specializations of the limit groups WPHGH in

the valid PS statement, by adding specializations of primitive roots of edge

groups and pegged abelian vertex groups in the graded abelian JSJ decomposi-

tions of the limit groups WPHG that occur along the given proof system (i.e.,

we add specializations of primitive roots of a �xed set of elements in the valid

PS statement). We further add specializations that demonstrate how all the

multiples of these primitive roots, multiples up to the least common multiple of

the indices of the �nite index subgroups associated with the closure domains as-

sociated with the various groups WPHGH , can be extended to specializations

that factor through the �nite set of (graded formal) closures speci�ed by the

valid PS statement (in fact, these closures are speci�ed by the proof system,

not just by the proof statement), i.e., the closures associated with the various

limit groups WPHGH . This is equivalent to demonstrating that the multiples

of the primitive roots do belong to the union of the closure domains associated

with the (integer) Diophantine systems of equations associated with the closures

speci�ed by the proof system, hence it is equivalent to showing that the given

set of closures (associated with the specializations of the groupsWPHGH) is a

covering closure for the ungraded resolutions associated with the specializations

(speci�ed by the proof statement) of the groups WPHG.

For brevity, in the sequel we still call such extended specializations valid PS

statements and denote them (r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a). By the

standard arguments presented in section 5 of [Se1], the entire collection of (ex-

tended) valid PS statements factor through a (canonical) collection of maximal

limit groups PSHGH1; : : : ; PSHGHm, which we call PS (proof system) limit

groups.
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By construction, for each p0 2 T2(p) there exists some witness w0 and a proof

system, so that a specialization of the form

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

that is associated with the specialization p0, the witness w0 and the proof sys-

tem, is a valid PS statement (i.e., it satis�es conditions (i){(iv) of De�nition

1.23), and factors through a PS limit group PSHGHj . Naturally, we will try

to understand the set of valid PS statements

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

that factor through a given PS limit group PSHGHj . Our main goal will be to

show that these valid PS statements are \generic" in some Diophantine sets that

are iteratively associated with each of the PS limit groups PSHGH . Before

we start with the (technically involved) analysis in the general case, we analyze

those PS limit groups which are rigid or solid with respect to the parameter

subgroup P =< p >.

Proposition 1.24: Suppose that a PS limit group PSHGH is rigid or solid

with respect to the parameter subgroup P =< p >, and if it is solid suppose

that the subgroup WP =< w; p > is a subgroup of the distinguished vertex

group in the graded JSJ decomposition of PSHGH (i.e., the vertex stabilized

by the subgroup AP =< a; p >). The set of specializations p0 that have a

witness w0, and a rigid or strictly solid specialization

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

of PSHGH which is a valid PS statement, which we denote PS(p), is in the

Boolean algebra of AE sets.

Proof: Since we have assumed that the PS limit group PSHGH is either

rigid or solid with respect to the parameter subgroup P =< p >, with each

specialization p0 of the de�ning parameters P there exist boundedly many rigid

or strictly solid families of specializations

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

of the limit group PSHGH . If the PS limit group is solid, we assume that

the subgroup WP =< w; p > is elliptic in its graded JSJ decomposition, hence

a PS statement in a strictly solid family is a valid PS statement if and only
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if every other PS statement that belongs to the same strictly solid family is a

valid PS statement.

By section 3 of [Se3] we already know that the set of specializations of the

de�ning parameters P for which there are precisely s rigid or strictly solid

specializations of the PS limit group PSHGH is in the Boolean algebra of

AE sets. We de�ne the set PS(p) by a predicate which is a disjunction of

conjunctions of an EA and an AE predicate.

Since by theorems 2.5 and 2.9 in [Se3] there is a bound on the number of rigid

and strictly solid families of specializations of the PS limit group PSHGH for

every possible value of the de�ning parameters p, to de�ne our predicate we

count on s, the number of either rigid or strictly solid families of specializations

of the given PS limit group PSHGH , and for each s we de�ne a predicate

which is a conjunction of an EA and an AE predicate as follows.

(1) The EA predicate veri�es that there exist (at least) s rigid or strictly solid

families of specializations

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

of the PS limit group PSHGH .

(2) The AE predicate veri�es that there exist at most s rigid or strictly solid

families of specializations

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

of the PS limit group PSHGH .

(3) TheAE predicate veri�es that at least one of the s PS statements is a valid

PS statement. It veri�es that the (restricted) specialization (h10; w0; p0)

(which is part of the PS statement) is a rigid or strictly solid special-

ization of the rigid or solid limit group WPH , that each specialization

(g1j ; h
1
0; w0; p0; a) is a rigid or strictly solid specialization of the correspond-

ing rigid or solid limit group WPHG(g1; h1; w; p; a) (with respect to the

given set of closures | see de�nition 2.12 in [Se3]), and that each couple of

rigid or strictly solid specializations (g1j ; h
1
0; w0; p0; a) are di�erent or be-

long to distinct strictly solid families, in correspondence. It further veri�es

that the specializations (h2j ; g
1
j ; h

1
0; w0; p0) are rigid or strictly solid spe-

cializations of the corresponding (rigid or solid) limit groups WPHGH ,

and that the corresponding (ungraded) resolutions form a covering closure

of the resolutions associated with the specializations (g1i ; h
1
0; w0; p0).

Finally, it veri�es that there are no extra rigid or strictly solid specializations

(g10 ; h
1
0; w0; p0) (with respect to the given set of closures) that are not speci�ed by
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the PS statement, and that for no specialization g20 the combined specialization

(g20 ; h
2
j ; g

1
j ; h

1
0; w0; p0) factors through any of the limit groupsWPHGHG.

Proposition 1.24 proves Theorem 1.22 in case the PS limit groups PSHGH

are rigid or solid with no 
exible quotients, and the subgroupWP =< w; p > is

a subgroup of the distinguished vertex group in the graded JSJ decomposition of

PSHGH . In this special case, the number of possible witnesses w0 associated

with each specialization p0 of the de�ning parameter p is �nite and globally

bounded. In the general case, the number of possible witnesses associated with

each specialization p0 of the de�ning parameters p is in�nite, hence there is no

direct way to present the set T2(p) using a predicate which is in the Boolean

algebra of AE sets. Our goal in the analysis of the set T2(p) in the general case is

to �nd iteratively �nitely many Diophantine sets associated with each of the PS

limit groups PSHGH , so that if a specialization p0 of the de�ning parameters

p is in the set T2(p), then a generic specialization of the variables w in at least

one of the Diophantine sets is a witness for the corresponding specialization

p0 of the de�ning parameters P . To achieve this goal, i.e., to �nd the �nitely

many Diophantine sets associated with each of the PS limit groups PSHGH ,

we present a \trial and error" procedure, similar to the one used to construct

the tree of strati�ed sets. The output of the iterative \trial and error", i.e., the

�nitely many Diophantine sets associated with each PS limit group PSHGH ,

is later used to derive a predicate in the Boolean algebra of AE predicates that

describes the set T2(p).

Let P =< p > be the group of de�ning parameters. With each of the limit

groups PSHGHi we associate its canonical graded taut Makanin{Razborov dia-

gram (with respect to the parameter subgroup P ), which contains �nitely many

graded resolutions which we denote PSHGHResj , and each graded resolution

PSHGHResj is de�ned over the rigid or solid limit group PTj(t; p; a). We will

treat the limit groups PSHGHi and their graded resolutions PSHGHResj and

terminal rigid or solid limit groups PTj(t; p; a) in parallel, hence we will omit

the indices of the limit group and its graded resolution. In the sequel, we will

treat each stratum in the singular locus of the graded resolutions PSHGHRes

separately, and do it in parallel.

We start our analysis with the de�nition of Non-Rigid and Non-Solid PS

limit groups.

De�nition 1.25: Let

Comp(PSHGHRes)(v; r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h1; w; p; a)
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be the completion of the graded resolution PSHGHRes. We look at the en-

tire collection of all test sequences that factor through the graded completion

Comp(PSHGHRes):

fvn; rn; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; pn; a)g

(see de�nitions 1.20 and 3.1 in [Se2] for the notion of a test sequence of a

completed graded resolution).

We start by looking at those graded test sequences for which the special-

ization (h1(n); wn; pn; a) is supposed to be rigid according to the proof sys-

tem, but is in fact 
exible, or for some index j for which the specialization

(g1j (n); h1(n); wn; pn; a) or the specialization (h2j (n); g
1
j (n); h1(n); wn; pn; a) is

supposed to be rigid according to our �xed proof system, but these special-

izations are 
exible, for every index n. The collection of all these \non-rigid

PS" (graded) test sequences factor through a (canonical) collection of maxi-

mal Non-Rigid PS limit groups NRgdPS1; : : : ; NRgdPSq. The analysis of

graded formal limit groups presented in section 3 of [Se2] associates (canonically)

with each Non-Rigid PS limit group, NRgdPSi, a graded formal Makanin{

Razborov diagram, and each such graded formal resolution is in fact a one-level

graded formal resolution, which is a graded formal closure of the graded resolu-

tion PSHGHRes, GFCl(PSHGHRes) (graded formal closures are presented

in de�nition 3.4 in [Se2]). Clearly, no specialization

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

that factors through the resolution PSHGH , and which is a valid PS statement

with respect to our �xed proof system, factors through one of theNRgdPS limit

groups NRgdPS1; : : : ; NRgdPSq.

After de�ning Non-Rigid PS limit groups, we continue by de�ning

Non-Solid PS limit groups. We look at those graded test sequences for

which the specialization (h1(n); wn; pn; a), or for some index j the specialization

(g1j (n); h1(n); wn; pn; a), or the specialization (h2j (n); g
1
j (n); h1(n); wn; pn; a), is

supposed to be strictly solid (with respect to the given covering closures)

according to our �xed proof system, but these specializations are not strictly

solid with respect to the given set of closures, for every index n. For each

specialization

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

in such a \non-solid PS" (graded) test sequence, we add variables that

\demonstrate" that the speci�c specialization is indeed not strictly solid, i.e.,



44 Z. SELA Isr. J. Math.

it factors through a closure associated with some 
exible quotient of the corre-

sponding solid limit group. The collection of all these \non-solid PS" (graded)

test sequences, together with the extra variables that \demonstrate" they are

indeed \non-solid PS" test sequences, factor through a (canonical) collection

of maximal Non-Solid PS limit groups NSldPS1; : : : ; NSldPSr. The

analysis of graded formal limit groups presented in section 3 of [Se2] asso-

ciates (canonically) with each Non-Solid PS limit group NSldPSi a graded

formal Makanin{Razborov diagram, and each such graded formal resolution

terminates with a graded formal closure of the graded resolution PSHGHRes,

GFCl(PSHGHRes). Clearly, no specialization

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

that factors through the resolution PSHGH , and which is a valid PS statement

with respect to our �xed proof system, factors through any of the graded formal

closures GFCl(PSHGHRes) that are associated with one of the non-solid limit

groups NSldPS1; : : : ; NSldPSr.

After analyzing the collection of test sequences in which parts of virtual proofs

(i.e., specializations of the PS limit groups) that are supposed to be either rigid

or strictly solid specializations of rigid and solid limit groups constructed along

the tree of strati�ed sets are in fact non-rigid or non-strictly-solid, we need to col-

lect all the test sequences that factor through the PS resolutions PSHGHRes,

and for which for at least one of the tuples (h2j (n); g
1
j (n); h1(n); wn; pn; a) there

exists some specialization g2j (n) so that the (combined) specialization

(g2j (n); h
2
j (n); g

1
j (n); h1(n); wn; pn; a)

factors through (at least) one of the limit groups WP (HG)2 =WPHGHG.

De�nition 1.26: Let

Comp(PSHGHRes)(v; r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h1; w; p; a)

be the completion of the graded resolution PSHGHRes. We look at the en-

tire collection of all test sequences that factor through the graded completion

Comp(PSHGHRes):

fvn; rn; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; pn; a)g:

We look at those graded test sequences for which for some index j there exists

some specialization g2j (n) so that the combined specialization

(g2j (n); h
2
j (n); g

1
j (n); h1(n); wn; pn)
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that is not supposed to factor through any of the limit groups WP (HG)2 =

WPHGHG according to our �xed proof system (which has depth 2), fac-

tors through at least one of these limit groups. The collection of all these

(graded) test sequences factor through a (canonical) collection of maximal

Left PS limit groups LeftPS1; : : : ; LeftPSm. The analysis of graded for-

mal limit groups presented in section 3 of [Se2] associates (canonically) with

each Left PS limit group LeftPSi a graded formal Makanin{Razborov dia-

gram, and each such graded formal resolution is in fact a one-level graded reso-

lution, which is a graded formal closure of the graded resolution PSHGHRes,

GFCl(PSHGHRes), that we denote LeftPSRes and call Left PS resolution.

Clearly, no specialization (r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a) that fac-

tors through the resolution PSHGH , and which is a valid PS statement with

respect to our �xed proof system, factors through one of the LeftPS limit

groups LeftPS1; : : : ; LeftPSm, and their associated Left PS resolutions.

The graded formal closures associated with the collection of non-rigid and

non-solid and Left PS limit groups determine those \generic" specializations

that factor through the various PS resolutions PSHGHRes but fail to be valid

PS statements with respect to the (�xed) proof system. \Generic" specializa-

tions that factor through the PS resolutions PSHGHRes can fail to be valid

PS statements in other ways as well.

To a valid PS statement we have added additional variables, so that their

specializations are supposed to be primitive roots of the specializations of pegs

of abelian groups that appear in the graded formal closures associated with

the groups WPHGH , in order to demonstrate that the given sets of closures

(speci�ed by the proof system) form a covering closure (for the specializations

given by the proof statement). This demonstration remains valid if the orders

of the specializations of the variables that are supposed to be primitive roots are

prime to the indices of the �nite index subgroups associated with the (�nitely

many) closures. The demonstration may fail to be valid if the orders of these

specializations are not prime to the order of the �nite index subgroups. To check

if this failure occurs for a generic specialization of a PS resolution, PSHGHRes,

we construct Root PS limit groups and resolutions.

De�nition 1.27: Let

Comp(PSHGHRes)(v; r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h1; w; p; a)

be the completion of the graded resolution PSHGHRes. We look at the en-

tire collection of all test sequences that factor through the graded completion
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Comp(PSHGHRes):

fvn; rn; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; pn; a)g:

We look at those graded test sequences for which, for some index j, there

exists a specialization of a variable that is supposed to be a primitive root of a

specialization of a peg of some abelian group that appears in the graded formal

closure associated with the corresponding group WPHGH , but in fact the

specialization of this variable has a root of order that divides the least common

multiple of the indices of the �nite index subgroups associated with the (�nitely

many) graded formal closures (that are associated with the various limit groups

WPHGH).

The collection of all these (graded) test sequences factor through a (canonical)

collection of maximal Root PS limit groups RootPS1; : : : ; RootPSm. The

analysis of graded formal limit groups presented in section 3 of [Se2] associates

(canonically) with each Root PS limit group RootPSi a graded formal Makanin{

Razborov diagram, and each such graded formal resolution is in fact a one-level

graded resolution, which is a graded formal closure of the graded resolution

PSHGHRes, GFCl(PSHGHRes), that we denote RootPSRes and call Root

PS resolution. Clearly, no specialization

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

that factors through the resolution PSHGH , and which is a valid PS statement

with respect to our �xed proof system, factors through one of the RootPS limit

groups RootPS1; : : : ; RootPSm, and their associated Root PS resolutions.

So far we constructed auxiliary bundles, for which if in a given �ber a \generic"

PS statement fails to be a valid PS statement, then any PS statement in that

�ber fails to be a valid PS statement, i.e., the whole �ber can be avoided. The

next auxiliary bundle that we construct using \generic" specializations that fail

to be valid PS statements has the same structure as the previous ones; however,

in this bundle it may be that even though \generic" PS statements in a given

�ber fail to be valid PS statements, the �ber may contain (non-\generic") valid

PS statements.

This next bundle we construct collects all the generic PS statements for

which some of the limit groups WPHG have additional rigid or strictly solid

specializations (with respect to the given set of closures) that are not speci�ed

by the given \generic" PS statements. The \generic" specializations for which
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there exists a \surplus" in rigid or strictly solid specializations are collected in

Extra PS (graded) limit groups and graded resolutions.

De�nition 1.28: Let

Comp(PSHGHRes)(v; r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h1; w; p; a)

be the completion of the graded resolution PSHGHRes. We look at the en-

tire collection of all test sequences that factor through the graded completion

Comp(PSHGHRes)

fvn; rn; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; pn; a)g:

By theorems 2.5 and 2.13 of [Se3], for each specialization (h10; w0; p0; a) there ex-

ist boundedly many rigid or strictly solid families of specializations (g10 ;h
1
0;w0; p0)

of each of the rigid or solid limit groups WPHG(g1; h1; w; p; a) (strictly solid

with respect to the given set of closures | see de�nition 2.12 in [Se3]). We look

at those graded test sequences for which, for every index n, there are rigid or

strictly solid families of specializations of the form (g1(n); h1(n); wn; pn) which

are not in the rigid or strictly solid families of each of the specializations spec-

i�ed by the PS statement (g1j (n); h1(n); wn; pn), for every index j. To each

specialization

(vn; rn; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; pn; a));

we add variables for the additional rigid specializations or for almost shortest

specializations (see de�nition 2.8 in [Se3]) of the additional strictly solid families

of specializations. Since by theorems 2.5 and 2.13 of [Se3] there exists a global

bound on the number of additional rigid or strictly solid families of specializa-

tions (with respect to a given set of closures), the number of additional variables

we need to add is globally bounded.

The collection of all these \Extra PS" (graded) test sequences (including the

added variables) factor through a (canonical) collection of maximal Extra

PS limit groups ExtraPS1; : : : ; ExtraPS`. The analysis of graded formal

limit groups presented in section 3 of [Se2] associates (canonically) with each

Extra PS limit group ExtraPSi a graded formal Makanin{Razborov diagram,

and each such graded formal resolution is in fact a one-level graded resolu-

tion, which is a graded formal closure of the graded resolution PSHGHRes,

GFCl(PSHGHRes). We denote such an Extra PS (graded) resolution

ExtraPSRes(u; v; r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h1; w; p; a)
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(the variables u are the variables added for the extra rigid and strictly solid

specializations).

The Extra PS limit groups and their associated graded formal closures collect

all the \generic" specializations (i.e., all the test sequences) of the PS limit

groups PSHGH for which there exist rigid or strictly solid families (with respect

to the given set of closures) in addition to those speci�ed by the specializations

declared in the proof statement. For a general specialization of the PS limit

groups PSHGH , i.e., a specialization which is not necessarily \generic", it may

as well be that the additional rigid or strictly solid specializations, collected

by the extra PS limit groups and their associated graded formal closures, do

become non-rigid or non-strictly-solid or do coincide with the rigid or strictly

solid families of the various specializations (g1j ; h
1
0; w0; p0) declared in the proof

statement. To collect all the specializations that factor through one of the extra

PS graded formal closures associated with one of the extra PS limit groups

ExtraPS, in which such a \collapse" of the additional rigid and strictly solid

families occurs, we need to de�ne the Collapse Extra PS (graded) limit groups

and their associated (Collapse Extra PS) graded resolutions. We start by listing

all possible collapsings of a specialization of an Extra PS resolution.

De�nition 1.29: Let ExtraPSRes be one of the Extra PS graded resolutions

associated with one of the Extra PS graded limit groups ExtraPSi. Note that

by construction, ExtraPSRes is a graded formal closure of the PS resolution

PSHGHRes with which we started the analysis.

We will say that a specialization that factors through the Extra PS graded

resolution ExtraPSRes is collapsed if the variables added for each of the

additional rigid or strictly solid families of specializations (i.e., the ones that

were not speci�ed by the proof system) satisfy one of the following:

(1) A specialization of the variables added for one of the additional rigid

specializations becomes 
exible.

(2) A specialization of the variables added for one of the additional rigid spe-

cializations becomes equal to one of the rigid specializations speci�ed by

the proof system, i.e., with one of the specializations g1j in the specializa-

tion

(u; v; r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0):

(3) A specialization of the variables added for one of the additional strictly

solid families of specializations (with respect to the given set of closures

| ([Se3], 2.12)) factors through one of the given closures associated with
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a 
exible quotient associated with the corresponding solid limit group (see

de�nitions 1.5 and 2.12 in [Se3]).

(4) A specialization of the variables added for one of the additional strictly

solid families of specializations belongs to one of the strictly solid families

of specializations speci�ed by the proof system, i.e., with a family of one

of the strictly solid families of specializations g1j in the specialization

(u; v; r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0):

Note that, by de�nition, there are only �nitely many ways that a specialization

that factors through the Extra PS resolution, ExtraPSRes, can become a

collapsed specialization. We will call each way a specialization can become

collapsed a collapse form.

Having de�ned the �nitely many possibilities for collapse forms, we collect

all the specializations that are collapsed specializations in �nitely many graded

resolutions which we call Collapse Extra PS (graded) resolutions.

De�nition 1.30: Let ExtraPSRes be one of the extra PS graded resolutions

associated with one of the extra PS graded limit groups ExtraPSi. Note that,

by construction, ExtraPSRes is a graded formal closure of the PS resolution

PSHGHRes with which we started the analysis. With the Extra PS resolution

we �x one of the (�nitely many) collapse forms associated with it.

With each collapsed specialization that factors through the extra PS

resolution

(u0; v0; r0; (h
2
1(0); g

1
1(0)); : : : ; (h

2
d(ps)(0); g

1
d(ps)(0)); h1(0); w0; p0; a))

which is collapsed in the particular collapse form we have �xed, we associate

specializations of additional variables fcg, c0, which demonstrate that the spe-

cializations of the additional variables added for one of the additional strictly

solid families of specializations are either non-strictly solid with respect to the

given set of closures, or belong to one of the strictly solid families of specializa-

tions speci�ed by the proof system, according to our �xed collapse form. We

pick the specialization c0 to be the shortest among all possible ones. By our

standard method presented in section 5 of [Se1], the collection of specializations

(c0; u0; v0; r0; (h
2
1(0); g

1
1(0)); : : : ; (h

2
d(ps)(0); g

1
d(ps)(0)); h1(0); w0; p0; a));

which are collapsed and demonstrate the collapse of the specializations of vari-

ables added for additional rigid and strictly solid families, factor through a
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(canonical) collection of �nitely many maximal limit groups which we call

Collapse Extra PS (graded) limit groups, denoted CollapsExtraPSi.

Note that each collapsed specialization restricts, in particular, to a special-

ization of the completed resolution Comp(PSHGHRes), so given one of the

�nitely many Collapse Extra PS limit groups, CollapseExtraPSi, we are able

to use the iterative procedure for the analysis of quotient (multi-graded) reso-

lutions presented in this section (1.5{1.17) and based on section 1 of [Se4], to

get a (canonical) collection of �nitely many (graded) resolutions that contain

the entire collection of (collapsed) specializations

(c0; u0; v0; r0; (h
2
1(0); g

1
1(0)); : : : ; (h

2
d(ps)(0); g

1
d(ps)(0)); h1(0); w0; p0; a))

that factor through the Extra PS resolution ExtraPSRes and the collapsed

extra PS limit group CollapseExtraPSi. We call such a resolution a Collapse

Extra PS (graded) resolution, and denote it CollapseExtraPSResj .

The Collapse Extra PS resolutions were obtained using the iterative proce-

dure for the analysis of quotient resolutions presented earlier in this section.

This iterative procedure was constructed in the �rst section of [Se4] in order to

control the complexity of the obtained quotient resolutions. The Collapse Extra

limit groups CollapseExtraPS are not quotients of the completed (graded) res-

olution Comp(PSHGH), since we have added the variables fug to demonstrate

extra rigid and strictly solid families of solutions to obtain the Extra PS reso-

lution ExtraPSRes, and additional variables fcg to demonstrate their collapse

according to the �xed collapse form.

The variables fug were added to demonstrate extra rigid and strictly solid so-

lutions, hence the extra PS resolutions, ExtraPSRes, are in fact graded formal

closures of the graded resolution PSHGHRes we have started with. There-

fore, apart from adding various roots to abelian vertex groups in the graded

abelian JSJ decompositions associated with the various levels of the completion

Comp(PSHGHRes), the Extra PS resolution ExtraPSRes may di�er from

the completion Comp(PSHGHRes) only in the graded abelian JSJ decompo-

sition associated with the terminal (bottom) level, in case the terminating limit

group of the graded resolution ExtraPSRes is solid.

The variables fcg were added to demonstrate that the specializations of

the variables added for extra strictly solid families of solutions actually fac-

tor through one of the given closures associated with 
exible quotients of the

corresponding solid limit group, or they belong to the same strictly solid family

as one of the strictly solid families speci�ed by the proof statement. By the min-
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imal graded rank assumption, each of the limit groups WPHG and WPHGH

do not admit a map onto a free group Fk �F in which the factor F is non-trivial

and the subgroup AP =< a; p > is mapped onto Fk . Clearly, there are natural

maps from the completion, Comp(PSHGHRes), to each of the limit groups

that appear along the graded resolution CollapseExtraPSRes. By the way

the iterative procedure for the analysis of quotient resolutions that was used to

construct the Collapse Extra PS resolutions collapseExtraPSRes is de�ned, it

follows that:

(i) If a graded limit group associated with one of the levels of the graded res-

olution CollapseExtraPSRes admits a graded free decomposition, i.e., a

non-trivial free decomposition in which the subgroup AP =< a; p > is

contained in one of the factors, then necessarily the entire image of the

completion Comp(PSHGHRes) is contained in the factor that contains

the subgroup AP . Hence, if we modify the other factor to be the iden-

tity, the specializations of the completion Comp(PSHGHRes) that factor

through CollapseExtraPSRes will not be changed. Therefore, we may

assume that no limit group along the resolution CollapseExtraPSRes

admits a (non-trivial) graded free decomposition.

(ii) Let Q be a QH vertex group that appears in one of the graded abelian JSJ

decompositions associated with the various levels along the graded resolu-

tion CollapseExtraPSRes except, perhaps, the bottom level (in case the

terminating limit group of the graded resolution CollapseExtraPSRes

is solid). Then there exists a subgroup of �nite index in (a conjugate

of) the QH subgroup Q which is in the image of the completion

Comp(PSHGHRes).

(iii) Suppose that all theQH vertex groups in the completion Comp(PSHGH)

are surviving QH subgroups and let A be an abelian vertex group in one of

the graded abelian JSJ decompositions associated with the various levels

along the graded resolution CollapseExtraPSRes except, perhaps, the

bottom level. Then there exist conjugates of subgroups in the image of

the completion Comp(PSHGHRes) which generate a subgroup of �nite

index in A.

Since otherwise, either the group PSHGH admits a map onto a free group

Fk � F with a non-trivial F , so that AP =< a; p > is mapped onto F , in

contradiction to our assumptions, or the specializations of the variables c can

be modi�ed so that a QH vertex group will be eliminated or the rank of an

abelian vertex group will be decreased, or a QH vertex group can be pushed to
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the bottom level of the graded resolution CollapseExtraPSRes (see section 1

of [Se4] for a detailed discussion of the iterative procedure that constructs the

graded resolutions CollapseExtraPSRes).

Given these properties of the Collapse Extra resolutions

CollapseExtraPSRes;

we need to slightly modify the way we measure their complexity in order to be

able to control it in terms of the complexity of the completion

Comp(PSHGHRes)

with which we have started.

De�nition 1.31: Let

CollapseExtraPSRes(c; u; v; r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h1; w; p; a)

be one of the (well-structured, graded) Collapse Extra PS resolutions con-

structed by the iterative procedure for the analysis of quotient resolutions from

the Extra PS resolution ExtraPSRes.

Recall that we have set the complexity of a (completed) minimal rank reso-

lution (de�nition 1.14 in [Se4]) to be the tuple

Cmplx(Res(t; a)) =

((genus(S1); j�(S1)j); : : : ; (genus(Sm); j�(Sm)j); Abrk(Res(t; a)))

where the ordered couples (genus(Sj); j�(Sj)j) are associated with the QH sub-

groups that appear along the various levels of the resolution, and are ordered

in a decreasing lexicographical order. The abelian rank, Abrk(Res(t; a)), is the

sum

Abrk(Res(t; a)) = �(rk(Aj)� rk(eAj))

over the abelian vertex groups Aj that appear along the various levels of the

resolution, where eAj < Aj is the subgroup generated by the edge groups con-

nected to an abelian vertex group.

Let SubCollapseExtraPSRes be the subresolution induced by the image of

the completion of the PS resolution PSHGHRes, in the completion of the

Collapse Extra PS resolution, CollapseExtraPSRes (see section 3 of [Se4] for

the construction of the induced resolution).

We set the complexity of a Collapse Extra PS resolution,

CollapseExtraPSRes;
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to be the tuple

Cmplx(CollapseExtraPSRes) =

((genus(S1); j�(S1)j); : : : ; (genus(Sm); j�(Sm)j); Abrk(Res(t; a)))

where the ordered couples (genus(Sj); j�(Sj)j) are associated with those

QH subgroups that appear along the various levels of the Collapse Extra

PS resolution, and a conjugate of them intersects the induced resolution,

SubCollapseExtraPSRes, in a subgroup of �nite index. These couples are

ordered in a decreasing lexicographical order. The abelian rank,

Abrk(Res(t; a)), is the sum

Abrk(Res(t; a)) = �(rk(Aj)� rk(eAj))

over those abelian vertex groups Aj that appear along the various levels of the

resolution, and a conjugate of them intersects SubCollapseExtraPSRes in a

subgroup of �nite index. eAj < Aj is the subgroup generated by the edge groups

connected to the abelian vertex group.

Note that, by construction, the QH and abelian vertex groups that contribute

to the complexity of CollapseExtraPSRes include all the QH and abelian ver-

tex groups that appear in all levels of CollapseExtraPSRes above the terminal

level, and a subset of those that appear in the terminal level.

Once we have de�ned the complexity of the Collapse Extra PS resolutions

properly, the iterative procedure for the construction of quotient resolutions

(presented in section 1 of [Se4]) enables us to control the complexity of these res-

olutions by the complexity of the completion Comp(PSHGHRes) with which

we started.

Theorem 1.32: Let CollapseExtraPSRes be one of the graded resolutions

obtained from the Extra PS resolution ExtraPSRes, which is obtained from

the PS resolution PSHGHRes. Then

Cmplx(CollapseExtraPSRes) � Cmplx(Comp(PSHGHRes));

and in case of equality the two graded resolutions are compatible, i.e., the reso-

lution CollapseExtraPSRes is a graded formal closure of the graded resolution

PSHGHRes.

Proof: The resolutions CollapseExtraPSRes were constructed by the iterative

procedure for the analysis of quotient resolutions, hence the theorem follows
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using the same arguments used to prove Theorem 1.17, which is identical to the

argument used to prove theorem 1.15 of [Se4].

In case the complexity of a Collapse Extra PS resolution,

CollapseExtraPSRes;

is equal to the complexity of the resolution PSHGHRes, i.e., in case

CollapseExtraPSRes is a graded formal closure of the graded resolution

PSHGHRes, we call the resolution CollapseExtraPSRes a Generic Collapse

Extra PS resolution, and denote it GenericCollapseExtraPSRes.

To the list of non-Generic Collapse Extra PS resolutions we add resolu-

tions obtained from the Extra PS resolutions. Given an Extra PS resolution,

ExtraPSRes, we add roots to pegs of abelian groups that appear along the

various levels of ExtraPSRes. The roots are of orders that divide the least

common multiple of the �nite index subgroups associated with the various res-

olutions (graded formal closures) that were constructed from the corresponding

PS resolution, PSHGHRes. We analyze the resolutions obtained by adding

the roots in the same way we analyze Collapse PS limit groups. We add those

of the obtained resolutions that are not of maximal complexity to the list of

(non-Generic) Collapse Extra PS resolutions.

The PS limit groups PSHGH and their associated resolutions, together with

the non-rigid and non-solid PS limit groups and their associated graded resolu-

tions, the Left and the Root PS resolutions, the Extra PS resolutions and the

Collapse and the Generic Collapse Extra PS resolutions, enable us to present

the main principle which is the key in our general approach to the entire quan-

ti�er elimination process. Conceptually, we show that if a valid PS statement

factors through one of the resolutions PSHGHRes, then either there exists a

valid PS statement that factors through one of the Collapse Extra PS resolu-

tions associated with PSHGHRes which is not of maximal complexity (i.e., it

is not a Generic Collapse Extra PS resolution), and these have strictly smaller

complexity than the PS resolution, PSHGHRes, with which we started this

branch, or the �ber that contains the valid PS statement in the bundle associ-

ated with the PS resolution PSHGHRes contains a test sequence of valid PS

statements (i.e., a \generic" point in that �ber is a valid PS statement).

Theorem 1.33: Let PSHGHRes be one of the PS graded resolutions, and

suppose that there exists a valid PS statement

(r0; (h
2
1; g

1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)
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that factors through the completion of the resolution PSHGHRes with respect

to our �xed proof system. Then (at least) one of the following holds:

(1) There exists a test sequence of specializations

(vn; rn; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; p0; a))

that factor through the completion of the PS resolution PSHGHRes

(note that the specialization p0 of the de�ning parameters p is �xed along

the entire test sequence), for which the (restricted) specializations

((h21(n); g
1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; p0; a))

are valid PS statements (with respect to our �xed proof system).

(2) There exists a specialization

(c0; u0; v0; r0; (h
2
1; g

1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a))

that factors through one of the non-Generic Collapse Extra PS resolutions

CollapseExtraPSRes associated with the resolution PSHGHRes, i.e., a

collapse extra PS resolution for which

Cmplx(CollapseExtraPSRes) < Cmplx(Comp(PSHGHRes)):

Proof: Suppose that there exists a valid PS statement

(r0; (h
2
1; g

1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

that factors through the completion of the resolution PSHGHRes with respect

to our �xed proof system, and for no specialization (c0; u0; v0) the (combined)

specialization

(c0; u0; v0; r0; (h
2
1; g

1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a))

factors through one of the non-Generic Collapse Extra PS resolutions

CollapseExtraPSRes

associated with the resolution PSHGHRes, i.e., those for which

Cmplx(CollapseExtraPSRes) < Cmplx(Comp(PSHGHRes)):

If the collection of the ungraded resolutions covered by the Non-Rigid PS

resolutions, NRgdPSRes, the ungraded resolutions covered by the Non-Solid
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PS resolutions, NSldPSRes, and the ungraded resolutions covered by the Left

PS resolutions, LeftPSRes, and by the Root PS resolutions, RootPSRes,

associated with the graded PS resolution PSHGHRes form a covering closure

of all the ungraded resolutions covered by the graded resolution PSHGHRes,

then no valid PS statement of the form

(r0; (h
2
1; g

1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

factors through the completion of the resolution PSHGHRes.

Furthermore, if the collection of the ungraded resolutions covered by

the Non-Rigid PS resolutions, NRgdPSRes, the Non-Solid PS resolutions,

NSldPSRes, and the Left PS resolutions, LeftPSRes, and the Root PS

resolutions, RootPSRes, described above, together with the set of ungraded

resolutions covered by the extra PS resolutions, ExtraPSRes, from which we

take out the collection of specializations that factor through the set of Generic

Collapse Extra PS resolutions, form a covering closure of all the ungraded res-

olutions covered by the graded resolution PSHGHRes,

PSHGHRes(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h1; w; p0; a);

then for every valid PS statement of the form

(r0; (h
2
1; g

1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

that factors through the completion of the resolution PSHGHRes, there must

exist a specialization (c0; u0; v0) for which the combined specialization

(c0; u0; v0; r0; (h
2
1; g

1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a))

factors through one of the non-Generic Collapse Extra PS resolutions,

CollapseExtraPSRes.

Since we have assumed that there exists a valid PS statement that fac-

tors through the completion of the resolution PSHGHRes, and for which

there is no specialization (c0; u0; v0) for which the corresponding specializa-

tion is a factors through one of the non-Generic Collapsed Extra PS resolu-

tions CollapseExtraPSRes, the collection of ungraded resolutions covered by

the Non-Rigid PS resolutions, NRgdPSRes, the Non-Solid PS resolutions,

NSldPSRes, the Left PS resolutions, LeftPSRes, the Root PS resolutions,

RootPSRes, and the set of ungraded resolutions covered by the Extra PS reso-

lutions, ExtraPSRes, from which we take out those specializations that factor
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through ungraded resolutions that are covered by the Generic Collapse Extra

PS resolutions, described above, does not form a covering closure of the un-

graded resolutions covered by the PS resolution PSHGHRes.

Therefore, there must exist a test sequence

(vn; rn; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; p0; a))

of specializations that factor through the completion of the PS resolution

PSHGHRes, so that for every index n the corresponding specialization does not

factor through any of the Non-Rigid, Non-Solid or the Left or the Root PS

resolutions, NRgdPSRes, NSldPSRes and LeftPSRes and RootPSRes, and

if it factors through an Extra PS resolution, ExtraPSRes, then it can be ex-

tended to a specialization that factors through a Generic Collapse Extra PS

resolution associated with it. Hence, for large enough n, the corresponding

(restricted) specialization

((h21(n); g
1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; p0; a))

is a valid PS statement, so we have found a test sequence of valid PS statements

and the theorem follows.

Theorem 1.33 is the key point in our analysis of the set T2(p). Conceptually,

Theorem 1.33 reduces the analysis of the set T2(p) to the set of specializations

of the de�ning parameters P =< p > for which there exists a test sequence of

valid PS statements that factor through the various resolutions PSHGHRes.

PSHGHRes

CollapseExtraPS

Proposition 1.34: Let PSHGHRes be one of the (non-trivial) graded PS

resolutions. Let TSPS(p) be the set of specializations p0 of the de�ning para-

meters P =< p >, for which there exists a test sequence of specializations

(vn; rn; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; p0; a))
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that factor through the completion of the PS resolution PSHGHRes,

Comp(PSHGHRes), and restricts to a sequence of valid PS statements

((h21(n); g
1
1(n)); : : : ; (h

2
d(ps)(n); g

1
d(ps)(n)); h1(n); wn; p0; a)):

Then TSPS(p) is in the Boolean algebra of AE sets.

Proof: As we have already pointed out in the proof of Theorem 1.33, a spe-

cialization p0 of the de�ning parameters P =< p > satis�es p0 2 TSPS(p),

if and only if the collection of ungraded resolutions covered by the Non-Rigid

PS resolutions NRgdPSRes, the Non-Solid PS resolutions, the Left and the

Root PS resolutions, together with the set of ungraded resolutions covered by

the Extra PS resolutions, ExtraPSRes, from which we subtract the ungraded

resolutions covered by the Generic Collapse Extra PS resolutions, associated

with the ungraded resolution PSHGHRes, does not form a covering closure

of all the ungraded resolutions covered by the graded resolution PSHGHRes.

Therefore, to prove the proposition, we need to �nd a predicate in the Boolean

algebra of AE predicates that de�nes the set of specializations p0 for which there

exist ungraded resolutions associated with them that satisfy this \non-covering"

property.

By construction, there are �nitely many PS graded resolutions PSHGHRes,

NRgdPSRes, NSldPSRes, LeftPSRes, RootPSRes, ExtraPSRes, and

GenericCollapseExtraPSRes, and each of these graded resolutions terminates

in either a rigid or a solid graded limit group (with respect to de�ning parame-

ters P =< p >). To these resolutions we add a collection of graded resolutions

that indicate that certain pegs along one of these resolutions have a (non-trivial)

root of an order that divides the least common multiple of the indices of the

(�nite index) subgroups that are associated with the closures associated with

the various resolutions. These graded resolutions are constructed in the same

way RootPS was constructed (De�nition 1.27).

By the global bounds on the number of rigid solutions of a rigid limit group

([Se3], 2.5), and on the number of strictly solid families with respect to a given

set of closures of a solid limit group ([Se3], 2.13), for any specialization p0 of

the de�ning parameters P =< p >, there are �nitely many combinations for the

collections of ungraded resolutions covered by a PS resolution PSHGHRes, and

the collections of ungraded resolutions that are covered by the other (auxiliary)

graded resolutions associated with a PS resolution, PSHGHRes. These �nitely

many possibilities for the collections of ungraded resolutions form a strati�cation

of the set of specializations of the de�ning parameters, obtained from the bases
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of all the graded resolutions that have been constructed, simultaneously. A

specialization p0 is in the set TSPS(p) if and only if the ungraded resolutions

covered by these resolutions and associated with it are divided according to a

subset of these combinations and not according to the complement of this subset

of combinations (i.e., p0 2 TSPS(p) if and only if it belongs to certain strata in

the combined strati�cation, and not to the complement of these strata, but it

depends only on the stratum, not on the particular specialization). The set of

specializations p0 associated with a given combination of rigid and strictly solid

families of specializations (with respect to the given set of closures) of (�nitely

many) rigid and solid limit groups (a stratum in the simultaneous strati�cation)

can be de�ned using a (�nite) disjunction of conjunctions of an EA and an AE

predicate (see section 3 of [Se3]). Hence, a �nite union of such strata, the set

TSPS(p), is in the Boolean algebra of AE sets.

At this stage we have all the tools needed for showing that the set T2(p) is in

the Boolean algebra of AE sets. By construction, if p0 2 T2(p) then there must

exist a valid PS statement of the form

(r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

that factors through one of the PS resolutions PSHGHRes constructed with

respect to all proof systems of depth 2.

By Proposition 1.34, the sets TSPS(p) associated with the various PS resolu-

tions PSHGHRes, i.e., the sets of specializations p0 of the de�ning parameters

P =< p > for which there exists a test sequence that factors through any of

the PS resolutions PSHGHRes, and restricts to valid PS statements, are in

the Boolean algebra of AE sets. By Theorem 1.33, if there exists a valid PS

statement that factors through a PS resolution PSHGHRes, then either there

exists a test sequence that factors through that PS resolution, and restricts to

valid PS statements, or there must exist a specialization (c0; u0; v0), so that the

(combined) specialization

(c0; u0; v0; r0; (h
2
1; g

1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

factors through one of the Extra collapse PS resolutions, CollapseExtraPSRes,

associated with the PS resolution PSHGHRes, and for which

Cmplx(CollapseExtraPSRes) < Cmplx(Comp(PSHGHRes)):

We continue with each of the (non-Generic) Collapse Extra PS resolutions,

CollapseExtraPSRes, i.e., those that satisfy

Cmplx(CollapseExtraPSRes) < Cmplx(Comp(PSHGHRes))



60 Z. SELA Isr. J. Math.

in parallel. Exactly as we did with each of the PS resolutions PSHGHRes, we

associate (canonically) with such a resolution, CollapseExtraPSRes, its Non-

Rigid and Non-Solid PS resolutions, Left PS resolutions, Root PS resolutions,

Extra PS resolutions, and Collapse Extra PS resolutions. By Proposition 1.34

applied to the various resolutions CollapseExtraPSRes, the sets of specializa-

tions p0 of the de�ning parameters P =< p > for which there exists a test

sequence that factors through any of the resolutions CollapseExtraPSRes,

and restricts to valid PS statements, are in the Boolean algebra of AE sets.

By Proposition 1.33 applied to the various resolutions CollapseExtraPSRes,

if there exists a valid PS statement that factors through a resolution

CollapseExtraPSRes, then either there exists a test sequence that factors

through that extra collapse PS resolution, and restricts to valid PS statements,

or there must exist a specialization (c1; u1; v1), so that the (combined) special-

ization

(c1; u1; v1; c0; u0; v0; r0; (h
2
1; g

1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a)

factors through one of the Collapse Extra PS resolutions associated with the

resolution CollapseExtraPSRes so that their complexity is strictly smaller than

the complexity of CollapseExtraPSRes.

Continuing iteratively with the associated Collapse Extra resolutions of

strictly smaller complexity, we obtain a terminating iterative procedure by the

proof of Theorem 1.18 which is identical to the proof of theorem 1.18 of [Se4].

The iterative procedure we have constructed has to terminate with either a rigid

limit group with respect to the de�ning parameters P =< p >, or a solid limit

group in which the subgroup WP =< w; p > is contained in the distinguished

vertex group in the associated graded abelian JSJ decomposition.

By iteratively applying Proposition 1.33 to the various resolutions that ap-

pear along the iterative procedure, if there exists a valid PS statement that

factors through any of these resolutions, then either there exists a test sequence

that factors through one of these resolutions, and restricts to valid PS state-

ments, or there must exist a valid PS statement that factors through one of the

terminating rigid or solid limit groups.

By iteratively applying Proposition 1.34 to the various resolutions constructed

along the iterative procedure, the sets of specializations p0 of the de�ning param-

eters P =< p > for which there exists a test sequence that factor through any

of these resolutions, and restricts to valid PS statements, are in the Boolean

algebra of AE sets. By Proposition 1.24, the set of specializations p0 of the

de�ning parameters P =< p > for which there exists a valid PS statement



Vol. 150, 2005 DIOPHANTINE GEOMETRY OVER GROUPS V1 61

that factors through one of the terminating rigid or solid PS limit groups is

in the Boolean algebra of AE sets. The entire set T2(p) is precisely the set of

specializations p0 of the de�ning parameters P =< p > for which there exists a

valid PS statement, hence the set T2(p) is in the Boolean algebra of AE sets,

and the proof of Theorem 1.22 in the minimal (graded) rank case is completed.

