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This paper contains a list of crucial mistakes and counterexamples to some of the
main statements in the paper ”Elementary theory of free nonabelian groups” by O.

Kharlampovich and A. Myasnikov, which was published in Journal of Algebra in

June 2006.

O. Kharlampovich and A. Myasnikov announced a solution to Tarski’s problems
on the elementary theory of the free groups in June 1998. Their work appears in
a sequence of papers ending with the paper ”Elementary theory of free nonabelian
groups” that was published in the Journal of Algebra in 2006 [KM4]. I had already
written a report on this paper, reviewing the published version as well as approx-
imately 30 versions that preceded it, including serious mistakes that appeared in
essential points in all the versions. In the current report I single out only the (fa-
tal) mistakes in the published paper, together with counterexamples to many of its
main statements.

The report starts with a short introduction that describes briefly the general
approach to Tarski’s problems that is presented in [Se1]-[Se7] and was adapted by
the authors. As [Se1]-[Se7] mainly prove quantifier elimination, and the arguments
there are not effective, I further explain what needs to be proved, in order to
construct an effective procedure that will prove the decidability of the elementary
theory of free (or more generally all torsion-free hyperbolic) groups.

The paper continues with a short account of the main flaws/gaps in the paper
by Kharlampovich and Myasnikov, that makes it clear that no proof of any of
Tarski’s problems, in particular the decidability of the first order theory of the free
group, can be found in their paper. As these main flaws/gaps transfer directly to
the recent paper of the authors on the decidability of the theory of torsion-free
hyperbolic groups [KM5], the report clarifies that the decidability of the theories
of both free and hyperbolic groups should be considered as open problems.

The report ends with a detailed account of mistakes and gaps in the paper
under review (this list is essentially contained in the previous report). The list is
by no means complete, but it is sufficient in order to demonstrate and verify my
arguments. Many of the indicated mistakes are followed by counterexamples to the
corresponding wrong claims in the paper.

1. The general approach towards Tarski’s problems

The study of Tarski’s problems starts with the analysis of sets of solutions to
systems of equations over a free group. The major breakthrough in the study of
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these systems of equations is due to Makanin [Ma1] and Razborov [Ra]. Another
important ”classical” theorem in the general direction of Tarski’s problems is due to
Merzlyakov from 1966 [Me]. Merzlyakov proved the existence of ”formal solutions”
that essentially enable one to analyze positive sentences, i.e., sentences that con-
tain no inequalities. In their paper on what they call ”implicit function theorem”
Kharlampovich and Myasnikov present a generalization of Merzlyakov’s theorem to
AE sentences (sentences with 2 quantifiers) that are defined over general varieties
[KM3].

Merzlyakov’s original theorem enabled Makanin to prove that the positive theory
of the free groups is decidable [Ma2]. However, the generalization of Merzlyakov’s
theorem to general (not only positive) sentences and formulas, enables one to prove
the validity of an AE sentence for a generic point of a variety and not for all
the points in it. The major problem and the main difficulty in tackling Tarski’s
problems is the ability to find a procedure that produces finitely many formulas
that prove the validity of a sentence for all the points in a variety and not just for
generic points in it. This is the goal of most of our work on these problems [Se3]-
[Se7], and what Kharlampovich and Myasnikov are aiming to do in their paper
under review [KM4].

As [KM4] uses exactly the same strategy, objects, constructions and procedures
as [Se3]-[Se7], we briefly review the content of [Se3]-[Se7], and use it to indicate
what parts are missing or done wrongly in [KM4]. In [Se3] we studied the structure
of exceptional solutions of a parametric system of equations (see definitions 10.5 in
[Se1] and 1.5 in [Se3] for these exceptional solutions). We proved the