At this stage we are �nally ready to show that the entire set EAE(p) is in

the Boolean algebra of AE sets. The tree of strati�ed sets has a �nite depth,

which (by de�nition) bounds the depth of all possible proof systems associated

with the tree of strati�ed sets. For each integer d, we set Td(p) to be the set of

specializations p0 of the de�ning parameters P =< p > for which there exists

a valid PS statement for some proof system of depth d. Clearly, EAE(p) =

T1(p) [ � � � [ Td0(p) where d0 is the depth of the tree of strati�ed sets. Hence,

to show that the set EAE(p) is in the Boolean algebra of AE sets, it is enough

to show that each of the sets Td(p) is in the Boolean algebra of AE sets.

By the structure of the tree of strati�ed sets, and the global bounds on the

possible numbers of distinct rigid and strictly solid families associated with each

stratum in this tree, given a �xed depth d there exist �nitely many possible proof

systems of depth d. Given a �xed proof system of depth d, which we denote

PS, we collect all its associated valid PS statements in a canonical collection of

�nitely many PS limit groups which we denote PS(HG)d�1H . With each PS

limit group PS(HG)d�1H we associate its canonical (strict Makanin{Razborov)

resolutions PS(HG)d�1HRes. With each of these PS resolutions we associate

(canonically) the set of Non-Rigid and Non-Solid PS resolutions, the Left PS

resolutions, the Root PS resolutions, the Extra PS resolutions, and the Collapse

Extra PS resolutions. In exactly the same way we handled the set T2(p), we

continue iteratively with those Collapse Extra PS resolutions that have strictly

smaller complexity to the next step. The iterative procedure we construct termi-

nates after �nitely many steps since the complexity of the obtained resolutions

strictly decreases in each step (Theorem 1.18). Theorem 1.33 applied itera-

tively to the resolutions along the iterative procedure implies that if there exists

a valid PS statement that factors along the resolution PS(HG)d�1HRes, then

either there exists a test sequence that factors through one of the resolutions

constructed along the iterative procedure, and restricts to valid PS statements,

or there exists a valid PS statement that factors through one of the terminal

rigid or solid PS limit groups. Theorems 1.34 and 1.24 applied to the various

resolutions that appear along the iterative procedure, and the terminal rigid or
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solid PS limit groups �nally imply that each of the sets Td(p) is in the Boolean

algebra of AE sets, hence the entire set EAE(p) is in the Boolean algebra of

AE sets, and the proof of Theorem 1.4 in the minimal (graded) rank case is

completed.

The proof of Theorem 1.4 shows that a set EAE(p) de�ned using a conjunc-

tion of a system of equalities and a system of inequalities,

EAE(p) = 9w 8y 9x �(x; y; w; p; a) = 1 ^	(x; y; w; p; a) 6= 1;

is in the Boolean algebra of AE sets. The generalization of that proof to a

set EAE(p) de�ned using a (�nite) disjunction of conjunctions of a system of

equalities and a system of inequalities,

EAE(p) = 9w 8y 9x (�1(x; y; w; p; a) = 1 ^	1(x; y; w; p; a) 6= 1) _ � � �

� � � _ (�r(x; y; w; p; a) = 1 ^	r(x; y; w; p; a) 6= 1);

is rather straightforward. Indeed, the only change required is in the construction

of the tree of strati�ed sets. In proving Theorem 1.4, i.e., when the predicate

de�ning the set EAE(p) is the conjunction of a system of equalities and a

system of inequalities, we have constructed the tree of strati�ed sets iteratively,

where in each step we have �rst collected all the formal solutions de�ned over

closures of the resolutions of the remaining y's from the previous step, and then

applied the collections of formal solutions to the set of the remaining y's from

the previous step, and analyzed the set of y's for which (at least) one of the

inequalities from our given system is in fact an equality when we substitute the

families of formal solutions we have collected, using an iterative procedure for

the analysis of quotient resolutions.

When the set EAE(p) is de�ned using a (�nite) disjunction of conjunctions

of a system of equalities and a system of inequalities, we work in parallel with

each of the conjunctions in each step of the iterative procedure that constructs

the tree of strati�ed sets. In each step of this iterative procedure, we do the

following for the indices j, 1 � j � r, in parallel. We �rst collect all the

formal solutions of the system of equalities �j(x; y; w; p; a) = 1 de�ned over

closures of the resolutions of the remaining y's from the previous step, and then

apply the collections of these formal solutions to the set of the remaining y's

from the previous step, and analyze the set of y's for which (at least) one of

the inequalities from the system 	j(x; y; w; p; a) is in fact an equality when we

substitute the families of formal solutions we have collected, using the iterative

procedure for the analysis of quotient resolutions.
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The termination of this modi�ed procedure for the construction of the tree

of strati�ed sets follows using the same argument used in proving Theorem 1.4

(Theorem 1.18). Given the tree of strati�ed sets, the analysis of the set EAE(p)

is identical to the analysis described in proving Theorem 1.4. This �nally shows

that the set EAE(p) is in the Boolean algebra of AE sets, also when EAE(p)

is de�ned using a (�nite) disjunction of conjunctions of a system of equalities

and a system of inequalities, and hence concludes the proof of Theorem 1.3 in

the minimal (graded) rank case.

2. The tree of strati�ed sets (general case)

To obtain quanti�er elimination of elementary predicates over a free group, our

goal is to show that the Boolean algebra of AE sets is invariant under projec-

tions. For presentation purposes, we presented our approach to the analysis of

the projection of the Boolean algebra of AE sets assuming the (graded) limit

groups that appear in our procedure are of minimal (graded) rank in the �rst

section of this paper. In this section we combine the approach presented in

the previous section, together with the concepts and techniques that appear in

section 4 of [Se4], to generalize the construction of the tree of strati�ed sets,

that is presented in the previous section assuming the limit groups in question

are of minimal (graded) rank. The tree of strati�ed sets constructed in this

section is combined with a generalization of the \sieve" method for identifying

witnesses presented in the next paper, to �nally prove the invariance of the

Boolean algebra of AE sets under projection in the general case.

By Lemmas 1.1 and 1.2, the analysis of the projection of the Boolean algebra

of AE sets reduces to the analysis of the projection of AE sets. Hence, in order

to prove the invariance of the Boolean algebra of AE sets under projection it is

enough to prove Theorem 1.3, i.e., to show that the projection of an AE set is

in the Boolean algebra of AE sets. As we did in the previous section, we will

start by proving Theorem 1.4, i.e., we will show that the projection of an AE

set is in the Boolean algebra of AE sets, in the case the AE set has the form

AE(w; p) = 8y 9x �(x; y; w; p; a) = 1 ^	(x; y; w; p; a) 6= 1:

The generalization to an arbitrary AE set, de�ned using a �nite disjunction

of conjunctions of equalities and inequalities, is fairly straightforward, and is

presented afterwards.

Throughout this section we will use the notions presented in the previous

section and in section 4 of [Se4]. Hence, we assume that the reader is already
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familiar with both. Since we are proving Theorems 1.3 and 1.4, we will use

the notation used in the statement of these theorems. Recall that in stating

Theorem 1.4 we de�ned the set AE(w; p) to be

AE(w; p) = 8y 9x �(x; y; w; p; a) = 1 ^	(x; y; w; p; a) 6= 1

and its projection EAE(p) to be

EAE(p) = 9w 8y 9x �(x; y; w; p; a) = 1 ^	(x; y; w; p; a) 6= 1;

and our goal is to show that the set EAE(p) is in the Boolean algebra of AE

sets. We start in the same way we started in the minimal (graded) rank case.

Let Fy be the free group Fy =< y1; : : : ; y` >, and let

 1(x; y; w; p; a) = 1; : : : ;  q(x; y; w; p; a) = 1

be the de�ning equations of the system 	(x; y; w; p; a) = 1. By ([Se2], 1.2)

for every p0 2 EAE(p), there exists some (witness) w0, and a formal solution

x = xw0;p0(y; a), so that the words corresponding to the de�ning equations of

the system �(xw0;p0(y; a); y; w0; p0; a) = 1 are trivial in the free group Fk �Fy =

< a; y >, and the sentence

9y  1(xw0;p0(y; a); y; w0; p0; a) 6= 1 ^ � � � ^  q(xw0;p0(y; a); y; w0; p0; a) 6= 1

is a true sentence in Fk .

By the construction of graded formal limit groups presented in section 3 of

[Se2], viewingWP =< w; p > as the parameter subgroup, one can associate with

the free group Fy and the system of equations �(x; y; w; p; a) = 1 a (canonical)

�nite collection of graded formal limit groups

GFL1(x; y; w; p; a); : : : ; GFLr(x; y; w; p; a);

so that every formal solution x = xw0;p0(y; a) of the system �(x; y; w; p; a) = 1

factors through at least one of the resolutions of the graded formal Makanin{

Razborov diagrams of the graded formal limit groups

GFL1(x; y; w; p; a); : : : ; GFLr(x; y; w; p; a):

Viewing WP =< w; p > as the parameter subgroup, each graded formal

resolution in the graded formal Makanin{Razborov diagrams of the graded

formal limit groups GFL1(x; y; w; p; a); : : : ; GFLr(x; y; w; p; a) terminates in

either a rigid formal limit group of the form WPRgd(hR; w; p; a) � Fy, where
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WPRgd(hR; w; p; a) is a rigid (not formal!) graded limit group (with respect

to WP ), or in a solid formal limit group of the form WPSld(hS; w; p; a) � Fy,

where WPSld(hS; w; p; a) is a solid (not formal!) graded limit group. Note

that by ([Se3], 2.5), for each specialization (w0; p0) there exists a global bound

on the number of rigid solutions of the form (hR; w0; p0; a) of any of the rigid

graded limit groupsWPRgd(hR; w; p; a), and by ([Se3], 2.9), for each specializa-

tion (w0; p0) there exists a global bound on the number of strictly solid families

of solutions of the form (hS ; w0; p0; a) of any of the solid graded limit groups

WPSld(hS; w; p; a).

Let WPRgd(hR; w; p; a) be one of the terminating rigid graded limit groups

in the taut formal graded Makanin{Razborov diagram with respect to the de�n-

ing parameters WP =< w; p >. The modular groups associated with each (un-

graded) resolution that terminates in a rigid specialization of the rigid graded

limit group WPRgd(hR; w; p; a) that lies outside the singular locus associated

with WPRgd(hR; w; p; a) (see section 11 in [Se1] for the de�nition of the singu-

lar locus) are compatible with the graded formal resolution that terminates in

the rigid graded formal limit groupWPRgd(hR; w; p; a)�Fy, i.e., the \tower" of

modular groups in such formal graded resolutions is independent of the particu-

lar rigid specialization of WPRgd(hR; w; p; a). Therefore, we separate the vari-

ous strata in the singular locus of the graded limit groups WPRgd(hR; w; p; a),

and use the \tower" of modular groups that lie \above" each of the rigid formal

graded limit groups WPRgd(hR; w; p; a) � Fy to associate a (usually in�nite)

system of equations (in the variables (y; hR; w; p), and variables correspond-

ing to the free variables that are dropped along the graded formal resolution,

and coeÆcients in Fk) corresponding to each of the equations in the system

	(x; y; w; p; a) = 1. By Guba's theorem [Gu], this in�nite system of equations

is equivalent to a �nite system of equations. Since the variables corresponding

to free variables dropped along the graded formal resolution can get an arbitrary

value, the �nite system of equations obtained using Guba's theorem is equivalent

to a �nite collection of systems of equations in the variables (y; hR; w; p) and

coeÆcients in Fk. We denote each of the obtained systems �R(y; hR; w; p; a) = 1.

Similarly, with each (stratum of the) terminating solid formal graded limit

group WPSld(hS; w; p; a) � Fy we associate a �nite collection of systems of

equations that we denote �S(y; hS ; w; p; a) = 1. Note that since we used the

modular groups associated with the graded formal resolution to construct the

systems �S(y; hS ; w; p; a), if the system of equations holds for a particular value

of the variables (y; hS ; w; p; a), then it continues to hold if we change the value
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of the variables hS within its strictly solid family.

From now on we work with each of the graded formal resolutions

WPGFResi(x; y; w; p; a);

and its terminating rigid formal graded limit group, WPRgdi(hR; w; p; a) � Fy,

or solid graded formal limit group, WPSldi(hS ; w; p; a) � Fy , and the (�nite

collection of) systems of equations associated with them in parallel, so we may

restrict our attention to one of these graded formal resolutions, omit its index

and denote it WPGFRes(x; y; w; p; a). Note that each of these graded formal

resolutions is with respect to the parameter subgroup WP =< w; p >.

Suppose that the graded formal resolution WPGFRes(x; y; w; p; a) termi-

nates in the rigid graded formal limit group WPRgd(hR; w; p; a) � Fy. Let

�WPRGL1(y; hR; w; p; a); : : : ; �WPRGLd(y; hR; w; p; a)

be the canonical collection of maximal graded limit groups (with respect to

the parameter subgroup WP =< w; p >), that correspond to the set of spe-

cializations (y; hR; w; p; a), for which (hR; w; p; a) is a rigid specialization of

WPRgd(hR; w; p; a) that lies outside the singular locus, (y; hR; w; p; a) factors

through the graded formal resolution WPGFRes(x; y; w; p; a), and

�R(y; hR; w; p; a) = 1:

Similarly, if the graded formal resolution WPGFRes(x; y; w; p; a) terminates

in the solid formal graded limit groupWPSld(hS; w; p; a)�Fy , we associate with

the solid graded limit group WPSld(hS ; w; p; a) and the system of equations

�S(y; hS; w; p; a) the canonical collection of maximal graded limit groups

�WPSGL1(y; hS ; w; p; a); : : : ; �WPSGLd(y; hS ; w; p; a)

that correspond to the set of specializations (y; hS ; w; p; a), for which (hS ; w; p; a)

is a strictly solid specialization of WPSld(hS; w; p; a) that lies outside the

singular locus, (y; hS ; w; p; a) factors through the graded formal resolution

WPGFRes(x; y; w; p; a), and �S(y; hS ; w; p; a) = 1 (again, note that this set

is invariant under changing the values of the variables hS within their strictly

solid family).

At this point we need to collect the \remaining" set of specializations of the

variables y for each value of our parameters (w; p). Suppose that the terminating

graded limit group of the formal graded resolution, WPGFRes(x; y; w; p; a), is
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the rigid formal graded limit group, Rgd(hR; w; p; a) � Fy , or the solid graded

limit group, Sld(hS; w; p; a) � Fy. With each of the graded limit groups

�WPRGL1(y; hR; w; p; a); : : : ; �WPRGLd(y; hR; w; p; a)

or �WPRGL1(y; hS; w; p; a); : : : ; �WPRGLd(y; hS; w; p; a) (depending on

whether the graded formal resolution WPGFRes(x; y; w; p; a) terminates in a

rigid or solid limit group with respect to WP =< w; p >), we associate its taut

graded Makanin{Razborov diagram with respect to the parameter subgroup

< hR; w; p >, or < hS ; w; p >, in correspondence. (Note that before this step we

considered the parameter subgroup to beWP =< w; p >, and from this point we

enlarged it to be < hR; w; p > or < hS ; w; p >. We are able to do that, because

of the global bound on the number of rigid and strictly solid families (theorems

2.5 and 2.9 in [Se3]), and since the set of the remaining y's depends only on the

strictly solid family of a given specialization, (hS ; w; p; a), and not on the speci�c

specialization in the family.) Each graded resolution �WPGRes(y; hR; w; p; a)

(or �WPGRes(y; hS; p; a)) in one of the taut graded diagrams of the graded

limit groups �WPRGL1(y; hR; w; p; a); : : : ; �WPRGLd(y; hR; w; p; a) (or

�WPRGL1(y; hS ; w; p; a); : : : ; �WPRGLd(y; hS ; w; p; a))

terminates in either a rigid graded limit group (with respect to < hR; w; p > or

< hS ; w; p >), which we denote

�WPRgd(gR; hR; w; p; a) (or �WPRgd(gR; hS ; w; p; a));

or a solid graded limit group which we denote

�WPSld(gS ; hR; w; p; a) (or �WPSld(gS ; hS; w; p; a)):

With each graded resolution,

�WPGRes(y; hR; w; p; a) or �WPGRes(y; hS ; w; p; a);

we associate the �nite set of taut resolutions and their terminal rigid or solid

limit groups, associated with the various strata in the singular locus associated

with the graded resolution. We add the resolutions associated with the singular

loci to the list of resolutions containing the entire set of the remaining y's.

To construct the graded formal resolutions GFRes(x; y; w; p; a), we have col-

lected all the formal solutions x(w;p)(y; a) for which all the words corresponding

to the equations in �(x(w;p)(y; a); y; w; p; a) = 1 represent the trivial words



68 Z. SELA Isr. J. Math.

in Fa;y =< a; y >. By theorem 1.18 of [Se2], if p0 2 EAE(p) then there

must exist some \witness" w0, and a formal solution x(w0;p0)(y; a), so that

the maximal limit groups corresponding to each of the equations in the sys-

tem 	(x(w0;p0)(y; a); y; w; p; a) = 1 are all proper quotients of the free group

< a; y >= Fk � Fy . Hence, for every p0 2 EAE(p) there must exist some

witness w0, and a rigid specialization (hr0; w0; p0; a) of one of the rigid limit

groups WPRgd(hR; w; p; a), or a strictly solid specialization (hs0; w0; p0; a) of

one of the solid limit groups WPSld(hS; w; p; a), so that every ungraded res-

olution �WPGRes(y; hr0; w0; p0; a) (or �WPGRes(y; hs0; w0; p0; a)) does not

correspond to the entire set of y's but rather to a resolution of a limit group

which is a proper quotient of the free group < a; y >= Fk � Fy.

Therefore, the outcome of the initial step of our \trial and error" procedure is

a decrease in the complexity (de�nitions 1.14 and 3.2 in [Se4]) of the ungraded

resolutions of y's associated with each p0 2 AE(p), at least for one (rigid or

strictly solid) specialization (hr0; w0; p0) or (hs0; w0; p0). Each of the next steps

of the procedure is meant to sequentially decrease either the complexity of the

\remaining" ungraded resolutions or the Zariski closures of certain sets of spe-

cializations associated with the data-structures we construct, as we did in the

iterative procedure for validation of an AE sentence ([Se4], section 4). As in the

minimal (graded) rank case, once the iterative procedure terminates, we present

a second iterative procedure, that uses the outcome of the �rst iterative proce-

dure (the tree of strati�ed sets) to sequentially approximate the set EAE(p) by

sets which are all in the Boolean algebra of AE sets. Finally, we show that the

approximations we construct in the second iterative procedure become identical

with the set EAE(p) after �nitely many steps. Since the approximations are all

in the Boolean algebra of AE sets, this will imply that an EAE set is indeed in

the Boolean algebra of AE sets, which �nally proves Theorem 1.4.

For the continuation of the iterative procedure we will denote (for brevity)

each of the limit groups WPRgd(hR; w; p; a) or WPSld(hS; w; p; a) by

WPH(h;w; p; a), and each of the limit groups

�WPRgd(gR; hR; w; p; a); �WPRgd(gR; hS ; w; p; a); �WPSld(gS; hR; w; p; a);

�WPSld(gS ; hS ; w; p; a)

by WPHG(g; h; w; p; a). We will also denote the graded resolution

�WPGRes(y; hR; w; p; a) or �WPGRes(y; hS ; w; p; a)

by �WPHRes(y; h; w; p; a). Our treatment of these limit groups will be con-

ducted in parallel, so we don't keep the indices associated with each of these
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(�nite collections of) limit groups. Also, the rest of our \trial and error" pro-

cedure does not depend in an essential way on the type (rigid or solid) of the

terminating graded limit groups in the preliminary two steps, hence we do not

keep notation for the type of each of these terminating limit groups.

We continue to the next step of our iterative procedure for the analysis of the

set EAE(p) only with graded resolutions �WPHRes(y; h; w; p; a), for which

each ungraded resolution, associated with a specialization of the corresponding

terminating rigid or solid limit groupWPHG, does not correspond to the entire

limit group Fk�Fy, but rather to a resolution of a proper quotient of it. For each

tuple (g0; h0; w0; p0; a), which is either a rigid or a strictly solid specialization of

such a terminating limit group WPHG, there is an ungraded (well-separated)

resolution associated. The associated ungraded resolution depends only on the

strictly solid family of the specialization in case the corresponding terminating

limit group is solid. Also, the ungraded resolution may be degenerate, so we

separate the �nitely many possible types of ungraded resolutions associated

with a rigid or solid specialization (g0; h0; w0; p0; a) of WPHG according to the

strata of the corresponding singular locus (see section 11 of [Se1]), and treat

those strata in parallel.

With the ungraded well-separated resolution, associated with a rigid or

strictly solid specialization of the terminal rigid or solid limit group WPHG,

we associate its completion. Given a tuple (g0; h0; w0; p0; a), which is a rigid

or strictly solid specialization of WPHG, we collect all the formal solutions

fx(g0;h0;w0;p0)(s; z; y; a)g for which the words corresponding to the equations in

the system

�(x(g0 ;h0;w0;p0)(s; z; y; a); y; w0; p0; a) = 1

are the trivial words in some closure of the completion of the ungraded resolu-

tion associated with the given specialization. Using the construction of graded

formal limit groups presented in section 3 of [Se2], and viewing the subgroup

< g; h; w; p > as parameters from the entire collection of formal solutions for all

possible specializations (g0; h0; w0; p0; a), which are rigid or strictly solid spe-

cializations of WPHG, we can construct a graded formal Makanin{Razborov

diagram so that any formal solution de�ned over a closure of an ungraded reso-

lution associated with a rigid or strictly solid specialization of WPHG factors

through one of the graded formal Makanin{Razborov resolutions in this dia-

gram.

Let GFL1(x; z; y; g1; h1; w; p; a); : : : ; GFLr(x; z; y; g1; h1; w; p; a) be the max-

imal graded formal limit groups constructed from the collection of formal solu-



70 Z. SELA Isr. J. Math.

tions associated with the graded limit group WPHG. By section 3 of [Se2],

with each of the graded formal limit groups there is an associated graded

formal Makanin{Razborov diagram with respect to the parameter subgroup

< g1; h1; w; p >. By theorems 3.7 and 3.8 of [Se2], each of the graded formal

resolutions in the graded formal Makanin{Razborov diagram associated with

each of the graded formal limit groups

GFL1(x; z; y; g1; h1; w; p; a); : : : ; GFLr(x; z; y; g1; h1; w; p; a)

(with respect to < g1; h1; w; p >) terminates in either a group of the form

WPHGRgd(hR2 ; g1; h1; w; p; a) �Term(g1;h1;w;p;a) GFCl(s; z; y; g1; h1; w; p; a);

where WPHGRgd(hR2 ; g1; h1; w; p; a) is a graded (not formal!) limit group

which is rigid with respect to the parameter subgroup < g1; h1; w; p > and

GFCl(s; z; y; g1; h1; w; p; a) is a graded formal closure in the (well-separated)

graded formal resolution

WPHGFRes(x; z; y; g1; h1; w; p; a)

associated with the graded limit group WPHG (graded formal closure is pre-

sented in de�nition 3.4 in [Se2]). We will denote a terminating rigid graded

limit group WPHGRgd(hR2 ; g1; h1; w; p; a) by WPHGHR.

Alternatively, the terminating graded formal limit group of a graded formal

resolution in one of the graded formal Makanin{Razborov diagrams associated

with the graded formal limit groups

GFL1(x; z; y; g1; h1; w; p; a); : : : ; GFLr(x; z; y; g1; h1; w; p; a)

is of the form

WPHGSld(hS2 ; g1; h1; w; p; a) �Term(g1;h1;w;p;a) GFCl(s; z; y; g1; h1; w; p; a);

where WPHGSld(hS2 ; g1; h1; w; p; a) is a graded (not formal!) limit group

which is solid with respect to the parameter subgroup < g1; h1; w; p >, and

GFCl(s; z; y; g1; h1; w; p; a) is a graded formal closure in the graded formal

resolution WPHGFRes(x; z; y; g1; h1; w; p; a) associated with the graded limit

group WPHG. We will denote the terminating solid graded limit group

WPHGSld(hS2 ; g1; h1; w; p; a) by WHGHS .

With each terminal graded formal limit group of a resolution in the formal

Makanin{Razborov diagrams of the graded formal limit groups

GFL(x; z; y; g1; h1; w; p; a)
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we associate an anvil, which is set to be the corresponding terminal formal limit

group. We denote the anvil Anv(WPHGH)(s; z; y; h2; g1; h1; w; p; a). With the

anvil we associate a family of formal solutions fx�(s; z; y; h2; g1; h1; w; p; a)g,

obtained using the graded modular groups associated with the correspond-

ing graded formal resolution WPHGFRes. Hence, by the construction of the

graded formal resolution (presented in section 3 of [Se2]), for each specialization

(s0; z0; y0; h20; g10; h10; w0; p0; a) that factors through the anvil, Anv(WPHGH),

�(x�(s0; z0; y0; h20; g10; h10; w0; p0; a); y0; w0; p0; a) = 1:

At this point we collected the remaining set of y's for every possible value

of the tuple w; p; h1 using the limit groups �WPHL, and their resolutions

�WPHRes. We further collected all the possible formal solutions de�ned over

(closures of) the resolutions �WPHRes using the graded formal resolutions

WPHGFRes, that we also called anvils, and denoted Anv(WPHGH).

To proceed to the next step of the procedure, we need to collect the set

of specializations of the variables y that are left after applying the families of

formal solutions encoded by the graded formal resolutions WPHGFRes, for

each possible specialization of the tuple w; p; h1, and we need to do it uniformly

in the variables w; p; h1. Hence, we do not need to consider all the specializations

that factor through the anvils, but only those that satisfy the (usually in�nite)

systems of equations which correspond to the families of formal solutions that

are encoded by the formal graded resolutions, WPHGFRes, which are de�ned

over the anvils, Anv(WPHGH).

In the iterative procedure for validation of an AE sentence, presented in

section 4 in [Se4], we proceeded to the next step of the iterative procedure

not with all the specializations of the anvil that satisfy one of the systems

of equations associated with the graded formal resolutions, but rather with

those specializations that are in shortest form (de�nition 4.1 in [Se4]). For

technical reasons, in order to apply a similar procedure in the graded case (i.e.,

uniformly in the specializations of w; p; h1), we do not use (graded) shortest form

specializations, but we rather use (multi-graded) resolutions, modular groups,

and limit groups that we associate with each level of the given anvils. These

auxiliary resolutions and auxiliary limit groups enable us to apply the main

principles of the iterative procedure presented in section 4 in [Se4] uniformly (in

the specializations of w; p; h1).

De�nition 2.1: Let an anvil, Anv(WPHGH)(s; z; y; h2; g1; h1; w; p; a), be the

terminal formal limit group in the graded formal resolution, WPHGFRes.
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With the anvil we associate a collection of (multi-graded) auxiliary resolu-

tions and (multi-graded) auxiliary limit groups.

Recall that the anvil has the structure of a completed resolution, and

it is constructed from a graded formal closure of a graded resolution,

�WPHRes(y; h1; w; p; a). Suppose that this resolution, hence the anvil,

contains ` levels. Let Rlim(y; h1; w; p; a) be the subgroup generated by

< y; h1; w; p; a > in the limit group associated with the anvil, and let

Rlim(zi; h1; w; p; a > be its image in the (graded) limit group associated with

the i-th level in the anvil, where 1 � i � `.

With the anvil, we associate a taut multi-graded Makanin{Razborov diagram

of the limit group associated with the tower that contains all the levels up to

level 2, with respect to the non-QH , non-abelian vertex groups and edge groups

in the (given) graded abelian decomposition associated with the top level of

the anvil, i.e., the graded abelian decomposition associated with the subgroup

Rlim(y; h1; w; p; a). Similarly, with each level i in the anvil, 1 � i � ` � 1,

we associate a multi-graded taut Makanin{Razborov diagram of the limit group

associated with the tower that contains all the levels up to level i+1, with respect

to the non-QH , non-abelian vertex groups and edge groups in the (given) graded

abelian decomposition associated with the i-th level in the anvil, i.e., the graded

abelian decomposition associated with the subgroup Rlim(zi; h1; w; p; a).

We call each of the resolutions in these multi-graded diagrams a (multi-

graded) auxiliary resolution, and its terminating solid or rigid limit group

a (multi-graded) auxiliary limit group, which we denote

Aux(WPHGH)(s; z; y; h2; g1; h1; w; p; a):

Naturally, with each auxiliary resolution we associate its modular groups, which

we call auxiliary modular groups. In the sequel, we call the auxiliary reso-

lutions associated with the tower containing all the levels up to level 2 (all the

levels except the top level), the highest level.

At this stage we continue in a similar way to what we did in the initial step.

Having constructed the anvils, Anv(WPHGH), the families of formal solutions

de�ned over them, and the auxiliary limit groups and resolutions, we are ready

to collect all the specializations of the variables y (for any given value of the

parameter subgroup < w; p; h1 >) for which the (families of) formal solutions

de�ned in the �rst two iterates of our procedure didn't provide a proof. The

collection of the remaining y's needs to be done uniformly in the values of the

parameters w; p; h1.
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In collecting the set of the remaining y's, we apply both the families of formal

solutions that are encoded by the (graded) formal modular groups associated

with the formal resolution that is associated with the anvil, and the auxiliary

modular groups that are associated with the multi-graded auxiliary resolution

that is associated with the anvil, Anv(WPHGH).

Suppose that the auxiliary resolution that is associated with the anvil,

Anv(WPHGH), is highest level (i.e., it is associated with the limit group that

appears in the second level of the anvil). Let

(s0; z0; y0; h2(0); g2(0); h1(0); w0; p0; a)

be a specialization of the anvil, Anv(WPHGH), so that the restriction of this

specialization to the limit group that is associated with the second level of the

anvil factors through the auxiliary limit group, Aux(WPHGH), that is asso-

ciated with the anvil. Let '� be an element in the auxiliary modular group

that is associated with the auxiliary resolution. '� acts on specializations of

the auxiliary limit group, Aux(WPHGH). Hence, given the specialization

(s0; z0; y0; h2(0); g2(0); h1(0); w0; p0; a), '� acts on the restriction of this spe-

cialization to the subgroup associated with the second level of the anvil. By the

structure of the anvil, which is associated with a completion of a resolution, and

the structure of the auxiliary resolution (that is multi-graded with respect to

the non-abelian, non-QH vertex groups, and edge groups in the given graded

abelian decomposition of the subgroup < y; h1; w; p; a >), the specialization

of the limit group associated with the second level of the anvil obtained by

the action of '� , can be completed to a specialization of the ambient anvil,

Anv(WPHGH), without changing the specialization (y0; h1(0); w0; p0; a) of the

subgroup < y; h1; w; p; a >, that is associated with the top level of the anvil.

We denote the obtained specialization of the anvil,

'�(s0; z0; y0; h2(0); g2(0); h1(0); w0; p0; a):

Note that by the above observation, to collect the remaining sets of y's, it is

enough to collect all the specializations of the associated auxiliary limit group,

and when we impose a formal solution on such a specialization, we are able

to impose it not only on the specialization, but also on its images under the

(\extended") actions of all the elements '� from the associated auxiliary

modular group. Also, we have considered highest level auxiliary resolutions,

but precisely the same argument applies to an arbitrary auxiliary resolution.

Given an anvil, Anv(WPHGH), and an auxiliary resolution, we look at

the entire set of rigid or strictly solid specializations of the associated auxil-
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iary limit group (De�nition 2.1), and their extensions to specializations of the

anvil, (s; z; y; h2; g1; h1; w; p; a), for which for the entire family of formal so-

lutions fx�(s; z; y; h2; g1; h1; w; p; a)g associated with the anvil (i.e., associated

with the graded formal resolution, WPHGFRes, that is associated with the

anvil), and for each element '� in the auxiliary modular group associated with

the given auxiliary resolution

 j(x�('�(s; z; y; h2; g1; h1; w; p; a)); y; w; p; a) = 1

for at least one of the equations  j in the system (of inequalities) 	(x; y; w; p; a)

6= 1 used to de�ne the set EAE(p). By the standard argument presented in

section 5 of [Se1], the entire collection of such (extended) specializations,

(s; z; y; h2; g1; h1; w; p; a), is contained in a �nite set of maximal graded limit

groups (that are all quotients of the anvil, Anv(WPHGH), and of the corre-

sponding auxiliary limit groups)

QRlim1(s; z; y; h2; g1; h1; w; p; a); : : : ; QRlimu(s; z; y; h2; g1; h1; w; p; a);

that we call quotient limit groups. Note that with each such limit group there

is an associated anvil, Anv(WPHGH), and an associated auxiliary resolution

(hence, an auxiliary limit group as well).

In constructing the system of equations associated with a given anvil,

Anv(WPHGH), and its associated auxiliary resolution, we applied the

family of formal solutions associated with the graded formal resolution

that is associated with the given anvil, and the auxiliary modular groups

associated with the auxiliary resolution that is associated with the anvil.

Hence, if a specialization of the anvil, (s; z; y; h2; g1; h1; w; p; a), factors

through a quotient limit group, QRlimi(s; z; y; h2; g1; h1; w; p; a), where

1 � i � u, and restricts to a rigid or a strictly solid specialization of the

associated auxiliary limit group, then the same holds for all the specializations

of the form '�(s; z; y; h2; g1; h1; w; p; a), where '� is an element of the multi-

graded auxiliary modular groups associated with the anvil. Hence, in analyzing

the quotient limit groups, QRlimi, 1 � i � u, we consider the non-abelian and

non-QH vertex groups and edge groups in the multi-graded abelian JSJ decom-

position of the auxiliary limit group, as determined only up to (appropriate)

conjugacy, and the abelian and QH vertex groups as \formal", i.e., we are al-

lowed to act on these with their associated modular groups. Adapting this point

of view, which is essential along the entire iterative procedure presented in this

section, replaces the role of restricting to shortest form specializations in the
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ungraded case (de�nition 4.1 in [Se4]), and enables us to exclude the variables

that belong to lower levels of the anvil from taking part in the analysis of the

(top part of the) quotient limit groups QRlimi, i.e., it allows us to get (certain)

\separation of variables" (of di�erent levels) in the analysis of quotient limit

groups.

In section 1 we have started the construction of the tree of strati�ed sets with

a graded (minimal rank) resolution, and showed that the complexities of the

various (quotient) graded resolutions associated with it, with which we need to

continue to the next step of the iterative procedure, are strictly smaller than

the complexity of the original resolution. As in the case of general AE sen-

tences that are analyzed in section 4 of [Se4], in the construction of the tree

of strati�ed sets in the general case we are not able to get a reduction in the

complexity of the obtained (quotient) graded resolutions in each step of our

iterative procedure. To \force" the \size" of the set of the remaining specializa-

tions y0 associated with each specialization of the parameters < w; p; h1 > to

actually decrease, we need to associate with each graded resolution information

about certain (multi-graded) resolutions and abelian decompositions associated

with it, together with Zariski closures of some subgroups associated with the

graded resolution. To carry all the information attached to a graded resolution,

we associate a (graded) data-structure, and (canonical) resolutions which we

call graded developing resolutions, with each of the quotient resolutions. We

construct the data-structure and graded developing resolutions iteratively, in

a similar way to their construction in the iterative procedure for validation of

an AE sentence presented in section 4 of [Se4]. As in the iterative procedure

for validation of a sentence, we divide the construction of the graded devel-

oping resolution and the associated anvil into several cases, depending on the

structure of the graded resolution �WPHRes(y; h1; w; p; a) associated with the

anvil, Anv(WPHGH), with which we started the �rst step, and the structure

of the multi-graded quotient resolutions constructed along the �rst step. We

describe the �rst step of our iterative procedure, then the general step of the

iterative procedure, and �nally prove the termination of the iterative procedure

for the analysis of an EAE set.

I: The first step. We start the analysis of the remaining set of y's by

analyzing those quotient limit groups, QRlimi(s; z; y; h2; g1; h1; w; p; a), that

are associated with the anvils we constructed, and with auxiliary resolutions

associated with the tower containing all the levels in those anvils except the

top level (i.e., the highest level auxiliary resolutions). Since we analyze these
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quotient limit groups in parallel, we will omit their index and denote them

QRlim(s; z; y; h2; g1; h1; w; p; a).

As parts (1) and (2) of the �rst step of the procedure indicate, we will

analyze only multi-graded resolutions of these quotient limit groups that are

not of maximal complexity, i.e., resolutions that do not contain a single level

with abelian decomposition that has the same structure as the abelian decompo-

sition associated with the top level of the associated anvil, Anv(WPHGH). To

analyze (specializations that factor through) multi-graded resolutions of maxi-

mal complexity, we will need to use the quotient limit groups associated with

auxiliary resolutions that are not of highest level (this is done in part (3) of the

�rst step of the procedure).

(1) Let Q(y; h1; w; p; a) be the graded limit group generated by

< y; h1; w; p; a > in the limit group associated with the graded resolution

�WPHRes(y; g1; h1; w; p; a), associated with the anvil,

Anv(WPHGH)(s; z; y; h2; g1; h1; w; p; a):

Q(y; h1; w; p; a) is a quotient of the limit group �WPRGL or �WPSGL,

for which the graded resolution �WPHRes(y; h1; w; p; a) is one of the reso-

lutions in its graded taut Makanin{Razborov diagram. Let

Q1(y; h1; w; p; a) be the limit group generated by < y; h1; w; p; a >

in the quotient limit group QRlim(s; z; y; h2; g1; h1; w; p; a). If

Q1(y; h1; w; p; a) is a proper quotient of the subgroup Q(y; h1; w; p; a), we

continue this branch of the iterative procedure by replacing the quotient

limit group QRlim(s; z; y; h2; g1; h1; w; p; a) with the quotient graded res-

olutions obtained by starting the initial step of the procedure with the

limit group Q1(y; h1; w; p; a) instead of the limit group associated with the

graded resolution �WPHGRes(y; g1; h1; w; p; a) with which we started the

initial step.

Since the graded resolution �WPHGRes(y; g1; h1; w; p; a) is not of max-

imal possible complexity, i.e., each ungraded resolution does not corre-

spond to the entire free group Fy with which we started the iterative

procedure, and the maximal complexity graded resolutions were collected

separately in the initial step of the procedure, in analyzing graded res-

olutions of Q1(y; h1; w; p; a) in this branch of the procedure we need to

consider only those graded resolutions which are not of maximal possi-

ble complexity, i.e., only those graded quotient resolutions for which each

ungraded resolution does not correspond to the entire free group Fy.
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(2) At this stage we may assume that Q1(y; h1; w; p; a) is isomorphic to

Q(y; h1; w; p; a). We set the subgroups Base12;1; : : : ; Base
1
2;v1 to be the

non-abelian, non-QH vertex groups in the graded abelian decomposition

associated with the top level of the anvil,

Anv(WPHGH)(s; z; y; h2; g1; h1; w; p; a):

Note that the subgroup generated by < h1; w; p; a > in the anvil is,

by de�nition, a subgroup of Base12;1. With the quotient limit group

QRlim(s; z; y; h2; g1; h1; w; p; a) we associate its multi-graded Makanin{

Razborov diagram with respect to the subgroups Base12;1; : : : ; Base
1
2;v1 .

As we remarked earlier, in constructing the multi-graded diagram, we re-

gard theQH and abelian vertex groups in the multi-graded abelian decom-

position associated with the auxiliary limit group (which is associated with

the anvil), that are all contained in the subgroups Base12;1; : : : ; Base
1
2;v1 ,

as \formal", i.e., the only relations they satisfy are those coming from the

abelian decomposition associated with the auxiliary limit group. We de-

note the obtained multi-graded resolutions in the obtained diagram, that

we call quotient resolutions, by

MGQRes1(s; z; y; Base
1
2;1; : : : ; Base

1
2;v1 ; a); : : : ;

MGQResq(s; z; y; Base
1
2;1; : : : ; Base

1
2;v1 ; a):

If for some QH vertex group Q in the abelian decomposition associated

with the top level of the graded resolution �WPHRes(y; h1; w; p; a), the

sequence of abelian decompositions that Q inherits from a multi-graded

resolution, MGQResj(s; z; y; Base
1
2;1; : : : ; Base

1
2;v1 ; a), is not compatible

with the speci�ed collection of s.c.c. on Q that are mapped into the trivial

element according to the (taut) graded resolution �WPHRes(y;h1;w;p; a),

we omit the multi-graded resolution MGQResj from our list of multi-

graded resolutions of the quotient limit group

QRlim(s; z; y; h2; g1; h1; w; p; a):

We continue with each of the remaining multi-graded quotient resolutions

in parallel, hence we omit the index of the speci�c resolution with which

we continue.

In order to bound the complexity of the multi-graded resolutions,

MGQResj, in terms of the complexity of the abelian decomposition asso-

ciated with the top level of graded resolution, �WPHRes(y; h1; w; p; a),
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with which we started the �rst step, we need to slightly modify the de�ni-

tion of the complexity of a resolution to be suitable for the multi-graded

case (cf. de�nitions 1.14 and 3.2 in [Se4]).

De�nition 2.2: Let MGRes(v; P;R1; : : : ; Rd; a) be a well-separated complete

multi-graded resolution. Let Q1; : : : ; Qm be the QH subgroups that appear in

the abelian decompositions associated with the various levels of MGRes. With

each QH vertex group Qj we naturally associate its corresponding (punctured)

surface Sj . With each (punctured) surface Sj we may associate an ordered cou-

ple (genus(Sj); j�(Sj)j). We will assume that the QH subgroups Q1; : : : ; Qm

are ordered according to the lexicographical (decreasing) order of the ordered

couples associated with their corresponding surfaces. Let rk(MGRes) be the

sum of the ranks of the free factors that are being dropped along the various

levels of MGRes, and let factor(MGRes) be the number of factors it is ter-

minating with (i.e., the number of factors in the free decomposition associated

with its terminal multi-graded subgroup). Let Abrk(MGRes) be the abelian

rank of the resolution (see de�nition 1.14 of [Se4]).

We set the complexity of the multi-graded resolution MGRes, denoted

Cmplx(MGRes), to be

Cmplx(MGRes) = (rk(MGRes) + factor(MGRes);

(genus(S1); j�(S1)j); : : : ; (genus(Sm); j�(Sm)j); Abrk(MGRes):

On the set of multi-graded resolutions we can de�ne a partial order. Let

MGRes1 and MGRes2 be two multi-graded resolutions. We say that

Cmplx(MGRes1) = Cmplx(MGRes2) if the tuples de�ning the two complexi-

ties are identical. We say that Cmplx(MGRes1) < Cmplx(MGRes2) if:

(1) rk(MGRes1) + factor(MGRes1) is smaller than

rk(MGRes2) + factor(MGRes2);

(2) the above numbers are equal and the tuple

((genus(S11); j�(S
1
1 )j); : : : ; (genus(S

1
m1

); j�(S1m1
j))

is smaller in the lexicographical order than the tuple

((genus(S21); j�(S
2
1)j); : : : ; (genus(S

2
m2

); j�(S2m2
j));

(3) the above numbers and tuples are equal and

Abrk(MGRes1) < Abrk(MGRes2):
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Once we have modi�ed the complexity to be suitable for multi-graded reso-

lutions, we can bound the complexity of the quotient resolutionsMGQRes

in terms of the complexity of the abelian decomposition associated with

the top level of the completion of the resolution �WPHRes with which

we started the �rst step.

Proposition 2.3: The complexity of each of the quotient multi-graded reso-

lutions MGQRes that was not removed from our list (i.e., that is compatible

with the given taut structure) is bounded by the complexity of the abelian de-

composition associated with the top level of the completion of the resolution

�WPHRes with which we started the �rst step. In case of equality, the multi-

graded resolution MGQRes has only one level and its structure is identical to

the structure of the abelian decomposition associated with the top level of the

completion of �WPHRes.

Proof: Identical to the proof of proposition 4.2 in [Se4].

By Proposition 2.3, the complexity of each of the multi-graded abelian

decompositions associated with the various levels of the multi-graded res-

olutionMGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a) is bounded by the com-

plexity of the graded abelian decomposition associated with the top level of

the graded resolution �WPHRes(y; h1; w; p; a), that is associated with the

anvil with which we started. In this part, we also assume that the multi-

graded quotient resolution MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a) is

not of maximal possible complexity, i.e., it does not have a single level

with a (multi-graded) abelian decomposition identical with the abelian

decomposition associated with the top level of �WPHRes(y; h1; w; p; a).

The case of maximal complexity will be treated in the next part of the �rst

step of the procedure. We treat such a multi-graded quotient resolution

as we treated a quotient resolution in part (2) of the �rst step of the iter-

ative procedure for validation of an AE sentence. To handle multi-graded

resolutions that are not of maximal complexity, we need the following two

basic observations.

Proposition 2.4: LetMGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a) be one of the

multi-graded quotient resolutions constructed above. Recall that the limit group

Q1(y; h1; w; p; a) is set to be the subgroup generated by < y; h1; w; p; a > in (the

completion of) MGQRes. By the construction of a resolution, the limit group

Q1(y; h1; w; p; a) is mapped into the limit group associated with each of the
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levels of the multi-graded quotient resolution

MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a):

Let Q1
term(y; h1; w; p; a) be the image of Q1(y; h1; w; p; a) in the terminal (rigid

or solid) limit group of MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a).

Then the multi-graded resolution MGQRes can be replaced by two �nite

collections of (well-separated) multi-graded resolutions, that are all compati-

ble with the top level of the resolution �WPHRes associated with the anvil,

Anv(WPHGH), and are all obtained from MGQRes by adding at most a sin-

gle (terminal) level. Furthermore, all the resolutions in these collections are not

of maximal complexity.

We denote each of the resolutions in these collections, MGQ0Res.

(i) In the �rst (possibly empty) collection of multi-graded resolutions, the

image of the subgroup Q1(y; h1; w; p; a) in the terminal limit group of

MGQ0Res, Q1
term(y; h1; w; p; a), is a proper quotient of Q1(y; h1; w; p; a).

(ii) In the second (possibly empty) �nite collection of multi-graded resolutions,

the terminal limit group of MGQ0Res is either a rigid or a solid limit

group with respect to the parameter subgroup < w; p; h1 >, i.e., the ter-

minal limit group is rigid or solid with respect to the parameter subgroup

< w; p; h1 >, and not only with respect to the multi-grading with respect

to the subgroups Base12;1; : : : ; Base
1
2;v1 , that was used in the construction

of the resolution, MGQRes.

Proof: The argument is similar to the argument used to prove proposition

4.3 of [Se4]. By part (1) we may assume that Q1(y; h1; w; p; a) is isomor-

phic to Rlim(y; h1; w; p; a). Let MGQTerm(s; z; y; h1; w; p; a) be the termi-

nal rigid or solid (multi-graded) limit group of the multi-graded resolution

MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a), and suppose that the image of the

subgroup Q1(y; h1; w; p; a) in the limit group MGQTerm, Q1
term(y; h1; w; p; a),

is isomorphic to Q1(y; h1; w; p; a).

With the terminal limit group MGQTerm(s; z; y; h1; w; p; a), which is

assumed to be (multi-graded) rigid or solid with respect to the subgroups

Base12;1; : : : ; Base
1
2;v1 , we associate the resolutions that appear in its graded

taut Makanin{Razborov diagram with respect to the parameter

subgroup < h1; w; p >. We treat these resolutions in parallel, so let

GTRes(s; z; y; h1; w; p; a) be one of these resolutions. By construction, the

resolution GTRes terminates in a rigid or solid limit group with respect to

the parameter subgroup < h1; w; p >.
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Let Q1
top(y; h1; w; p; a) be the image of Q

1(y; h1; w; p; a) in the limit group that

is associated with the top level of the graded resolution GTRes. If Q1
top is a

proper quotient of Q1, part (i) of the proposition holds. If the graded resolution

GTRes has a single level, i.e., if the limit group associated with its top level

is rigid or solid with respect to < h1; w; p >, part (ii) of the proposition holds.

Hence, we may assume that Q1
top is isomorphic to Q1, and GTRes has more

than a single level.

Let �top be the (essential) graded abelian decomposition associated with the

top level of the graded resolution GTRes(s; z; y; h1; w; p; a) (graded with respect

to the subgroup < h1; w; p >; see de�nition 1.8 in [Se3] for an essential decompo-

sition). Q1
top(y; h1; w; p; a) inherits an (essential, graded) abelian decomposition

from �top. Since Q1
top(y; h1; w; p; a) is isomorphic to Rlim(y; h1; w; p; a), the

non-QH , non-abelian vertex groups and edge groups in the (essential) graded

abelian JSJ decomposition of Rlim(y; h1; w; p; a) with respect to the parameter

subgroup < h1; w; p; a > have to be elliptic in the graded abelian decomposition

inherited by Q1
top(y; h1; w; p; a) from �top.

The auxiliary limit group Aux(WPHGH), being a subgroup of the anvil,

Anv(WPHGH), is naturally mapped into the limit group associated with the

top level of GTRes. Let �Aux be the (essential) abelian decomposition

associated with the auxiliary limit group (that is associated with the anvil,

Anv(WPHGH)), Aux(WPHGH). By construction, �Aux is multi-graded

with respect to the non-abelian, non-QH vertex groups, and edge groups in

the abelian JSJ decomposition of Rlim(y; h1; w; p; a). Since the non-abelian,

non-QH vertex groups and edge groups in the (essential) graded abelian JSJ

decomposition of Rlim(y; h1; w; p; a) are elliptic in �top, if a non-abelian, non-

QH vertex group or an edge group in �Aux is not elliptic in �top, lemma 1.9

in [Se3] implies that the restriction of the specializations that factor through

GTRes to the auxiliary limit group, Aux(WPHGH), are neither rigid nor

strictly solid, so we may remove the graded resolution GTRes from our list of

graded resolutions.

Each of the subgroups Base12;1; : : : ; Base
1
2;v1 is a factor in the (multi-graded)

free decomposition of the auxiliary limit group, Aux(WPHGH), with respect to

the non-QH , non-abelian vertex groups and edge groups of Rlim(y; h1; w; p; a).

Hence, each subgroup Base12;j inherits an abelian decomposition from �Aux,

which is a subgraph (of groups) of �Aux. We set �term to be the abelian decom-

position obtained from the multi-graded abelian decomposition associated with

the terminal level of MGQRes (which is multi-graded with respect to the sub-
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groups Base12;1; : : : ; Base
1
2;v1), by replacing each of the vertex groups stabilized

by one of the subgroups Base12;j , with a (possibly degenerate) graph of groups

obtained from the abelian decomposition associated with Base12;j in �Aux.

�term is the multi-graded abelian decomposition of the terminal limit group

of MGQRes, MGQTerm, with respect to the non-abelian, non-QH vertex

groups and edge groups in the (essential) graded abelian JSJ decomposition of

Q1
term(y; h1; w; p; a) (which is assumed to be isomorphic to Rlim(y; h1; w; p; a)).

If any of the non-abelian, non-QH vertex groups or any of the edge groups

in the multi-graded abelian decomposition �term is not elliptic in the graded

abelian decomposition �top, then the specializations that factor through the

graded resolution GTRes are neither rigid nor strictly solid specializations of

the terminal limit group,MGQTerm, of the multi-graded resolution,MGQRes.

Hence, in this case we may omit the resolution GTRes from our list of graded

resolutions.

We continue iteratively along the levels of the graded resolution GTRes, and

conclude that if the resolution GTRes was not removed from our list of graded

resolutions, then as long as the image of Q1(y; h1; w; p; a) in the limit group

associated with some level j is isomorphic to Q1(y; h1; w; p; a), then the images

of all the non-QH , non-abelian vertex groups and the edge groups in the abelian

decomposition �term, in the graded abelian decomposition associated with level

j in GTRes, are elliptic.

Therefore, either we get to the terminal level of GTRes, which is rigid or

solid with respect to < h1; w; p > (possibility (ii) in the proposition), or we

get to some level j for which the image of Q1(y; h1; w; p; a) in the limit group

associated with that level is a proper quotient of Q1(y; h1; w; p; a) (possibility (i)

in the proposition). Furthermore, since the non-abelian, non-QH vertex groups

and edge groups in �term are mapped to elliptic subgroups in all the levels until

level j of GTRes, the modular groups associated with �term are suÆcient to

map the terminal limit group of MGQRes, MGQTerm, onto the limit group

associated with level j of GTRes, hence MGQRes needs to be extended in at

most a single level.

If the image of Q1(y; h1; w; p; a) in the limit group associated with level j in

GTRes is a proper quotient of Q1(y; h1; w; p; a), then it is enough to use the

modular groups associated with MGQTerm as a multi-graded rigid or solid

limit group with respect to Base12;1; : : : ; Base
1
2;v1 , to map MGQTerm onto a

limit group in which the image ofQ1(y; h1; w; p; a) is a proper quotient of it. This

allows one to continue viewing the QH and abelian vertex groups in the multi-
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graded abelian decomposition of the auxiliary limit group, Aux(WPHGH), as

\formal", i.e., we can still act on them with their associated modular groups in

the terminal limit groups as well, and the obtained (extended) specializations

still factor through the terminal limit group of GTRes, a point of view that is

adapted throughout the whole iterative procedure.

If the limit group associated with level j in GTRes is rigid or solid with

respect to < h1; w; p >, then we use this terminal limit group to express the

rigid or strictly solid families associated with it. Still, in this case, the terminal

level of the obtained resolution MGQ0Res does not really take part in the next

steps of the procedure (besides expressing the rigid or strictly solid families).

Hence, for the purposes of the next steps in the procedure, we are allowed to

continue viewing the QH and abelian vertex groups in the multi-graded abelian

decomposition associated with the auxiliary resolution associated with the anvil,

Anv(WPHGH), as \formal".

By Proposition 2.4, we can either drop the resolution MGQRes from our

list of multi-graded resolutions, or we can replace the resolutionMGQRes

by �nitely many resolutions, which for brevity we still denote MGQRes,

and for each resolution we may assume that either the image of the sub-

group Q1(y; h1; w; p; a) in the terminal graded limit group of MGQRes,

Q1
term(y; h1; w; p; a), is a proper quotient of Q1(y; h1; w; p; a), or the ter-

minal graded limit group of MGQRes is rigid or solid with respect to

the parameter subgroup < w; p; h1 >. We continue with the resolutions

given by Proposition 2.4 in parallel, and continue to denote each of them,

MGQRes. To continue handling the various multi-graded resolutions

MGQRes of the quotient limit group QRlim(s; z; y; h2; g1; h1; w; p; a), we

also need the following proposition, which is similar to proposition 4.4 of

[Se4].

Proposition 2.5: LetMGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a) be one of the

multi-graded quotient resolutions in our list of multi-graded quotient resolutions

of

QRlim(s; z; y; h2; g1; h1; w; p; a):

Let Q1(y; h1; w; p; a) and Q1(s; z; y; h2; g1; h1; w; p; a) be the subgroups gener-

ated by < y; h1; w; p; a > and < s; z; y; h2; g1; h1; w; p; a > in correspondence, in

the limit group associated with the multi-graded quotient resolutionMGQRes.

Let Q1
2(y; h1; w; p; a) and Q

1
2(s; z; y; h2; g1; h1; w; p; a) be the images in the limit
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group associated with the second level of

MGQRes;GQlim2(s; z; y; Base
1
2;1; : : : ; Base

1
2;v1 ; a);

of the subgroups Q1(y; h1; w; p; a) and Q1(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a), in

correspondence.

Then Q1
2(y; h1; w; p; a) is a quotient of Q1(y; h1; w; p; a), and

Q1
2(s; z; y; Base

1
2;1; : : : ; Base

1
2;v1 ; a)

is a proper quotient of Q1(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a).

Proof: The proposition is simply a basic property of a multi-graded resolution.

Suppose that the image of Q1(y; h1; w; p; a) in the limit group associated

with the second level of MGQRes, Q1
2(y; h1; w; p; a), is a proper quotient

of Q1(y; h1; w; p; a). In this case we do the following.

With the subgroup Q1
2(y; h1; w; p; a) we associate the graded resolutions

that appear in its graded taut Makanin{Razborov diagram with respect

to the subgroup < h1; w; p >

GQRes1(y; h1; w; p; a); : : : ; GQRest(y; h1; w; p; a):

We continue with each of the graded resolutions GQResj(y; h1; w; p; a) in

parallel.

If the subgroup generated by < y; h1; w; p; a > in the limit group asso-

ciated with the resolution GQResj(y; h1; w; p; a) is a proper quotient of

Q1
2(y; h1; w; p; a), we replace the graded resolution GQResj(y; h1; w; p; a)

by starting part (2) of the the initial step with the graded resolution

obtained from MGQRes by replacing its second limit group

Q1
2(s; z; y; h2; g1; h1; w; p; a) with the maximal limit groups obtained from

all the specializations that factor through bothQ1
2(s; z; y; h2; g1; h1; w; p; a)

and the subgroup generated by < y; h1; w; p; a > in the limit group

associated with GQResj(y; h1; w; p; a). If the subgroup generated by

< s; z; y; h2; g1; h1; w; p; a > in the obtained (one level) resolution,

QRlim0(s; z; y; h2; g1; h1; w; p; a), is a proper quotient of

QRlim(s; z; y; h2; g1; w; p; a), we replace the obtained resolution by

starting the �rst step of our iterative procedure with the limit group

QRlim0(s; z; y; h2; g1; h1; w; p; a) instead of the limit group

QRlim(s; z; y; h2; g1; h1; w; p; a);
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and since the resolutionMGQRes is not of maximal complexity, in analyz-

ing the limit group QRlim0 we need to consider only those resolutions in

its multi-graded (taut) Makanin{Razborov diagram that are not of max-

imal possible complexity. Hence, for the rest of this part we may assume

that the subgroup generated by < y; h1; w; p; a > in the limit group associ-

ated with GQResj(y; h1; w; p; a) is isomorphic to the subgroup generated

by < y; h1; w; p; a > in Q1
2(s; z; y; h2; g1; h1; w; p; a).

Suppose that a graded quotient resolution GQResj(y; h1; w; p; a) is of

maximal possible complexity, i.e., the limit group associated with it is

of the form < h1; w; p; a > �Fy. Since the limit group Q1
2(y; h1; w; p; a)

is a proper quotient of Q1(y; h1; w; p; a), and since the limit group

Q1
2(y; h1; w; p; a) is naturally mapped onto the limit group

< h1; w; p; a > �Fy, associated with the graded resolution

GQResj(y; h1; w; p; a), the Hopf property for limit groups implies that

the subgroup generated by < h1; w; p; a > in the limit group associated

with GQResj(y; h1; w; p; a) is a proper quotient of the limit group gen-

erated by < h1; w; p; a > in Q1(y; h1; w; p; a). Hence, we can replace the

resolution GQResj(y; h1; w; p; a) by starting the initial step of the pro-

cedure with the subgroup < h1; w; p; a > �Fy, where < h1; w; p; a > is

the subgroup generated by these elements in the limit group associated

with GQResj(y; h1; w; p; a). Since resolutions of maximal possible com-

plexity of the limit group Q1(y; h1; w; p; a) with respect to the param-

eter subgroup < h1; w; p >, i.e., those corresponding to the entire free

group Fy , were already analyzed in the initial step of the procedure, we

can omit a graded resolution GQResj(y; h1; w; p; a) of maximal complex-

ity from our list of graded quotient resolutions fGQResj(y; h1; w; p; a)g.

Hence, for the rest of this part we may assume that the graded resolution

GQResj(y; h1; w; p; a) with which we continue is not of maximal possible

complexity.

Let CResj(y; h1; w; p; a) be the graded resolution obtained from the

resolution induced by the subgroup < y; h1; w; p; a > from the comple-

tion of the graded resolution MGQRes (see section 3 of [Se4] for the

construction of the induced resolution), followed by the graded resolution

GQResj(y; h1; w; p; a).

We now treat each of the graded resolutions GQResj(y; h1; w; p; a), and

their associated resolution CResj(y; h1; w; p; a), in a similar way to our

treatment of multi-graded quotient resolutions in part (4) of the general
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step of the iterative procedure for validation of an AE sentence, presented

in section 4 of [Se4]. Let WPHGHG(g2; h1; w; p; a) be the terminal rigid

or solid limit group of the graded resolution GQResj(y; h1; w; p; a) (which

is also the terminal rigid or solid limit group of its associated resolu-

tion CResj(y; h1; w; p; a)). We start by collecting all the formal solu-

tions de�ned over ungraded resolutions covered by the graded resolution

CResj(y; h1; w; p; a). This collection of formal solutions factors through

a canonical collection of graded formal limit groups. With each graded

formal limit group we associate its graded formal Makanin{Razborov dia-

gram as we did in section 3 of [Se2]. We continue with each of the graded

formal resolutions that appear in these diagrams in parallel.

Let GFRes(x; f; y; g2; h1; w; p; a) be a graded formal resolution in one

of these diagrams, and let WPHGHGH(h3; g2; h1; w; p; a) be its termi-

nating rigid or solid (not formal!) limit group. With the graded formal

resolution GFRes(x; f; y; h3; g2; h1; w; p; a) we associate the resolution

GRes(f; y; h3; g2; h1; w; p; a);

which is the graded (not formal!) resolution associated with the

terminal formal limit group of the graded formal resolution

GFRes(x; f; y; h3; g2; h1; w; p; a) (i.e., the graded formal closure associated

with the formal resolution GFRes, amalgamated with the terminal rigid

or solid limit group WPHGHGH (see section 3 of [Se2] for the structure

and construction of a (graded) formal resolution, and a graded formal clo-

sure)).

We set the developing resolution to be the graded resolution

GRes(f; y; h3; g2; h1; w; p; a), which is the resolution associated with

the terminal graded formal limit group in the graded formal resolution,

GFRes(x; f; y; h3; g2; h1; w; p; a). We further set the anvils associated

with the developing resolution to be the (canonical) �nite set of

maximal limit quotients of the group obtained as the amalgamated

product of the completion of the developing resolution and the

completion of the top level of the multi-graded resolution

MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a), amalgamated along the top

part of the developing resolution, which was set to be the resolution in-

duced by the subgroup < y; h1; w; p; a > from the top level of MGQRes,

enlarged by replacing the subgroup associated with the bottom level in the

induced resolution with Q1
2(y; h1; w; p; a). We denote each of the (�nitely

many) anvils Anv(MGQRes)(t; y; h1; w; p; a). With the anvil and the
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developing resolution we also associate the terminal rigid or solid limit

groups, WPHGHG(g2; h1; w; p; a) and WPHGHGH(h3; g2; h1; w; p; a).

Note that the completion of the developing resolution is canonically

mapped into the anvil, hence the formal solutions encoded by the graded

formal resolution, GFRes, that are de�ned over the developing resolution,

can be naturally de�ned over the anvil.

Suppose that Q1
2(y; h1; w; p; a) is isomorphic to Q1(y; h1; w; p; a). In

this case we continue to the next level of the multi-graded quotient res-

olution MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a). If for some level j of

the multi-graded resolution, the image of Q1(y; h1; w; p; a) in the limit

group associated with this level, Q1
j (y; h1; w; p; a), is a proper quotient

of Q1(y; h1; w; p; a), then from the highest such level j, we can continue

as in case Q1
2(y; h1; w; p; a) is a proper quotient of Q1(y; h1; w; p; a), and

associate with the multi-graded resolution

MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a)

a �nite collection of developing resolutions, anvils, and a family of formal

solutions de�ned over each of the developing resolutions and its associated

anvil.

Finally, suppose that for every level j, the image of Q1(y; h1; w; p; a) in

the limit group associated with the j-th level of the multi-graded reso-

lution MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a), Q

1
j(y; h1; w; p; a), is iso-

morphic to Q1(y; h1; w; p; a). In this case, by Proposition 2.4, the terminal

limit group of the multi-graded resolution MGQRes,

Q1
term(s; z; y; h1; w; p; a), is rigid or solid with respect to the parameter

subgroup < h1; w; p >.

We denote the terminal limit group of the multi-graded resolution

MGQRes,WPHGHG(g2; h1; w; p; a). Note that this terminal limit group

is rigid or solid with respect to the parameter subgroup < h1; w; p >.

We set the graded resolution CRes(y; g2; h1; w; p; a) to be the resolution

obtained from the resolution induced from the multi-graded resolution

MGQRes by the subgroup generated by < y; h1; w; p; a >, by enlarging

its terminal limit group to be WPHGHG. We collect all the formal solu-

tions de�ned over ungraded resolutions covered by the graded resolution

CRes(y; g2; h1; w; p; a). This collection of formal solutions factors through

a canonical collection of graded formal limit groups. With each graded

formal limit group we associate its graded formal Makanin{Razborov dia-

gram as we did in section 3 of [Se2]. We continue with each of the graded
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formal resolutions that appear in these diagrams in parallel.

Let GFRes(x; f; y; g2; h1; w; p; a) be a graded formal resolution in one

of these diagrams, and let WPHGHGH(h3; g2; h1; w; p; a) be its termi-

nating rigid or solid (not formal!) limit group. With the graded formal

resolution GFRes(x; f; y; h3; g2; h1; w; p; a) we associate the resolution

GRes(f; y; h3; g2; h1; w; p; a);

which is the graded (not formal!) resolution associated with the terminal

formal limit group of the graded formal resolution

GFRes(x; f; y; h3; g2; h1; w; p; a)

(i.e., its graded formal closure amalgamated with its terminal rigid or solid

limit group). Note that the terminal rigid or solid limit groups of those

resolutions is WPHGHGH(h3; g2; h1; w; p; a).

We set the developing resolution to be the resolution

GRes(f; y; h3; g2; h1; w; p; a):

To set the �nite collection of anvils, we �rst look at the amalgamation

of (the completion of) MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a) and the

(completion of the) resolution, GRes(f; y; h3; g2; h1; w; p; a), amalgamated

along the (completion of the) induced resolution, CRes(y; g2; h1; w; p; a).

With the obtained group we naturally associate a �nite collection of max-

imal limit groups, and set each of them to be an anvil. With the anvil we

further associate the terminal rigid or solid limit groups (with respect to

< h1; w; p >),

WPHGHG(g2; h1; w; p; a) and WPHGHGH(h3; g2; h1; w; p; a):

With the developing resolution we associate the family of formal solu-

tions x�(f; y; h3; g2; h1; w; p; a) encoded by the associated graded formal

resolution, GFRes, and de�ned over the developing resolution. Since the

developing resolution is canonically mapped into the anvil, the family

of formal solutions associated with the developing resolution is naturally

de�ned over the anvil as well.

(3) By part (1) we may assume that Q1(y; h1; w; p; a) is isomorphic to

Q(y; h1; w; p; a). Part (2) treats all the cases in which the multi-graded

quotient resolutionMGQRes(w; y;Base12;1; : : : ; Base
1
2;v1 ; a) is not of max-

imal possible complexity. Hence, the multi-graded resolutions that are left



Vol. 150, 2005 DIOPHANTINE GEOMETRY OVER GROUPS V1 89

in presenting the �rst step of our procedure for analyzing the set EAE(p)

are those of maximal possible complexity, i.e., those multi-graded reso-

lutions MGQRes that have a single level, and an abelian decomposition

that has the same (taut) structure as the abelian decomposition associ-

ated with the top level of the anvil, Anv(WPHGH).

Conceptually, we treat this case in a similar way to what we did in

the minimal rank case, i.e., we continue to lower levels of the anvil and

analyze it in a similar way to what we did with the top level. In parts

(1) and (2), we have analyzed multi-graded resolutions of quotient limit

groups, QRlim(s; z; y; h2; g1; h1; w; p; a), that were associated with the

anvil, Anv(WPHGH), and with an auxiliary resolution of highest level,

i.e., an auxiliary resolution associated with the tower containing all the

levels in the anvil up to level 2 (all levels except the top level).

An auxiliary resolution of highest level (De�nition 2.1) is a multi-graded

resolution of the subgroup of the anvil, Anv(WPHGH), associated with

all its levels except the top one, with respect to the subgroups which are

the non-abelian, non-QH vertex groups in the graded abelian decompo-

sition of Rlim(y; h1; w; p; a). Hence, such a resolution can be extended

to a graded resolution of the entire anvil with respect to the subgroup

associated with the top level. In the same way, an auxiliary resolution

associated with all the levels up to level 3 can be extended to a graded

resolution of the entire anvil with respect to the subgroup associated with

the top two levels of the anvil.

Let (s; z; y; h1; w; p; a) be a specialization of the anvil, Anv(WPHGH).

Suppose that for every auxiliary resolution of highest level, for which the

restriction of the specialization (s; z; y; h1; w; p; a) factors, the correspond-

ing specialization of the associated auxiliary limit group extends to a corre-

sponding specialization that factors through one of the associated quotient

limit groups. Then for every auxiliary resolution that is associated with

all the levels up to level 3, through which the restriction of the given spe-

cialization factors, the corresponding specialization of the auxiliary limit

group extends to a corresponding specialization that factors through at

least one of the associated quotient limit groups.

Furthermore, if in addition, for every quotient limit group (associated

with auxiliary resolutions of highest level) through which such a special-

ization factors, it factors through a quotient resolution of maximal com-

plexity of that quotient limit group, then the same holds for the top level
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of all the quotient resolutions associated with auxiliary resolutions that

are associated with all the levels up to level 3. Therefore, to analyze such

specializations we can replace the maximal complexity quotient resolutions

associated with auxiliary resolutions of highest level, with (top) maximal

complexity resolutions of quotient limit groups, that are associated with

auxiliary resolutions which are associated with all the levels up to level 3.

Hence, to analyze maximal complexity multi-graded resolutions, we �rst

replace the quotient limit groups associated with auxiliary resolutions of

highest level, by those quotient limit groups associated with the anvil,

Anv(WPHGH), and with auxiliary resolutions that are associated with

towers containing all the levels up to level 3, i.e., all the levels except the

top two. We continue with those quotient limit groups in parallel, hence

we will omit their index, and (still) denote the quotient limit group with

which we continue, QRlim(s; z; y; h2; g1; h1; w; p; a).

We start with the multi-graded taut Makanin{Razborov diagram

of the quotient limit group, QRlim, with respect to the subgroups

Base12;1; : : : ; Base
1
2;v1 , where the subgroups Base

1
2;j , 1 � j � v1, are the

non-QH , non-abelian vertex groups and edge groups, in the graded

abelian decomposition associated with the top level of the anvil,

Anv(WPHGH). We still denote these multi-graded resolutionsMGQRes.

Since in this part we need to analyze specializations that factor through

and are taut with respect to maximal complexity multi-graded resolutions

of quotient limit groups associated with auxiliary resolutions of highest

level, as we have already explained, we can continue only with those multi-

graded resolutions in the taut Makanin{Razborov diagram of QRlim that

are of maximal complexity, i.e., that contain a single level with an abelian

decomposition which has the same (taut) structure as the abelian decom-

position associated with the top level of the anvil, Anv(WPHGH).

If part (1) applies to such a multi-graded resolution MGQRes, i.e.,

if the limit group generated by < y; h1; w; p; a > in its completion is a

proper quotient of the subgroup Q(y; h1; w; p; a) with which we started

this branch of the procedure, we replace this resolution MGQRes by

starting the initial step of the procedure with the given proper quotient

of Q(y; h1; w; p; a).

In case the abelian decomposition and the taut structure associated

with MGQRes(s; z; y; Base12;1; : : : ; Base
1
2;v1 ; a) and the top level of the

anvil, Anv(WPHGH), are identical, we use the modular groups associ-
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ated with the abelian decomposition associated with MGQRes to map

the subgroup QRlim(s; z; y; h2; g1; h1; w; p; a) into the subgroup of the

anvil, Anv(WPHGH), QRlim2(s; z; y; h2; g1; h1; w; p; a), associated with

its second level. We now set the subgroups Base13;1; : : : ; Base
1
3;t1 to be

the subgroups of the anvil, Anv(WPHGH), corresponding to the non-

abelian, non-QH vertex groups in the abelian decomposition associated

with the second level of the anvil.

At this point we analyze the quotient limit group

QRlim2(s; z; y; h2; g1; h1; w; p; a)

with respect to the subgroups Base13;1; : : : ; Base
1
3;t1 , exactly as we an-

alyzed the quotient limit group QRlim(s; z; y; h2; g1; h1; w; p; a) with re-

spect to the subgroups Base12;1; : : : ; Base
1
2;v1 in parts (1) and (2), i.e., we

associate with

QRlim2(s; z; y; h2; g1; h1; w; p; a)

all its multi-graded quotient resolutions with respect to the subgroups

Base13;1; : : : ; Base
1
3;t1

that are its subgroups, and analyze each of the obtained multi-graded

quotient resolutions according to parts (1) to (the �rst part of) (3). If the

multi-graded abelian decomposition associated with a multi-graded quo-

tient resolution of QRlim2(s; z; y; h2; g1; h1; w; p; a) with respect to the

subgroups Base13;1; : : : ; Base
1
3;t1 is of maximal possible complexity, and

its associated taut structure is identical to the one associated with the

second level of the anvil, Anv(WPHGH), i.e., if part (3) applies to an

obtained quotient multi-graded resolution, we continue in a similar way

to our approach in analyzing multi-graded resolutions for which their top

level is of maximal complexity.

To analyze multi-graded resolutions that are of maximal complexity

in their top two levels, we replace the quotient limit groups, and ana-

lyze quotient limit groups associated with the anvil, Anv(WPHGH), and

with auxiliary resolutions that are associated with towers containing all

the levels up to level 4, i.e., all the levels apart from the top three.

Given such a quotient limit group, we start with its multi-graded

taut Makanin{Razborov diagram with respect to the subgroups

Base12;1; : : : ; Base
1
2;v1 . We continue only with resolutions in this dia-

gram that are of maximal complexity, and their abelian decomposition
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has the same taut structure as the one associated with the top level of the

anvil. With such maximal complexity resolutions we continue to the sec-

ond level. We look at the multi-graded taut Makanin{Razborov diagram

of the subgroup of the quotient limit group associated with the second level

of the maximal complexity resolutions, QRlim2(s; z; y; h2; g1; h1; w; p; a),

with respect to the subgroups Base13;1; : : : ; Base
1
3;t1 (where the subgroups

Base13;j are the non-QH , non-abelian vertex groups in the abelian decom-

position associated with the second level of the anvil, Anv(WPHGH)).

Again, we continue only with resolutions that are of maximal complex-

ity, and the taut structure associated with their abelian decomposition

is identical to the taut structure associated with the second level of the

anvil, Anv(WPHGH).

Let QRlim3(s; z; y; h2; g2; h1; w; p; a) be the limit group associated with

the third level in such a multi-graded resolution (still denoted)MGQRes,

that is assumed to be maximal complexity in its top two levels. We

set the subgroups Base14;1; : : : ; Base
1
4;r1 to be the subgroups of the anvil,

Anv(WPHGH), corresponding to the non-abelian, non-QH vertex groups

in the abelian decomposition associated with the third level of the anvil.

At this point we analyze the quotient limit group

QRlim3(s; z; y; h2; g1; h1; w; p; a)

with respect to the subgroupsBase14;1; : : : ; Base
1
4;r1 exactly as we analyzed

the quotient limit group QRlim(s; z; y; h2; g1; h1; w; p; a) with respect to

the subgroups Base12;1; : : : ; Base
1
2;v1 , i.e., we associate with

QRlim3(s; z; y; h2; g1; h1; w; p; a)

all its multi-graded quotient resolutions with respect to the subgroups

Base14;1; : : : ; Base
1
4;r1

that are its subgroups, and analyze each of the obtained multi-graded

quotient resolutions according to parts (1) to (the �rst part of) (3).

If the multi-graded abelian decomposition associated with a multi-

graded quotient resolution of QRlim3(s; z; y; h2; g1; h1; w; p; a) with re-

spect to the subgroups Base14;1; : : : ; Base
1
4;r1 is of maximal possible com-

plexity, and its associated taut structure is identical to the one associated

with the third level of the anvil, Anv(WPHGH), we continue to the next

levels of the anvil in precisely the same way. At each level i, we consider
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the quotient limit groups associated with auxiliary resolutions that are

associated with the tower containing all the levels up to level i+ 1. Then

we analyze the taut Makanin{Razborov diagrams of the limit groups as-

sociated with the various levels (from level 1 to level i� 1), and continue

only with those resolutions that are of maximal complexity in all these

levels, and the taut structures associated with their abelian decomposi-

tions are identical to those associated with the corresponding levels of the

anvil, Anv(WPHGH). Finally, we analyze the resolutions in the taut

Makanin{Razborov diagram associated with the i-th level according to

parts (1), (2), or (the �rst part of) (3), and continue iteratively.

Let MGQRes be a multi-graded resolution obtained by the above iter-

ative procedure. If there exists a level for which one of the parts (1){(2)

applies, we set a graded resolution, that is essentially the resolution in-

duced by the image of the subgroup < y; h1; w; p; a >, and an anvil, with

the limit group associated with this level according to the part (1){(2)

that applies to it.

To set the developing resolutions associated with the resolution

MGQRes, we �rst construct a resolution composed from the resolution

induced by the subgroup < y; h1; w; p; a > from the parts of the resolu-

tion MGQRes above the level for which parts (1) or (2) apply (i.e., the

parts that are of maximal complexity), followed by the graded resolution

constructed at that level according to part (1) or (2) (note that the

obtained resolution is graded with respect to the parameter subgroup

< h1; w; p >). We denote the terminal rigid or solid limit group of the ob-

tained graded resolution WPHGHG(g2; h1; w; p; a). Then we collect all

the formal solutions de�ned over the obtained (graded) resolution using

the graded formal Makanin{Razborov diagram. We set each of the graded

(not formal!) resolutions associated with the terminal limit groups in this

graded formal Makanin{Razborov diagram to be a developing resolution.

With each developing resolution we associate a family of formal solutions

encoded by the graded formal modular groups associated with the graded

formal resolution to which it belongs. We further associate with a devel-

oping resolution its terminal rigid or solid limit group, which we denote

WPHGHGH(h3; g2; h1; w; p; a).

With the developing resolution we associate a �nite collection of anvils,

that are set to be the maximal limit groups corresponding to the group

obtained as the amalgamation of the completion of the multi graded resolu-
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tionMGQRes, and the developing resolution, amalgamated along the sub-

group generated by the resolution induced by the subgroup

< y; h1; w; p; a > from MGQRes, and the image of the subgroup

< y; h1; w; p; a > in the limit group associated with the level in which part

(1) or (2) applies (i.e., precisely as we constructed the anvil in part (2)).

With the developing resolution and its associated anvil, we naturally asso-

ciate a family of formal solutions, x�(f; y; h3; g2; h2; g1; h1; w; p; a), param-

eterized by the graded formal modular groups associated with the graded

formal resolution associated with the developing resolution and the anvil.

With the anvil we further associate the terminal rigid or solid limit groups,

WPHGHG and WPHGHGH , that were used in the construction of the

developing resolution.

If all the abelian decompositions associated with the multi-graded reso-

lution used for the construction of the developing resolution are of maximal

complexity, i.e., if none of the parts (1){(2) applies to any of these multi-

graded resolutions, we reach a terminal state of our branching process. In

this case, we do not include the obtained multi-graded resolution in our

list of multi-graded resolutions and their associated anvils and developing

resolutions with which we continue to the next step of the procedure. We

just associate with the obtained multi-graded resolution its terminal rigid

or solid limit group WPHGHG(g2; h2; g1; h1; w; p; a).

Anv(MGQRes)

Anv(WPHGH)

Q(y,h,w,p,a)

Starting with the anvils, Anv(WPHGH), their associated developing res-

olutions, and the auxiliary resolutions and quotient limit groups associated

with them, we have constructed a �nite collection of multi-graded resolutions,

MGQRes, developing resolutions and anvils, Anv(MGQRes)(t;y; w; p; a). With

each couple of a developing resolution and an anvil, we have associated a family



Vol. 150, 2005 DIOPHANTINE GEOMETRY OVER GROUPS V1 95

of formal solutions de�ned over them, and parameterized by the modular groups

associated with the graded formal resolution associated with the developing

resolution.

As in the initial step of the iterative procedure, to complete the data-structure

with which we continue to the next step, we still need to associate with each

anvil, Anv(MGQRes), a �nite collection of auxiliary resolutions and auxiliary

modular groups (see De�nition 2.1). Once the auxiliary resolutions are de�ned,

we are able to get the new quotient limit groups which collect all the special-

izations that remain after applying the families of formal solutions we have

collected and the auxiliary modular groups, precisely as we did before starting

the �rst step of the procedure.

De�nition 2.6: Recall that the developing resolution has the structure of a

completed resolution, and the subgroup associated with each level of the de-

veloping resolution is naturally mapped into the subgroup associated with the

corresponding level in the anvil, Anv(MGQRes).

With the anvil, we associate a taut multi-graded Makanin{Razborov diagram

of the limit group associated with the tower that contains all the levels up to level

2, with respect to the non-QH, non-abelian vertex groups and edge groups in the

(given) multi-graded abelian decomposition associated with the limit group that

appears in the top level of the anvil, Anv(MGQRes). Similarly, with each level

i in the anvil, we associate a multi-graded taut Makanin{Razborov diagram of

the limit group associated with the tower that contains all the levels up to level

i+1, with respect to the non-QH , non-abelian vertex groups and edge groups in

the (given) multi-graded abelian decomposition associated with the limit group

that appears in the i-th level in the anvil (cf. De�nition 2.1).

We call each of the resolutions in these multi-graded diagrams a (multi-

graded) auxiliary resolution, and its terminating solid or rigid limit group

a (multi-graded) auxiliary limit group, which we denote Aux(MGQRes).

Naturally, with each auxiliary resolution we associate its modular groups, which

we call auxiliary modular groups. In the sequel, we call the auxiliary reso-

lutions associated with the tower containing all the levels up to level 2 (all the

levels except the top level), highest level.

QH and abelian vertex groups in the abelian decomposition associated

with the limit group, Aux(WPHGH), that is associated with the anvil,

Anv(WPHGH), with which we started the �rst step, are considered \formal"

along the analysis of a quotient resolution, i.e., it is possible to act on them

with their modular group and still get a specialization that factors through the
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corresponding quotient limit group. When we construct the auxiliary resolution

and modular groups associated with a quotient resolution, the QH and abelian

vertex groups associated with both the previous auxiliary limit group and the

newly constructed one are considered \formal" in the same way.

The collection of multi-graded resolutions, MGQRes, the developing reso-

lutions and the anvils, Anv(MGQRes), associated with them, the families of

formal solutions de�ned over them, and their collections of auxiliary resolutions,

limit groups, and modular groups, together with the data-structure constructed

before starting the �rst step of the procedure, form the data-structure obtained

as a result of the �rst step.

At this stage we continue in a similar way to what we did before starting the

�rst step of the procedure. Given an anvil, Anv(MGQRes), and an auxiliary

resolution, we look at the entire set of rigid or strictly solid specializations of

the associated auxiliary limit group (De�nition 2.6), and their extensions to

specializations of the anvil, for which for the entire family of formal solutions,

x�(t; y; w; p; a), associated with the anvil (i.e., associated with the graded formal

resolution that is associated with the developing resolution associated with the

anvil), and for each element '� in the auxiliary modular group associated with

the given auxiliary resolution,  j(x�('�(t; y; w; p; a)); y; w; p; a) = 1 for at least

one of the equations  j in the system (of inequalities) 	(x; y; w; p; a) 6= 1 used

to de�ne the set EAE(p). By the standard argument presented in section 5

of [Se1], the entire collection of such (extended) specializations, (t; y; w; p; a), is

contained in a �nite set of maximal graded limit groups (that are all quotients

of the anvil, Anv(MGQRes)),

Q2Rlim1(t; y; h1; w; p; a); : : : ; Q
2Rlimu2(t; y; h1; w; p; a);

which we call (second) quotient limit groups. Note that with each such

limit group there is an associated anvil, Anv(MGQRes), and an associated

auxiliary resolution. The quotient limit groups we constructed, that collect

(uniformly) all the remaining y's for every specialization of the parameter sub-

group < w; p; h1 >, and their associated data-structure, are the input for the

next step of the iterative procedure.

II. The general step. In the initial and �rst steps of the iterative procedure

for analyzing the set EAE(p) we have �nally obtained a data structure with

�nitely many developing resolutions and anvils, and their associated graded for-

mal resolutions, and auxiliary resolutions and limit groups. With a developing



Vol. 150, 2005 DIOPHANTINE GEOMETRY OVER GROUPS V1 97

resolution and its associated anvil we have associated a family of formal solu-

tions encoded by a graded formal resolution and de�ned over the developing

resolution, which is mapped into the anvil. After presenting the initial and �rst

steps, we �nally present the general step of the procedure for analyzing the set

EAE(p), and then prove it terminates after �nitely many steps.

We de�ne the general step of the procedure inductively. For brevity, we

denote the multi-graded resolutions that were obtained in the previous steps of

the procedure, MGQmRes(t; y; h1; w; p; a), where m is the index of the step in

which they were constructed. With each such multi-graded quotient resolution

there is an associated developing resolution, graded formal resolution, (multi-

graded) auxiliary resolution and limit group, and an anvil, which we denote

Anv(MGQmRes)(t; y; h1; w; p; a). We start the general step of our iterative

procedure for the analysis of the set EAE(p) with the (�nite) collection of

multi-graded quotient resolutions constructed in the previous step, and their

associated developing resolutions, graded formal resolutions, anvils, and (multi-

graded) auxiliary resolutions and limit groups.

The ultimate goal of the general step of the iterative procedure is to obtain

either a strict reduction in the complexity of certain decompositions and res-

olutions, or a strict reduction in the Zariski closures of certain limit groups

associated with the anvils constructed in the previous steps of the procedure.

The strict reduction in complexity and Zariski closures will �nally guarantee

the termination of the iterative procedure after �nitely many steps.

Since we treat the anvils in parallel, we present the general (n-th) step of

the procedure with one of the anvils, Anv(MGQn�1Res)(t; y; h1; w; p; a). With

each anvil we have associated a family of formal solutions x�(t; y; w; p; a) (that

are de�ned over the developing resolution that is mapped into the anvil, and

parameterized by the graded formal resolution associated with the develop-

ing resolution). Starting with the anvil, Anv(MGQn�1Res)(t; y; h1; w; p; a), we

impose the family of formal solutions x�(t; y; w; p; a) associated with the cor-

responding closure of the developing resolution. Fixing an auxiliary resolution

associated with the anvil (see De�nitions 2.1 and 2.6), we also use the auxiliary

modular groups associated with it.

Given the anvil, Anv(MGQn�1Res), and an auxiliary resolution associated

with it, we look at the set of multi-graded rigid or strictly solid specializations

of the auxiliary limit group, that can be extended to specializations

(t0; y0; h1(0); w0; p0; a)

which factor through and are taut with respect to the resolutions associated
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with the anvil, Anv(MGQn�1Res)(t; y; h1; w; p; a), for which for the entire

family of formal solutions, x�(t; y; h1; w; p; a), associated with the anvil (i.e.,

associated with the graded formal resolution that is associated with the de-

veloping resolution associated with the anvil), and for each element '� in

the auxiliary modular group associated with the given auxiliary resolution,

 j(x�('�(t; y; h1; w; p; a)); y; w; p; a) = 1 for at least one of the equations  j in

the system (of inequalities) 	(x; y; w; p; a) 6= 1 used to de�ne the set EAE(p).

By the standard argument presented in section 5 of [Se1], the entire collec-

tion of such (extended) specializations, (t; y; h1; w; p; a), is contained in a �-

nite set of maximal graded limit groups (that are all quotients of the anvil,

Anv(MGQn�1Res)):

QnRlim1(t; y; h1; w; p; a); : : : ; Q
nRlimun(t; y; h1; w; p; a);

that we call (n-th) quotient limit groups. Note that with each such limit

group there is an associated anvil, Anv(MGQn�1Res), a developing resolution,

and an associated auxiliary resolution.

The quotient limit groups we constructed, that collect (uniformly) all the

remaining y's for every specialization of the parameter subgroup < h1; w; p >,

and their associated data-structure, are the input for the next (n-th) step of the

iterative procedure. Since our analysis of these (n-th) quotient limit groups is

conducted in parallel, we will omit the indices from these (n-th) quotient limit

groups and denote them QnRlim(t; y; h1; w; p; a).

We construct the data-structure and developing resolutions associated with

the anvil and the n-th quotient limit group QnRlim(w; y; a) iteratively, in a

similar way to our analysis of quotient resolutions in the general step of the pro-

cedure for validation of a sentence, presented in section 4 of [Se4]. The analysis

we carry out in the general step depends on the structure of the (previously con-

structed) data-structure, the developing resolutions, auxiliary resolutions, and

the multi-graded resolutions constructed in the previous steps of the procedure

(note that the construction depends on all the previous steps and not only the

last steps). As in the initial and �rst steps of the procedure, our aim is to obtain

a strict decrease in either the Zariski closure or the complexity of the resolution

associated with some level of the data structure we construct.

We start the analysis of the remaining set of y's by analyzing those n-th quo-

tient limit groups, QnRlim(t; y; h1; w; p; a), that are associated with the anvils

we constructed, and with auxiliary resolutions associated with the tower con-

taining all the levels in those anvils except the top level (i.e., the highest level

auxiliary resolutions).
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As parts (1){(4) of the general step of the procedure indicate, we will ana-

lyze only multi-graded resolutions of these quotient limit groups that are not

of maximal complexity, i.e., resolutions which do not contain a single level with

abelian decomposition that has the same structure as the abelian decomposition

associated with the top level of the associated anvil, Anv(MGQn�1Res). To

analyze (specializations that factor through) multi-graded resolutions of maxi-

mal complexity, we will need to use the quotient limit groups associated with

auxiliary resolutions that are not of highest level (this is done in part (5) of the

general step of the procedure).

(1) Let Qn�1(y; h1; w; p; a) be the restricted limit group generated by

< y; h1; w; p; a > in the n� 1 quotient limit group,

Qn�1Rlim(t; y; h1; w; p; a):

Let Qn(y; h1; w; p; a) be the limit group generated by < y; h1; w; p; a >

in the n-th quotient limit group QnRlim(t; y; h1; w; p; a). If

Qn(y; h1; w; p; a) is a proper quotient of the subgroup Q
n�1(y; h1; w; p; a),

we continue this branch of the iterative procedure, by starting the initial

step of the procedure with the graded limit group Qn(y; h1; w; p; a)

instead of the graded limit group Qn�1(y; h1; w; p; a).

Note that in continuing this branch of the procedure, we need to ana-

lyze only those resolutions in the graded taut Makanin{Razborov diagram

of Qn(y; h1; w; p; a) that are not of maximal complexity, i.e., that the un-

graded resolutions associated with them do not correspond to the entire

free group Fy .

(2) At this stage we may assume that Qn(y; h1; w; p; a) is isomorphic to

Qn�1(y; h1; w; p; a). Along the process used to construct the anvil,

Anv(MGQn�1Res)(t; y; h1; w; p; a), we enlarge the parameter subgroups

each time the complexity of the abelian decomposition associated with the

top level of the corresponding multi-graded quotient resolution is being re-

duced. At step m, 1 � m � n� 1, we set the parameter subgroups to be

Base
s(m)
2;1 ; : : : ; Base

s(m)
2;vs(m)

, and the corresponding multi-graded quotient

resolution to be

MGQmRes(tm; y; Base
s(m)
2;1 ; : : : ; Base

s(m)
2;vs(m)

; a);

where s(m) is the number of places in which the parameter subgroups

were enlarged along the process (up to step m), and the subindex 2 in-

dicates that the parameters are associated with the second level of the
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multi-graded resolution.

For each index s, 1 � s � s(n � 1), we set f(s) to be the mini-

mal index m, 1 � m � n � 1, for which s = s(m), and `(s) to be

the maximal index m for which s = s(m). For each couple of indices

m1;m2, 1 � m1 � m2 � n, let Qm2(tm1 ; y; a) = Qm2(tm1 ; y; h1; w; p; a)

be the subgroup generated by < tm1 ; y; h1; w; p; a > in the limit group

Qm2Rlim(tm2 ; y; a) = Qm2Rlim(tm2 ; y; h1; w; p; a).

In this part of the general step we assume that the multi-graded quotient

resolution MGQn�1Res(t; y; Base
s(n�1)
2;1 ; : : : ; Base

s(n�1)
2;vs(n�1)

; a) is of maxi-

mal complexity.

Suppose that for some index s, 1 � s � s(n � 1) � 1, Qn(t`(s); y; a)

is a proper quotient of Q`(s)(t`(s); y; a), and let s be the minimal

index for which this happens. Then we omit the n-th limit group

QnRlim(t; y; h1; w; p; a) from our list of n-th quotient limit groups, and

replace it by going back to the `(s)-th step of the iterative procedure,

and start it with the limit group Qn(t`(s); y; h1; w; p; a) instead of the

`(s)-th limit group Q`(s)Rlim(t`(s); y; h1; w; p; a) used in the `(s)-th

step of the process that leads to the construction of the anvil,

Anv(MGQn�1Res)(t; y; h1; w; p; a):

Since, by de�nition of the index `(s), the parameter subgroups were en-

larged at step `(s) + 1, in analyzing the quotient limit group

QnRlim(t`(s); y; h1; w; p; a);

we need to take into account only those multi-graded quotient resolu-

tions which are not of maximal complexity, i.e., only those multi-graded

quotient resolutions which do not have a single level with a multi-graded

abelian decomposition with the same structure as the abelian decomposi-

tion associated with the top level of the multi-graded quotient resolution

MGQ`(s)�1Res(t`(s)�1; y; Base
s(`(s)�1)
2;1 ; : : : ; Base

s(`(s)�1)
2;vs(`(s)�1)

; a)

used in the process of the construction of the anvil,

Anv(MGQn�1Res)(t; y; h1; w; p; a):

Suppose that for s(n � 1) � 1 (hence, for every index s,

1 � s � s(n � 1) � 1), Qn(t`(s); y; h1; w; p; a) is isomorphic to
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Q`(s)(t`(s); y; h1; w; p; a). We set s(n) = s(n� 1). Let

MGQnRes1(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a); : : : ;

MGQnResq(w; y;Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

be the multi-graded resolutions in the multi-graded taut Makanin{

Razborov diagram of QnRlim(t; y; h1; w; p; a) with respect to the param-

eter subgroups Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

. We will treat the multi-graded

quotient resolutions MGQnResj(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a) in par-

allel, hence we omit their index.

If there exists a QH vertex group Q in the abelian decomposition

associated with the top level of the `(s(n)� 1) quotient resolution

MGQ`(s(n)�1)Res(t`(s(n)�1); y; Base
s(n)�1
2;1 ; : : : ; Base

s(n)�1
2;vs(n)�1

; a)

for which the sequence of abelian decompositions inherited by Q from the

various levels of the multi-graded resolution

MGQnRes(tn; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

is not compatible with the speci�ed collection of s.c.c. on the QH vertex

group Q that is mapped to the trivial element in the second level of the

`(s(n)� 1) quotient resolution

MGQ`(s(n)�1)Res(t`(s(n)�1); y; Base
s(n)�1
2;1 ; : : : ; Base

s(n)�1
2;vs(n)�1

; a);

we omit the multi-graded resolution

MGQnRes(tn; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

from our list of multi-graded resolutions.

By Proposition 2.3, the complexities of the abelian decompositions asso-

ciated with the various levels of each of the n-th multi-graded quotient res-

olution MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a) are bounded by the

complexity of the multi-graded quotient abelian decomposition associated

with the top level of MGQn�1Res(t; y; Base
s(n�1)
2;1 ; : : : ; Base

s(n�1)
2;vs(n�1)

; a),

and if the complexity of the abelian decomposition associated with some

level of MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a) is equal to the com-

plexity of the abelian decomposition associated with the top level of

MGQn�1Res(t; y; Base
s(n�1)
2;1 ; : : : ; Base

s(n�1)
2;vs(n�1)

; a);
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then the n-th multi-graded quotient resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

has only one level above the terminating solid or rigid limit group, and the

structure of the abelian decomposition associated with this level is identi-

cal with the structure of the abelian decomposition associated with the top

level ofMGQn�1Res(t; y; Base
s(n�1)
2;1 ; : : : ; Base

s(n�1)
2;vs(n�1)

; a). In this part of

the n-th step of the procedure, we will also assume that the complexities of

the abelian decompositions associated with the various levels of the n-th

multi-graded quotient resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

are strictly smaller than the complexity of the abelian decomposition as-

sociated with the top level of the multi-graded quotient resolution

MGQn�1Res(t; y; Base
s(n�1)
2;1 ; : : : ; Base

s(n�1)
2;vs(n�1)

; a):

We treat the n-th multi-graded quotient resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

according to part (4) of step n� 1 of the iterative procedure.

(3) At this stage we may assume that Qn(y; h1; w; p; a) is isomorphic to

Qn�1(y; h1; w; p; a). At this part we assume that the n � 1 multi-graded

quotient resolution MGQn�1Res(t; y; Base
s(n�1)
2;1 ; : : : ; Base

s(n�1)
2;vs(n�1)

; a) is

not of maximal possible complexity.

Suppose that for some index s, 1 � s � s(n � 1), Qn(t`(s); y; a) is

a proper quotient of Q`(s)(t`(s); y; a), and suppose that s is the mini-

mal index for which this happens. Then we omit the n-th limit group

QnRlim(t; y; h1; w; p; a) from our list of n-th quotient limit groups, and

replace it by going back to the `(s)-th step of the iterative procedure,

and start it with the limit group Qn(t`(s); y; a), the subgroup generated

by < t`(s); y; a > in the n-th quotient limit group QnRlim(t; y; h1; w; p; a),

instead of the `(s)-th limit group Q`(s)Rlim(t`(s); y; h1; w; p; a) used in

the `(s)-th step of the process that leads to the construction of the anvil,

Anv(MGQn�1Res)(t; y; h1; w; p; a). Since, by de�nition of the index `(s),

in case `(s) < n � 1 the parameter subgroups were enlarged at step

`(s) + 1, and in case `(s) = n � 1 the multi-graded quotient resolution
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MGQn�1Res(t; y; Base
s(n�1)
2;1 ; : : : ; Base

s(n�1)
2;vs(n�1)

; a) is not of maximal pos-

sible complexity, in analyzing the quotient limit group

QnRlim(t`(s); y; h1; w; p; a)

we need to take into account only those multi-graded quotient resolutions

that are not of maximal complexity, i.e., only those multi-graded quotient

resolutions which do not have a single level with a multi-graded abelian

decomposition with the same structure as the abelian decomposition as-

sociated with the top level of the multi-graded quotient resolution

MGQ`(s)�1Res(t`(s)�1; y; Base
s(`(s)�1)
2;1 ; : : : ; Base

s(`(s)�1)
2;vs(`(s)�1)

; a)

used in the process of the construction of the anvil,

Anv(MGQn�1Res)(t; y; h1; w; p; a):

(4) In this part we may assume that the multi-graded quotient resolution

MGQn�1Res(t; y; Base
s(n�1)
2;1 ; : : : ; Base

s(n�1)
2;vs(n�1)

; a) is not of maximal

complexity, and that Qn(tn�1; y; h1; w; p; a) is isomorphic to

Qn�1(tn�1; y; h1; w; p; a). We set s(n) = s(n� 1) + 1, and the parameter

subgroups Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

to be the non-abelian, non-QH vertex

groups in the abelian decomposition associated with the top level of the

anvil, Anv(MGQn�1Res). Let

MGQnRes1(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a); : : : ;

MGQnResq(w; y;Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

be the resolutions in the taut multi-graded Makanin{Razborov diagram

of QnRlim(t; y; h1; w; p; a) with respect to the parameter subgroups

Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

:

We analyze the n-th multi-graded quotient resolutions

MGQnResj(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

in parallel, hence we will omit their index.

If there exists a QH vertex group Q in the abelian decomposition asso-

ciated with the top level of the n� 1 = `(s(n)� 1) quotient resolution

MGQ`(s(n)�1)Res(t`(s(n)�1); y; Base
s(n)�1
2;1 ; : : : ; Base

s(n)�1
2;vs(n)�1

; a)



104 Z. SELA Isr. J. Math.

for which the sequence of abelian decompositions inherited by Q from the

various levels of the multi-graded resolution

MGQnRes(tn; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

is not compatible with the speci�ed collection of s.c.c. on the QH vertex

group Q that are mapped to the trivial element in the second level of the

n� 1 = `(s(n)� 1) quotient resolution

MGQ`(s(n)�1)Res(t`(s(n)�1); y; Base
s(n)�1
2;1 ; : : : ; Base

s(n)�1
2;vs(n)�1

; a);

we omit the multi-graded resolution

MGQnRes(tn; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

from our list of multi-graded resolutions.

In this part we will also assume that the n-th multi-graded quotient

resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

is not of maximal possible complexity, i.e., it does not have a single level

with a (multi-graded) abelian decomposition identical with the abelian de-

composition associated with the top level of the multi-graded quotient res-

olution MGQn�1Res(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a). The case of max-

imal complexity will be treated in the next part of the general step. To

treat an n-th multi-graded quotient resolution which is not of maximal

possible complexity we need the following observation, which is similar to

Proposition 2.4.

Lemma 2.7: LetMGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a) be an n-th multi-

graded quotient resolution that is not of maximal complexity. By construction,

the limit group Qn(tn�1; y; h1; w; p; a) is mapped into the limit group associated

with each of the levels of the multi-graded quotient resolution MGQnRes. Let

Qn
term(tn�1; y; h1; w; p; a) be the image of Qn(tn�1; y; h1; w; p; a) in the terminal

(rigid or solid) limit group of MGQnRes.

Then the multi-graded resolutionMGQnRes can be replaced by two �nite col-

lections of multi-graded resolutions, that are all compatible with the top level of

the resolutionMGQ`(s(n)�1)Res associated with the anvil, Anv(MGQn�1Res),

and are all obtained from MGQnRes by adding at most a single (terminal)

level. Furthermore, all the resolutions in these collections are not of maximal

complexity.
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We denote each of the resolutions in these collections, MGQn0Res.

(i) In the �rst (possibly empty) collection of multi-graded resolutions,

the image of the subgroup Qn(tn�1; y; h1; w; p; a) in the terminal limit

group of MGQn0Res, Qn
term(tn�1; y; h1; w; p; a), is a proper quotient of

Qn(tn�1; y; h1; w; p; a).

(ii) In the second (possibly empty) �nite collection of multi-graded resolu-

tions, the terminal limit group of MGQn0Res is either a rigid or a solid

limit group with respect to the parameter subgroup < h1; w; p >, i.e.,

the terminal limit group is rigid or solid with respect to the parameter

subgroup < h1; w; p >, and not only with respect to the multi-grading

with respect to the subgroups Base
s(n)
2;1 ; : : : ; Base

s(n)
vs(n) , that was used in

the construction of the resolution, MGQnRes.

Proof: The argument is a modi�cation of the argument used to prove Propo-

sition 2.4. We may assume that the image of Qn(tn�1; y; h1; w; p; a) in the

terminal limit group of MGQnRes, Qn
term(tn�1; y; h1; w; p; a), is isomorphic to

Qn(tn�1; y; h1; w; p; a).

With the terminal limit group MGQnTerm(tn; y; h1; w; p; a), which is

assumed to be (multi-graded) rigid or solid with respect to the subgroups

Base
s(n)
2;1 ; : : : ; Base

s(n)
vs(n) , we associate the resolutions that appear in its graded

taut Makanin{Razborov diagram with respect to the parameter subgroup

< h1; w; p;>. We treat these resolutions in parallel, so let

GTRes(tn; y; h1; w; p; a)

be one of these resolutions. By construction, the resolutionGTRes terminates in

a rigid or solid limit group with respect to the parameter subgroup < h1; w; p >.

Let Qn
top(tn�1; y; h1; w; p; a) be the image of Q

n(tn�1; y; h1; w; p; a) in the limit

group that is associated with the top level of the graded resolution GTRes. If

Qn
top(tn�1; y; h1; w; p; a) is a proper quotient of Qn(tn�1; y; h1; w; p; a), part (i)

of the proposition holds. If the graded resolution GTRes has a single level, i.e.,

if the limit group associated with its top level is rigid or solid with respect to

< h1; w; p >, part (ii) of the proposition holds. Hence, we may assume that

Qn
top is isomorphic to Q

n, and GTRes has more than a single level.

Let �top be the (essential) graded abelian decomposition associated with

the top level of the graded resolution GTRes(tn; y; h1; w; p; a) (graded with

respect to the subgroup < h1; w; p >; see de�nition 1.8 in [Se3] for an es-

sential decomposition). Qn
top(tn�1; h1; w; p; a) inherits an (essential, graded)

abelian decomposition from �top. Since Q
n
top(tn�1; h1; w; p; a) is isomorphic to



106 Z. SELA Isr. J. Math.

Qn�1Rlim(tn�1; h1; w; p; a), the non-QH , non-abelian vertex groups and edge

groups in the (essential) graded abelian JSJ decomposition of

Qn�1Rlim(tn�1; h1; w; p; a) with respect to the parameter subgroup

< h1; w; p; a > have to be elliptic in the graded abelian decomposition inherited

by Qn
top(tn�1; h1; w; p; a) from �top.

The auxiliary limit group Aux(MGQn�1Res), being a subgroup of the anvil,

Anv(MGQn�1Res), is naturally mapped into the limit group associated with

the top level of GTRes. Let �Aux be the (essential) abelian decomposition

associated with the auxiliary limit group (that is associated with the anvil,

Anv(MGQn�1Res)), Aux(MGQn�1Res). By construction, �Aux is multi-

graded with respect to the non-abelian, non-QH vertex groups, and edge groups

in the abelian JSJ decomposition of Qn�1Rlim(tn�1; h1; w; p; a). Since the non-

abelian, non-QH vertex groups and edge groups in the (essential) graded abelian

JSJ decomposition of Qn�1Rlim(tn�1; h1; w; p; a) are elliptic in �top, if a non-

abelian, non-QH vertex group or an edge group in �Aux is not elliptic in �top,

lemma 1.9 in [Se3] implies that the restriction of the specializations that factor

through GTRes to the auxiliary limit group, Aux(MGQn�1Res), are neither

rigid nor strictly solid, so we may remove the graded resolution GTRes from

our list of graded resolutions.

Each of the subgroupsBase
s(n)
2;1 ; : : : ; Base

s(n)
vs(n) is a factor in the (multi-graded)

free decomposition of the auxiliary limit group, Aux(MGQn�1Res), with

respect to the non-QH , non-abelian vertex groups and edge groups of

Qn�1Rlim(tn�1; h1; w; p; a). Hence, each subgroup Base
s(n)
2;j inherits an abelian

decomposition from �Aux, which is a subgraph (of groups) of �Aux. We set

�term to be the abelian decomposition obtained from the multi-graded abelian

decomposition associated with the terminal level ofMGQnRes (which is multi-

graded with respect to the subgroups Base
s(n)
2;1 ; : : : ; Base

s(n)
vs(n)), by replacing

each of the vertex groups stabilized by one of the subgroups Base
s(n)
2;j with a

(possibly degenerate) graph of groups obtained from the abelian decomposition

associated with Base
s(n)
2;j in �Aux. �term is the multi-graded abelian decom-

position of the terminal limit group of MGQnRes, MGQnTerm, with respect

to the non-abelian, non-QH vertex groups and edge groups in the (essential)

graded abelian JSJ decomposition of Qn
term(tn�1; h1; w; p; a) (which is assumed

to be isomorphic to Qn�1Rlim(tn�1; h1; w; p; a)).

If any of the non-abelian, non-QH vertex groups or any of the edge groups

in the multi-graded abelian decomposition �term is not elliptic in the graded

abelian decomposition �top, then the specializations that factor through the
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graded resolutionGTRes are neither rigid nor strictly solid specializations of the

terminal limit group, MGQnTerm, of the multi-graded resolution, MGQRes.

Hence, in this case we may omit the resolution GTRes from our list of graded

resolutions.

We continue iteratively along the levels of the graded resolution GTRes,

and conclude that if the resolution GTRes was not removed from our list of

graded resolutions, then as long as the image of Qn�1Rlim(tn�1; y; h1; w; p; a)

in the limit group associated with some level j is isomorphic to

Qn�1Rlim(tn�1; y; h1; w; p; a), then the images of all the non-QH , non-abelian

vertex groups and the edge groups in the abelian decomposition �term, in the

graded abelian decomposition associated with level j in GTRes, are elliptic.

Therefore, either we get to the terminal level of GTRes, which is rigid or solid

with respect to< h1; w; p > (possibility (ii) in the proposition), or we get to some

level j, for which the image of Qn�1Rlim(tn�1; y; h1; w; p; a) in the limit group

associated with that level is a proper quotient of Qn�1Rlim(tn�1; y; h1; w; p; a)

(possibility (i) in the proposition). Furthermore, since the non-abelian, non-QH

vertex groups and edge groups in �term are mapped to elliptic subgroups in all

the levels until level j of GTRes, the modular groups associated with �term

are suÆcient to map the terminal limit group of MGQRes, MGQTerm, onto

the limit group associated with level j of GTRes, hence MGQRes needs to be

extended in at most a single level.

If the image of Qn�1Rlim(tn�1; y; h1; w; p; a) in the limit group associated

with level j inGTRes is a proper quotient ofQn�1Rlim(tn�1; y; h1; w; p; a), then

it is enough to use the modular groups associated with MGQTerm as a multi-

graded rigid or solid limit group with respect to Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

, to

mapMGQTerm onto a limit group in which the image of Qn(tn�1; y; h1; w; p; a)

is a proper quotient of it. This allows one to continue viewing the QH and

abelian vertex groups in the multi-graded abelian decomposition of the auxiliary

limit group, Aux(MGQn�1Res), as \formal", i.e., we can still act on them with

their associated modular groups in the terminal limit groups as well, a point of

view that is adapted throughout the whole iterative procedure.

If the limit group associated with level j inGTRes is rigid or solid with respect

to < h1; w; p >, then we use this terminal limit group to express the rigid or

strictly solid families associated with it. Still, in this case, the terminal level of

the obtained resolutionMGQ0Res does really take part in the next steps of the

procedure (besides expressing the rigid or strictly solid families). Hence, for the

purposes of the next steps in the procedure, we are allowed to continue viewing
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the QH and abelian vertex groups in the multi-graded abelian decomposition

associated with the auxiliary resolutions that are associated with the anvil,

Anv(MGQn�1Res), and were constructed in previous steps of the procedure,

as \formal".

By Lemma 2.7 under the assumptions of part (4), we can either drop the n-

th multi-graded quotient resolutionMGQnRes from our list of n-th multi-

graded quotient resolutions, or we may replace it by �nitely many multi-

graded resolutions, which for brevity we still denoteMGQnRes, so that for

each resolution we may assume that either Qn
term(t`(s(n)�1); y; h1; w; p; a)

is a proper quotient of Qn(t`(s(n)�1); y; h1; w; p; a), or the terminal limit

group of the multi-graded resolution MGQnRes is rigid or solid with re-

spect to the parameter subgroup < h1; w; p >. We continue with the

resolutions from the collection given in Lemma 2.7 in parallel, and con-

tinue to denote them MGQnRes.

At this point we need the following lemma that is similar to Proposition

2.5.

Lemma 2.8: Let MGQnRes be an n-th multi-graded quotient resolution

which is not of maximal possible complexity. By construction, the limit group

Qn(t; y; h1; w; p; a) is mapped onto the limit group associated with each of the

levels of the multi-graded quotient resolution MGQnRes. Let Qn
2 (tn�1; y; a),

Qn
2 (tn; y; a) be the images of the subgroups Qn(tn�1; y; h1; w; p; a),

Qn(tn; y; h1; w; p; a) in correspondence, in the limit group associated with

the second level of the multi-graded quotient resolution MGQnRes. Then

Qn
2 (tn�1; y; h1; w; p; a) is a quotient of the subgroup Qn(tn�1; y; h1; w; p; a), and

Qn
2 (tn; y; h1; w; p; a) is a proper quotient of the subgroup Qn(tn; y; h1; w; p; a).

Proof: The claim of the lemma is a basic property of a multi-graded resolution.

Suppose that Qn
2 (y; h1; w; p; a) is a proper quotient of Qn(y; h1; w; p; a).

In this case we modify the procedure used in part (2) of the �rst step of

the procedure. We decrease the parameter subgroup to be < h1; w; p >,

and associate with Qn
2 (y; h1; w; p; a) its taut graded Makanin{Razborov

diagram with respect to the parameter subgroup < h1; w; p >

GQRes1(y; h1; w; p; a); : : : ; GQRest(y; h1; w; p; a):

We continue with each of the graded resolutions GQResj(y; h1; w; p; a) in

parallel.
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If the subgroup generated by < y; h1; w; p; a > in the limit group asso-

ciated with the resolution GQResj(y; h1; w; p; a) is a proper quotient of

Qn
2 (y; h1; w; p; a), we replace the graded resolution GQResj(y; h1; w; p; a)

by starting part (4) of the the general step with the multi-graded res-

olution obtained from MGQnRes, by replacing its second limit group

Qn
2 (t; y; h1; w; p; a) with the maximal limit groups obtained from all spe-

cializations that factor through both Qn
2 (t; y; h1; w; p; a) and the subgroup

generated by < y; h1; w; p; a > in the limit group associated with

GQResj(y; h1; w; p; a). If the subgroup generated by < t; y; w; p; a > in

the obtained (one level) resolution, QRlim0(t; y; h1; w; p; a), is a proper

quotient of QRlim(t; y; h1; w; p; a), we replace the obtained resolution by

starting the n-th step of our iterative procedure with the limit group

QRlim0(t; y; h1; w; p; a) instead of the limit group QRlim(t; y; h1; w; p; a),

and since the resolution MGQnRes is not of maximal complexity, in an-

alyzing the limit group QRlim0(t; y; h1; w; p; a) we need to consider only

those resolutions in its multi-graded Makanin{Razborov diagram that are

not of maximal possible complexity. Hence, for the rest of this part we

may assume that the subgroup generated by < y; h1; w; p; a > in the limit

group associated with GQResj(y; h1; w; p; a) is isomorphic to the subgroup

generated by < y; h1; w; p; a > in Qn
2 (t; y; h1; w; p; a).

Suppose that a graded quotient resolution GQResj(y; h1; w; p; a) is of

maximal possible complexity, i.e., the limit group associated with it is of

the form < h1; w; p; a > �Fy. Since the limit group Q
n
2 (y; h1; w; p; a) is a

proper quotient of Qn(y; h1; w; p; a), and since the limit group

Qn
2 (y; h1; w; p; a)

is naturally mapped onto the limit group < h1; w; p; a > �Fy associated

with the graded resolution GQResj(y; h1; w; p; a), the Hopf property for

limit groups implies that the subgroup generated by < h1; w; p; a > in the

limit group associated with GQResj(y; h1; w; p; a) is a proper quotient of

the limit group generated by < h1; w; p; a > in Qn(y; h1; w; p; a). Hence,

we can replace the resolution GQResj(y; h1; w; p; a) by starting the ini-

tial step of the procedure with the subgroup < h1; w; p; a > �Fy, where

< h1; w; p; a > is the subgroup generated by these elements in the limit

group associated withGQResj(y; h1; w; p; a). Since resolutions of maximal

possible complexity of the limit group Qn(y; h1; w; p; a) with respect to the

parameter subgroup < h1; w; p >, i.e., those corresponding to the entire

free group Fy , were already analyzed in the initial step of the procedure, we
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can omit a graded resolution GQResj(y; h1; w; p; a) of maximal complex-

ity from our list of graded quotient resolutions fGQResj(y; h1; w; p; a)g.

Hence, for the rest of this part we may assume that the graded resolution

GQResj(y; h1; w; p; a) with which we continue is not of maximal possible

complexity.

Let CResj(y; h1; w; p; a) be the graded resolution obtained from the

resolution induced by the subgroup < y; h1; w; p; a > from the top level

of the completion of the multi-graded resolution MGQnRes, followed by

the graded resolution GQResj(y; h1; w; p; a) (see section 3 of [Se4] for the

construction of the induced resolution). If the subgroup generated by

< y; h1; w; p; a > in the limit group corresponding to the graded reso-

lution CResj(y; h1; w; p; a) is a proper quotient of Qn(y; h1; w; p; a), we

replace the graded resolution GQResj(y; h1; w; p; a) by starting the initial

step of the procedure with the subgroup generated by < y; h1; w; p; a > in

the limit group corresponding to the resolution CResj(y; h1; w; p; a) and

treat only those graded resolutions of this limit group (with respect to

the parameter subgroup < h1; w; p >) that are not of maximal possible

complexity, i.e., those graded resolutions which do not cover ungraded

ones that correspond to the entire free group Fy. Hence, we may assume

that for the rest of this part, the subgroup generated by < y; h1; w; p; a >

in the limit group corresponding to CResj(y; h1; w; p; a) is isomorphic to

Qn(y; h1; w; p; a). In particular, we may assume that each of the graded

resolutions GQResj(y; h1; w; p; a) in question is not of maximal possible

complexity.

We now treat each of the graded resolutions GQResj(y; h1; w; p; a), and

their associated resolutions CResj(y; h1; w; p; a), in a similar way to our

treatment of multi-graded quotient resolutions in part (4) of the general

step of the iterative procedure for validation of a sentence, presented in

section 4 of [Se4]. LetWP (HG)n+1(gn+1; h1; w; p; a) be the terminal rigid

or solid limit group of the graded resolution GQResj(y; h1; w; p; a) (which

is also the terminal rigid or solid limit group of its associated resolu-

tion CResj(y; h1; w; p; a)). We start by collecting all the formal solu-

tions de�ned over ungraded resolutions covered by the graded resolution

CResj(y; h1; w; p; a). According to section 3 of [Se2], this collection of

formal solutions factors through a canonical collection of graded formal

limit groups. With each graded formal limit group we associate its graded

formal Makanin{Razborov diagram (as we did in section 3 of [Se2]). We
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continue with each of the graded formal resolutions that appear in these

diagrams in parallel.

Let GFRes(x; f; y; gn+1; h1; w; p; a) be a graded formal resolution in one

of these diagrams, and let WP (HG)n+1H(hn+2; gn+1; h1; w; p; a) be its

terminating rigid or solid (not formal!) limit group. With the graded

formal resolution GFRes(x; f; y; hn+2; gn+1; h1; w; p; a) we associate the

resolution GRes(f; y; hn+2; gn+1; h1; w; p; a), which is the graded (not for-

mal!) resolution associated with the terminal formal limit group of the

graded formal resolution GFRes(x; f; y; hn+2; gn+1; h1; w; p; a). Note that

the terminal rigid or solid limit group of the graded resolution GRes is

the (rigid or solid) limit group WP (HG)n+1H(hn+2; gn+1; h1; w; p; a) as

well.

We set the developing resolution to be the resolution

GRes(f; y; hn+2; gn+1; h1; w; p; a):

We further set the anvils associated with the developing resolution to be

the (canonical) �nite set of maximal limit quotients of the group obtained

as the amalgamated product of the completion of the developing resolution

and the completion of the top level of the multi-graded resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

amalgamated along the top part of the developing resolution, which was

set to be the subgroup generated by the resolution induced by the sub-

group< y; h1; w; p; a > from the top level ofMGQnRes, and the subgroup

Qn
2 (y; h1; w; p; a) (which is the image of Q

n(y; h1; w; p; a) in the limit group

associated with the second level of MGQnRes). We denote each of the

(�nitely many) anvils Anv(MGQnRes)(t; y; a). Note that the completion

of the developing resolution is canonically mapped into the anvil, hence

the formal solutions encoded by the graded formal resolution, GFRes,

that are de�ned over the developing resolution, can be naturally de�ned

over the anvil. With the anvil and its developing resolution we further

associate the terminal rigid or solid limit groups (graded with respect to

the parameter subgroup < h1; w; p >),WP (HG)n+1 andWP (HG)n+1H .

Suppose that Qn
2 (y; h1; w; p; a) is isomorphic to Qn(y; h1; w; p; a),

and Qn
2 (tn�1; y; h1; w; p; a) is a proper quotient of Qn(tn�1; y; h1; w; p; a).

We set s, 1 � s � s(n) � 1, to be the minimal index for which
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Qn
2 (t`(s); y; h1; w; p; a) is a proper quotient of Q

n(t`(s); y; h1; w; p; a), which

is assumed to be isomorphic to Q`(s)(t`(s); y; h1; w; p; a). Let

MGQRes1(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a); : : : ;

MGQResd(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)

be the resolutions in the taut multi-graded diagram of

Qn
2 (t`(s); y; Base

s
2;1; : : : ; Base

s
2;vs ; a)

with respect to the parameter subgroups Bases2;1; : : : ; Base
s
2;vs .

Given a multi-graded resolution

MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a);

we set the multi-graded quotient resolution

CResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)

to be the multi-graded resolution obtained from the resolution induced by

the subgroup < t`(s); y; w; p; a > from the top level of the completion of

the multi-graded quotient resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a);

followed by the multi-graded resolution

MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a):

If the subgroup generated by < t`(s); y; w; p; a > in the limit group

associated with the resolution CResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a) is

a proper quotient of the `(s) quotient limit group

Q`(s)Rlim(t`(s); y; h1; w; p; a);

we set q, 1 � q � s, to be the minimal index for which the subgroup

generated by < t`(q); y; w; p; a > in the limit group associated with the

resolution CResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a) is a proper quotient of

the `(q)-th quotient limit group Q`(q)Rlim(t`(q); y; h1; w; p; a). We now

replace the multi-graded quotient resolution

MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)
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of the limit group associated with the second level of the multi-graded reso-

lutionMGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a), by starting the `(q)-th

step of our process with the limit group generated by < t`(q); y; w; p; a >

in (the closure of) CResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a), instead of the

limit group Q`(q)Rlim(t`(q); y; h1; w; p; a), which is assumed to be isomor-

phic to QnRlim(t`(q); y; h1; w; p; a), and was used in the `(q)-th step of the

procedure.

If there exists a QH vertex group Q in the abelian decomposition

associated with the top level of the `(s� 1) quotient resolution

MGQ`(s�1)Res(t`(s�1); y; Base
s�1
2;1 ; : : : ; Base

s�1
2;vs�1

; a)

for which the sequence of abelian decompositions inherited by Q from the

various levels of the multi-graded resolution

CResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)

is not compatible with the speci�ed collection of s.c.c. on the QH vertex

group Q that are mapped to the trivial element in the second level of the

`(s� 1) quotient resolution,

MGQ`(s�1)Res(t`(s�1); y; Base
s�1
2;1 ; : : : ; Base

s�1
2;vs�1

; a);

we omit the multi-graded resolution

MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)

from our list of multi-graded resolutions.

Suppose that a multi-graded quotient resolution

MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)

is of maximal possible complexity, i.e., that it has a single level with an

abelian decomposition of the same structure as the abelian decomposi-

tion associated with the top level of the multi-graded quotient resolu-

tion MGQ`(s)�1Res(t`(s)�1; y; Base
s(`(s)�1)
2;1 ; : : : ; Base

s(`(s)�1)
2;vs(`(s)�1)

; a). Each

of the non-abelian, non-QH vertex groups in the abelian decomposition

associated with the top level of the anvil,

Anv(MGQ`(s)�1Res)(t`(s); y; h1; w; p; a);

is naturally mapped into the `(s) quotient limit group

Q`(s)(t`(s); y; h1; w; p; a);
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which is assumed to be isomorphic to Qn(t`(s); y; h1; w; p; a). Since

Qn(t`(s); y; h1; w; p; a)

is mapped onto Qn
2 (t`(s); y; h1; w; p; a), the image in Q

n(t`(s); y; h1; w; p; a)

of each of the non-abelian, non-QH vertex groups in the abelian decom-

position associated with the top level of the anvil,

Anv(MGQ`(s)�1Res)(t`(s); y; h1; w; p; a);

is naturally mapped into Qn
2 (t`(s); y; h1; w; p; a). Since

Qn
2 (t`(s); y; h1; w; p; a)

is assumed to be a proper quotient of Qn(t`(s); y; h1; w; p; a), and the

abelian decomposition associated with the multi-graded resolution

MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)

has a single level with an abelian decomposition of the same structure as

the abelian decomposition associated with the top level of the multi-graded

quotient resolution MGQ`(s)�1Res, the map of the image in

Qn(t`(s); y; h1; w; p; a);

of at least one of the non-abelian, non-QH vertex groups in the abelian

decomposition of the anvil, Anv(MGQ`(s)�1Res)(t`(s); y; h1; w; p; a), into

Qn
2 (t`(s); y; h1; w; p; a), is not a monomorphism.

Hence, in this case ofMGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a) being

a resolution of maximal possible complexity, we do the following. We set

the multi-graded quotient resolution

CResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)

to be the multi-graded resolution obtained from the resolution induced

by the subgroup < t`(s); y; h1; w; p; a > from the completion of the multi-

graded quotient resolution MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a),

followed by the multi-graded resolution

MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a):

We set q, 1 � q � s, to be the minimal index for which the subgroup

generated by < t`(q); y; w; p; a > in (the closure of)

CResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)
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is a proper quotient of Qn(t`(q); y; h1; w; p; a) = Q`(q)(t`(q); y; h1; w; p; a)

(by the above argument there must exist such an index q). We now replace

the multi-graded quotient resolution

MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)

of the limit group associated with the second level of

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

by starting the `(q)-th step of our process with the limit group generated

by < t`(q); y; w; p; a > in (the closure of)

CResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a);

instead of the limit group

Q`(q)Rlim(t`(q); y; h1; w; p; a) = QnRlim(t`(q); y; h1; w; p; a)

used in the `(q)-th step of the procedure. In analyzing the new `(q)-th

quotient limit group, we need to consider only its multi-graded resolutions

that are not of maximal complexity, as (multi-graded) resolutions of max-

imal possible complexity are analyzed in di�erent branches of the iterative

procedure.

By the above argument, we may consider only those multi-graded

quotient resolutions, MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a), which

are not of maximal possible complexity. In this case we analyze each

of the multi-graded quotient resolutions,

MGQResj(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a);

as we did in step `(s) of our iterative procedure. First, we associate with

the multi-graded resolution MGQRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a) a

multi-graded resolution CRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a), obtained

from the resolution induced by the subgroup < t`(s); y; a > from the top

level of the completion of the multi-graded resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

followed by the multi-graded resolution

MGQRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a):
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If the multi-graded resolution CRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a) is

not compatible with the collections of s.c.c. associated the various QH

vertex groups in the multi-graded abelian decomposition associated with

the top level of the multi-graded resolution

MGQ`(s�1)Res(t`(s�1); y; Base
s�1
2;1 ; : : : ; Base

s�1
2;vs�1

; a);

we omit the multi-graded resolution

MGQRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a)

from our list of multi-graded resolutions of Qn
term(t`(s); y; a). Otherwise,

we continue as in step `(s) of the iterative procedure, and associate with

the multi-graded resolution MGQRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a) a

canonical collection of graded resolutions that are induced by the (image

of the) subgroup < y; h1; w; p; a >, and their associated anvils.

As we did in part (4) of the general step of the iterative procedure

for validation of an AE sentence in [Se4], given an anvil associated with

the graded resolutionMGQRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a), we set a

resolution IRes(u; y; h1; w; p; a) obtained from the resolution induced by

the subgroup < y; h1; w; p; a > from the top level of the n-th multi-graded

quotient resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

followed by the resolution induced by the (image of the) subgroup

< y; h1; w; p; a >, that is associated with the anvil which is associated with

the multi-graded resolution MGQRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a).

We collect all the formal solutions de�ned over (ungraded resolutions

covered by the graded resolution) IRes(u; y; h1; w; p; a) in a taut graded

formal Makanin{Razborov diagram. We set each graded (not formal!) res-

olution associated with a terminal graded formal limit group in this graded

formal Makanin{Razborov diagram (which is a graded closure of the res-

olution IRes(u; y; h1; w; p; a)) to be a developing resolution (see section

3 in [Se2] for the construction of a graded formal diagram). With each

developing resolution we associate a (graded) family of formal solutions

parameterized by the graded formal modular groups associated with the

graded formal resolution in the graded formal Makanin{Razborov diagram

that is associated with the developing resolution.

With each developing resolution we also associate a �nite collection of
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anvils that we denote Anv(MGQnRes). The anvils are set to be the �-

nite collection of maximal limit quotients of the group generated by the

developing resolution, the corresponding closure of the top level of the

multi-graded resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

and the anvil associated with MGQRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a),

where the top part of the developing resolution is identi�ed with its image

in the (closure of the) top part of MGQnRes, the tail of the developing

resolution (i.e., the developing resolution except its top part) is identi�ed

with its image in the anvil associated with the resolution MGQRes, and

the corresponding images of the subgroupQn
2 (t`(s); y; a) in the second level

of the completion ofMGQnRes and in the anvil associated with the multi-

graded resolution MGQRes(t`(s); y; Base
s
2;1; : : : ; Base

s
2;vs ; a) are identi-

�ed as well. Since the developing resolution is mapped into the anvil,

Anv(MGQnRes)(t; y; a), the family of formal solutions associated with

and de�ned over the developing resolution is naturally de�ned over the

anvil as well.

We still need to consider the case in which both Qn
2 (y; h1; w; p; a) is

isomorphic to Qn(y; h1; w; p; a), and Q
n
2 (tn�1; y; h1; w; p; a) is isomorphic

to Qn(tn�1; y; h1; w; p; a). In this case we continue to the next level of the

multi-graded quotient resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a):

If for some level j of the multi-graded resolution, the image of

Qn(y; h1; w; p; a) in the limit group associated with this level,

Qn
j (y; h1; w; p; a), is a proper quotient of Q

n(y; h1; w; p; a), or the image of

the limit group Qn(tn�1; y; h1; w; p; a) in the limit group associated with

this level, Qn
j (tn�1; y; h1; w; p; a), is a proper quotient of

Qn(tn�1; y; h1; w; p; a);

then from the highest such level j we can continue as in case

Qn
2 (y; h1; w; p; a) is a proper quotient of Qn(y; h1; w; p; a), or

Qn
2 (tn�1; y; h1; w; p; a) is a proper quotient of Qn(tn�1; y; h1; w; p; a), and

associate with the multi-graded resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)
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a �nite collection of developing resolutions, anvils, and families of formal

solutions de�ned over each of the developing resolutions and its associated

anvil.

Finally, suppose that for every level j, the image of

Qn(tn�1; y; h1; w; p; a)

in the limit group associated with the j-th level of the multi-graded resolu-

tion MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a), Qn
j (tn�1; y; h1; w; p; a),

is isomorphic to Qn(tn�1; y; h1; w; p; a). In this case, by Lemma 2.7, the

terminal limit group of the multi-graded resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a);

Qn
term(t; y; h1; w; p; a), is rigid or solid with respect to the parameter sub-

group < h1; w; p >.

We denote the terminal limit group of the multi-graded resolution

MGQnRes, WP (HG)n+1(gn+1; h1; w; p; a). Note that this terminal limit

group is rigid or solid with respect to the parameter subgroup< h1; w; p >.

We set the graded resolution CRes(y; gn+1; h1; w; p; a) to be the resolution

obtained from the resolution induced by the subgroup generated by

< y; h1; w; p; a > from the multi-graded resolution MGQnRes, by en-

larging its terminal group to be WP (HG)n+1. We collect all the formal

solutions de�ned over ungraded resolutions covered by the graded reso-

lution CRes(y; gn+1; h1; w; p; a). This collection of formal solutions fac-

tors through a canonical collection of graded formal limit groups. With

each graded formal limit group we associate its graded formal Makanin{

Razborov diagram as we did in section 3 of [Se2]. We continue with each

of the graded formal resolutions that appear in these diagrams in parallel.

Let GFRes(x; f; y; gn+1; h1; w; p; a) be a graded formal resolution in one

of these diagrams, and let WP (HG)n+1H(hn+2; gn+1; h1; w; p; a) be its

terminating rigid or solid (not formal!) limit group. With the graded

formal resolution GFRes we associate the resolution

GRes(f; y; hn+2; gn+1; h1; w; p; a);

which is the graded (not formal!) resolution associated with the terminal

formal limit group of the graded formal resolution GFRes (i.e., its graded

formal closure amalgamated with its terminal rigid or solid limit group).

Note that the terminal rigid or solid limit groups of those resolutions is



Vol. 150, 2005 DIOPHANTINE GEOMETRY OVER GROUPS V1 119

WP (HG)n+1H(hn+2; gn+1; h1; w; p; a).

We set the developing resolution to be the resolution

GRes(f; y; hn+2; gn+1; h1; w; p; a):

To set the �nite collection of anvils, we �rst look at the amalgamation

of (the completion of) MGQnRes and the (completion of the) resolution,

GRes, amalgamated along the (completion of the) induced resolution,

CRes(y; gn+1; h1; w; p; a). With the obtained group we naturally associate

a �nite collection of maximal limit groups and set each of them to be an

anvil. With the developing resolution we associate the family of formal

solutions x�(f; y; hn+2; gn+1; h1; w; p; a) encoded by the associated graded

formal resolution, GFRes, and de�ned over the developing resolution.

Since the developing resolution is canonically mapped into the anvil, the

family of formal solutions associated with the developing resolution is

naturally de�ned over the anvil as well.

(5) By part (1) we may assume that Qn(y; h1; w; p; a) is isomorphic to the

limit group Qn�1(y; h1; w; p; a) associated with the anvil,

Anv(MGQn�1Res)(t; y; h1; w; p; a);

and by parts (2){(3) we may assume that Qn(ts(n)�1; y; h1; w; p; a) is iso-

morphic to the subgroup Qn�1(ts(n)�1; y; h1; w; p; a) associated with the

anvil. Parts (2) and (4) treat all the cases in which the n-th multi-graded

quotient resolution MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a) is not of

maximal complexity. Hence, the only case left in presenting the general

step of our procedure for validation of a sentence is the case of an n-th

multi-graded quotient resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

of maximal possible complexity, i.e., a multi-graded quotient resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

consists of a single level, and the abelian decomposition associated with

this level is identical to the abelian decomposition associated with the top

level of the multi-graded quotient resolution

MGQn�1Res(t; y; Base
s(n�1)
2;1 ; : : : ; Base

s(n�1)
2;vs(n�1)

; a)
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with which we started the n-th step of the procedure.

Conceptually, we treat this case in a similar way to what we did in

the minimal rank case, and in the general step of the procedure for val-

idation of a sentence (in section 4 of [Se4]), i.e., we continue to lower

levels of the anvil and analyze it in a similar way to what we did with the

top level. In parts (1){(4), we have analyzed multi-graded resolutions of

quotient limit groups, QnRlim(t; y; h1; w; p; a), that were associated with

the anvil, Anv(MGQn�1Res), and with an auxiliary resolution of highest

level, i.e., an auxiliary resolution associated with the tower containing all

the levels in the anvil up to level 2 (all levels except the top level).

As we did in the �rst step of the iterative procedure, to analyze max-

imal complexity multi-graded resolutions, we �rst replace these quotient

limit groups by those quotient limit groups associated with the anvil,

Anv(MGQn�1Res), and with auxiliary resolutions that are associated

with towers containing all the levels up to level 3, i.e., all the levels apart

from the top two. We continue with those quotient limit groups in par-

allel, hence we will omit their index, and (still) denote the quotient limit

group with which we continue, QnRlim(t; y; h1; w; p; a).

We start with the multi-graded taut Makanin{Razborov diagram of the

quotient limit group, QnRlim, with respect to the subgroups

Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

;

where those subgroups are the non-QH , non-abelian vertex groups and

edge groups in the abelian decomposition associated with the top level

of the anvil, Anv(MGQn�1Res). We still denote these multi-graded res-

olutions MGQnRes. Note that, as we explained in part (3) of the �rst

step of the procedure, since the auxiliary modular groups associated with

auxiliary resolutions of highest level are \bigger" than auxiliary modu-

lar groups associated with auxiliary resolutions associated with towers

of lower level, all the specializations that factor through the developing

resolution associated with the anvil, Anv(MGQn�1Res), and can be ex-

tended to specializations that factor only through maximal complexity

multi-graded resolutions of quotient limit groups associated with auxil-

iary resolutions of highest level, can be extended to specializations that

factor through maximal complexity multi-graded resolutions of quotient

limit groups associated with auxiliary resolutions associated with towers

containing all the levels up to level 3. Since in this part we need to analyze

specializations that factor only through maximal complexity multi-graded
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resolutions of quotient limit groups associated with auxiliary resolutions

of highest level, we can certainly continue only with those multi-graded

resolutions in the taut Makanin{Razborov diagram of QnRlim that are

of maximal complexity, i.e., that contain a single level with an abelian

decomposition that have the same (taut) structure as the abelian decom-

position associated with the top level of the anvil, Anv(MGQn�1Res).

If part (1) applies to such a multi-graded resolution MGQnRes, i.e., if

the limit group generated by < y; h1; w; p; a > in its completion is a proper

quotient of the subgroup Qn�1(y; h1; w; p; a) with which we started this

branch of the procedure, we replace this resolution MGQnRes by start-

ing the initial step of the procedure with the given proper quotient of

Q(y; h1; w; p; a).

In case the abelian decomposition and the taut structure associated

with MGQnRes and the top level of the anvil Anv(MGQn�1Res), are

identical, we use the modular groups associated with the abelian decom-

position associated with MGQnRes to map the subgroup QnRlim into

the subgroup of the anvil Anv(MGQn�1Res), QnRlim2, associated with

its second level. We now set the subgroups Base
s2(n)
3;1 ; : : : ; Base

s2(n)
3;ts2(n)

to

be the subgroups of the anvil, Anv(MGQn�1Res), corresponding to the

non-abelian, non-QH vertex groups in the multi-graded abelian decompo-

sition associated with the second level of the anvil, Anv(MGQn�1Res).

At this point, we analyze the quotient limit group QnRlim2 with re-

spect to the subgroups Base
s2(n)
3;1 ; : : : ; Base

s2(n)
3;ts2(n)

exactly as we analyzed

the quotient limit group QnRlim with respect to the subgroups

Base12;1; : : : ; Base
1
2;v1

in steps (1){(4), i.e., we associate with QnRlim2 all its multi-graded

quotient resolutions with respect to the subgroups

Base
s2(n)
3;1 ; : : : ; Base

s2(n)
3;ts2(n)

that are its subgroups, and analyze each of the obtained multi-graded

quotient resolutions according to parts (1) to (the �rst part of) (5). If

the multi-graded abelian decomposition associated with a multi-graded

quotient resolution of QRlim2 with respect to the subgroups

Base
s2(n)
3;1 ; : : : ; Base

s2(n)
3;ts2(n)

is of maximal possible complexity, and its associated taut structure is
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identical to the one associated with the second level of the anvil,

Anv(WPHGH);

i.e., if part (5) applies to an obtained quotient multi-graded resolution,

we continue in a similar way to our approach in analyzing multi-graded

resolutions the top level of which is of maximal complexity (see also part

(3) of the �rst step of the procedure).

We continue to the next levels of the anvil in precisely the same way. At

each level i, we consider the quotient limit groups associated with auxil-

iary resolutions that are associated with the tower containing all levels up

to level i+ 1 in the anvil, Anv(MGQn�1Res). Then we analyze the taut

Makanin{Razborov diagrams of the limit groups associated with the vari-

ous levels (from level 1 to level i�1), and continue only with those resolu-

tions that are of maximal complexity in all these levels, and the taut struc-

tures associated with their abelian decompositions are identical to those

associated with the corresponding levels of the anvil, Anv(MGQn�1Res).

Finally, we analyze the resolutions in the taut Makanin{Razborov diagram

associated with the i-th level according to parts (1){(4), or (the �rst part

of) (5), and continue iteratively.

Let MGQnRes be a multi-graded resolution obtained by the above it-

erative procedure. If there exists a level for which one of the parts (1){(4)

applies, we set a developing resolution, and an anvil with the limit group

associated with this level according to the part (1){(4) that applies to it.

To set the developing resolutions associated with the resolution

MGQnRes, we �rst construct a resolution composed from the resolution

induced by the subgroup < y; h1; w; p; a > from the parts of the resolu-

tion MGQnRes above the level for which parts (1){(4) apply (i.e., the

parts that are of maximal complexity), followed by the graded resolution

constructed at that level according to part (1){(4) that applies (which

is also composed from graded resolutions induced by the subgroup

< y; h1; w; p; a >). We denote the terminal rigid or solid limit group of

the obtained graded resolution (where the grading is with respect to the

parameter subgroup < h1; w; p >), WP (HG)n+1(gn+1; h1; w; p; a). Then

we collect all the formal solutions de�ned over the obtained (graded) res-

olution using the graded formal Makanin{Razborov diagram. We set each

of the graded (not formal!) resolutions associated with the terminal limit

groups in this graded formal Makanin{Razborov diagram to be a develop-

ing resolution. With each developing resolution we associate a family of
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formal solutions encoded by the graded formal modular groups associated

with the graded formal resolution to which it belongs.

With the developing resolution we associate a �nite collection of anvils,

which are set to be the maximal limit quotients of the group generated by

the completion of the multi-graded resolution MGQnRes, the anvil con-

structed at the level in which one of the parts (1){(4) applies, where the

top part of this anvil is identi�ed with the bottom part of the completion

of the multi-graded resolution MGQnRes, and the corresponding parts

of the developing resolution are identi�ed with their images in the given

anvil, and the completion of MGQnRes (precisely as we did in part (4)).

With the developing resolution and its associated anvil, we naturally

associate a family of formal solutions, x�(f; y; hn+2; gn+1; ; h1; w; p; a),

parameterized by the graded formal modular groups associate with the

graded formal resolution associate with the developing resolution and

the anvil. With the anvil we also associated a rigid or solid limit group of

the form WP (HG)n+1H(hn+2; gn+1; h1; w; p; a), which is the terminal

rigid or solid limit group of the developing resolution (with respect to the

parameter subgroup < h1; w; p >), and the rigid or solid limit group

WP (HG)n+1, as we did according to the part (1){(4) that applies to

the multi-graded resolution associated with the corresponding level.

If all the abelian decompositions associated with the multi-graded reso-

lutions used for the construction of the developing resolution are of max-

imal complexity, i.e., if none of the parts (1){(4) applies to any of these

multi-graded resolutions, we examine the structure of the developing res-

olution. The developing resolution is built from a sequence of induced

resolutions. Each of the induced resolutions is a resolution induced by

the (image of the) subgroup < y; h1; w; p; a >, and with each level of the

induced resolution there is associated an (induced) abelian decomposition

(see section 3 of [Se4] for the construction of the induced resolution).

Proposition 2.9: Suppose that all the abelian decompositions associated with

the multi-graded resolutions used for the construction of the developing res-

olution are of maximal possible complexity. Let < v; y; h1; w; p; a > be the

subgroup generated by the closure of the developing resolution in the anvil

Anv(MGQn�1Res)(t; y; h1; w; p; a). From each of the multi-graded resolutions

used to construct the developing resolution (in step n of the procedure), there

is a resolution induced by the (image of the) subgroup < v; y; h1; w; p; a >.

Then either the structure of the resolution composed from the resolutions
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induced by the subgroup < v; y; h1; w; p; a > from the various multi-graded res-

olutions used to construct the developing resolution is identical to the structure

of the developing resolution, or there exists some level j so that the structure

of the abelian decompositions associated with the resolutions induced by the

subgroup < v; y; h1; w; p; a > above level j are identical to the structure of the

abelian decompositions associated with the developing resolution, and in level

j, the number of factors in the free decomposition associated with the abelian

decomposition associated with the resolution induced by < v; y; h1; w; p; a > is

strictly smaller than the number of factors in the corresponding free decom-

position associated with the abelian decomposition associated with level j in

the developing resolution, and in case of equality in the number of factors, the

complexity of the abelian decomposition associated with the resolution induced

by < v; y; h1; w; p; a > is strictly smaller than the complexity of the abelian

decomposition associated with level j in the developing resolution.

Proof: Identical to the proof of proposition 4.8 of [Se4].

If the structure of the resolution composed from the resolutions induced by

the subgroup< v; y; h1; w; p; a > from the various multi-graded resolutions

used to construct the developing resolution is identical to the structure

of the developing resolution, we have reached a terminal point of our

branching procedure. With the multi-graded resolution

MGQnRes(t; y; Base
s(n)
2;1 ; : : : ; Base

s(n)
2;vs(n)

; a)

we associate the terminal rigid or solid limit group of the resolution com-

posed from the resolutions induced by the subgroup < v; y; h1; w; p; a >,

which we denote WP (HG)n+1.

If the structure of the resolution composed from the resolutions induced

by the subgroup < v; y; h1; w; p; a > from the various multi-graded reso-

lutions used to construct the developing resolution is not identical to the

structure of the developing resolution, Proposition 2.9 implies that there

exists some level j for which the structure of the abelian decompositions as-

sociated with the resolutions induced by the subgroup < v; y; h1; w; p; a >

above level j are identical to the structure of the abelian decompositions

associated with the developing resolution, and in level j, the number of fac-

tors in the free decomposition associated with the abelian decomposition

associated with the resolution induced by < v; y; h1; w; p; a > is strictly

smaller than the number of factors in the corresponding free decompo-

sition associated with the developing resolution, and in case of equality
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in the number of factors, the complexity of the abelian decomposition

associated with the resolution induced by < v; y; h1; w; p; a > is strictly

smaller than the complexity of the abelian decomposition associated with

the developing resolution. In this case we do the following.

Let CRes(u; y; h1; w; p; a) be the graded resolution that is composed

from the resolutions induced by the subgroup < v; y; h1; w; p; a >. With

the resolution CRes(u; y; h1; w; p; a) we associate its terminal rigid or solid

limit group (with respect to the parameter subgroup < h1; w; p >), which

we denote WP (HG)n+1(gn+1; hn+1; gn; h1; w; p; a). We collect all the for-

mal solutions de�ned over ungraded resolutions covered by the graded

resolution CRes(u; y; h1; w; p; a). This collection of formal solutions fac-

tors through a canonical collection of graded formal limit groups. With

each graded formal limit group we associate its graded formal Makanin{

Razborov diagram as we did in section 3 of [Se2]. We continue with each

of the graded formal resolutions that appear in these diagrams in parallel.

Let GFRes(x; u; y; gn+1; hn+1; gn; h1; w; p; a) be a graded formal reso-

lution in one of these diagrams, and let

WP (HG)n+1H(hn+2; gn+1; hn+1; gn; h1; w; p; a)

be its terminating rigid or solid (not formal!) limit group. With the graded

formal resolution GFRes(x; u; y; hn+2; gn+1; hn+1; h1; w; p; a) we associate

the resolution GRes(û; y; hn+2; gn+1; hn+1; h1; w; p; a), which is the graded

(not formal!) resolution associated with the terminal formal limit group of

the graded formal resolution GFRes(x; u; y; hn+2; gn+1; hn+1; h1; w; p; a).

With a graded formal resolution we naturally associate a family of formal

solutions parameterized by elements of the graded formal modular groups

associated with the graded formal resolution.

We continue with each of the graded formal resolutions separately. We

set the developing resolution to be the graded resolution

GRes(û; y; hn+2; gn+1; hn+1; h1; w; p; a):

We set the �nite collection of anvils, which we denote

Anv(MGQnRes)(t; y; h1; w; p; a);

to be the (�nite) collection of maximal (quotient) limit groups associated

with the amalgamation of the (previous) anvil

Anv(MGQn�1Res)(t; y; h1; w; p; a);
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with the graded resolution GRes, amalgamated along the developing res-

olution associated with the anvil, Anv(MGQn�1Res) (that is naturally

mapped into both). With the anvil, Anv(MGQnRes)(t; y; h1; w; p; a), we

naturally associate the (graded) family of formal solutions, which are de-

�ned over the developing resolution, and parameterized by the graded for-

mal modular groups associated with the graded formal resolution GFRes.

We further associate with the anvil the terminal rigid or solid limit groups,

WP (HG)n+1 and WP (HG)n+1H .

Starting with the anvils, Anv(MGQn�1Res), their associated developing res-

olutions, and the auxiliary resolutions and quotient limit groups associated

with them, we have constructed a �nite collection of multi-graded resolutions,

MGQnRes, developing resolutions and anvils, Anv(MGQnRes)(t; y; h1; w; p; a).

With each couple of a developing resolution and an anvil we have associated a

family of formal solutions de�ned over them, and parameterized by the mod-

ular groups associated with the graded formal resolution associated with the

developing resolution.

As in the initial and �rst steps of the iterative procedure, to complete the data-

structure with which we continue to the next step, we still need to associate

with each anvil, Anv(MGQnRes), a �nite collection of auxiliary resolutions

and auxiliary modular groups (see De�nitions 2.1 and 2.6). We construct the

associated auxiliary resolutions, and limit groups, precisely as we did in the �rst

step, i.e., by applying the construction presented in De�nition 2.6.

The collection of multi-graded resolutions, MGQnRes, the developing reso-

lutions and the anvils, Anv(MGQnRes), associated with them, the families of

formal solutions de�ned over them, and their collections of auxiliary resolutions,

limit groups, and modular groups, together with the data-structure constructed

before starting the n-th step of the procedure, form the data-structure obtained

as a result of the n-th step.

At this stage, we continue in a similar way to what we did before starting the

�rst step of the procedure. Given an anvil, Anv(MGQnRes), and an auxiliary

resolution, we look at the entire set of multi-graded rigid or strictly solid special-

izations of the associated auxiliary limit group (De�nition 2.6), and their exten-

sions to specializations of the anvil, for which for the entire family of formal solu-

tions, x�(t; y; w; p; a), associated with the anvil (i.e., associated with the graded

formal resolution that is associated with the developing resolution associated

with the anvil), and for each element '� in the auxiliary modular group associ-

ated with the given auxiliary resolution,  j(x�('�(t; y; w; p; a)); y; w; p; a) = 1
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for at least one of the equations  j in the system (of inequalities) 	(x; y; w; p; a)

6= 1 used to de�ne the set EAE(p). By the standard argument presented in

section 5 of [Se1], the entire collection of such (extended) specializations,

(t; y; w; p; a), is contained in a �nite set of maximal graded limit groups (that

are all quotients of the anvil, Anv(MGQnRes))

Qn+1Rlim1(t; y; h1; w; p; a); : : : ; Q
n+1Rlimun+1(t; y; h1; w; p; a);

which we call (n+ 1) quotient limit groups. Note that with each such limit

group there is an associated anvil, Anv(MGQnRes), and an associated auxil-

iary resolution. The quotient limit groups we constructed, which collect (uni-

formly) all the remaining y's for every specialization of the parameter subgroup

< h1; w; p >, and their associated data-structure, are the input for the next

(n+ 1) step of the iterative procedure.

III. Termination of the iterative procedure. De�ning the initial, �rst

and general steps of our iterative procedure for analyzing the set EAE(p), we

are required to prove its termination. To prove termination of our iterative pro-

cedure in the minimal rank case (section 1), we used the strict decrease in the

complexity of the resolutions associated with successive steps of the procedure,

a strict decrease that forces termination. Unlike our procedure in the minimal

rank case, in the general procedure we do not obtain a strict decrease in the

complexity of the resolutions associated with successive steps of the procedure.

To obtain termination in the general case, we need to look at limit groups (or

alternatively Zariski closures) and complexities of various resolutions and de-

compositions associated with the developing resolutions and anvils constructed

along the steps of the procedure. Our ultimate goal in proving the termination

of the procedure is to show that after �nitely many steps of it, the iterative pro-

cedure is applied not to specializations of the limit group QRlim(y; h1; w; p; a)

but rather to specializations of a proper quotient of it. The entire argument is

similar to the one used to prove the termination of the procedure for validation

of a sentence ([Se4], 4.12), hence we refer the interested reader to the argument

presented in [Se4].

Theorem 2.10: The iterative procedure for the analysis of the set EAE(p)

terminates after �nitely many steps.

Proof: Identical to the proof of theorem 4.12 of [Se4].

As the minimal rank case, the outcome of the \trial and error" procedure

presented in this section gives us a �nite diagram, constructed along the various
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steps of the iterative procedure, a diagram which is a directed tree in which on

every vertex we place a rigid or solid limit group (with respect to the parameter

subgroup < h1; w; p >) of the form WP (HG)n or WP (HG)nH , which is the

basis of a bundle of the set of the remaining y's or the set of formal solutions

de�ned over the bundle of the remaining y's analyzed along the iterative pro-

cedure, which we call the tree of strati�ed sets. This tree encodes all the

(�nitely many) possible sequences of forms of (families of) formal solutions that

are needed in order to validate that a certain specialization p0 of the de�ning

parameters p is indeed in the set EAE(p). This tree and the strati�cation asso-

ciated with its various rigid and solid limit groups is the basis for our analysis

of the structure of the set EAE(p).

Given the tree of strati�ed sets, to analyze the set EAE(p) we still need a

sieve procedure, similar to the one presented in the minimal rank case. How-

ever, obtaining a terminating sieve procedure in the general case is much more

involved than in the minimal rank case. This sieve procedure is the goal of the

next paper in the sequence, that �nally proves quanti�er elimination for general

predicates over a free group.

3. The sieve method in a few special cases

As in the procedure for the analysis of an EAE set in the minimal (graded) rank

case, presented in the �rst section of this paper, the outcome of the \trial and

error" procedure presented in the previous section gives us a tree of strati�ed

sets which encodes all the (�nitely many) possible sequences of families of formal

solutions that are needed in order to validate that a certain specialization p0 of

the de�ning parameters p is indeed in the set EAE(p). This strati�cation is the

basis for our analysis of the structure of the set EAE(p) in the general case as

well.

Let EAE(p) be the set de�ned by the predicate

EAE(p) = 9w 8y 9x �(x; y; w; p; a) = 1 ^	(x; y; w; p; a) 6= 1:

Recall (De�nition 1.19) that a specialization w0 of the variables w is said to be

a witness for a specialization p0 of the de�ning parameters p if the following

sentence:

8y 9x �(x; y; w0; p0; a) = 1 ^	(x; y; w0; p0; a) 6= 1

is a true sentence. Clearly, if there exists a witness for a specialization p0 then

p0 2 EAE(p), and every p0 2 EAE(p) has a witness.
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In order to show that a specialization p0 of the de�ning parameters p is in the

set EAE(p), we need to �nd a witness w0 for the specialization p0. As in the

minimal rank case, the construction of the tree of strati�ed sets guarantees that

a witness w0 for a specialization p0 proves that p0 2 EAE(p) using a certain

\proof system" which is built from a �nite sequence of (families of) formal

solutions that corresponds to boundedly many paths along the tree of strati�ed

sets (De�nition 1.20).

Given p0 2 EAE(p), we are not able to say much about a possible witness for

p0 using the information we have collected so far. However, as in the minimal

rank case, with each \proof system", i.e., with each collection of paths (a sub-

tree) of (families of) formal solutions that goes along the tree of strati�ed sets,

one can associate a certain Diophantine set of possible witnesses. As demon-

strated in the �rst section, the bound on the form and number of all possible

\proof systems", associated with all possible witnesses suggested by the tree

of strati�ed sets, forces every possible witness for p0 to belong to one of the

�nitely many Diophantine sets associated with the (�nite) collection of all proof

systems. As in the minimal rank case, in the sequel we will construct a �nite

set of Diophantine sets associated with each proof system (subtree of the tree

of strati�ed sets), and show that if a specialization p0 2 EAE(p), and it can

be shown that p0 2 EAE(p) using a witness w0 and a speci�c proof system,

then every \generic" specialization of w which belongs to some Diophantine set

associated with the speci�c proof system is a witness for p0 using the same proof

system as w0. This will reduce the analysis of the set EAE(p) to the analysis of

the Diophantine sets associated with each \proof system", and eventually will

enable us to show that the set EAE(p) is in the Boolean algebra of AE sets,

which �nally concludes the proof of Theorem 1.4.

As we indicated in the minimal rank case (De�nition 1.20), if p0 2 EAE(p)

is a specialization of the de�ning parameters p, and w0 is a witness for p0, then

the construction of the tree of strati�ed sets implies that one can associate a

proof system with the couple (w0; p0), which corresponds to a (�nite) collection

of paths in the tree of strati�ed sets. Note that there may be several proof

systems associated with a given couple (w0; p0), but the construction of the tree

of strati�ed sets guarantees that the number of proof systems associated with

the couple (w0; p0) is globally bounded. As in the �rst section we will say that

a given proof system associated with the couple (w0; p0) is of depth d, if all the

paths associated with the proof system terminate after d steps (levels) of the

tree of strati�ed sets.



130 Z. SELA Isr. J. Math.

As we did in the minimal rank case, we will start by demonstrating our

approach for the analysis of the set EAE(p), by analyzing those specializations

of the de�ning parameters p that have witnesses with proof systems of depth

1, i.e., those that have witnesses with proof systems that terminate after the

initial step of the construction of the tree of strati�ed sets. We will continue by

analyzing the specializations of the de�ning parameters p for which there are

witnesses with proof systems of depth at most 2, i.e., those that have witnesses

with proof systems that terminate after the �rst step of the construction of the

tree of strati�ed sets, and then present the analysis of the entire set EAE(p).

Lemma 3.1: Let T1(p) � EAE(p) be the subset of all specializations p0 2

EAE(p) of the de�ning parameters p that have a witness with a proof system

which terminates after the initial step of the construction of the tree of strati�ed

sets. Then T1(p) is an EA set.

Proof: The initial step of the iterative procedure for the construction of the tree

of strati�ed sets in the general case is identical to the �rst step of the iterative

procedure for the construction of the tree of strati�ed sets in the minimal rank

case. Hence, the proof of Lemma 3.1 is identical with the proof of Lemma 1.21.

Lemma 3.1 proves that the set of specializations p0 of the de�ning parameters

p that have a witness with a proof system which terminates after the initial step

of the iterative procedure for the construction of the tree of strati�ed sets is

an EA set. Before analyzing the entire set EAE(p), we analyze the set of

specializations p0 which have witnesses with a proof system that terminates

after the �rst step of the iterative procedure for the construction of the tree of

strati�ed sets. The analysis of specializations p0 2 EAE(p) having witnesses

with such proof systems is much more complicated than the analysis of witnesses

with proof systems that terminate after the initial step, and it is based (though

it is somewhat di�erent) on the analysis of the set of specializations p0 having

proof systems of depth 2, T2(p), in the minimal rank case (Theorem 1.22).

Theorem 3.2: Let T2(p) � EAE(p) be the subset of all specializations p0 2

EAE(p) of the de�ning parameters p that have witnesses with a proof system

which terminates after the �rst step of the procedure for the construction of the

tree of strati�ed sets. Then T2(p) is in the Boolean algebra of AE sets.

Proof: To start the proof of Theorem 3.2 recall that a valid PS statement,

presented in De�nition 1.23, is a statement that satis�es a list of properties
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required by the corresponding proof system (see De�nition 1.23).

As in the minimal rank case, to each valid PS statement we add special-

izations that extend the specializations of the limit groups WPHGH in the

valid PS statement, by adding specializations of primitive roots of edge groups

and pegged abelian vertex groups in the graded abelian JSJ decompositions

of the limit groups WPHG that occur along the given proof system (i.e., we

add specializations of primitive roots of a �xed set of elements in the valid PS

statement). We further add specializations that demonstrate how all the multi-

ples of these primitive roots, multiples up to the least common multiple of the

indices of the �nite index subgroups associated with the closure domains asso-

ciated with the various groups WPHGH , can be extended to specializations

that factor through the �nite set of (graded formal) closures speci�ed by the

valid PS statement (in fact these closures are speci�ed by the proof system,

not just by the proof statement), i.e., the closures associated with the various

limit groups WPHGH . This is equivalent to demonstrating that the given set

of closures (associated with the specializations of the groups WPHGH) is a

covering closure for the ungraded resolutions associated with the specializations

(speci�ed by the proof statement) of the groups WPHG.

For brevity, in the sequel we still call such extended specializations valid PS

statements and denote them (r; (h21; g
1
1); : : : ; (h

2
�(ps); g

1
�(ps)); h

1
0; w0; p0; a). By the

standard arguments presented in section 5 of [Se1], the entire collection of (ex-

tended) valid PS statements factor through a (canonical) collection of maximal

limit groups PSHGH1; : : : ; PSHGHm, which we call PS (proof system) limit

groups.

By construction, for each p0 2 T2(p) there exists some witness w0 and a

corresponding proof system, so that a specialization of the form

(r; (h21; g
1
1); : : : ; (h

2
�(ps); g

1
�(ps)); h

1
0; w0; p0; a)

that is associated with the specialization p0, the witness w0 and that proof

system is a valid PS statement (i.e., it satis�es conditions (i){(iv) of De�nition

1.23), and factors through a limit group PSHGHj . As in the minimal rank case,

our main goal will be to show that these valid PS statements are \generic" in

some Diophantine set associated in the sequel with each of the PS limit groups

PSHGH . The \sieve" procedure for the analysis of the valid PS statements

that factor through a given PS limit group combines the procedure presented in

the �rst section for the minimal ranks case with tools used in the construction

of the tree of strati�ed sets in the general case, and with the notion of a core

resolution presented in the next section. As in the �rst section (Proposition
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1.24), we start by analyzing those PS limit groups which are rigid or solid with

respect to the parameter subgroup P =< p >.

Proposition 3.3: Suppose that a PS limit group PSHGH is rigid or solid

with respect to the parameter subgroup P =< p >, and if it is solid suppose that

the subgroupWP =< w; p > is a subgroup of the distinguished vertex group in

the graded JSJ decomposition of PSHGH (i.e., the vertex stabilized by the sub-

groupAP =< p; a >). The set of specializations p0 that have a witness w0, and a

rigid or strictly solid specialization (r; (h21; g
1
1); : : : ; (h

2
�(ps); g

1
�(ps)); h

1
0; w0; p0; a)

of PSHGH , which is a valid PS statement that we denote PS(p), is in the

Boolean algebra of AE sets.

Proof: Identical to the proof of Proposition 1.24.

Proposition 3.3 proves Theorem 3.2 in case the PS limit groups PSHGH are

rigid or solid with no 
exible quotients, and the subgroup WP =< w; p > is a

subgroup of the distinguished vertex group in the graded JSJ decomposition of

PSHGH . In this special case, the number of possible witnesses w0 associated

with each specialization p0 of the de�ning parameter p is �nite and globally

bounded. In the general case, the number of possible witnesses associated with

each specialization p0 of the de�ning parameters p is in�nite. Our goal in

the analysis of the set T2(p) in the general case is to construct �nitely many

Diophantine sets associated with each of the PS limit groups PSHGH , so that

a specialization p0 of the de�ning parameters p admits a valid proof statement

that factors the PS limit group PSHGH , if and only if a generic point in a

�ber associated with p0 in one of the Diophantine sets associated with the PS

limit group PSHGH is a valid proof statement. To achieve this goal, i.e., to

construct the �nitely many Diophantine sets associated with each of the PS

limit groups PSHGH , we present a \trial and error" procedure, based on the

one used to construct the tree of strati�ed sets (in the general case). As in

the minimal rank case, the output of the iterative \trial and error" procedure,

i.e., the �nitely many Diophantine sets associated with each PS limit group

PSHGH , are later used to derive a predicate in the Boolean algebra of AE

predicates that describes the set T2(p).

Let P =< p > be the group of de�ning parameters. With each of the limit

groups PSHGHi we associate its canonical taut graded Makanin{Razborov dia-

gram (with respect to the parameter subgroup P ), which contains �nitely many

graded resolutions that we denote PSHGHResj, and each graded resolution

PSHGHResj is de�ned over the rigid or solid limit group PBj(b; p; a). We will
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treat the limit groups PSHGHi, and their graded resolutions PSHGHResj

and their terminal rigid or solid limit groups PBj(b; p; a), in parallel, hence we

will omit the indices of the limit group and its graded resolution. In the se-

quel, we will treat each stratum in the singular locus of the graded resolutions

PSHGHRes separately, and do it in parallel.

Precisely as we did in the minimal rank case, we start our analysis of the set

of valid PS statements by associating with (the completion of) the graded PS

resolution PSHGHRes a (canonical) �nite collection of Non-Rigid and Non-

Solid PS limit groups (see De�nition 1.25). We denote the non-rigid PS limit

groups associated with the PS resolution PSHGHRes,

NRgdPS1; : : : ; NRgdPSq;

and the non-solid PS limit groups associated with PSHGHRes,

NSldPS1; : : : ; NSldPSr:

Recall (De�nition 1.25) that the graded formal closures associated with the

collection of non-rigid and non-solid PS limit groups determine those \generic"

specializations that factor through and are taut with respect to the various PS

resolutions PSHGHRes, but fail to be valid PS statements with respect to the

(�xed) proof system because certain specializations that are required to be rigid

or strictly solid actually factor through 
exible quotients of the corresponding

rigid or solid limit groups. As in the minimal rank case, \generic" specializations

that factor through the PS resolutions PSHGHRes can fail to be valid PS

statements in other ways as well.

In particular, we need to collect all the test sequences that factor through

the PS resolutions PSHGHRes, and for which for at least one of the tuples

(h2j (n); g
1
j (n); h1(n); wn; pn; a) there exists some specialization g

2
j (n) so that the

(combined) specialization (g2j (n); h
2
j (n); g

1
j (n); h1(n); wn; pn; a) factors through

(at least) one of the limit groups WP (HG)2. Recall (De�nition 1.26) that the

collection of all these test sequences factors through a (canonical) collection

of Left PS limit groups LeftPS1; : : : ; LeftPSm. Each Left PS limit group

LeftPSi is in fact a graded formal closure of the graded resolution PSHGHRes,

GFCl(PSHGHRes). Clearly, no specialization

(r; (h21; g
1
1); : : : ; (h

2
�(ps); g

1
�(ps)); h

1
0; w0; p0; a)

that factors through the resolution PSHGHRes, and which is a valid PS state-

ment with respect to our �xed proof system, factors through one of the LeftPS

limit groups LeftPS1; : : : ; LeftPSm and their associated resolutions.
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To a valid PS statement we have added additional variables, so that their

specializations are supposed to be primitive roots of the specializations of pegs

of abelian groups that appear in the graded formal closures associated with

the groups WPHGH , in order to demonstrate that the given sets of closures

(speci�ed by the proof system) form a covering closure (for the specializations

given by the proof statement). This demonstration remains valid if the orders

of the specializations of the variables that are supposed to be primitive roots are

prime to the indices of the �nite index subgroups associated with the (�nitely

many) closures. The demonstration may fail to be valid if the orders of these

specializations are not prime to the order of the �nite index subgroups. To check

if this failure occurs for a generic specialization of a PS resolution, PSHGHRes,

we construct Root PS limit groups and resolutions, precisely as we did in the

minimal rank case (De�nition 1.27). We denote the Root PS limit groups,

RootPS, and the Root PS resolutions, RootPSRes.

No specialization (r; (h21; g
1
1); : : : ; (h

2
d(ps); g

1
d(ps)); h

1
0; w0; p0; a) that factors

through the resolution PSHGH (a virtual proof), and which is a valid PS

statement with respect to our �xed proof system, factors through one of the

RootPS limit groups RootPS1; : : : ; RootPSm and their associated Root PS

resolutions.

\Generic" specializations that factor through the PS resolutions PSHGHRes

can fail to be valid PS statements also if there exist additional rigid or strictly

solid specializations of the limit groupsWPHG(g1; h1; w; p; a) that are not spec-

i�ed by the given proof statements. As in the minimal rank case, the \generic"

specializations for which there exists a \surplus" in rigid or families of strictly

solid specializations are collected in Extra PS (graded) limit groups and graded

resolutions (De�nition 1.28). We denote the Extra PS limit groups associated

with the graded PS resolution PSHGHRes, ExtraPS1; : : : ; ExtraPS`.

The extra PS limit groups collect all the \generic" specializations (i.e., all

the test sequences) of the PS limit groups PSHGH for which there exist rigid

or strictly solid families in addition to those speci�ed by the generic special-

izations. For a general specialization of the PS limit groups PSHGH , i.e.,

a specialization which is not necessarily \generic", it may as well be that the

additional rigid or strictly solid specializations, collected by the extra PS limit

groups, do become 
exible or do coincide with the rigid or strictly solid families

of the various specializations (g1j ; h
1
0; w0; p0).

In the minimal rank case, we collected all the specializations that factor

through one of the Extra PS resolution, in which such a \collapse" of the
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additional rigid and strictly solid families occurs, in a canonical collection of

Collapse Extra PS (graded) limit groups and their associated (Collapse Extra

PS) graded resolutions (De�nition 1.29). In the general case, the analysis of

the specializations that factor through one of the extra PS resolutions, in which

such a \collapse" of the additional rigid and strictly solid families occurs, and

the construction of the associated Collapse Extra PS (graded) limit groups and

their Collapse Extra PS (graded) resolutions, is more involved, and so is the

iterative procedure for the analysis of the set T2(p). Hence, mostly for presenta-

tion purposes, in this section we present the construction of the Collapse Extra

PS limit groups and their associated graded resolutions, and the iterative pro-

cedure for the analysis of the set T2(p), in (the special) case all the limit groups

WPHG are rigid. The approach we use in the rigid case can be somewhat

generalized; however, the general case of general rigid and solid WPHG seems

to be considerably more involved and is treated in the next paper in the sequel.

For the rest of this section we assume that all the limit groups WPHG asso-

ciated with one of the paths associated with our �xed proof systems are rigid

limit groups. In this case the analysis of the set T2(p) is conceptually similar to

the procedure presented in the minimal rank case, combined with the iterative

procedure for the construction of the tree of strati�ed sets (in the general case)

presented in the second section.

Let ExtraPSRes be one of the extra PS graded resolutions associated with

one of the extra PS graded limit groups ExtraPSi. Note that by construction,

ExtraPSRes is a graded closure of the PS resolution PSHGHRes with which

we started the analysis. In case the groups WPHG are all rigid, we will say

that a specialization that factors through and is taut with respect to the extra

PS graded resolution ExtraPSRes is collapsed if the variables added for each

of the additional rigid specializations (i.e., the ones that were not speci�ed by

the proof statement) satisfy one of the following:

(1) A specialization of the variables added for one of the additional rigid

specializations becomes 
exible.

(2) A specialization of the variables added for one of the additional rigid spe-

cializations becomes equal to one of the rigid specializations speci�ed by

the proof statement, i.e., one of the specializations g1j in the specialization

(u; v; r; (h21; g
1
1); : : : ; (h

2
�(ps); g

1
�(ps)); h

1
0; w0; p0):

After de�ning the �nitely many possibilities for collapse forms, we collect all

the test sequences of specializations that are collapsed specializations in �nitely
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many closures of the resolution PSHGHReswe have started with, which we call

Generic Collapse Extra PS (graded) resolutions, and the remaining collapsed

specializations in �nitely many graded limit groups, which we call Collapse Extra

PS (graded) limit groups.

We start by collecting all the test sequences that factor through an Extra PS

resolution, and for which each of the extra rigid specializations (i.e., those that

are not speci�ed by the (virtual) proof statement) satis�es the conditions of

one of the possible collapse forms. These test sequences factor through �nitely

many Generic Collapse Extra PS limit groups and resolutions. The de�nition

of the Generic Collapse Extra PS resolutions (De�nition 3.4 below) is general

and does not depend on the graded limit groups WPHG being rigid or solid.

De�nition 3.4: Let ExtraPSRes be one of the Extra PS graded resolutions

associated with one of the Extra PS graded limit groups ExtraPSi. Note

that by construction, ExtraPSRes is a graded closure of the PS resolution

PSHGHRes with which we started the analysis. With the Extra PS resolution

we associate all its possible collapse forms.

Let ExtraPSRes(u; v; r; (h21; g
1
1); : : : ; (h

2
�(ps); g

1
�(ps)); h1; w; p; a) be an Extra

PS resolution. We look at the entire collection of test sequences that factor

through the Extra PS resolution.

From the collection of all test sequences, we look at those graded test se-

quences for which each specialization of the sequence satis�es the conditions of

one of the (�nitely many) possible collapse forms associated with the extra PS

resolution. The collection of all these (graded collapse) test sequences factors

through a (canonical) collection of maximal Generic Collapse Extra PS limit

groups:

GenericCollapseExtraPS1; : : : ; GenericCollapseExtraPSt:

The analysis of graded formal limit groups presented in section 3 of [Se2]

associates (canonically) with each Generic Collapse Extra PS limit group

GCollapseExtraPS a graded formal Makanin{Razborov diagram, and each

such graded formal resolution is in fact a one-level graded resolution, which

is a graded formal closure of the graded resolution PSHGHRes,

GFCl(PSHGHRes):

We call each such graded formal closure a Generic Collapse Extra PS (graded)

resolution.
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De�nition 3.5: Let ExtraPSRes be the Extra PS (graded) resolutions asso-

ciated with the PS resolutions PSHGHRes that appear in the taut Makanin{

Razborov diagram of a PS limit group PSHGH . With each of the Extra PS

resolutions we associate all its possible collapse forms.

The resolutions ExtraPSRes are graded closures of the PS resolution

PSHGHRes with which we started the analysis, so with the resolutions

ExtraPSRes we can associate their canonical collection of graded auxiliary

resolutions and limit groups (De�nition 2.1). Note that if a rigid or strictly

solid specialization of the graded auxiliary limit group associated with an Ex-

tra PS resolution, ExtraPSRes, extends to a specialization of ExtraPSRes

that satis�es the conditions of one of the collapse forms associated with it, the

extended specialization has to satisfy a (�xed) system of equations associated

with the speci�c collapse form.

Also, note that since the parameter subgroup < h1; w; p > does not change

with an action of the auxiliary modular group, if a strictly solid specialization

of the auxiliary limit group extends to a specialization of ExtraPSRes which

is collapsed, then the corresponding extensions of all the specializations of the

auxiliary limit group that are in the same strictly solid family are all collapsed.

This last observation allows us to apply the iterative procedure for the construc-

tion of the tree of strati�ed sets, to get a sieve procedure in case all the graded

limit groups WPHG are rigid.

We go over all the (�nitely many) graded auxiliary resolutions and all

the (�nitely many) collapse forms associated with the Extra PS resolutions,

ExtraPSRes. Given a graded auxiliary limit group and a collapse form, we

look at all the rigid or strictly solid specializations of the given graded auxiliary

limit group that extends to specializations of ExtraPSRes which satisfy the

system of equations associated with the speci�ed collapse form associated with

the associated resolution ExtraPSRes.

By our standard method presented in section 5 of [Se1], the collection of (ex-

tended) specializations of ExtraPSRes that restricts to rigid or solid special-

izations of the given auxiliary limit group, so that the extended specializations

satisfy the system of equations associated with a speci�ed collapse form, factor

through a canonical (�nite) collection of maximal limit groups, which we call

Collapse Extra PS limit groups and denote

CollapseExtraPS1; : : : ; CollpaseExtraPSd:

Note that by construction, each Collapse Extra PS limit group is a proper quo-

tient of the limit group associated with the extra PS resolution, ExtraPSRes,
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with which we started.

The PS limit groups PSHGH and their associated PS resolutions, together

with the non-rigid, Left, and Root PS limit groups and their associated graded

resolutions, the Extra PS resolutions, the Generic Collapse Extra PS resolu-

tions, and the Collapse Extra PS limit groups, enable us to generalize the main

principle that was used in the procedure for quanti�er elimination under the

minimal (graded) rank assumption, to the case in which the graded limit group

WPHG is all rigid. As in the minimal rank case, we show that if a valid PS

statement factors through one of the resolutions PSHGHRes, then either there

exists a valid PS statement that factors through one of the (non-Generic) Col-

lapse extra PS limit groups and their associated graded auxiliary resolutions,

or there exists a \generic" valid PS statement, i.e., a test sequence of valid PS

statements that factor through the PS resolution PSHGHRes. This principle

does not depend on the graded limit groups WPHG being rigid.

Theorem 3.6: Let PSHGHRes be the PS resolutions that appear in the taut

Makanin{Razborov diagram of a PS limit group PSHGH . Suppose that there

exists a valid PS statement (r; (h21; g
1
1); : : : ; (h

2
�(ps); g

1
�(ps)); h

1
0; w0; p0; a) which

factors through the PS limit group PSHGH . Then one of the following holds:

(1) There exists a test sequence of specializations

(vn; r;n ; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
�(ps)(n)); h1(n); wn; p0; a))

that factor through the completion of one of the PS resolutions

PSHGHRes (note that the specialization p0 of the de�ning parameters

p are �xed along the entire test sequence), which restricts to a sequence

of valid PS statements (with respect to our �xed proof system)

((h21(n); g
1
1(n)); : : : ; (h

2
d(ps)(n); g

1
�(ps)(n)); h1(n); wn; p0; a)):

(2) The valid PS statement factors through one of the (non-Generic) Collapse

Extra PS limit groups associated with the multi-graded auxiliary limit

groups that are associated with the Extra PS resolutions ExtraPSRes.

Proof: Similar to the proof of Theorem 1.33.

As in the minimal rank case, Theorem 3.6 reduces the analysis of the set

T2(p) to the set of specializations of the de�ning parameters P =< p > for

which there exists a test sequence of valid PS statements that factor through

the various resolutions PSHGHRes.
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Proposition 3.7: Let PSHGHRes be one of the (non-trivial) PS graded res-

olutions. Let TSPS(p) be the set of specializations p0 of the de�ning parameters

P =< p >, for which there exists a test sequence of specializations

(vn; rn; (h
2
1(n); g

1
1(n)); : : : ; (h

2
d(ps)(n); g

1
�(ps)(n)); h1(n); wn; p0; a))

that factor through the completion of the PS resolution PSHGHRes,

Comp(PSHGHRes), and restricts to valid PS statements

((h21(n); g
1
1(n)); : : : ; (h

2
d(ps)(n); g

1
�(ps)(n)); h1(n); wn; p0; a)):

Then TSPS(p) is in the Boolean algebra of AE sets.

Proof: Identical to the proof of Proposition 1.34.

As in the minimal (graded) rank case, at this stage we have all the tools needed

for showing that the set T2(p) is in the Boolean algebra of AE sets (in case all the

groups WPHG are rigid). By construction, if p0 2 T2(p) then there must exist

a valid PS statement of the form (r0; (h
2
1; g

1
1); : : : ; (h

2
�(ps); g

1
�(ps)); h

1
0; w0; p0; a)

that factors through one of the PS resolutions PSHGHRes constructed with

respect to a proof system of depth 2.

By Proposition 3.7, the sets TSPS(p) associated with the various PS resolu-

tions PSHGHRes, i.e., the sets of specializations p0 of the de�ning parameters

P =< p >, for which there exists a test sequence that factors through a PS res-

olution, PSHGHRes, and restricts to valid PS statements, is in the Boolean

algebra of AE sets. By Theorem 3.6, if there exists a valid PS statement

that factors through a PS limit group, PSHGH , then either there exists a

test sequence that factors through (at least) one of the PS resolutions associ-

ated with it, and restricts to valid PS statements, or there must exist a valid

PS statement that extends to a specialization of one of the PS resolutions,

PSHGHRes, and this extended specialization restricts to a specialization that

factors through one of the graded auxiliary limit groups associated with one of

the extra PS resolutions ExtraPSRes, that is associated with the PS resolu-

tion, PSHGHRes, and the extended specialization factors through one of its

associated (non-Generic) Collapse Extra PS limit groups.

We continue with each of the (non-Generic) Collapse Extra PS limit groups

associated with the various PS resolutions PSHGHRes. Given a (non-Generic)

Collapse Extra PS limit group, we apply the procedure for the analysis of quo-

tient resolutions, presented in the general step of the procedure for the con-

struction of the tree of strati�ed sets (in the previous section). The output of
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this general step is a �nite collection of anvils and their associated developing

resolutions.

Exactly as we did with each of the PS resolutions PSHGHRes, we associate

(canonically) with each developing resolution its Non-Rigid, Left, and Root PS

resolutions, Extra PS resolutions, and Generic Collapse Extra PS resolutions.

With each graded auxiliary limit group associated with an Extra PS resolution,

we further associate its Collapse Extra PS limit groups. By Proposition 3.7, the

sets of specializations p0 of the de�ning parameters P =< p >, for which there

exists a test sequence that factors through any of the developing resolutions,

and restricts to valid PS statements, are in the Boolean algebra of AE sets. By

Theorem 3.6 applied to the (�nite) collection of the (non-Generic) collapse extra

PS limit groups, if there exists a valid PS statement that can be extended to

a specialization which factors through a Collapse Extra PS limit group, then

either there exists a test sequence that factors through one of the developing

resolutions associated with it, and restricts to valid PS statements, or there

must exist a valid PS statement that extends to a specialization that factors

through one of the associated (non-Generic) Collapse Extra PS limit groups.

Continuing iteratively with a procedure similar to the one used to construct

the tree of strati�ed sets (in the previous section), we obtain a terminating

iterative procedure by the proof of Theorem 2.10, which is identical to the proof

of theorem 4.12 of [Se4]. The iterative procedure we have constructed has to

terminate with either a rigid limit group with respect to the de�ning parameters

P =< p >, or a solid limit group in which the subgroup WP =< w; p > is

contained in the distinguished vertex group in the associated graded abelian

JSJ decomposition.

By iteratively applying Proposition 3.7 to the various developing resolutions

constructed along the iterative procedure, the sets of specializations p0 of the

de�ning parameters P =< p >, for which there exists a test sequence that fac-

tors through any of the developing resolutions constructed along the terminating

procedure, and restricts to valid PS statements, are in the Boolean algebra of

AE sets. By Proposition 3.3, the set of specializations p0 of the de�ning pa-

rameters P =< p >, for which there exists a valid PS statement that can

be extended to a rigid or strictly solid specialization of the terminating rigid or

solid PS limit groups, is in the Boolean algebra of AE sets. The entire set T2(p)

is precisely the set of specializations p0 of the de�ning parameters P =< p >

for which there exists a valid PS statement that factors through one of the PS

limit groups, PSHGH , we started with. Hence, the set T2(p) is a �nite union
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of sets that are in the Boolean algebra of AE sets, so the set T2(p) is in the

Boolean algebra of AE sets, and the proof of Theorem 3.2, in case all the graded

limit groups WPHG are rigid, is completed.

4. Core resolutions

In the �rst section we have shown that an EAE set is in the Boolean algebra

of AE sets, assuming the limit groups associated with it are of minimal rank.

The procedure used to analyze the structure of an EAE set in the minimal rank

case, presented in the �rst section, is combined from two iterative procedures.

The �rst iterative procedure constructs the tree of strati�ed sets, from which a

�nite collection of proof systems is obtained, and the second is a sieve procedure

for �nding those specializations of the de�ning parameters for which there exists

a valid proof statement which is in the form of one of the proof systems derived

from the tree of strati�ed sets. In the second section, we combined concepts

and techniques used in the minimal rank case, with the iterative procedure for

validation of an AE sentence presented in section 4 of [Se4], to generalize the

iterative procedure for the construction of the tree of strati�ed sets to general

EAE sets.

In the third section we considered a special case of EAE sets, the case in which

all the groups WPHG associated with an EAE set along the tree of strati�ed

sets are rigid, for which the techniques used in the procedure for validation of

an AE sentence can be used in order to get a sieve procedure that is similar

in concept to the sieve procedure used in the minimal rank case. However, the

techniques used in the procedure for validation of a sentence presented in [Se4]

do not seem to be suÆcient in order to construct a sieve procedure for a general

EAE set. In order to construct a general sieve procedure, we will need several

additional tools and notions. In this section we present some of the needed

tools, and in the next paper in the series we use these tools to construct the

sieve procedure for a general EAE set.

To construct the iterative procedure for validation of an AE sentence,

presented in section 4 of [Se4], we needed to present geometric and induced

resolutions (see section 3 of [Se4] for these notions). We start this section with

the de�nition of the main object introduced in this section, a core resolution

of a resolution Res(t; v; a) and its complexity.

De�nition 4.1: Let Res(t; v; a) be a a well-separated resolution and let

Comp(Res)(u; t; v; a) be its completion. Let CRes(r; v; a) be a geometric sub-

resolution of the completed resolution Res(u; t; v; a). We say that the resolution
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CRes(r; v; a) is a core resolution of the subgroup < v; a > in the completion

Comp(Res)(u; t; v; a), if the resolution CRes(r; v; a) is a �rm subresolution of

the subgroup < r; v; a > ([Se4], de�nition 3.9), i.e., it has the following proper-

ties:

(i) The rank of the resolution CRes(r; v; a), rk(CRes(r; v; a)), is equal to the

rank of the subgroup < r; v; a > with respect to the completed resolution

Comp(Res)(u; t; v; a).

(ii) There exists a �rm test sequence for the subgroup < r; v; a >.

(iii) Let A1; : : : ; Am be all the non-cyclic pegged abelian groups that appear

along the completed resolution Comp(Res)(t; v; a), let peg1; : : : ; pegm be

the pegs of the abelian groups A1; : : : ; Am, and let fpegi; q
i
1; : : : ; q

i
ji
gmi=1 be

an arbitrary basis for the collection of the subgroups A1; : : : ; Am. Then

for any set of integers f(sij ; n
i
j)g, where n

i
j � 2 and 0 � sij < nij , there

exists a �rm test sequence ftn; vn; ag of the subgroup < t; v; a > so that

for every index n, the specialization of each of the pegs pegi is an element

hi, and the specialization of each of the basis elements qij is h
rij
i , where

rij = uij � n
i
j + sij for some positive integer u

i
j .

We denote a core resolution, Core(< v; a >;Res(t; v; a))(r; v; a). In exactly

the same way we de�ne a graded core resolution and a multi-graded core res-

olution. Since a core resolution is, in particular, a geometric subresolution,

we set the complexity of a core resolution to be its complexity as a geometric

subresolution (de�nition 3.2 in [Se4]).

A (graded, multi-graded) core resolution is generally not unique, but given a

well-separated resolution Res(t; v; a) and a subgroup < v; a > of its correspond-

ing limit group, there always exists a core resolution of the subgroup < v; a >,

simply the completion Comp(Res)(u; t; v; a) itself. However, in general, picking

the completion of the ambient resolution as a core resolution for a given sub-

group is not \economical", i.e., its complexity is going to be much larger than

the complexity of other core resolutions that can be associated with the same

subgroup. Hence, we continue by modifying the procedure for the construction

of the induced resolution, presented in section 3 of [Se4], to get a procedure for

the construction of a core resolution.

The construction of a core resolution is composed from two iterative pro-

cedures. The procedure used for the �rst part is essentially identical to the

iterative procedure used to construct the induced resolution. In the second part

we use an iterative procedure that either reduces the rank of the resolution con-

structed in the �rst part, or alternatively, shows that the resolution constructed
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in the �rst part is a �rm subresolution, hence it is a core resolution. For pre-

sentation purposes, we present the second step of the construction in case none

of the abelian decompositions associated with the various levels of the resolu-

tion Res(t; v; a) with which we started contains QH vertex groups, and then

generalize the construction to an arbitrary (well-separated) resolution.

Let Comp(Res)(t; v; a) be a completed well-separated resolution and let

< v; a >< Rlim(t; v; a) be a subgroup of the limit group Rlim(t; v; a). With

each level of the completed resolution Comp(Res)(t; v; a), there is associated

a (possibly trivial) free decomposition and abelian decompositions of the fac-

tors. We denote the decompositions associated with the various levels of the

completed resolution Comp(Res)(t; v; a) by �1; : : : ;�q, and the canonical epi-

morphisms between consecutive levels we denote by �1; : : : ; �q�1. Furthermore,

each vertex group in these decompositions which is neither quadratically hang-

ing nor abelian is embedded into the next level by the canonical epimorphisms

between consecutive levels.

For the �rst part of the construction of a core resolution of the subgroup

< v; a > in the completed resolution Comp(Res)(t; v; a) we use a �nite iterative

procedure, which is essentially identical to the �rst step in the construction of

the induced resolution, presented in section 3 of [Se4]. We start by describing

its �rst step.

(i) Using standard Bass{Serre theory, the subgroup < v; a >< Rlim(t; v; a)

inherits a decomposition �1 with abelian and trivial edge groups from the

decomposition �1. Note that if < v; a > intersects a conjugate of a QH

vertex group in the decomposition �1 in a subgroup of �nite index, then

the intersection appears as a QH vertex group in the inherited decom-

position �1. If < v; a > intersects a conjugate of a QH vertex group in

the decomposition �1 in a non-trivial subgroup of in�nite index, then by

([Se4], 1.4) the intersection gives rise to a free factorization (and a possible

free factor) in the decomposition �1 of the group < v; a >.

(ii) Suppose that the free decomposition inherited by the subgroup < v; a >

from the decomposition �1 is

< v; a >= F1� < v1; a > � < v2 > � � � � � < vb >;

where F1 is a free group which is the free product of free factors con-

tributed by subgroups of in�nite index in QH vertex groups in �1, and

cyclic subgroups generated by Bass{Serre generators associated with loops

with trivial stabilizer in �1; < v1; a > is the connected component that

contains the vertex stabilized by Fk =< a1; : : : ; ak > itself.
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We continue with each of the factors < v1; a >;< v2 >; : : : ; < vb > sep-

arately. We will denote each of these factors by Vi. Each factor Vi inherits

an abelian splitting �i
1 from the decomposition �1. Each edge e in �i

1

that connects two non-QH , non-abelian vertex groups is composed from

a couple of edges e1 and e2 that are adjacent and are both in the orbit

of the same edge e0 in the Bass{Serre tree corresponding to the graph of

groups �1 of Comp(Res)(t; v; a). Furthermore, e
0 connects a non-abelian

vertex group to an abelian vertex group in the decomposition �1.

Let A be the abelian vertex group that stabilizes the common vertex

v of e1 and e2 in the Bass{Serre tree corresponding to the decomposition

�1. There exists a (unique) element a 2 A that is mapped to the identity

element by �1, and conjugates the vertex adjacent to v in e2 to the vertex

adjacent to v in e1. We modify the factor Vi by adding to its generators the

element a. We act in the same way on the factor Vi, in case an abelian ver-

tex group in �i
1 is connected to two non-QH , non-abelian vertex groups,

which are necessarily in the same orbit of a non-QH , non-abelian vertex

group in the graph of groups �1. Repeating this operation for all the

edges connecting two non-QH , non-abelian vertex groups in the decom-

position �i
1 of the factor Vi, and for all couples of edges connecting an

abelian vertex group to two non-QH non-abelian vertex groups in �i
1, we

get a subgroup V̂i < Comp(Res)(t; v; a), so that Vi < V̂i, �1(Vi) = �1(V̂i),

and in the decomposition �̂i
1 inherited by V̂i from the decomposition �1,

which is a \folding" of the decomposition �i
1 of Vi, a non-QH , non-abelian

vertex group is connected only to QH vertex groups and to abelian vertex

groups and not to any other non-QH , non-abelian vertex groups. Further-

more, an abelian vertex group in �̂i
1 is connected to at most one non-QH ,

non-abelian vertex group as it is in the decomposition �1.

(iii) As we did with a general well-separated resolution (de�nition 2.2 in [Se4]),

we associate a decomposition �̂i
1 with the decomposition �̂i

1, by cutting

each of the punctured surfaces that correspond to QH vertex groups in

�̂i
1 along the collection of disjoint, non-homotopic (non-boundary paral-

lel) s.c.c. which are the pre-images of the s.c.c. along which each of the

QH vertex groups in the ambient resolution Comp(Res)(t; v; a) is cut. As

we did in completing a general well-structured resolution ([Se2], de�nition

1.12), we modify the factor V̂i by adding Bass{Serre elements so that each

connected punctured subsurface in the decomposition �̂i
1 that is connected

to a non-QH vertex group in �̂i
1 will be connected to a unique non-QH
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vertex group, and get a subgroup ~Vi with corresponding graphs of groups
~�i
1 and

~�i
1.

As in the construction of the completed resolution of a well-separated

resolution, every connected component in the decomposition ~�i
1 that con-

tains a non-QH vertex group contains a unique non-QH , non-abelian ver-

tex group, and (possibly) few abelian vertex groups all connected (only) to

the (unique) non-QH , non-abelian vertex group in their connected com-

ponent. All the QH vertex groups in a connected component in ~�i
1 are

also connected only to the (unique) non-QH , non-abelian vertex group in

that connected component.

Since Comp(Res)(t; v; a) is a completed and well-separated resolution,

all the (conjugating) Bass{Serre elements we have added to the factor V̂i

are naturally mapped to elements of the completed resolution Rlim(t;v; a),

and the subgroup ~Vi obtained after adding the Bass{Serre generators is

naturally mapped into the completed limit group Rlim(t; v; a) (note that

it is not necessarily embedded). Since (the image in Rlim(t; v; a) of) the

conjugating (Bass{Serre) elements that we added are mapped to the iden-

tity element by the map �1, the addition of these elements does not change

the image of the map �1, i.e., �1(V̂i) = �1( ~Vi).

(iv) With each factor ~Vi and each connected component in the decomposition
~�i
1 that contains a non-QH vertex group, we associate a subgroup J is and

continue to the second level of the completed resolution Comp(Res)(t; v; a)

with each of the subgroups J is separately.

For each index i, and each connected component (indexed by s) in ~�i
1,

we set J is to be the image under the canonical epimorphism �1 of the

fundamental group of the corresponding connected component. Note that

the Bass{Serre elements, and the elements from abelian vertex groups

that were added to the various factors Vi, do not change the images of the

factors Vi under the epimorphism �1.

(v) As we did in part (i), for each of the subgroups J is we use standard Bass{

Serre theory to get a decomposition �
(i;s)
2 , inherited by the subgroup J is

from the decomposition �2 associated with the second level of the com-

pleted resolution Comp(Res)(t; v; a). From the decomposition �
(i;s)
2 , the

subgroup J is inherits a free decomposition and an abelian decomposition

of each of the factors. We add elements for each edge connecting two

non-QH , non-abelian vertex groups in the abelian decompositions of the

di�erent factors as we did in part (ii), and conjugating elements corre-
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sponding to boundary components of QH vertex groups in one of the

abelian decompositions of the di�erent factors using the corresponding

decomposition �
(i;s)
2 associated with �

(i;s)
2 as we did in part (iii). With

each factor of J is we associate �nitely many subgroupsM(i;s;j) correspond-

ing to the di�erent connected components in the decomposition �
(i;s)
2 ex-

actly in the same way we associated the subgroups J is with the factors Vi

in part (iv). We continue to the third level of the completed resolution

Comp(Res)(t; v; a) with the subgroupsM(i;s;j) associated with each of the

connected components of the various graphs �
(i;s)
2 separately, analyze the

decompositions inherited by each of the subgroups M(i;s;j) from the the

abelian decomposition �3 associated with the third level of the completed

resolution Comp(Res)(t; v; a), add additional elements according to parts

(ii) and (iii), and subsequently continue to the next levels of the completed

resolution Comp(Res)(t; v; a).

The �rst step in the iterative procedure used in the �rst part of the construc-

tion of the core resolution constructs a resolution Res(u; v; a) of the subgroup

< v; a >< Rlim(t; v; a) by going through the levels of the completed resolution

Comp(Res)(t; v; a) and applying steps (i){(v) above.

To start the second step in the iterative procedure used for the �rst part

of the construction of the core resolution, we set IRes1(u; v; a) to be the sub-

group of the completed resolution Comp(Res)(t; v; a) generated by the di�er-

ent factors ~Vi and their images in the lower levels of the completed resolu-

tion Comp(Res)(t; v; a) obtained by steps (i){(v) above. De�ning the subgroup

IRes1(u; v; a) < Rlim(t; v; a), we start going through the levels of the com-

pleted resolution Comp(Res)(t; v; a) starting with the subgroup IRes1(u; v; a),

instead of the subgroup < v; a > with which we started in the �rst step.

IRes1(u; v; a), being a subgroup of Rlim(t; v; a), inherits a decomposition

from the abelian decomposition �1 associated with the �rst level of the com-

pleted resolution Comp(Res)(t; v; a). Let this decomposition be I�1. Since the

subgroups < v; a > and IRes1(u; v; a) di�er only in the stabilizers of the unique

non-abelian, non-QH vertex group in each connected component of the various

decompositions ~�i
1 associated with the decompositions ~�i

1 of the factors
~Vi, if

the graph of groups I�1 is not combinatorially similar to the graph of groups
~�1 then one of the following occurs:

(1) In the free decomposition I�1 inherited by the subgroup IRes1(u; v; a)

from the graph of groups �1, either the number of factors is dropping, or

the rank of the free factor corresponding to Bass{Serre generators of loops
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with trivial edge stabilizers and free factors contributed by in�nite index

subgroups of QH vertex groups in �1 is dropping. In this case, each of

the factors Vi of < v; a >, and the subgroups ~Vi associated with it, are

subgroups of a factor in the free decomposition of IRes1(u; v; a) inherited

from �1.

(2) The number of factors and the rank of the free group corresponding to

Bass{Serre generators of loops with trivial edge stabilizers and free factors

contributed by in�nite index subgroups of QH vertex groups in the free

decomposition inherited by IRes1(u; v; a) from �1 remain identical to their

values in the free decomposition inherited by the subgroup < v; a > from

the decomposition ~�1. In this case, each of the factors Vi of < v; a > is

a subgroup of a unique factor in the free decomposition of I�1 inherited

by IRes1(u; v; a) from �1.

The combinatorics of the graph of groups I�1 is strictly smaller than

the combinatorics of the graphs of groups ~�i
1 in correspondence, i.e., for at

least one of the factors in the decomposition I�1, the combinatorics of its

corresponding graph of groups is strictly smaller than the combinatorics of

the corresponding graph of groups in ~�i
1, i.e., either the number of edges

and vertices is smaller, or the genus or the (absolute value of the) Euler

characteristic of some of the QH vertex groups is smaller.

Applying steps (i){(v) to the subgroup IRes1(u; v; a), we set IRes2(u; v; a) to

be the subgroup of the completed limit group Rlim(t; v; a), generated by the dif-

ferent factors of the subgroup IRes1(u; v; a) and their images in the lower levels

of the completed resolution Comp(Res)(t; v; a) obtained in the second step of

the iterative procedure, i.e., obtained by performing steps (i){(v) above start-

ing with the subgroup IRes1(u; v; a) < Rlim(t; v; a). De�ning the subgroup

IRes2(u; v; a) < Rlim(t; v; a), we say that the procedure for the construction

of the induced resolution terminates if IRes2(u; v; a) = IRes1(u; v; a). Oth-

erwise, we perform the third step of the iterative procedure for constructing

the induced resolution by going through the levels of the completed resolution

Comp(Res)(t; v; a), starting with the subgroup IRes2(u; v; a) instead of the

subgroups < v; a > and IRes1(u; v; a) with which we started in the �rst two

steps.

In the general step, we say that the iterative procedure used in the �rst

part of the construction of the core resolution terminates if IResn(u; v; a) =

IResn�1(u; v; a). Otherwise, we continue to the next step by applying steps

(i){(v) starting with the subgroup IResn(u; v; a) < Rlim(t; v; a).
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Lemma 4.2:

(i) The various ranks of the resolutions constructed along the iterative pro-

cedure used in the �rst part of the construction of the core resolution is a

non-increasing sequence.

(ii) The iterative procedure used in the �rst part of the construction of the

core resolution terminates after �nitely many steps.

Proof: Part (ii) is identical to lemma 3.3 in [Se4]. To prove part (i), note that

by construction, at each step j of the iterative procedure, the terminal free group

of the resolution constructed in the j-th step of the procedure, IResj(u; v; a), is

an image of the terminal free group of the resolution constructed in step j � 1

of the procedure, IResj�1(u; v; a).

A core resolution is a geometric subresolution, hence the output of the �rst

part of the procedure needs to be a completed resolution.

Lemma 4.3: Let IResf (u; v; a) be the terminal resolution obtained by the above

procedure. Then IResf (u; v; a) is a geometric subresolution of the completed

resolution, Comp(Res)(t; v; a).

Proof: Identical to lemma 3.4 of [Se4].

The �rst part of the construction of the core resolution is essentially identical

to the construction of the induced resolution. The resolution obtained by the

iterative procedure used in this part, IResf (u; v; a), is a geometric subresolution

of the completed well-separated resolution Comp(Res)(t; v; a) with which we

started. Hence, if IResf (u; v; a) is a resolution of minimal rank, it is a core

resolution. However, in general it is not a �rm subresolution, hence it cannot

serve as a core resolution. To get a �rm subresolution, we usually need to modify

the resolution IResf (u; v; a) by sequentially reducing its rank. We do that by a

sequentially \�ll-in" of various abelian and QH vertex groups associated with

the resolution Comp(Res)(t; v; a), and related to the resolution IResf (u; v; a),

in a way that does not increase the ranks of the obtained resolutions, and so that

if the entire sequence of \�ll-in" operations does not manage to eventually reduce

the rank of the obtained resolution, then it is guaranteed that the resolution

IResf (u; v; a) with which we started the second step is a �rm subresolution, so

it can be taken as a core resolution.

Before presenting the second part of the construction of a core resolution, we

present two preliminary iterative procedures. The �rst preliminary procedure

�lls in ineÆcient QH vertex groups, and the second preliminary procedure adds
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pegs to the abelian vertex groups in the various abelian decompositions associ-

ated with the various levels of a given induced resolution. As we will see in the

sequel, the iterative procedure we use for the second part of the construction of

a core resolution takes care of these two operations, so the preliminary proce-

dures are not really necessary for the construction of the core but they may be

of importance for other purposes.

Since the construction of the core resolution involves (only) the completion

of a well-separated resolution (and not the resolution itself), to save notation

in the sequel, we will assume that the resolution Res(t; v; a) we started with is

a completed resolution, i.e., we will assume that Comp(Res)(t; v; a) is identical

to Res(t; v; a).

De�nition 4.4: Let IResf (u; v; a) be the terminal resolution obtained by the

iterative procedure used in the �rst part of the construction of the core resolu-

tion. Let Q be a QH vertex group in the abelian decomposition associated with

one of the levels of the resolution IResf (u; v; a). By construction, Q is a �nite

index subgroup of a QH vertex group Q̂ in the completed resolution Res(t; v; a)

with which we started. With the QH vertex group Q there is an associated

surface S, and with the QH vertex group Q̂ there is an associated surface Ŝ

that is �nitely covered by S. The resolutions IResf (u; v; a) and Res(t; v; a)

are well-separated, so with S and Ŝ there is an associated collection of non-

homotopic disjoint s.c.c. that are mapped to the identity in the next levels of

the corresponding resolutions.

We say that the QH vertex group Q (or the corresponding surface S) of

IResf (u; v; a) is ineÆcient if it is not of minimal rank and one of the following

conditions hold:

(i) The rank of the free group dropped from the QH vertex group Q is strictly

bigger than the rank of the QH vertex group dropped from the QH vertex

group Q̂.

(ii) The number of connected components in the surface S after cutting it

along its associated collection of s.c.c. is strictly bigger than the number of

connected components of the surface Ŝ after cutting it along its associated

collection of s.c.c.

We start the second part of the construction of the core resolution by a se-

quential \�ll" of ineÆcient surfaces (QH vertex groups). By the way ineÆcient

surfaces are de�ned, each time we �ll an ineÆcient surface, the rank of the

associated (geometric) resolution strictly decreases.

We start the second part of the construction of the core resolution with the
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resolution obtained by the �rst part of the construction, IResf (u; v; a). If the

resolution IResf (u; v; a) contains no ineÆcient surfaces (QH vertex groups),

we do not change the resolution IResf (u; v; a) and continue with it to the next

iterative procedure used in the second part of the construction of the core res-

olution. Suppose Q is an ineÆcient QH vertex group in one of the levels of

the resolution IResf (u; v; a) and let Q̂ be the QH vertex group that contains

Q in the resolution Res(t; v; a) with which we started the procedure. With

the (completed) resolution IResf (u; v; a) we naturally associate the subgroup

< u; v; a > that is generated by the limit groups associated with the various

levels of IResf (u; v; a). By the construction of the resolution IResf (u; v; a),

the subgroup < u; v; a > is naturally a subgroup of the limit group Rlim(t; v; a)

associated with the (completed) resolution Res(t; v; a).

Let < q; u; v; a > be the subgroup generated by the subgroups < u; v; a > and

Q̂ in the limit group Rlim(t; v; a). At this point, we apply the procedure used

in the �rst part of the construction to the limit group < q; u; v; a > and the

resolution Res(t; v; a) we started with (i.e., we construct the resolution induced

by the subgroup < q; u; v; a > from the resolution Res(t; v; a)). Let the obtained

(geometric) resolution be FiRes(s; v; a).

Proposition 4.5: The rank of the resolution FiRes(s; v; a), obtained by �ll-

ing the QH subgroup Q, is strictly smaller than the rank of the resolution

IResf (u; v; a) with which we started the second step.

Proof: The terminal free group of the resolution IResf (u; v; a) is naturally

mapped into the terminal free group of the resolution FiRes(s; v; a). Since the

QH vertex group Q̂ is obtained from the QH vertex group Q by adding �nitely

many elements which are roots of elements in Q, the terminal free group of the

resolution FiRes(s; v; a) is generated by the image of the terminal free group

of the resolution IResf (u; v; a) in addition to �nitely many roots of elements in

that image. Hence, the rank of the resolution FiRes(s; v; a) is bounded by the

rank of the resolution IResf (u; v; a).

The QH vertex group Q is ineÆcient. If the rank of the free factor dropped

from it in the resolution IResf (u; v; a) is strictly bigger than the rank of the

free factor dropped from the QH vertex group Q̂ in the resolution Res(t; v; a),

then by the above structure of the terminal free group of FiRes(s; v; a), the

rank of that terminal free group is strictly smaller than the rank of the terminal

free group of IResf (u; v; a).

Let S be the surface associated with the QH vertex group Q and let Ŝ be

the surface associated with the QH vertex group Q̂. S �nitely covers Ŝ, and
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with each of them there is an associated collection of s.c.c. that are mapped to

the identity in the next levels of the resolutions IResf (u; v; a) and Res(t; v; a)

in correspondence.

Suppose that the ranks of the free factors dropped from Q and Q̂ are identical.

In that case, the number of connected components of the surface S after we cut

it along its associated collection of s.c.c. is strictly bigger than the number of

components of Ŝ after we cut it along its associated collection of s.c.c. Let

C1; : : : ; C` be the subgroups associated with the various components of the

surface S. Let q1; : : : ; qd 2 Q̂ be elements that conjugate distinct couples of

components of the surface S in the QH subgroup Q̂. For each i, let Ci and Cj(i)

be the subgroups of < u; v; a > associated with the two components conjugated

by the element qi 2 Q̂. Since the groups Ci intersect qiCj(i)q
�1
i non-trivially,

the rank of the image of the subgroup < Ci; qiCj(i)q
�1
i > in the terminal free

group of the resolution FiRes(s; v; a) is strictly smaller than the sum of the

ranks of the images of Ci and Cj(i) in the terminal free group of the resolution

IResf (u; v; a) with which we started the second step.

Let � be the map from the subgroup H =< C1; : : : ; C`; Q̂ > into the ter-

minal free group of the resolution FiRes(s; v; a), and suppose that the ranks

of the terminal free groups of the resolutions IResf (u; v; a) and FiRes(s; v; a)

are identical. Then the rank of the free group �(H) is equal to the rank of the

image of the subgroup < C1; : : : ; C` > in the terminal free group of the resolu-

tion IResf (u; v; a), which is the sum of the ranks of the images of the various

subgroups Ci in that terminal free group. Since, in addition, the rank of the sub-

group �(< Ci; qiCj(i)q
�1
i >) is strictly smaller than the sum of the ranks of the

images of Ci and Cj(i) in the terminal free group of IResf (u; v; a), �(H) admits

a free decomposition �(H) = �(q1) � � � � � �(qd) � �(H1), and since for some in-

teger n, qn1 2 Q, �(q1)
n 2 �(<< q2; : : : ; qd; H1 >; q

�1
1 < q2; : : : ; qd; H1 > q1 >).

But clearly, if G =< a > �B and the element a is of in�nite order, then

< B; a�1Ba >= B � a�1Ba, hence for every n > 1, an =2< B; a�1Ba >, a

contradiction.

If the resolution FiRes(s; v; a) contains no ineÆcient QH vertex groups, we

replace the resolution IResf (u; v; a) by the resolution FiRes(u; v; a) and pro-

ceed to the next iterative procedure used in the second step of the construction

of the core resolution. If the resolution FiRes(s; v; a) contains an ineÆcient

QH vertex group Q, we \�ll" this ineÆcient surface precisely as we �lled an

ineÆcient surface in the resolution IResf (u; v; a), obtained by the �rst part of

the construction. We continue iteratively by �lling ineÆcient QH vertex groups
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in the previously obtained resolutions. Since, by Proposition 4.5, each �lling

of an ineÆcient QH vertex group strictly decreases the rank of the obtained

resolution, this (�lling) iterative procedure terminates after �nitely many steps,

which enable us to replace the resolution IResf (u; v; a) by the obtained reso-

lution, and continue to the next iterative procedure used in the second step of

the construction of the core resolution.

Let IRese(u; v; a) be the resolution obtained by iteratively �lling ineÆcient

QH vertex groups. The resolution IRese(u; v; a) is a geometric subresolution

of Res(t; v; a) by construction, but in general it may not be a �rm subresolu-

tion. The second preliminary procedure adds pegs to abelian vertex groups in

the abelian decompositions associated with the various levels of the resolution

IRese(u; v; a).

Suppose that the resolution IRese(u; v; a), obtained by �lling ineÆcient QH

vertex groups in the resolution IResf (u; v; a), constructed in the �rst part of

the construction of the core resolution, is not of minimal rank. In the second

preliminary procedure we add pegs of abelian subgroups intersected non-trivially

(i.e., in a subgroup that is not contained in the cyclic subgroup generated by the

peg) by the subgroup associated with the resolution IRese(u; v; a) iteratively.

(1) We start by adding the pegs of abelian subgroups associated with the top

level of the resolution Res(t; v; a) that are intersected non-trivially by the

subgroup associated with the resolution IRese(u; v; a).

(2) We construct the resolution induced from the resolution Res(t; v; a) by

the subgroup generated by the subgroup associated by the resolution

IRese(u; v; a) and the additional pegs, and denote the obtained resolution

IRes1(u; v; a). Since the pegs we added are either roots of elements that

belong to the subgroup associated with IRese(u; v; a), or they commute

with (non-trivial) elements in the subgroup associated with IRese(u; v; a),

the rank of the obtained resolution IRes1(u; v; a) is bounded by the rank

of the resolution IRese(u; v; a)

rk(IRes1(u; v; a)) � rk(IRese(u; v; a)):

(3) If rk(IRes1(u; v; a)) < rk(IRese(u; v; a)), we start the second step of the

procedure with the resolution IRes1(u; v; a), so we may suppose that

rk(IRes1(u; v; a)) = rk(IRese(u; v; a)). In this case, if a peg that was

added to the subgroup associated with the resolution IRese(u; v; a) is not

a root of an element of this subgroup, then the additional peg has to be

mapped into a free generator in the terminal free subgroup of the ob-

tained (induced) resolution IRes1(u; v; a), and the subgroup generated by
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the collection of those additional pegs is mapped into a free factor (of the

same rank) in the terminal free subgroup of IRes1(u; v; a).

Let �1 be the abelian decomposition associated with the top level of

the resolution Res(t; v; a). In the free decomposition I�1, inherited by

the subgroup IRes1(u; v; a) from �1, either the number of factors is drop-

ping, or the rank of the free factor corresponding to Bass{Serre generators

of loops with trivial edge stabilizers and free factors contributed by in�nite

index subgroups of QH vertex groups is dropping, or the number of free

factors and the rank of the free factor corresponding to Bass{Serre gener-

ators with trivial edge stabilizers and free factors contributed by in�nite

index subgroups of QH vertex groups are identical to the corresponding

number and rank in the abelian decomposition inherited by the subgroup

(associated with) IRese(u; v; a) from �1.

In case the number of free factors and the rank of the above free factor in

I�1 are identical to the corresponding number of factors and rank in the

abelian decomposition inherited by the subgroup IRese(u; v; a) from the

abelian decomposition �1, the complexity of the graph of groups I�1, in-

herited by the subgroup IRes1(u; v; a) from �1, is bounded by complexity

of the graph of groups inherited by IRese(u; v; a) from �1 in addition to

the number of abelian groups for which we have added a peg and this peg

is not a root of an element in the subgroup associated with IRese(u; v; a).

Note that the number of those abelian groups is bounded by the rank of

the resolution IRese(u; v; a), rk(IRese(u; v; a)).

(4) We continue as in steps (1) and (2), by adding all the pegs of abelian sub-

groups associated with the top level of the resolution Res(t; v; a) that are

intersected non-trivially by the subgroup associated with the resolution

IRes1(u; v; a), and constructing the resolution induced from the resolu-

tion Res(t; v; a) by the subgroup generated by the subgroup associated by

the resolution IRes1(u; v; a) and the additional pegs, and denote the ob-

tained resolution IRes2(u; v; a), and continue iteratively. By construction,

the ranks of all the obtained resolutions, which we denote IResn(u; v; a),

satisfy

rk(IResn(u; v; a)) � rk(IResn�1(u; v; a)) � rk(IRese(u; v; a)):

If at some step n, rk(IResn(u; v; a)) < rk(IResn�1(u; v; a)), we start the

second step of the procedure with the resolution IResn(u; v; a), hence we

may assume that the ranks of the obtained resolutions IResn(u; v; a) do

not decrease along the iterative procedure.
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The subgroup generated by the pegs that were added to the subgroups

associated with the resolutions

IRese(u; v; a); IRes1(u; v; a); : : : ; IResn�1(u; v; a);

that are not a root of an element in the subgroup associated with the

preceding resolution, is mapped isomorphically onto a free factor (of the

same rank) in the terminal free subgroup of the obtained (induced) reso-

lution IResn(u; v; a). In the free decomposition inherited by the subgroup

IResn(u; v; a) from �1, the abelian decomposition associated with the top

level of Res(t; v; a), either the number of factors is dropping, or the rank of

the free factor corresponding to Bass{Serre generators of loops with trivial

edge stabilizers and free factors contributed by in�nite index subgroups

of QH vertex groups is dropping, or the number of free factors and the

rank of the free factor corresponding to Bass{Serre generators with trivial

edge stabilizers and free factors contributed by in�nite index subgroups

of QH vertex groups are identical to the corresponding number and rank

in the abelian decomposition inherited by the subgroup IResn�1(u; v; a)

from �1. In case the number of free factors and the rank of the above

free factor in the abelian decomposition inherited by IResn(u; v; a) from

�1 are identical to the corresponding number of factors and rank in the

abelian decomposition inherited by the subgroup IResn�1(u; v; a) from

the abelian decomposition �1, the complexity of the graph of groups in-

herited by the subgroup IResn(u; v; a) from �1 is bounded by complexity

of the graph of groups inherited by IResn�1(u; v; a) from �1 in addition to

the number of abelian groups for which we have added a peg and this peg is

not a root of an element in the subgroup associated with IResn�1(u; v; a).

Since the total number of those abelian groups that are added to the entire

sequence of resolutions IRese(u; v; a); IRes1(u; v; a); : : : ; IResn(u; v; a) is

bounded by the rank of the resolution IRese(u; v; a), the sequence ter-

minates after a �nite time, i.e., we obtain a resolution IResn(u; v; a) for

which if the subgroup associated with it intersects a (conjugate of an)

abelian vertex group in the graded abelian decomposition associated with

the top level of Res(t; v; a), then this intersection contains the peg of the

abelian subgroup.

(5) At this point we continue by adding pegs to abelian subgroups associated

with the second level of the resolution Res(t; v; a) that are intersected non-

trivially by the subgroup associated with the resolution IResn(u; v; a), and

continue iteratively as we did in part (4). Note that after adding pegs of
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abelian subgroups associated with the second level of Res(t; v; a), we may

need to add pegs of abelian subgroups associated with the top level of

Res(t; v; a) as well. Since eventually, either the rank of an obtained reso-

lution decreases or the complexity of the abelian decompositions inherited

by the obtained resolutions from the abelian decomposition associated

with either the top level or the second level of the resolution Res(t; v; a)

decreases, the iterative procedure for adding pegs to abelian subgroups

associated with the top two levels of the resolution Res(t; v; a) terminates

after �nitely many steps. Continuing to the next levels of the resolution

Res(t; v; a), we �nally obtain a resolution, which we denote IResp(t; v; a),

for which if a conjugate of an abelian vertex group associated with one

of the levels of Res(t; v; a) intersects non-trivially the subgroup associated

with the obtained resolution IResp(u; v; a), then this intersection contains

the peg of the abelian subgroup.

The iterative procedure for the addition of pegs terminates after a �nite

number of steps with a resolution, IResp(u; v; a). To the obtained resolution

IResp(u; v; a) we apply the procedure for �lling ineÆcient QH vertex groups,

and if an ineÆcient vertex group was indeed �lled, we apply the procedure

for adding pegs once again, until we obtain a resolution, which we still denote

IResp(u; v; a), that does not contain any ineÆcient QH vertex groups, and

for which if a conjugate of an abelian vertex group associated with one of the

levels of Res(t; v; a) intersects non-trivially the subgroup associated with the

obtained resolution IResp(u; v; a), then this intersection contains the peg of the

abelian subgroup. However, the obtained resolution IResp(u; v; a), which is a

geometric subresolution by construction, is not necessarily a �rm subresolution.

To modify the resolution IResp(u; v; a) (or equivalently the induced resolution

IResf (u; v; a)) in order to obtain a �rm subresolution, we use an iterative proce-

dure that is aimed at sequentially reducing the rank of the obtained resolutions.

The iterative procedure we present either reduces the rank after �nitely many

steps, or guarantees (after �nitely many steps) that the resolution IResp(u; v; a)

(or the resolution IResf (u; v; a)) is indeed a �rm subresolution. Unlike the pro-

cedure for the addition of pegs, the procedure used in the second part of the

second step of the construction of the core resolution starts from the bottom

level of the resolution Res(t; v; a) and iteratively climbs towards its top level.

(1) The terminal level (which we denote by `) of the resolution Res(t; v; a) is

a free group Fk �F , hence we start the procedure from the level above the

terminal one (level `�1). According to the construction of an induced res-
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olution, the subgroup associated with the resolution IResp(u; v; a) inherits

a (possibly trivial) free decomposition from each of the levels of the reso-

lution IResp(u; v; a), and it is mapped to a subgroup associated with each

of the levels. In particular, in accordance with the free decomposition in-

herited by the subgroup associated with the resolution IResp(u; v; a) from

the levels that lie above the ` � 1 level, the image of the subgroup asso-

ciated with IResp(u; v; a) in the subgroup associated with the `� 1 level

of the (completed) ambient resolution Res(t; v; a), G`�1, admits a free de-

composition when mapped into the `�1 level, G`�1 = H`�1
1 �� � ��H`�1

s(`�1).

We treat the factors H`�1
i in parallel.

(2) We �x a system of generators of H`�1
i , H`�1

i =< h`�11 ; : : : ; h`�1
r(`�1;i) >. If

no (non-trivial) subgroup of the factor H`�1
i �xes a vertex in the Bass{

Serre tree associated with the `�1 level of the resolution Res(t; v; a) with

which we started, we leave the factor H`�1
i unchanged. Suppose that a

(non-trivial) subgroup of H`�1
i �xes a vertex in the abelian decomposition

associated with the `� 1 level of the resolution Res(t; v; a).

Let T`�1 be the Bass{Serre tree corresponding to the abelian decompo-

sition associated with the `�1 level of the ambient resolution Res(t; v; a),

and let �H`�1
i

be the graph of groups inherited by H`�1
i from its action

on the Bass{Serre tree T`�1.

De�nition 4.6: Suppose that the abelian decomposition �H`�1
i

, inherited by

H`�1
i from its action on the Bass{Serre tree T`�1, contains a couple of QH

vertex groups, Q1; Q2, that satisfy the following conditions:

(i) Q1 is a �nite index subgroup in a subgroup Q0

1 that is conjugate to a QH

vertex group in the abelian decomposition associated with the `� 1 level

of the ambient resolution Res(t; v; a), and Q2 is a �nite index subgroup

in a subgroup Q0

2 that is conjugate to a QH vertex group in the abelian

decomposition associated with the ` � 1 level of the ambient resolution

Res(t; v; a), and Q0

1 is conjugate to Q
0

2 in the limit group associated with

the `� 1 level of the ambient resolution Res(t; v; a).

(ii) The QH vertex group Q0

1 (hence also Q0

2) is not of minimal rank, i.e.,

there exists a s.c.c. on S01 (the surface associated with Q
0

1) that is mapped

to the trivial element in the next level of the resolution Res(t; v; a).

In this case we say that the abelian decomposition �
H`�1
i

contains a reducing

QH couple.

If the abelian decomposition �
H`�1
i

contains a reducing QH couple, Q1
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and Q2, we set the subgroup Ĥi to be the subgroup generated by H`�1
i ,

the QH vertex groups Q0

1 and Q
0

2 that contain Q1 and Q2 as subgroups

of �nite index, and an element in the limit group associated with the `�1

level of the ambient resolution Res(t; v; a) that conjugates Q0

1 to Q
0

2. We

set H 0

i to be the limit group associated with the resolution induced by

the subgroup Ĥi from the ambient resolution Res(t; v; a). Since the QH

vertex groups Q0

1 and Q0

2 are not of minimal rank, and since Q1 and Q2

are not conjugate in the subgroup H`�1
i with which we started, and Q0

1

and Q0

2 are conjugate in H
0

i , it is not diÆcult to see that the elements we

have added reduce the rank of the obtained group, i.e.,

rk(H 0

i) < rk(H`�1
i )

in case there exists a reducing QH couple in �H`�1
i

. In this case we replace

the factor H`�1
i by H 0

i , and repeat part (2) of the construction with the

newly obtained subgroup H`�1
i .

Suppose that the abelian decomposition �H`�1
i

does not contain a re-

ducing QH couple. Let �`�1 be the map from the limit group associated

with the ` � 1 level of Res(t; v; a) to the (free) limit group associated

with the (terminal) ` level of Res(t; v; a). Let t0 2 T`�1 be its base

point, and let T̂`�1 be the �nite subtree of T`�1 spanned by the points

t0; h
`�1
1 (t0); : : : ; h

`�1
r(`�1;i)(t0). We further increase the �nite subtree T̂`�1.

To each vertex stabilized by a QH subgroup in the �nite subtree T̂`�1

we add edges connected to the various boundary components of the QH

subgroup (an edge for each orbit of edges in �
H
`�1
i

, that is connected to

the QH vertex group under the action of the subgroup H`�1
i ), and the

vertices connected to these edges (note that these new vertices are sta-

bilized by non-abelian, non-QH vertex groups (in T`�1), and that since

H`�1
i is f.g. we have added only �nitely many edges and vertices). We

denote the obtained �nite subtree T 0

`�1. To continue our treatment of the

factor H`�1
i we need the notions of 
oating and absorbed surfaces.

De�nition 4.7: Let Q be a QH vertex group in the �nite tree T 0

`�1 and let

S be its associated surface. Since the ambient resolution Res(t; v; a) is well-

separated, the image of the QH vertex groupQ in the next level of the resolution

Res(t; v; a) is non-abelian. We say that Q is a 
oating QH vertex group (S is

a 
oating surface) with respect to the geometric subresolution IResp(u; v; a), if

Q does not intersect the subgroup H`�1
i in a subgroup of �nite index, and (at

least) one of the three conditions hold:
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(i) The QH vertex group Q is not of minimal rank, i.e., there exists a s.c.c.

on the surface Ŝ that is mapped to the trivial element in the limit group

associated with the next level of the ambient resolution Res(t; v; a).

(ii) None of the vertex groups that are adjacent to Q in T 0

`�1 intersects non-

trivially the subgroup H`�1
i (see De�nition 4.7 for an absorbed surface).

(iii) The QH vertex group Q is of minimal rank, and for every vertex group V

in T 0

`�1 that is adjacent to Q in T 0

`�1 and intersects H`�1
i non-trivially,

rk(�`�1(< H`�1
i \ V;Q >)) > rk(�`�1(H

`�1
i \ V )):

We say that Q is an absorbed vertex group (S is an absorbed surface) if it is

not 
oating.

In case there is no reducing QH couple, we set Ĥi to be the subgroup

generated by the factor H`�1
i and one of the following if it exists:

(i) An abelian vertex group in the �nite tree T 0

`�1 that is intersected non-

trivially by the factor H`�1
i , but is not contained in it.

(ii) An absorbed QH vertex group in the �nite tree T 0

`�1 (with respect to the

subgroup H`�1
i ) that is not contained in H`�1

i (see De�nition 4.7 for an

absorbed surface).

(iii) An (abelian) edge group E in the �nite tree T 0

`�1 that is not contained in

H`�1
i and is adjacent to a non-abelian, non-QH vertex group V in T 0

`�1

that is intersected non-trivially by H`�1
i , for which

rk(�`�1(< H`�1
i \ V;E >)) � rk(�`�1(H

`�1
i \ V )):

(iv) An element v0 2 V , v0 =2 H`�1
i , where V is a non-abelian, non-QH ver-

tex group in the �nite tree T 0

`�1 that is intersected non-trivially by the

subgroup H`�1
i , for which there exist two edge groups E1; E2 that are ad-

jacent to V in the �nite tree T 0

`�1 and are not conjugate in the subgroup

H`�1
i , so that v0 conjugates E1 to E2 in the limit group associated with

the `� 1 level of the ambient resolution Res(t; v; a), and

rk(�`�1(< H`�1
i \ V; v0 >)) � rk(�`�1(H

`�1
i \ V )):

We further set H 0

i to be the subgroup associated with the resolution

induced by the subgroup Ĥi. Since Ĥi is generated by H
`�1
i , the absorbed

QH vertex groups in T 0

`�1 with respect to H`�1
i , abelian vertex groups

that are intersected non-trivially by H`�1
i , and additional elements that

do not increase the ranks of the corresponding vertex groups, the rank of
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H 0

i is bounded by the rank of H`�1
i , rk(H 0

i) � rk(H`�1
i ). Furthermore,

both groups, H 0

i and H
`�1
i , inherit free decompositions from the abelian

decompositions associated with their corresponding actions on the Bass{

Serre tree T`�1, and both the number of factors as well as the rank of the

additional free group in the abelian decomposition associated with H 0

i (the

Kurosh rank) are bounded by the number of factors and the corresponding

rank in the abelian decomposition associated with H`�1
i .

If H 0

i is identical to H`�1
i , we have concluded our treatment of the

factor H`�1
i . Otherwise, we replace the factor H`�1

i by H 0

i and repeat

the construction of a subgroup Ĥi associated with the newly obtained

subgroup H`�1
i . In constructing Ĥi we do not change the �nite subtree

T̂`�1, but the number of (orbits of) edges connected to QH vertex groups

in T̂`�1 may increase, and with it the �nite subtree T 0

`�1. From Ĥi we

further construct the subgroup H 0

i that is associated with the resolution

induced by Ĥi from the ambient resolution Res(t; v; a), and repeat our

treatment of the subgroup H 0

i .

Since in each step we either reduce the rank of the obtained subgroup or

we add a new edge group, an abelian vertex group or absorbed QH vertex

group from the �nite tree T 0

`�1 to the subgroup associated with H`�1
i , or

we add an element that conjugates two edge groups in T 0

`�1 that were

not conjugate previously, we conclude our treatment of the factor H`�1
i

after �nitely many steps. If the ranks of at least one of the factors H`�1
i

strictly decreased by the iterative procedure, we replace the resolution

IResp(u; v; a) with the resolution induced by the subgroup generated by

the subgroup associated with IResp(u; v; a) and the newly obtained factors

H`�1
1 ; : : : ; H`�1

s(`�1) and denote the obtained resolution IRes`�1(u; v; a). In

this case, rk(IRes`�1(u; v; a)) < rk(IResp(u; v; a)), and we continue by

starting the second step of the construction of the core resolution with

the resolution IRes`�1(u; v; a) (instead of IResf (u; v; a)). If none of the

ranks of the various factors H`�1
i decreases, we continue by analyzing the

next `� 2 level of the resolution IResp(u; v; a).

(3) The iterative procedure presented in part (2) concludes our treatment of

the various factorsH`�1
i of the subgroupG`�1 = H`�1

1 �� � ��H`�1
s(`�1), which

is the image of the subgroup associated with the resolution IResp(u; v; a)

in the subgroup associated with the ` � 1 level of the ambient reso-

lution Res(t; v; a). We continue by iteratively increasing the index m,

and analyzing the various factors of the image of the subgroup G`�m =
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H`�m
1 � � � � �H`�m

s(`�m), which is the image of the subgroup associated with

the resolution IResp(u; v; a) in the subgroup associated with the ` � m

level of the ambient resolution Res(t; v; a), according to the procedure

presented in part (2).

Suppose that we analyzed all the images of the subgroup associated

with the resolution IResp(u; v; a) in the subgroups associated with all

the levels below the ` � m level of the ambient resolution Res(t; v; a),

G`�1; : : : ; G`�m+1, and suppose that the rank of the obtained resolu-

tion did not decrease along these levels. In accordance with the free

decomposition inherited by the subgroup associated with the resolution

IResp(u; v; a) from the levels that lie above the `�m level, the image of

the subgroup associated with IResp(u; v; a), G
`�m, admits a free decom-

position when mapped into the `�m level, G`�m = H`�m
1 � � � � �H`�m

s(`�m).

We treat the factors H`�m
i according to the procedure presented in part

(2).

We start by �xing a system of generators of H`�m
i ,

H`�m
i =< h`�m1 ; : : : ; h`�m

r(`�m;i) > :

If no (non-trivial) subgroup of the factor H`�m
i �xes a vertex in the Bass{

Serre tree associated with the `�m level of the resolution Res(t; v; a) with

which we started, we leave the factor H`�m
i unchanged. Suppose that a

(non-trivial) subgroup of H`�m
i �xes a vertex in the abelian decomposi-

tion associated with the `�m level of the resolution Res(t; v; a).

Let T`�m be the Bass{Serre tree corresponding to the abelian decompo-

sition associated with the `�m level of the ambient resolution Res(t; v; a),

and let �
H`�m
i

be the graph of groups inherited by H`�m
i from its action

on the Bass{Serre tree T`�m. If the abelian decomposition �H`�m
i

contains

a reducing QH couple, Q1 and Q2, we set the subgroup Ĥi to be the sub-

group generated by H`�m
i , the QH vertex groups Q0

1 and Q
0

2 that contain

Q1 and Q2 as subgroups of �nite index, and an element in the limit groups

associated with the `�m level of the ambient resolution Res(t; v; a) that

conjugates Q0

1 to Q0

2. We set H 0

i to be the limit group associated with

the resolution induced by the subgroup Ĥi from the ambient resolution

Res(t; v; a). Since the QH vertex groups Q0

1 and Q0

2 are not of minimal

rank, and since Q1 and Q2 are not conjugate in the subgroup H`�m
i we

started with, and Q0

1 and Q
0

2 are conjugate in H
0

i ,

rk(H 0

i) < rk(H`�m
i )
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in case there exists a reducingQH couple in �H`�m
i

. In this case we replace

the factorH`�m
i byH 0

i , and start the second part of the construction of the

core resolution, with the resolution induced from the ambient resolution

Res(t; v; a), by the subgroup generated by the newly obtained subgroup

H`�m
i , and the subgroup associated with the resolution IResp(u; v; a).

Note that the rank of the obtained induced resolution is strictly smaller

than the rank of the resolution IResp(u; v; a) with which we started the

second step.

Suppose that the abelian decomposition �
H
`�m
i

does not contain a re-

ducing QH couple. Let �`�m be the map from the limit group associated

with the `�m level of Res(t; v; a) to the (free) limit group associated with

the (terminal) ` level of Res(t; v; a). Let V be a non-abelian, non-QH ver-

tex group in T`�m and let M < V be a subgroup. Note that V , hence M ,

are naturally embedded into the subgroup associated with level `�m+1

in Res(t; v; a). We denote by rk(�`�m(M)) the rank of resolution obtained

by starting with the subgroupM and applying the iterative procedure for

the construction of the core resolution (restricted to the bottom m levels).

Note that we can apply the procedure restricted to the bottom m levels,

by our induction hypothesis.

Let t0 2 T`�m be its base point, and let T̂`�m be the �nite subtree

of T`�m spanned by the points t0; h
`�m
1 (t0); : : : ; h

`�m
r(`�m;i)(t0). We further

increase the �nite subtree T̂`�m. To each vertex stabilized by a QH sub-

group in the �nite subtree T̂`�m we add edges connected to the various

boundary components of the QH subgroup (an edge for each orbit of

edges connected to the QH vertex group (in �H`�m
i

) under the action of

the subgroup H`�m
i ), and the vertices connected to these edges (note that

these new vertices are stabilized by non-abelian, non-QH vertex groups

in T`�m). We denote the obtained �nite subtree T 0

`�m. We set Ĥi to be

the subgroup generated by the factor H`�m
i and one of the following if it

exists:

(i) An abelian vertex group in the �nite tree T 0

`�m that is intersected non-

trivially by the factor H`�m
i but is not contained in it.

(ii) An absorbed QH vertex group in the �nite tree T 0

`�m (with respect to the

subgroup H`�m
i ) that is not contained in H`�m

i (see De�nition 4.7 for an

absorbed surface).

(iii) An (abelian) edge group E in the �nite tree T 0

`�m that is not contained in

H`�m
i and is adjacent to a non-abelian, non-QH vertex group V in T 0

`�m
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that is intersected non-trivially by H`�m
i , for which

rk(�`�m(< H`�m
i \ V;E >)) � rk(�`�m(H

`�m
i \ V )):

(iv) An element v0 2 V , v0 =2 H`�m
i , where V is a non-abelian, non-QH ver-

tex group in the �nite tree T 0

`�m that is intersected non-trivially by the

subgroup H`�m
i , for which there exist two edge groups E1; E2 that are ad-

jacent to V in the �nite tree T 0

`�m, and are not conjugate in the subgroup

H`�m
i , so that v conjugates E1 to E2 in the limit group associated with

the `�m level of the ambient resolution Res(t; v; a), and

rk(�`�m(< H`�m
i \ V; v0 >)) � rk(�`�m(H

`�m
i \ V )):

We further set H 0

i to be the subgroup associated with the resolution

induced by the subgroup Ĥi. Since Ĥi is generated byH
`�m
i , the absorbed

QH vertex groups in T 0

`�m with respect to H`�m
i , abelian vertex groups

that are intersected non-trivially by H`�m
i , and additional elements that

do not increase the ranks of the corresponding vertex groups, the rank of

H 0

i is bounded by the rank of H`�m
i , rk(H 0

i) � rk(H`�m
i ). Furthermore,

both groups H 0

i and H
`�m
i inherit free decompositions from the abelian

decompositions associated with their corresponding actions on the Bass{

Serre tree T`�m, and both the number of factors as well as the rank of the

additional free group in the abelian decomposition associated with H 0

i (the

Kurosh rank) are bounded by the number of factors and the corresponding

rank in the abelian decomposition associated with H`�m
i .

If H 0

i is identical to H`�m
i we have concluded our treatment of the

factor H`�m
i . Otherwise, we replace the factor H`�m

i by H 0

i , and repeat

the analysis of the resolution induced by the (newly obtained) subgroup

H`�m
i from the ambient resolution Res(t; v; a), according to parts (2) and

(3), without changing the �nite tree T 0

`�m.

Since in each step we either reduce the rank of the obtained subgroup,

or we add a new edge group, an abelian vertex group or absorbed QH

vertex group from the �nite tree T 0

`�m to the subgroup associated with

H`�m
i , or we add an element that conjugates two edge groups in T 0

`�m

that were not conjugated previously, we conclude our treatment of the

factor H`�m
i after �nitely many steps. If the ranks of at least one of

the factors H`�m
i strictly decreased by the iterative procedure, we replace

the resolution IResp(u; v; a) with the resolution induced by the subgroup

generated by the subgroup associated with IResp(u; v; a) and the newly
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obtained factors H`�m
1 ; : : : ; H`�m

s(`�m), and denote the obtained resolution

IRes`�m(u; v; a). In this case, rk(IRes`�m(u; v; a)) < rk(IResp(u; v; a)),

and we continue by starting the second step of the construction of the core

resolution with the resolution IRes`�m(u; v; a) (instead of IResf (u; v; a)).

If none of the ranks of the various factors H`�1
i decreases, we continue by

analyzing the next (`� (m+ 1)) level of the resolution IResp(u; v; a).

The iterative procedure used for the second part of the construction of the

core resolution terminates after �nitely many steps. Using it we obtain a ge-

ometric subresolution of the ambient resolution Res(t; v; a), which we denote

IRess(u; v; a), that is set to be either the resolution IResf (u; v; a) obtained by

the �rst part of the construction, in case the procedure used for the second part

of the construction of the core resolution has not reduced the rank of the resolu-

tion it has constructed, or it is the resolution constructed by the procedure used

in the second part of the construction of the core resolution, in case this reso-

lution is of strictly smaller rank than the resolution IResf (u; v; a), constructed

by the procedure used in the �rst part of the construction. The obtained reso-

lution IRess(u; v; a) is a geometric subresolution of Res(t; v; a) by construction;

in addition, it is guaranteed to be a �rm subresolution by the following theorem,

hence it may serve as a core resolution, Core(< v; a >;Res(t; v; a)).

Theorem 4.8: The resolution IRess(u; v; a), obtained by the procedure for

the construction of a core resolution, is a �rm subresolution of the resolution

Res(t; v; a).

Proof: From the two parts of the construction of the core resolution, we obtain

a geometric subresolution of the ambient resolution, Res(t; v; a), that we de-

note IRessec(u; v; a). We set the resolution IRess(u; v; a) to be the resolution

IRessec(u; v; a) in case rk(IRessec) < rk(IResf ), and IResf (u; v; a) in case

rk(IRessec) = rk(IResf ). Furthermore, if rk(IRessec) = rk(IResf ), then for

any specialization of the ambient resolution Res(t; v; a), the specialization of

the terminal free group of the resolution IRessec(u; v; a) is obtained from the

specialization of the terminal free group of the resolution IResf (u; v; a) by suc-

cessively adding elements that do not increase the rank. Hence, if rk(IRessec) =

rk(IResf ) and IRessec(u; v; a) is a �rm subresolution, so is the resolution

IResf (u; v; a) which is set to be the resolution IRess(u; v; a) in this case. There-

fore, to prove Theorem 4.8, it is enough to prove that the resolution obtained

by the procedure for the construction of a core resolution, IRessec(u; v; a), is a

�rm subresolution.
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We �rst prove that IRessec(u; v; a) is a �rm subresolution We start by proving

it in case the ambient resolution, Res(t; v; a), is a one-level resolution, and the

associated abelian decomposition contains no QH vertex groups. We continue

by proving it for ambient resolutions, Res(t; v; a), for which the abelian decom-

positions associated with their various levels contain no QH vertex groups, and

then we generalize the proof to arbitrary ambient resolutions.

Lemma 4.9: Suppose that the ambient resolution, Res(t; v; a), contains a single

level, and the abelian decomposition associated with that level contains no QH

vertex groups. Then the resolution IRessec(u; v; a), obtained by the procedure

for the construction of a core resolution, is a �rm subresolution of the resolution

Res(t; v; a).

Proof: Let H1 be the subgroup associated with the resolution IRessec(u; v; a),

and let T be the Bass{Serre tree corresponding to the abelian decomposition

associated with the single level of the ambient resolution Res(t; v; a). In case

the ambient resolution contains a single level, only parts (1) and (2) of the

procedure used for the second part of the construction of a core resolution are

applied along the iterative procedure.

Suppose that no (non-trivial) subgroup of H1 �xes a vertex in the Bass{Serre

tree T . Then there exists a test sequence of the ambient resolution Res(t; v; a),

so that the corresponding sequence of specializations of the subgroup H1 are

bi-Lipschitz equivalent to the action of H1 on the Bass{Serre tree T . Hence,

the rank of each specialization of H1 (from the test sequence) is equivalent to

the rank of H1, which implies that IRessec(u; v; a) is a �rm subresolution of

Res(t; v; a).

Suppose that there are non-trivial subgroups of H1 that �x vertices in the

Bass{Serre tree T . In this case H1 inherits a free decomposition from its action

on the Bass{Serre tree T : H1 = B1 � � � � � Bm � Fs, where each of the factors

Bj inherits a (possibly trivial) abelian decomposition with non-trivial abelian

edge groups from its action on the tree T . Furthermore, the canonical map

from the limit group associated with the top level of the ambient resolution,

Res(t; v; a), to the limit group associated with its terminal (second) level, maps

each of the factors Bj onto a free group Dj , which is a subgroup of the terminal

free group of the ambient resolution, Res(t; v; a). Since IRessec(u; v; a) is a

completed resolution, H1 naturally contains a subgroup isomorphic to M =

D1 � � � � �Dm � Fs, where each of the subgroups Dj is a subgroup of a vertex

group in the Bass{Serre tree T .
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Then there exists a test sequence of the ambient resolution Res(t; v; a), so

that the corresponding sequence of specializations of the subgroup M < H1

are isomorphic to M . Hence, the rank of each of the specializations of H1

is equivalent to the rank of the subgroup M , which is equivalent to the rank

of IRessec(u; v; a); this implies that IRessec(u; v; a) is a �rm subresolution of

Res(t; v; a).

An argument similar to the one used to prove Lemma 4.9 allows us to prove

Theorem 4.8 for ambient resolutions for which their associated abelian decom-

positions contain no QH vertex groups.

Lemma 4.10: Suppose that the abelian decompositions associated with the var-

ious levels of the ambient resolution, Res(t; v; a), contain no QH vertex groups.

Then the resolution IRessec(u; v; a), obtained by the procedure for the construc-

tion of a core resolution, is a �rm subresolution of the resolution Res(t; v; a).

Proof: Let H = H1 be the subgroup associated with the obtained resolu-

tion IRessec(u; v; a), and let T1 be the Bass{Serre tree corresponding to the

abelian decomposition associated with the top level of the ambient resolution,

Res(t; v; a). The subgroup H1 inherits an abelian decomposition from its ac-

tion on the Bass{Serre tree T1, an abelian decomposition that gives rise to a

free decomposition: H1 = B1
1 �� � ��B

1
m1

�Fs1 . Each of the factors B
1
j is mapped

into the limit group associated with the second level of the ambient resolution

Res(t; v; a), and we denote its image H2
j . Setting T2 to be the Bass{Serre tree

corresponding to the abelian decomposition associated with the second level of

the ambient resolution Res(t; v; a), each of the subgroups H2
j inherits an abelian

decomposition from its action on the Bass{Serre tree T2, an abelian decompo-

sition that gives rise to a free decomposition of the subgroup H2
j . Each of the

factors B2
j in the free decomposition of H2

j is naturally mapped into the limit

group associated with the third level of the ambient resolution Res(t; v; a), and

we denote its imageH3
j . Continuing inductively, by going down through the lev-

els of the ambient resolution Res(t; v; a), we obtain the set of subgroups H`�m
j

of the limit group associated with the ` � m level of the ambient resolution

Res(t; v; a), m = 0; : : : ; ` � 1, j = 1; : : : ; q`�m, and the factors in the free de-

compositions the subgroups H`�m
j inherit from their action on the Bass{Serre

tree T`�m, which we denote B`�m
j .

We prove that the obtained resolution IRessec(u; v; a) is a �rm subresolution,

by going through the levels of the ambient resolution Res(t; v; a) from bottom

to top, and showing inductively that the resolutions induced by the subgroups
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H`�m
j associated with the corresponding level are indeed �rm subresolutions of

the ambient resolution Res(t; v; a).

The subgroups associated with the bottom level, H`
j , are subgroups of the

terminal free group of the ambient resolution, Res(t; v; a), and the resolutions

induced by them from the ambient resolution, Res(t; v; a), are trivial, so these

are indeed �rm subresolutions of Res(t; v; a). According to Lemma 4.9, the

resolutions induced by the various subgroups associated with the `� 1 level,

H`�1
j , from Res(t; v; a) are �rm subresolutions of Res(t; v; a).

Suppose that the resolutions induced by the various subgroups H`�m+1
j from

the ambient resolution Res(t; v; a) are �rm subresolutions, and let H`�m
j be one

of the factors in the free decomposition inherited by the image of the subgroup

associated with the resolution IRessec(u; v; a) in the limit group associated with

the `�m level of the ambient resolution Res(t; v; a).

Suppose that no (non-trivial) subgroup of H`�m
j �xes a vertex in the Bass{

Serre tree T`�m. Then there exists a test sequence of the ambient resolution

Res(t; v; a), so that the corresponding sequence of specializations of the sub-

groupH`�m
j are bi-Lipschitz equivalent to the action ofH`�m

j on the Bass{Serre

tree T`�m. Hence, the rank of each specialization of H`�m
j is equivalent to the

rank of H`�m
j , which implies that the part of IRessec(u; v; a) corresponding to

the factor H`�m
j is a �rm subresolution of Res(t; v; a).

Suppose that there are non-trivial subgroups of H`�m
j that �x vertices in the

Bass{Serre tree T`�m. In this case H`�m
j inherits a free decomposition from its

action on the Bass{Serre tree T`�m: H
`�m
j = B`�m

1 � � � � � B`�m
r � Fs, where

each of the factors B`�m
k inherits a (possibly trivial) abelian decomposition with

non-trivial abelian edge groups from its action on the tree T`�m. Furthermore,

the canonical map from the limit group associated with the `�m level of the

ambient resolution, Res(t; v; a), to the limit group associated with its `�m+1

level maps each of the factors B`�m
k onto a subgroup H`�m+1

k . Since by our

inductive assumption, the resolution induced by each of the factors H`�m+1
k is a

�rm subresolution, each of the factors H`�m+1
k is mapped onto the terminal free

group of the resolution induced by the various factors H`�m+1
k , which we de-

note D`�m+1
k . Since IRessec(u; v; a) is a completed resolution, H`�m

j naturally

contains a subgroup isomorphic toM = D`�m+1
1 � � � ��D`�m+1

r �Fs, where each

of the subgroups D`�m+1
k is contained in a vertex stabilizer in the Bass{Serre

T`�m.

Then there exists a test sequence of the ambient resolution Res(t; v; a), so

that the corresponding sequence of specializations of the subgroup M < H`�m
j
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are isomorphic to M . Hence, the rank of each of the specializations of H`�m
j

is equivalent to the rank of the subgroup M , which is equivalent to the rank

of the resolution induced by the subgroup H`�m
j from the ambient resolution

Res(t; v; a), which implies that the resolution induced by the subgroup H`�m
j

is a �rm subresolution of Res(t; v; a). By induction on the various levels of the

ambient resolution Res(t; v; a), the resolution IRessec(u; v; a) is a �rm subreso-

lution of the ambient resolution Res(t; v; a).

In Lemmas 4.9 and 4.10 we proved Theorem 4.8 in case the abelian decomposi-

tions associated with the various levels of the ambient resolution Res(t; v; a) con-

tain no QH vertex groups. To prove Theorem 4.8 in the general case we use the

combinatorial properties of (quadratic) test sequences (de�nition 1.5 in [Se2]),

together with the arguments used to prove Lemmas 4.9 and 4.10. As in analyz-

ing the resolution IRessec(u; v; a) in case the ambient resolution, Res(t; v; a),

contains no QH vertex groups, we analyze the resolution IRessec(u; v; a) induc-

tively from bottom to top, starting with the factors associated with the ` � 1

level of the ambient resolution Res(t; v; a).

Let H`�1
i be a factor in the free decomposition inherited by the subgroup

associated with the resolution IRessec(u; v; a), from the abelian decompositions

associated with all the levels of the ambient resolution Res(t; v; a) that lie above

the `�1 level. Let T`�1 be the Bass{Serre tree associated with the `�1 level in

the ambient resolution, Res(t; v; a), and let �
H
`�1
i

be the abelian decomposition

inherited by H`�1
i from its action on T`�1. Let H

`�1
i =< h`�11 ; : : : ; h`�1

r(`�1;i) >

be a �xed generating set for H`�1
i , let t0 2 T`�1 be its base point, and let T̂`�1

be the �nite subtree of T`�1 spanned by the points t0; h
`�1
1 (t0); : : : ; h

`�1
r(`�1;i)(t0).

Recall that along the construction of the resolution IRessec(u; v; a) we increased

the �nite subtree T̂`�1. To each vertex stabilized by a QH subgroup in the �nite

subtree T̂`�1, we added edges connected to the various boundary components

of the QH subgroup that correspond to orbits of edges in the graph of groups

(�H`�1
i

), and the vertices connected to these edges (note that these new vertices

are stabilized by non-abelian, non-QH vertex groups in T`�1). We denoted the

obtained �nite subtree T 0

`�1.

By lemma 1.4 of [Se4], from the abelian decomposition associated with the

` � 1 level of the ambient resolution Res(t; v; a), the factor H`�1
i inherits an

abelian decomposition that we (still) denote �
H`�1
i

, in which all the (non-trivial)

edge groups are edge groups in the Bass{Serre tree T`�1, and the vertex groups

are either abelian or QH vertex groups in T`�1, or they are contained in non-

QH , non-abelian vertex groups in T`�1.
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If the �nite subtree T 0

`�1 contains no 
oatingQH vertex groups, the resolution

induced by the subgroupH`�1
i is �rm by the argument used to prove Lemma 4.9.

Suppose that the �nite subtree T 0

`�1 contains a 
oating QH vertex group. Let

Q be a QH vertex group in the abelian decomposition associated with the `� 1

level of the ambient resolution Res(t; v; a), let �Q be the abelian decomposition

obtained from the abelian decomposition associated with the `� 1 level of the

ambient resolution Res(t; v; a) by collapsing all the edges except those that are

connected to the QH vertex group Q, and suppose that the free decomposition

inherited by the factor H`�1
i from �Q is a non-trivial free decomposition of

H`�1
i (cf. lemma 1.4 in [Se4]), which implies that some conjugates of the QH

vertex group Q are 
oating QH vertex groups in the �nite tree T 0

`�1.

Recall that, given a test sequence of the resolution Res(t; v; a), a quadratic

test sequence is associated with the QH vertex Q. A quadratic test sequence

is presented in de�nition 1.5 of [Se2]. According to this de�nition, with the

surface S associated with the QH vertex group Q, we associate a collection of

non-homotopic, non-boundary parallel s.c.c. b1; : : : ; bq so that Sn[fb1; : : : ; bqg is

a disjoint union of three-punctured spheres and once-punctured M�obius bands,

and another collection of non-homotopic, non-boundary parallel s.c.c. d1; : : : ; dt

so that each of the curves di intersects non-trivially at least one of the curves

bj , and the collection of curves b1; : : : ; bq; d1; : : : ; dt �lls the surface S. Let

'1; : : : ; 'q be the automorphisms of Q that correspond to Dehn twists along

the s.c.c. b1; : : : ; bq, and  1; : : : ;  t be the automorphisms of Q that correspond

to Dehn twists along the s.c.c. d1; : : : ; dt. To construct a quadratic test sequence,

we de�ne the following sequences of automorphisms of the QH vertex group Q,

f�n; �ng, iteratively. We set �1 = id:, and �1 to be

�1 =  
`11
1 Æ  

`12
2 Æ � � � Æ  

`1t
t :

For every index n > 1 we de�ne �n to be

�n = '
mn

1
1 Æ '

mn
2

2 Æ � � � Æ '
mn

q
q Æ �n�1

and

�n =  
`n1
1 Æ  

`n2
2 Æ � � � Æ  

`nt
t Æ �n:

The automorphisms f�n; �ng naturally extend to automorphisms of the limit

group Rlim`�1(t; v; a) associated with the `� 1 level of the ambient resolution

Res(t; v; a), and we set the sequence of homomorphisms �n: Rlim`�1(t; v; a)!

Fk to be a sequence of homomorphisms of the form

�n = �n Æ '
en
1 Æ 'en2 Æ � � � Æ 'enq Æ �n
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where �n is a homomorphism obtained from a composition of the automorphisms

associated with the other parts of the abelian decomposition associated with the

`�1 level of the ambient resolutionRes(t; v; a), and the (canonical) epimorphism

�`�1 from the group associated with the ` � 1 level of Res(t; v; a) to the free

group associated with the (terminal) ` level.

The decomposition of the QH vertex group Q along the collection of s.c.c.

b1; : : : ; bq can naturally be extended to a decomposition of the limit group

Rlim`�1(t; v; a), associated with the ` � 1 level of the ambient resolution

Res(t; v; a). Let GQ be the Bass{Serre tree corresponding to this decomposition

of Rlim`�1(t; v; a). Before analyzing the image under the homomorphism �n of

the factor H`�1
i , �n(H

`�1
i ), in the terminal free group of the ambient resolution

Res(t; v; a), we analyze the action on the tree GQ of the image of the factor

H`�1
i under the automorphism �n of Rlim`�1(t; v; a).

Proposition 4.11: Let �n be the graph of groups inherited by the subgroup

�n(H
`�1
i ) from its action on the Bass{Serre tree GQ, and let �0n be the free

decomposition of �n(H
`�1
i ) obtained from the graph of groups �n by collapsing

all the edges with non-trivial stabilizers. The free decomposition �0n of �n(H
`�1
i )

naturally transfers to a free decomposition (still denoted �0n) of H`�1
i . Then

there exists a test sequence with corresponding sequence of automorphisms,

f(�n; �n)g, for which there exists an index n0, so that for every index n > n0,

the free decompositions inherited by H`�1
i from �0n are identical to the free

decomposition inherited by H`�1
i from the decomposition �Q (according to

lemma 1.4 in [Se4]).

Furthermore, the test sequence can be chosen so that in the limit action of the

group Rlim`�1(t; v; a) on a real tree Y , obtained from the sequence of actions of

Rlim(t; v; a) on the Bass{Serre tree GQ via the automorphisms �n, the action

of the subgroup H`�1
i on the real tree Y contains orbits of only discrete and

IET components.

Proof: Let �
H
`�1
i

be the free decomposition inherited by H`�1
i from the de-

composition �Q according to lemma 1.4 of [Se4]. By our assumptions, �H`�1
i

is a non-trivial free decomposition of H`�1
i .

Recall that the collection of s.c.c. b1; : : : ; bq and d1; : : : ; dt are chosen to �ll

the surface S associated with the QH vertex group Q. By the way a test

sequence is de�ned, larger and larger (�nite) sets of elements in the subgroup

H`�1
i , that are either hyperbolic with respect to the abelian decomposition

�Q or are conjugate to non-boundary parallel elements in the QH subgroup
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Q, are guaranteed to be mapped by the automorphisms �n to elements that

act hyperbolically on the Bass{Serre tree GQ which corresponds to the abelian

decomposition obtained from �Q, by decomposing the QH subgroup Q along

the disjoint, non-homotopic collection of s.c.c. b1; : : : ; bq. Furthermore, the axis

of the image of such elements under the automorphisms �n when acting on GQ is

composed from high powers of elements that are conjugate to the s.c.c. b1; : : : ; bq

and d1; : : : ; dt (see the construction of test sequences in de�nition 1.20 in [Se2]).

The subgroup H`�1
i inherits an abelian decomposition from the decomposi-

tion �Q of the ambient limit group Rlim`�1(t; v; a). Let M1; : : : ;Ms be those

vertex groups in this decomposition that can be conjugated into in�nite in-

dex subgroups of the QH vertex Q, and are not free product of conjugates of

boundary subgroups in Q.

By the work of P. Scott [Sc], every subgroup of a surface group is geometric,

i.e., every subgroup of a given surface group is the fundamental group of a

subsurface of a �nite cover of the given surface. Since the collection of curves

b1; : : : ; bq ; d1; : : : ; dt �lls the given surface S (with fundamental group Q), the

collection of lifts of these curves �lls any given �nite cover of S.

Since the subgroupsM1; : : : ;Ms are of in�nite index in conjugates of the QH

vertex groupQ, and they are not free products of boundary subgroups inQ, each

is the fundamental group of a corresponding proper subsurface in some �nite

cover of the surface S. Let Xi be the cover of the surface S that is associated

with the subgroupMi, and let Si � Xi be the proper subsurface (not necessarily

connected) with fundamental group Mi. Since Si is a proper subsurface, and

its fundamental group is not a free product of boundary subgroups in Q, Si has

boundary components ci1; : : : ; c
i
u that are non-boundary parallel in Xi.

Since ci1; : : : ; c
i
u are non-boundary parallel inXi, they represent non-boundary

parallel curves on the surface S, hence they intersect non-trivially some of the

s.c.c. b1; : : : ; bq; d1; : : : ; dt (that �ll S). Therefore, by the construction of a test

sequence, for some index n1, and for every index i, 1 � i � s, each of the curves

�n1(c
i
1); : : : ; �n1(c

i
u) intersects non-trivially all the s.c.c. b1; : : : ; bq; d1; : : : ; dt.

Hence, again by the construction of a test sequence, there exists some index

n0, so that for every couple of indices i and j, the collection of curves �n0(c
i
j)

and b1; : : : ; bq �lls the surface S, so their lifts �ll the cover Xi. This implies

that for every index i, 1 � i � s, �n0(Mi) contains no non-trivial elliptic ele-

ments in acting on the tree GQ, which is the Bass{Serre tree that corresponds

to the abelian decomposition obtained by cutting the QH subgroup Q along

the collection of s.c.c. b1; : : : ; bt. Hence, �0n0 is precisely �
H`�1
i

, i.e., the free



Vol. 150, 2005 DIOPHANTINE GEOMETRY OVER GROUPS V1 171

decomposition inherited by H`�1
i from �Q according to lemma 1.4 of [Se4].

Once the free decompositions inherited by the subgroupsM1; : : : ;Ms from the

decompositions �0n0 are identical to those guaranteed by lemma 1.4 of [Se4], by

choosing the powers that de�ne the next automorphisms f(�n; �n)g in our test

sequence to be large enough, we guarantee that all the next free decompositions

�0n are identical to the free decomposition �n0 . By the combinatorial properties

of a quadratic test sequence (presented in detail in [Se2]), a limit action obtained

from the test sequence we constructed contains orbits of only discrete and IET

components, and the proposition follows.

Suppose that the (non-trivial) free decomposition inherited by the subgroup

H`�1
i from the abelian decomposition �Q according to lemma 1.4 of [Se4] is

H`�1
i = B1�� � ��Bm�Fs, where Fs is a free group. Since the surfaceQ is 
oating,

we can modify the homomorphism � of the ambient limit group Rlim(t; v; a), so

that for every index i, 1 � i � t, �(bi) cannot be conjugated into the subgroup

H`�1
i \ V , for every vertex group V that is adjacent to the QH vertex group

Q in the �nite subtree T 0

`�1. Since by Proposition 4.11 there exists a sequence

of automorphisms f(�n; �n)g, for which there exists some index n0, so that for

every index n > n0 the free decomposition �0n of H`�1
i is identical to the free

decomposition H`�1
i = B1 � � � � �Bm � Fs, then the sequence of automorphisms

f(�n; �n)g can be extended to a test sequence of the two bottom levels of the

ambient resolution Res(t; v; a), so that for every n > n0,

�n(H
`�1
i ) = �n(B1) � � � � � �n(Bm) � �n(Fs);

where �n maps Fs isomorphically onto �n(Fs), which clearly implies that the

given test sequence is �rm with respect to the entire subgroup H`�1
i . By iter-

atively adding the QH vertex groups in the abelian decomposition associated

with the ` � 1 level of the ambient resolution Res(t; v; a), we get that the res-

olutions induced by the various subgroups H`�1
i are indeed �rm subresolutions

of Res(t; v; a).

Analyzing the resolutions induced by the various subgroups H`�1
i from the

ambient resolution Res(t; v; a), to complete the proof of Theorem 4.8, i.e., to

show that the entire resolution IRessec(u; v; a) is a �rm subresolution, we con-

tinue the analysis of the resolution IRessec(u; v; a) by climbing through the

levels of the ambient resolution Res(t; v; a) as we did in proving Lemma 4.10,

and for each level we use the same argument used in the analysis of the factors

H`�1
i .

Given a well-separated completed resolution Res(t; v; a), and a subgroup
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< v; a > of the limit group Rlim(t; v; a) associated with this resolution, the

procedure for the construction of a core resolution enables us to start with the

resolution induced by the subgroup < v; a > from the resolution Res(t; v; a),

and modify it sequentially by reducing the ranks of the obtained resolution

to get a �rm geometric subresolution of the resolution Res(t; v; a), which can

be taken to be a core resolution, Core(< v; a >;Res(t; v; a))(r; v; a). Natu-

rally, the procedure used for the construction of a core resolution generalizes

to the construction of a (graded) core of a (well-separated) graded resolution,

which we denote GCore(< v; a >;GRes(t; v; p; a))(r; v; a), and to the construc-

tion of a (multi-graded) core of a multi-graded resolution, which we denote

MGCore(< v; a >;MGRes)(r; v; a). Note that in the graded and multi-graded

cases, the second part of the construction of the core resolution either reduces

the sum of the rank of the terminating free factor and the number of the ter-

minating factors of the resolution IResf (u; v; a) obtained in the �rst part (i.e.,

reduces the Kurosh rank of the free decomposition associated with its terminal

limit group), or it proves that it is indeed a �rm subresolution, hence may serve

as a (graded, multi-graded) core resolution.

Also, note that, unlike ungraded resolution, in analyzing the set of specializa-

tions that factor and are taut with respect to a completed graded or multi-graded

resolution, MGRes, it is possible that the restrictions of certain specializations

to some levels of the multi-graded resolution,MGRes, cannot be obtained from

the restrictions of the same specializations to the successive (lower) levels of the

resolution, using the associated (multi-graded) modular automorphisms. This

phenomenon arises since there are specializations of (graded, multi-graded) solid

limit groups that do not factor through any 
exible quotient of the solid limit

group (after applying an element of the associated modular groups), but still

they are not strictly solid specializations of the solid limit group, hence they are

assumed to factor through (the limit group associated with the completion of)

a resolution associated with at least one of the 
exible quotients of the given

solid limit group (see de�nitions 1.4 and 1.5 in [Se3]).

However, the Kurosh rank of the restriction of such specialization to the

subgroup associated with the core of such resolution MGRes is at most the

Kurosh rank of the constructed core. This observation is needed in proving

certain inequalities on the complexity of the core resolution (see Theorems 4.18

and 4.19).

In the procedure for the construction of the tree of strati�ed sets, we were

able to bound the complexity of multi-graded resolutions by the complexity of
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multi-graded resolutions produced in previous steps of the iterative procedure.

In the general sieve method, presented in the next paper in the sequel, we will

need similar bounds on the cores of the constructed multi-graded resolutions.

To state these bounds, we �rst need to present the complexity of a (graded,

multi-graded) core resolution, which is a slight modi�cation of our de�nition of

the complexity of a resolution (cf. De�nition 2.2).

De�nition 4.12: Let Res(t; v; a) be an (ungraded) well-separated completed

resolution and let Core(< v; a >;Res(t; v; a)) be a core resolution. We set the

complexity of the core Core(< v; a >;Res(t; v; a)),

Cmplx(Core(< v; a >;Res(t; v; a)));

to be the complexity of the core Core(< v; a >;Res(t; v; a)), viewed as an

induced resolution ([Se4], de�nition 3.2). Unlike the ungraded case, in case the

ambient resolution is multi-graded (or graded), we need to slightly modify the

complexity of the core.

LetMGRes(t; v; P;R1; : : : ; Rd; a) be a well-separated completed multi-graded

resolution and letMGCore(<v; a>;MGRes(t; v; P;R1; : : : ; Rd; a)) be a (multi-

graded) core resolution. Let Q1; : : : ; Qm be the QH subgroups that appear in

the core MGCore(< v; a >;MGRes(t; v; P;R1; : : : ; Rd; a)). Each QH vertex

group Qj is a subgroup of �nite index in a QH vertex group in the ambient

(multi-graded) resolution, so with each QH we associate the (punctured) surface

Sj that is associated with the QH vertex group of the ambient resolution that

containsQj . With each (punctured) surface Sj we may associate an ordered cou-

ple (genus(Sj); j�(Sj)j). We will assume that the QH subgroupsQ1; : : : ; Qm are

ordered according to the lexicographical (decreasing) order of the ordered cou-

ples associated with their corresponding surfaces. Let rk(MGCore) be the rank

of the free factor in the free decomposition associated with the terminal limit

group of the core, MGCore(< v; a >;MGRes(t; v; P;R1; : : : ; Rd; a)), and let

factor(MGCore) be the number of factors it is terminating with (i.e., the num-

ber of factors in the free decomposition inherited by the terminal subgroup of the

multi-graded core from the free decomposition of the terminal subgroup of the

ambient multi-graded resolution). Note that rk(MGCore) + factor(MGCore)

is precisely the Kurosh rank of the free decomposition associated with the ter-

minal limit group of the core MGCore. Let Abrk(MGCore) be the abelian

rank of the core resolution (see de�nition 1.14 of [Se4]).

We set the complexity of the multi-graded core

MGCore(< v; a >;MGRes(t; v; P;R1; : : : ; Rd; a));
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denoted Cmplx(MGCore), to be

Cmplx(MGCore) = (rk(MGCore) + factor(MGCore);

(genus(S1); j�(S1)j); : : : ; (genus(Sm); j�(Sm)j);Abrk(MGCore);rk(MGCore)):

On the set of core resolutions we can de�ne a partial order. Let MGCore1 and

MGCore2 be two (multi-graded) core resolutions. We say that

Cmplx(MGCore1) = Cmplx(MGCore2)

if the tuples de�ning the two complexities are identical. We say that

Cmplx(MGCore1) < Cmplx(MGCore2)

if:

(1) rk(MGCore1) + factor(MGCore1) is smaller than

rk(MGCore2) + factor(MGCore2);

(2) the above numbers are equal and the tuple

((genus(S11); j�(S
1
1 )j); : : : ; (genus(S

1
m1

); j�(S1m1
j))

is smaller in the lexicographical order than the tuple

((genus(S21); j�(S
2
1)j); : : : ; (genus(S

2
m2

); j�(S2m2
j));

(3) the above numbers and tuples are equal and

Abrk(MGCore1) < Abrk(MGCore2);

(4) the above numbers and tuples are equal and

rk(MGCore1) < rk(MGCore2):

To get bounds on the complexity of core resolutions of the multi-graded reso-

lutions constructed along our quanti�er elimination iterative procedure, we need

to study some basic properties of the core resolution. These properties of the

core resolution seem to be basic tools for analyzing Diophantine sets in general.

Theorem 4.13: Let MGRes1(v;R1; : : : ; Rm; P; a) be a well-separated com-

pleted multi-graded resolution containing two levels and a unique quotient map

between the two limit groups associated with the two levels, and let �1 be
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the graph of groups with fundamental group Rlim(v; P; a) associated with the

top level of MGRes1, where R1; : : : ; Rm; P are the non-QH , non-abelian ver-

tex groups in the graph of groups �1. Let MGRes2(t; v; L1; : : : ; Ln; P; a) be

a well-separated completed resolution of a limit group Rlim(t; v; P; a), so that

there is an embedding �: Rlim(v; P; a)! Rlim(t; v; P; a) that maps each of the

subgroups R1; : : : ; Rm; P into a conjugate of one of the subgroups Lj .

Since the multi-graded resolution MGRes1(v;R1; : : : ; Rm; P; a) is well-

separated, with each QH vertex group in its associated multi-graded abelian

decomposition, �1, there is an associated collection of s.c.c. that are mapped to

the trivial element in the terminal level of the resolution

MGRes1(v;R1; : : : ; Rm; P; a):

Each QH vertex group in �1 naturally inherits a sequence of abelian de-

compositions from the multi-graded resolution MGRes2(t; v; L1; : : : ; Ln; P; a).

Suppose that for every such QH vertex group Q, this sequence of multi-graded

abelian decompositions is compatible with the collection of s.c.c. on Q that are

mapped to the trivial element in the terminal level of the multi-graded resolution

MGRes1(v;R1; : : : ; Rm; P; a).

Then the multi-graded resolutionMGRes2(t; v; L1; : : : ; Ln; P; a) can be modi-

�ed (without changing the Diophantine set associated with its completion) to

a well-separated multi-graded resolution MGRes3(u; t; v; L1; : : : ; Ln; P; a), so

that:

(i) Every specialization of the limit groupRlim(t; v; p; a) that can be extended

to a specialization that factors through the (limit group associated with

the) completion of the multi-graded resolutionMGRes2, Comp(MGRes2),

can be extended to a specialization that factors through the completion of

the multi-graded resolution MGRes3, Comp(MGRes3), and vice versa,

i.e., the Diophantine sets associated with the completions ofMGRes2 and

MGRes3 are identical.

(ii) Let (v; p; a) be a specialization of the limit group Rlim(v; p; a) that factors

through and is taut with respect to the resolution MGRes1. Suppose

that (v; p; a) can be extended to a specialization (t; v; p; a) of the limit

group Rlim(t; v; p; a) that factors and is taut with respect to the resolution

MGRes2. Then (t; v; p; a) can be extended to a specialization (u; t; v; p; a)

that factors and is taut with respect to the resolution MGRes3, i.e., the

part of the modular block associated with the resolution, MGRes2, that

projects to the modular block associated with the resolution, MGRes1,

can be \lifted" to the modular block associated with MGRes3.
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Furthermore, there exists a core for MGRes3,

MGCore(< v; P; a >;MGRes3);

produced by modifying the above procedure for the construction of a (multi-

graded) core resolution, that has the following properties:

(iii) The complexity of the multi-graded core is bounded by the complexity of

the multi-graded resolution MGRes1:

Cmplx(MGCore(< v; P; a >;MGRes3)) � Cmplx(MGRes1):

(iv) If these complexities are equal, then the structure of the core,

MGCore(< v; P; a >;MGRes3);

is identical to the structure of the multi-graded resolution MGRes1, i.e.,

the core has one level, and the abelian decomposition associated with

this one level has the same structure as �1, the abelian decomposition

associated with MGRes1.

Proof: Since (the taut structure of) the multi-graded resolution MGRes2 is

\compatible" with the multi-graded resolutionMGRes1, the rank of the induced

resolution, IndRes(< v; P; a >;MGRes2), is bounded by the rank of the multi-

graded resolution MGRes1, and

rk(IndRes(< v; P; a >;MGRes2)) + factor(IndRes(< v; P; a >;MGRes2))

� rk(MGRes1) + factor(MGRes1):

Applying the iterative procedure for the construction of the core resolution to

the subgroup < v; P; a > and the multi-graded resolution MGRes2, we

obtain a multi-graded core, MGCore(< v; P; a >;MGRes2). By construc-

tion, the sum of the rank and the number of factors of this core is bounded

by the sum of the rank and the number of factors of the induced resolution,

IndRes(< v; P; a >;MGRes2), and if the two sums are equal, then the second

part of the construction was not applied, i.e., the multi-graded core and the

induced resolution are identical. Hence

rk(MGCore(< v; P; a >;MGRes2))+factor(MGCore(< v; P; a >;MGRes2))

� rk(MGRes1) + factor(MGRes1):
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If

rk(MGCore(< v; P; a >;MGRes2))+factor(MGCore(< v; P; a >;MGRes2))

< rk(MGRes1) + factor(MGRes1);

then we set the core to be the output of the procedure,

MGCore(< v; P; a >;MGRes2);

and set the multi-graded resolution MGRes3 to be the multi-graded resolution

MGRes2, and the theorem follows. Hence, we may assume

rk(MGCore(< v; P; a >;MGRes2))+factor(MGCore(< v; P; a >;MGRes2))

= rk(MGRes1) + factor(MGRes1):

In this case, the multi-graded core constructed by our iterative procedure,

MGCore(< v; P; a >;MGRes2), is identical to the induced resolution,

IndRes(< v; P; a >;MGRes2).

Suppose that the multi-graded abelian decomposition �1, associated with

the multi-graded resolution MGRes1, contains no surviving QH vertex groups

(see De�nition 1.8 for the notion of a surviving surface). In this case, we set

MGRes3 to be the resolution MGRes2 and modify the core,

MGCore(< v; p; a >;MGRes2), which is in fact the induced resolution,

IndRes(< v; p; a >;MGRes2). We replace the part of the induced resolu-

tion which is the subresolution induced by the free factor that is dropped in

the resolution MGRes1, by the image of that factor in MGRes2. The modi-

�ed resolution is a �rm geometric subresolution of MGRes2 that contains the

subgroup < v; p; a >, since the previously constructed core,

MGCore(< v; p; a >;MGRes2);

is a �rm geometric subresolution, and its Kurosh rank is identical to the Kurosh

rank of the original resolution, MGRes1. Hence, we set the modi�ed resolution

to be the core resolution, MGCore(< v; p; a >;MGRes2).

Suppose that MGRes1 contains a QH vertex group. Since we assume that

the core contains no surviving surface, its complexity is strictly bounded by the

complexity of the resolutionMGRes1 by our analysis of taut homomorphisms of

maximal rank, presented in section 2 of [Se4]. IfMGRes1 contains noQH vertex

groups, the complexity of the core is bounded by the complexity of MGRes1,

and in case of equality their structures are identical.
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Suppose that the multi-graded abelian decomposition �1 ofMGRes1 contains

a surviving QH vertex group. In this case, we modify the resolution MGRes2

in a somewhat di�erent way than we did in the minimal rank case (section 1

in [Se4] and in this paper), so that the corresponding Diophantine set will not

change (as well as the projection of the associated modular block as indicated

in the statement of the theorem).

Let Q be a surviving vertex group in �1 and let Q̂ be a QH vertex group in

an abelian decomposition associated with one of the levels of MGRes2, so that

Q is mapped isomorphically onto Q̂, and Q is not mapped isomorphically onto

a QH vertex group in an abelian decomposition associated with a level that lies

above the level to which Q̂ belongs in the multi-graded resolutionMGRes2. We

vary the multi-graded resolution by \pushing down" a QH vertex isomorphic

to Q̂, which is set to be the image of the QH vertex Q, and is mapped (in the

new resolution) to (the image in the new resolution of) the image of the QH

subgroup Q in MGRes1, i.e., we push down a QH vertex group which is set

to be the image of the QH subgroup Q in the new resolution. The image of

this new subgroup in the next level is set to be the image of the QH subgroup

Q in the multi-graded resolution MGRes1. We leave the levels below the QH

vertex group Q̂ unchanged, and change the order of the QH vertex groups

that lie above Q̂ into which the QH vertex group Q is mapped. We repeat

this \pushing down" operation for a maximal collection of surviving QH vertex

groups Qj in the abelian decomposition �1, that are mapped isomorphically

onto non-conjugate QH vertex groups Q̂j in the various levels of MGRes2. We

denote the obtained resolution MGRes3(u; t; v; L1; : : : ; Ln; P; a).

Q

Q

By construction, since we have only changed the order of the appearance of cer-

tain QH vertex groups in modifying the resolution MGRes2, the Diophantine

sets associated with the subgroup (t; v; p; a) and the (limit groups associated

with the) completions of the resolutions MGRes2 and MGRes3 are identi-

cal. Furthermore, the part of the modular block associated with MGRes2 that

projects to the modular block associated with MGRes1 can be \lifted" to the
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modular block associated with MGRes3 (part (ii) in the claim of the theorem).

With the multi-graded resolution MGRes3 we associate a core,

MGCore(< v; P; a >;MGRes3);

by applying our algorithm for the construction of a core resolution. If

rk(MGCore(< v; P; a >;MGRes3))+factor(MGCore(< v; P; a >;MGRes3))

< rk(MGRes1) + factor(MGRes1);

the theorem follows. Suppose

rk(MGCore(< v; P; a >;MGRes3))+factor(MGCore(< v; P; a >;MGRes3))

= rk(MGRes1) + factor(MGRes1):

We modify the core, MGCore(< v; p; a >;MGRes3), which is in fact the in-

duced resolution, IndRes(< v; p; a >;MGRes3), as we did in case there are

no surviving surfaces. We replace the part of the induced resolution, which is

the subresolution induced by the free factor that is dropped in the resolution

MGRes1, by the image of that factor in MGRes3. The modi�ed resolution is a

�rm geometric subresolution ofMGRes3 that contains the subgroup< v; p; a >,

since the previously constructed core,MGCore(< v; p; a >;MGRes3), is a �rm

geometric subresolution, and its Kurosh rank is identical to the Kurosh rank of

the original resolution, MGRes1. Hence, we set the modi�ed resolution to be

the core resolution, MGCore(< v; p; a >;MGRes3).

If there are no two surviving QH vertex groups in �1 that are mapped

onto conjugate QH vertex groups in MGRes3, or, more generally, if every

two surviving QH vertex groups in �1 that are mapped onto conjugate vertex

groups in MGRes3 belong to the same factor in the abelian decomposition �1

of MGRes1, the bound on the complexity of the obtained core (by the com-

plexity ofMGRes1) follows by our analysis of taut homomorphisms of maximal

rank ([Se4], section 2). Otherwise, every two surviving QH vertex groups Q1

and Q2 in �1 that do not belong to the same factor in �1, and are mapped

isomorphically onto conjugate QH vertex groups in MGRes3 must belong to

di�erent factors in the free decomposition associated with the terminal level of

the core MGCore(< v; P; a >;MGRes3). Let Q1 and Q2 be such surfaces. In

this case we replace the subgroup < v; P; a > by the subgroup G1 generated by

< v; P; a > and the element that conjugates Q̂1 to Q̂2 in the subgroup associ-

ated with the resolutionMGRes3. We repeat this operation for all such couples
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of surviving surfaces until we obtain a group Gs. Note that by adding such a

conjugating element, we may increase the rank of the core of the corresponding

subgroup by at most 1, but we necessarily reduce the number of terminating

factors by at least 1.

At this point we look at the core, MGCore(Gs;MGRes3), obtained by our

procedure for the construction of a core resolution. By construction

rk(MGCore(Gs ;MGRes3)) + factor(MGCore(Gs;MGRes3))

� rk(MGRes1) + factor(MGRes1);

and if the inequality is strict the theorem follows. If

rk(MGCore(Gs ;MGRes3)) + factor(MGCore(Gs;MGRes3))

= rk(MGRes1) + factor(MGRes1);

then the core, MGCore(Gs;MGRes3), is just the induced resolution,

IndRes(Gs;MGRes3):

As in case there are no surviving surfaces, we replace the part of the induced

resolution (which is the subresolution induced by the free factor that is the

free product of the (free) factor that is dropped in the resolution MGRes1

with the free factor generated by the new elements we have added to get the

subgroup Gs) by the image of that factor in MGRes3. The modi�ed resolution

is a �rm geometric subresolution of MGRes3 that contains the subgroup Gs,

hence contains the subgroup < v; p; a >, since the previously constructed core,

MGCore(Gs;MGRes3), is a �rm geometric subresolution, and its Kurosh rank

is identical to the Kurosh rank of the original resolution, MGRes1. Hence, we

set the modi�ed resolution to be the core resolution,

MGCore(< v; p; a >;MGRes3):

Furthermore, by our analysis of taut homomorphisms of maximal rank,

Cmplx(MGCore(Gs;MGRes3)) < Cmplx(MGRes1)

and the theorem follows.

Given a one-level multi-graded resolution associated with a variety, Theorem

4.13 bounds the complexity of the core of a multi-graded resolution associated

with a Diophantine set contained in the given variety, assuming the resolution
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associated with the Diophantine set is compatible with the resolution of the

variety. In a similar way, given a Diophantine set, a multi-graded resolution

associated with it, and a core of that multi-graded resolution, it is possible to

use that core to bound the complexity of the core of a multi-graded resolution

associated with a Diophantine set that is contained in the given Diophantine

set, assuming the multi-graded resolution associated with the new (smaller)

Diophantine set is compatible with the multi-graded resolution associated with

the given Diophantine set.

Theorem 4.14: Let

MGRes1(v;R1; : : : ; Rm; P; a) and MGRes2(t; v; L1; : : : ; Ln; P; a)

be multi-graded resolutions that satisfy the assumptions of Theorem 4.13

and let < y; a > be a subgroup of the limit group Rlim(v; P; a). Let

MGCore(< y; a >;MGRes1) be a given multi-graded core resolution of the

subgroup < y; a > in the multi-graded resolution MGRes1.

Then the multi-graded resolution MGRes2(t; v; L1; : : : ; Ln; P; a) can be

modi�ed to a well-separated multi-graded resolution

MGRes3(u; t; v; L1; : : : ; Ln; P; a) :

(i) The Diophantine sets associated with the completions of MGRes2 and

MGRes3 are identical.

(ii) Let (y; a) be a specialization of the limit group Rlim(y; a) which can be

extended to a specialization that factors and is taut with respect to the

resolution MGRes1. Suppose that (y; a) can be extended to a special-

ization that factors and is taut with respect to the resolution MGRes2.

Then (y; a) can be extended to a specialization that factors and is taut

with respect to the resolutionMGRes3, i.e., the part of the modular block

associated with the resolution, MGRes2, that projects to the projection

of the modular block associated with the resolution, MGRes1, can be

\lifted" to the modular block associated with MGRes3.

Furthermore, there exists a core for MGRes3, MGCore(< y; a >;MGRes3),

produced by modifying the above procedure for the construction of a (multi-

graded) core resolution, that has the following properties:

(iii) The complexity of the multi-graded core is bounded by the complexity of

the given core of the multi-graded resolution MGRes1:

Cmplx(MGCore(< y; a >;MGRes3))

� Cmplx(MGCore(< y; a >;MGRes1)):
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(iv) If these complexities are equal, then the structure of the core

MGCore(< y; a >;MGRes3) is identical to the structure of the given

core of the multi-graded resolution MGRes1,

MGCore(< y; a >;MGRes1)

(i.e., the core has one level, and the abelian decomposition associated with

this one level has the same structure as the abelian decomposition associ-

ated with the given core of MGRes1, MGCore(< y; a >;MGRes1)).

Proof: Let G1 be the image of the subgroup corresponding to the core,

MGCore(< v; a >;MGRes1), in the group < t; v; P; a >. The argument used

to prove Theorem 4.13 applied to the core, MGCore(G1;MGRes2), proves

Theorem 4.14.

Given a one-level multi-graded resolution associated with a Diophantine set,

and a core associated with the given resolution, Theorem 4.14 bounds the com-

plexity of the core of a multi-graded resolution associated with a Diophantine set

contained in the given Diophantine set, assuming the resolution associated with

the new (smaller) Diophantine set is compatible with the resolution associated

with the given Diophantine set.

In analyzing Diophantine sets, we will need a bound not only on the complex-

ity of the core associated with an entire resolution, but also on the complexity

of a core associated with a resolution composed from some successive levels in

a compatible ambient resolution.

Theorem 4.15: Let

MGRes1(v;R1; : : : ; Rm; P; a) and MGRes2(t; v; L1; : : : ; Ln; P; a)

be well-separated completed multi-graded resolutions that satisfy the assump-

tions of Theorem 4.13, and let < y; a >< Rlim(v; P; a). Suppose that the multi-

graded resolutionMGRes2(t; v; L1; : : : ; Ln; P; a) has ` levels, let 1 � i1 � i2 � `,

and letMGRes3(t; v; L1; : : : ; Ln; P; a) be the multi-graded resolution composed

from levels i1; : : : ; i2 of the multi-graded resolution

MGRes2(t; v; L1; : : : ; Ln; P; a):

Then the multi-graded resolution MGRes3(t; v; L1; : : : ; Ln; P; a) can be

modi�ed to a well-separated multi-graded resolution

MGRes4(u; t; v; L1; : : : ; Ln; P; a);
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so that:

(i) MGRes3 and MGRes4 satisfy properties (i) and (ii) of Theorem 4.14.

(ii) If MGRes3 contains a single quotient map, then MGRes4 is identical to

MGRes3.

Furthermore, there exists a core, MGCore(< y; a >;MGRes4), that has the

following properties:

(iii) the complexity of the multi-graded core is bounded by the complexity of

the corresponding core of the multi-graded resolution MGRes1:

Cmplx(MGCore(< y; a >;MGRes4))

� Cmplx(MGCore(< y; a >;MGRes1)):

(iv) If these complexities are equal, then the structure of the core,

MGCore(< y; a >;MGRes4), is identical to the structure of the cor-

responding core of the multi-graded resolution MGRes1,

MGCore(< y; a >;MGRes1):

(v) If the complexities are equal, then the (ambient) multi-graded resolution

MGRes2(t; v; L1; : : : ; Ln; P; a)

can be modi�ed to a well-separated multi-graded resolution

MGRes5(u; t; v; L1; : : : ; Ln; P; a)

so that MGRes2 and MGRes5 satisfy properties (i) and (ii) of Theorem

4.14, and for which there exists a core, MGCore(< y; a >;MGRes5),

that has the same structure as the corresponding core of the multi-graded

resolution MGRes1, MGCore(< y; a >;MGRes1).

Proof: Parts (i){(iv) follow by the argument used to prove Theorem 4.14.

Suppose that the complexities, Cmplx(MGCore(< y; a >;MGRes4)) and

Cmplx(MGCore(< y; a >;MGRes1)), are equal. To prove part (v), suppose

that using the construction employed in the proofs of Theorems 4.13 and 4.14,

the multi-graded resolution MGRes2(t; v; L1; : : : ; Ln; P; a) can be modi�ed to

a well-separated multi-graded resolution MGRes5(u; t; v; L1; : : : ; Ln; P; a) that

satis�es parts (i) and (ii) in Theorem 4.14, and

Cmplx(MGCore(< y; a >;MGRes5))

< Cmplx(MGCore(< y; a >;MGRes1)):
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If

rk(MGCore(< y; a >;MGRes5)) + factor(MGCore(< y; a >;MGRes5))

< rk(MGCore(< y; a >;MGRes1)) + factor(MGCore(< y; a >;MGRes1));

then by construction, the multi-graded resolution MGRes5 is identical to the

multi-graded resolution MGRes2, so

rk(MGCore(< y; a >;MGRes3)) + factor(MGCore(< y; a >;MGRes3))

�rk(MGCore(< y; a >;MGRes2)) + factor(MGCore(< y; a >;MGRes2))

<rk(MGCore(< y; a >;MGRes1)) + factor(MGCore(< y; a >;MGRes1))

and part (v) follows in this case. Hence, for the rest of the argument we may

assume

rk(MGCore(< y; a >;MGRes5)) + factor(MGCore(< y; a >;MGRes5))

= rk(MGCore(< y; a >;MGRes1)) + factor(MGCore(< y; a >;MGRes1)):

Since MGRes3 is composed from a \block" of consecutive levels of the multi-

graded resolution MGRes2, every surviving QH vertex group in the multi-

graded abelian decomposition associated with the core

MGCore(< y; a >;MGRes1)

with respect to the multi-graded resolution MGRes3 is also a surviving QH

vertex group with respect to the multi-graded resolution MGRes2. Therefore

Cmplx(MGCore(< y; a >;MGRes4))

� Cmplx(MGCore(< y; a >;MGRes5))

< Cmplx(MGCore(< y; a >;MGRes1))

and part (v) of the theorem follows.

If we restrict Theorem 4.15 to a single level of the multi-graded resolution

MGRes2, we are able to bound the complexity of the core of each of the multi-

graded abelian decompositions associated with the various levels of a multi-

graded resolution in terms of the complexity of the core of MGRes1.

Corollary 4.16: Let

MGRes1(v;R1; : : : ; Rm; P; a) and MGRes2(t; v; L1; : : : ; Ln; P; a)
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be well-separated completed multi-graded resolutions that satisfy the assump-

tions of Theorem 4.13 and let < y; a >< Rlim(v; P; a). Let �1; : : : ;�` be the

multi-graded abelian decompositions associated with the various levels of the

multi-graded resolution MGRes2(t; v; L1; : : : ; Ln; P; a). Then either:

(i) The multi-graded resolution MGRes2(t; v; L1; : : : ; Ln; P; a) can be

modi�ed to a well-separated multi-graded resolution

MGRes3(u; t; v; L1; : : : ; Ln; P; a);

so that MGRes2 and MGRes3 satisfy properties (i) and (ii) in Theorem

4.14, and for which there exists a core, MGCore(< y; a >;MGRes3),

that has the same structure as the core of the multi-graded resolution

MGRes1, MGCore(< y; a >;MGRes1).

(ii) For every abelian decomposition, �i, associated with a level of the multi-

graded resolution, MGRes2(t; v; L1; : : : ; Ln; P; a), the complexity of the

core associated with that level, MGCore(< y; a >;�i), satis�es

Cmplx(MGCore(< y; a >;�i))<Cmplx(MGCore(< y; a >;MGRes1)):

As in the iterative procedure used for the construction of the tree of strati�ed

sets, resolutions of maximal complexity play an essential role in the general sieve

procedure.

De�nition 4.17: Let

MGRes1(v;R1; : : : ; Rm; P; a) and MGRes2(t; v; L1; : : : ; Ln; P; a)

be well-separated completed multi-graded resolutions that satisfy the assump-

tions of Theorem 4.13 and let < y; a >< Rlim(v; P; a). We say that the

multi-graded resolution MGRes2(t; v; L1; : : : ; Ln; P; a) is a resolution of max-

imal complexity, if the multi-graded resolution MGRes2(t; v; L1; : : : ; Ln; P; a)

can be modi�ed to a well-separated multi-graded resolution

MGRes3(u; t; v; L1; : : : ; Ln; P; a);

so that MGRes2 and MGRes3 satisfy properties (i) and (ii) in Theorem 4.14,

and for which there exists a core, MGCore(< y; a >;MGRes3), that has

the same structure as the given core of the multi-graded resolution MGRes1,

MGCore(< y; a >;MGRes1).

In case the core MGCore(< y; a >;MGRes3) has the same structure as the

core MGCore(< y; a >;MGRes1), we call the part of the core that includes
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the edge groups and the abelian and QH vertex groups, the formed part of

the (maximal complexity) core resolution.

Maximal core resolutions and their properties play an essential role in the

sieve procedure presented in the next paper in this sequel. One of their main

properties is the fact that only maximal core resolutions can \cover" maximal

core resolutions.

Theorem 4.18: Let MGRes1(v;R1; : : : ; Rm; P; a) be a well-separated com-

pleted multi-graded resolution containing a single level with corresponding limit

group Rlim1(v; P; a), so that the subgroups R1; : : : ; Rm; P are the non-abelian,

non-QH vertex groups in the multi-graded abelian decomposition associated

with

MGRes1(v;R1; : : : ; Rm; P; a);

and let < y; a >< Rlim1(v; P; a). Let

Rlim2(t; v;M1; : : : ;Md; P; a) and Rlim3(w; t; v; L1; : : : ; Ln; P; a)

be limit groups for which:

(1) There exists an embedding �: Rlim1(v; P; a) ! Rlim2(t; v; P; a) that

maps each of the subgroups R1; : : : ; Rm into a conjugate of one of the

subgroups Mj .

(2) There exists a homomorphism �: Rlim2(t; v; P; a) ! Rlim3(w; t; v; P; a)

that embeds naturally the subgroup < v; P; a >, and maps each of the

subgroups M1; : : : ;Md into a conjugate of one of the subgroups Lj .

Let MGRes3(w; t; v; L1; : : : ; Ln; P; a) be a multi-graded resolution of

the limit group Rlim3(w; t; v; L1; : : : ; Ln; P; a), so that the resolutions

MGRes1(v;R1; : : : ; Rm; P; a) and MGRes3(w; t; v; L1; : : : ; Ln; P; a) satisfy the

assumptions of Theorem 4.14. Then either:

(i) The resolutionMGRes3(w; t; v; L1; : : : ; Ln; P; a) can be modi�ed to a reso-

lutionMGRes4(u;w; t; v; L1; : : : ; Ln; P; a), so thatMGRes3 andMGRes4

satisfy properties (i) and (ii) of Theorem 4.14. Furthermore, there exists

a core, MGCore(< y; a >;MGRes4), that has smaller complexity than

the (given) core, MGCore(< y; a >;MGRes1).

(ii) The multi-graded resolution MGRes3 is of maximal complexity. There

exist (multi-graded) closures of MGRes3:

Cl1(MGRes3); : : : ; Clc(MGRes3);
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that are all not of maximal complexity (i.e., satisfy part (i) of the theorem),

and resolutions in the taut multi-graded Makanin{Razborov diagram of

Rlim2(t; v;M1; : : : ;Md; P; a),

MGRes21(t; v;M1; : : : ;Md; P; a); : : : ;MGRes2e(t; v;M1; : : : ;Md; P; a);

that are all compatible with the resolution MGRes1(v;R1; : : : ; Rm; P; a)

(i.e., satisfy the assumptions of Theorem 4.14), and all are of maximal

complexity, so that:

(1) The Diophantine set (of specializations of the subgroup < y; a >)

associated with the completion of MGRes3 is contained in the

union of the Diophantine sets associated with the completions

of the closures, Cl1(MGRes3); : : : ; Clc(MGRes3), and the Diophan-

tine sets associated with the maximal complexity resolutions,

MGRes21; : : : ;MGRes2e.

(2) Let (y0; a) be a specialization of the limit group Rlim(y; a) that can

be extended to a specialization that factors and is taut with respect

to the resolutionMGRes1. Suppose that (y0; a) can be extended to a

specialization that factors and is taut with respect to the resolution

MGRes3. Then either (y0; a) can be extended to a specialization

that factors and is taut with respect to one of the given closures of the

resolution MGRes3, Cl1(MGRes3); : : : ; Clc(MGRes3), or (y0; a) is

contained in at least one of the Diophantine sets associated with the

maximal complexity resolutions, MGRes21; : : : ;MGRes2e.

Proof: If MGRes3 is not a resolution of maximal complexity, part (i) of

the theorem holds, hence we may assume that MGRes3 is a resolution of

maximal complexity. MGRes3(w; t; v; L1; : : : ; Ln; P; a) is a multi-graded res-

olution of the limit group Rlim3(w; t; v; P; a), and there is a homomorphism

�: Rlim2(t; v; P; a) ! Rlim3(w; t; v; P; a) that maps the subgroups M1; : : : ;Md

into conjugates of the subgroups L1; : : : ; Ln. Hence, every specialization of the

subgroup Rlim2(t; v; P; a) which can be extended to a specialization that factors

through the multi-graded resolution MGRes3, and for which the correspond-

ing specialization of the subgroup < v; P; a > factors and is taut with respect

to the multi-graded resolution MGRes1, factors and is taut with respect to

at least one of the resolutions in the taut multi-graded Makanin{Razborov dia-

gram of the limit group Rlim2(t; v; P; a) that are compatible with the resolution

MGRes1(v;R1; : : : ; Rm; P; a).
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We look at the collection of all the test sequences that factor through the

resolutionMGRes3, and for which the corresponding specializations of the sub-

group < v; P; a > factor through and are taut with respect to the resolution

MGRes1. The specializations of the subgroup Rlim2(t; v; P; a) corresponding

to the specializations of each such test sequence factor and are taut with respect

to at least one of the resolutions in the multi-graded taut Makanin{Razborov

diagram of Rlim2(t; v;M1; : : : ;Md; P; a) that are compatible with the multi-

graded resolution MGRes1. Hence, by passing to appropriate subsequences,

we can assume that the specializations of the subgroup Rlim2(t; v; P; a) cor-

responding to such a test sequence of Rlim3(w; t; v; P; a) factor and are taut

with respect to a �xed resolution in the multi-graded taut Makanin{Razborov

diagram of Rlim2(t; v;M1; : : : ;Md; P; a), and this resolution is compatible with

MGRes1.

With each test sequence of MGRes3 for which the corresponding specializa-

tions factor and are taut with respect to MGRes1, and for which the corre-

sponding specializations of Rlim2 factor and are taut with respect to a (�xed)

multi-graded resolutionMGRes2i , which is a resolution in the taut multi-graded

Makanin{Razborov diagram of Rlim2(t; v;M1; : : : ;Md; P; a), we apply the tech-

niques used for the construction of formal solutions (section 1 of [Se2]), and

associate (canonically) a �nite collection of closures of the multi-graded reso-

lution MGRes3, and with each such closure we further associate a map from

the completion of MGRes2i into this closure. We further apply the techniques

used for the construction of graded and multi-graded formal limit groups, and

associate with the entire collection of such test sequences ofMGRes3 a �nite col-

lection of closures of the multi-graded resolutionMGRes3 that by construction

forms a covering closure, and with each such closure we further associate a map

from the completion of one of the corresponding resolutions that appear in the

taut multi-graded Makanin{Razborov diagram of Rlim2(t; v;M1; : : : ;Md; P; a),

MGRes2i , into this closure.

If all the resolutions MGRes2i that are mapped into the closures of MGRes3

are of maximal complexity, part (ii) of the theorem follows. Hence, we may

assume that at least one of the multi-graded resolutions MGRes2i is not of

maximal complexity, i.e.,

Cmplx(MGCore(< y; a >;MGRes2i ))

< Cmplx(MGCore(< y; a >;MGRes1)):
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Suppose

rk(MGCore(< y; a >;MGRes2i )) + factor(MGCore(< y; a >;MGRes2i ))

= rk(MGCore(< y; a >;MGRes1)) + factor(MGCore(< y; a >;MGRes1)):

SinceMGRes3 is of maximal complexity, every QH vertex group in the abelian

decomposition associated with the core, MGCore(< y; a >;MGRes2i ), is a

surviving surface with respect to the resolution MGRes3, hence it must be a

surviving surface with respect to the resolution MGRes2i . So the multi-graded

resolution MGRes2i has to be of maximal complexity as well, a contradiction.

Therefore, we may assume

rk(MGCore(< y; a >;MGRes2i )) + factor(MGCore(< y; a >;MGRes2i ))

< rk(MGCore(< y; a >;MGRes1)) + factor(MGCore(< y; a >;MGRes1)):

Let Gi be the image of the subgroup associated with the core of MGRes2i in a

corresponding closure of MGRes3. At this point, we apply our iterative proce-

dure for the construction of the core resolution, to construct the multi-graded

core, MGCore(Gi; Cl(MGRes3)), where Cl(MGRes3) is the corresponding

(multi-graded) closure of MGRes3. If

rk(MGCore(Gi; Cl(MGRes3))) + factor(MGCore(Gi ; Cl(MGRes3)))

< rk(MGCore(< y; a >;MGRes1)) + factor(MGCore(< y; a >;MGRes1));

then since < y; a >< Gi, we may associate with the core,

MGCore(Gi; Cl(MGRes3));

a corresponding core,

MGCore(< y; a >; cl(MGRes3));

for which

rk(MGCore(< y; a >; cl(MGRes3)))

+ factor(MGCore(< y; a >; cl(MGRes3)))

< rk(MGCore(< y; a >;MGRes1)) + factor(MGCore(< y; a >;MGRes1))

and part (i) of the theorem follows for that closure of MGRes3.

Hence, for the rest of the argument we may assume that

rk(MGCore(Gi; Cl(MGRes3))) + factor(MGCore(Gi ; Cl(MGRes3)))

� rk(MGCore(< y; a >;MGRes1)) + factor(MGCore(< y; a >;MGRes1)):
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In this case, for every test sequence that factors through the given closure

Cl(MGRes3) and is �rm with respect to the subgroup Gi, the correspond-

ing specializations of the limit group Rlim2(t; v; P; a) cannot factor through the

multi-graded resolutionMGRes2i . Hence, they must factor through another res-

olution in the taut multi-graded Makanin{Razborov diagram of Rlim2(t; v; P; a)

that is compatible with the multi-graded resolution MGRes1. Therefore, we

may omit the resolution MGRes2i , and the corresponding map from its com-

pletion into the closure Cl(MGRes3), from our list of such closures and maps.

Repeating these alterations for all the multi-graded resolutionsMGRes2i in the

taut multi-graded Makanin{Razborov diagram of Rlim2(t; v; P; a) that appear

in our list, we either construct a core,MGCore(< y; a >;Cl(MGRes3)), which

is not of maximal complexity, or we are left with resolutions MGRes2i which

are all of maximal complexity, so part (ii) of the theorem holds.

Remark: Note that in analyzing the set of specializations that factor and are

taut with respect to a completed multi-graded resolution,MGRes, it is possible

that the restrictions of certain specializations to some levels of the multi-graded

resolution, MGRes, cannot be obtained from the restrictions of the same spe-

cializations to the successive (lower) levels of the resolution, using the associated

(multi-graded) modular automorphisms. This phenomenon arises since there are

specializations of (graded, multi-graded) solid limit groups that do not factor

through any 
exible quotient of the solid limit group (after applying an element

of the associated modular groups), but still they are not strictly solid special-

izations of the solid limit group, hence they are assumed to factor through a

resolution associated with at least one of the 
exible quotients of the given solid

limit group (see de�nitions 1.4 and 1.5 in [Se3]).

However, the Kurosh rank of the restriction of such specialization to the

subgroup associated with the core of such resolution MGRes is at most the

Kurosh rank of the core. This is needed in order to allow us to drop resolutions,

MGRes2i , that are not of maximal complexity and their map into closures of

the multi-graded resolutionMGRes3 (while proving Theorem 4.18), in case the

Kurosh rank of the image of the subgroup associated with the core of MGRes2i
in MGRes3 exceeds the Kurosh rank of the core in MGRes2i .

In addition to the natural \covering" property of maximal core resolutions,

presented in Theorem 4.18, we need a correspondence between maximal core

resolutions, and maximal core resolutions containing two parts, the top obtained

by enlarging the parameter subgroups to include the formed part of the core

resolution, and the bottom obtained using the original parameter subgroups.
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Theorem 4.19: Let

MGRes1(v;R1; : : : ; Rm; P; a) and MGRes2(t; v; L1; : : : ; Ln; P; a)

be multi-graded resolutions that satisfy the assumptions of Theorem 4.13, let

< y; a >< Rlim1(v; P; a), and suppose that MGRes2(t; v; L1; : : : ; Ln; P; a) is of

maximal complexity.

Then either there exists a multi-graded core, MGCore(< y; a >;MGRes2),

that has strictly smaller complexity than the core,MGCore(<y; a>;MGRes1),

or there exist a collection of closures of the resolution MGRes2 with strictly

smaller complexity cores, Cl1(MGRes2); : : : ; Clc(MGRes2), and a collection of

multi-graded resolutions

MGRes21(t; v; L1; : : : ; Ln; P; a); : : : ;MGRes2e(t; v; L1; : : : ; Ln; P; a)

of the limit group Rlim2(t; v; L1; : : : ; Ln; P; a) that satisfy the following

properties:

(1) Each resolution MGRes2j is compatible with the resolution MGRes1

(i.e., the two resolutions satisfy the assumptions of Theorem 4.13).

(2) Each resolution MGRes2j is of maximal complexity.

(3) Each resolution MGRes2j is composed from two parts: the top,

TMGRes2j , being a resolution in the taut multi-graded Makanin{Razborov

diagram of the limit group Rlim2(t; v; P; a) with respect to the parame-

ter subgroups L1; : : : ; Ln; P and the formed part of the core resolution,

MGCore(< y; a >;MGRes1), and the bottom part being a one-level reso-

lution of the terminal limit group of the top TMGRes2j that has the same

structure as the formed part of the core, MGCore(< y; a >;MGRes1).

(4) The Diophantine set (of specializations of the subgroup < y; a >)

associated with the completion of MGRes2 is contained in the union

of the Diophantine sets associated with the completions of the closures,

Cl1(MGRes2); : : : ; Clc(MGRes2), and the Diophantine sets associated

with the maximal complexity resolutions, MGRes21; : : : ;MGRes2e.

(5) Let (y0; a) be a specialization of the limit group Rlim(y; a) which can be

extended to a specialization that factors and is taut with respect to the

resolution MGRes1. Suppose that (y0; a) can be extended to a special-

ization which factors and is taut with respect to the resolution MGRes2.

Then either (y0; a) can be extended to a specialization that factors and is

taut with respect to one of the given closures of the resolution MGRes2,

Cl1(MGRes2); : : : ; Clc(MGRes2), or it is contained in the Diophantine
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sets associated with at least one of the maximal complexity resolutions,

MGRes21; : : : ;MGRes2e.

Proof: We start with the collection of multi-graded resolutions of the

limit group Rlim2(t; v; L1; : : : ; Ln; P; a) that are composed from two parts:

the top is a resolution in the multi-graded taut Makanin{Razborov diagram of

Rlim2(t; v; P; a) with respect to the subgroups L1; : : : ; Ln; P and the formed

part of the core, MGCore(< y; a >;MGRes1), that we denote TMGRes. The

bottom is a resolution in the taut multi-graded Makanin{Razborov diagram of

the terminal rigid or solid (multi-graded) limit group of TMGRes with respect

to the subgroups L1; : : : ; Ln; P , that we denote BMGRes.

By Theorem 4.18, either there exists a core, MGCore(< y; a >;MGRes2),

which has strictly smaller complexity than the core,

MGCore(< y; a >;MGRes1);

or there exists a collection of closures ofMGRes2 with strictly smaller complex-

ity cores, Cl1(MGRes2); : : : ; Clc(MGRes2), and a collection of multi-graded

resolutions,

MGRes21(t; v; L1; : : : ; Ln; P; a); : : : ;MGRes2e(t; v; L1; : : : ; Ln; P; a);

from the list described above, that are all of maximal complexity, compatible

with the resolution MGRes1 (i.e., the resolutions satisfy the assumptions of

Theorem 4.13), and properties (4) and (5) hold for the union of the collections

of closures of MGRes2, and the maximal complexity resolutions MGRes2j .

Since each of the multi-graded resolutions, MGRes2j , is of maximal complex-

ity, we can modify the bottom parts of each of these resolutions, BMGRes2j , as

we did in analyzing maximal complexity resolutions along the proof of Theorem

4.13, to be a single-level (multi-graded) resolution that has the same structure

as the formed part of the core, MGCore(< y; a >;MGRes1), and the theorem

follows.

Given a well-separated resolution Res(t; v; a) and a subgroup < v; a > of

its corresponding limit group Rlim(t; v; a), we presented an iterative procedure

for the construction of a core resolution, Core(< v; a >;Res(t; v; a)), and used

the algorithm to prove some basic properties of core resolutions, which play an

essential role in the general sieve procedure presented in the next paper in the

sequel.
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The core resolution, Core(< v; a >;Res(t; v; a)), is embedded in the (com-

pleted) ambient resolution Res(t; v; a). However, its terminal free group is not

embedded \discretely" into the resolution Res(t; v; a), i.e., the image of the ter-

minal free group of a core resolution can intersect a QH vertex group in the

ambient resolution, in a subgroup of �nite index, or it can inherit a cyclic decom-

position from an abelian vertex group in the ambient resolution. To guarantee

the termination of the sieve procedure, we need the core resolutions we study to

be \comparable" (metrically) with their embeddings in the ambient resolutions.

Hence, we need to prevent \indiscrete" embeddings of the terminal free group

of the core resolutions we study. To achieve that we present penetrated core

resolutions.

De�nition 4.20: Let Res(t; v; a) be a well-separated (completed) resolution,

and suppose we �x an order on the various QH and abelian vertex groups in

each of the levels of the resolution Res(t; v; a).

Let < v; a > be a subgroup of Rlim(t; v; a), the limit group associated with

the resolution Res(t; v; a). We say that a core resolution,

Core(< v; a >;Res(t; v; a));

is a penetrated core resolution, if the abelian decompositions induced by the

core from its embedding into the ambient resolution are identical to the abelian

decompositions associated with it, i.e., the embedding of the core resolution

into the ambient resolution does not contain a �nite index subgroup of a QH

vertex group which is not a QH vertex group in the core itself, and every

abelian decomposition inherited by the core from its embedding into the ambient

resolution is the natural image of (parts of) abelian decompositions associated

with the core itself.

In short, we say that a core resolution is a penetarted core resolution if the

core resolution is identical to the resolution induced by its image (subgroup) in

the ambient resolution.

The algorithm for the construction of a core resolution presented in the be-

ginning of this section actually constructs penetrated core resolutions (the res-

olution IRessec(u; v; a) constructed by the procedure), since it is based on the

iterative procedure for the construction of the induced resolution. However, its

�nal output, and the modi�cation of this algorithm used for the construction

of core resolutions that satisfy the inequalities of Theorems 4.13{4.19, does not

give penetrated core resolutions in general.
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Along the sieve procedure, we use penetrated core resolutions only in case the

(multi-graded) resolutions in question are of maximal complexity. Hence, for

the purposes of the sieve procedure, we present a process that extends a core

resolution to a penetrated core resolution, in case the resolution in question is

of maximal complexity (De�nition 4.17).

LetMGRes1(v;R1; : : : ; Rm; P; a) be a well-separated completed multi-graded

resolution containing a single level, and let �1 be the graph of groups with

fundamental group Rlim(v;R1; : : : ; Rm; P; a) associated with the single level

of MGRes1, where R1; : : : ; Rm; P are the non-QH , non-abelian vertex groups

in the graph of groups �1. Let < y; a >< Rlim(v;R1; : : : ; Rm; P; a). Let

MGRes2(t; v; L1; : : : ; Ln; P; a) be the completion of a resolution of a limit group

Rlim(t; v; L1; : : : ; Ln; P; a), so that there is an embedding �: Rlim(v; P; a) !

Rlim(t; v; L1; : : : ; Ln; P; a) that maps each of the subgroups R1; : : : ; Rm into a

conjugate of one of the subgroups Lj . Suppose that the resolutions MGRes1

and MGRes2 satisfy the assumptions of Theorem 4.13, that the resolution

MGRes2 is of maximal complexity (De�nition 4.17), and that the resolution

MGRes2 is composed from two parts, the top, TMGRes2, being a multi-

graded resolution in the taut (multi-graded) Makanin{Razborov diagram of the

limit group Rlim(t; v; L1; : : : ; Ln; P; a) with respect to the parameter subgroups

L1; : : : ; Ln; P and the formed part of the core, MGCore(< y; a >;MGRes1),

and the bottom being a one-level resolution that has the same structure as the

formed part of the core, MGCore(< y; a >;MGCore1).

Proposition 4.21: Let PenMGCore(< y; a >;MGRes2) be the resolution in-

duced by the subgroup associated with the core, MGCore(< y; a >;MGRes1),

from the multi-graded resolution MGRes2. Then:

(i) PenMGCore(< y; a >;MGRes2) is a penetrated core resolution.

(ii) Every QH vertex group that appears in

PenMGCore(< y; a >;MGRes2);

and not in the core, MGCore(< y; a >;MGRes2), is of minimal rank.

(iii) The images of the subgroup < y; a > in each of the limit groups associated

with the various levels of the resolutionMGRes2 inherit abelian decompo-

sitions from the abelian decompositions associated with the various levels

of MGRes2. In particular, these abelian decompositions of the images of

the subgroup < y; a > give rise to (possibly trivial) free decompositions.

Hence, the subgroup < y; a > inherits a (possibly trivial) free decompo-

sition, H � F1 (where F1 is a free factor) from the abelian decomposition
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associated with the �rst level of MGRes2. The image of the subgroup

H1 << y; a > in the limit group associated with the second level of

MGRes2 inherits a (possibly trivial) free decomposition, H2 � F2 (where

F2 is a free factor), from the abelian decomposition associated with the

second level ofMGRes2. Iteratively, the image of Hi�1 in the limit group

associated with the i-th level of MGRes2 inherits a (possibly trivial) free

decomposition, Hi � Fi (where Fi is a free factor), from the abelian de-

composition associated with the i-th level ofMGRes2. Let Ji(y; a) be the

subgroup Hi �Fi � � � � �F1. Then for every level i, except the bottom level,

the natural maps �i: Rlim(y; a) ! Ji(y; a) and �i: Ji(y; a) ! Ji+1(y; a)

are isomorphisms.

(iv) No QH vertex group that appears in PenMGCore(< y; a >;MGRes2),

and not in the core,MGCore(< y; a >;MGRes2), belongs to the bottom

two levels of the penetrated core, PenMGCore(< y; a >;MGRes2).

(v) The subgroup associated with the m-th level of the resolution,

PenMGCore(< y; a >;MGRes2), inherits a free decomposition from the

abelian decompositions associated with all the levels of the ambient

resolution Res(t; v; a) that lie above the m-th level. Let Penm be one

of the factors in this free decomposition of the limit group associated

with the m-th level of PenMGCore(< y; a >;MGRes2). Then either

there exists a (multi-graded) core, MGCore(< y; a >;MGRes2), that is

not of maximal complexity, or there exists a test sequence of

Res(t; v; a) which is �rm with respect to the penetrated core,

PenMGCore(< y; a >;MGRes2), for which the sequence of specializa-

tions of the subgroup Penm corresponding to the given test sequence con-

verge into a (possibly trivial) action of this subgroup on a real tree Y . The

action of the group Penm on the real tree Y is either trivial or it is faithful

and geometric, and it is composed from �nitely many orbits of discrete

and IET components. Furthermore, the free decomposition induced by

the subgroup Penm from this action is precisely the free decomposition it

induces from the abelian decomposition associated with the m-th level of

the resolution MGRes2.

Proof: MGCore(< y; a >;MGRes2) is a core resolution, hence it is a �rm geo-

metric subresolution of the multi-graded resolution MGRes2. The resolution,

PenMGCore(< y; a >;MGRes2), is a resolution induced by the subgroup asso-

ciated with the core,MGCore(< y; a >;MGRes2). Hence, it is a �rm geometric

subresolution of the multi-graded resolutionMGRes2. Since it is an induced res-
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olution, the abelian decompositions associated with its various levels are induced

from the abelian decompositions associated with the various levels of the multi-

graded resolution MGRes2. Therefore, PenMGCore(< y; a >;MGRes2) is a

penetrated core resolution, and we get part (i) of the proposition.

Let M be the limit group associated with the formed part of the core

MGCore(< y; a >;MGRes2). Since the penetrated core,

PenMGCore(< y; a >;MGRes2);

is a �rm subresolution, for every level i of PenMGCore(< y; a >;MGRes2),

except the bottom two levels, the map �i from the limit group associated with

the i-th level to the i + 1-th level of PenMGCore(< y; a >;MGRes2) is an

isomorphism that �xes the subgroupM elementwise, and we get part (iii) of the

proposition. In particular, every QH vertex group in an abelian decomposition

associated with one of the levels of PenMGCore(< y; a >;MGRes2), except

the two bottom levels, is necessarily of minimal rank (otherwise, the maps �i

are not isomorphisms), and we get part (ii) of the proposition.

To prove part (iv), note that if there exists a QH vertex group Q that appears

in PenMGCore(< y; a >;MGRes2), and not in the core,

MGCore(< y; a >;MGRes2);

and Q belongs to one of the bottom two levels of the penetrated core,

PenMGCore(< y; a >;MGRes2), then necessarily

rk(PenMGCore(< y; a >;MGRes2))

+factor(PenMGCore(< y; a >;MGRes2))

�rk(MGCore(<y; a>;MGRes2))+factor(MGCore(< y; a >;MGRes2))�1;

which clearly implies that the core, MGCore(< y; a >;MGRes2), is not a �rm

subresolution of the multi-graded resolution MGRes2, a contradiction to our

assumptions.

Part (v) follows, since the penetrated core is a �rm subresolution by part

(i), and by the construction of test sequences presented in the proof of Propo-

sition 4.11 that guarantee that the action of each of the subgroups Penm on

their corresponding real trees contain only discrete and IET components, and

that the abelian decompositions obtained from these actions are precisely the

abelian decompositions which the subgroups Penm inherit from the abelian de-

compositions associated with the corresponding levels of the ambient resolution

MGRes2.
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Finally, under the assumptions of Proposition 4.21, we call the resolution,

PenMGCore(< y; a >;MGRes2), the penetrated core resolution of the sub-

group < y; a > in the maximal complexity resolution MGRes2.
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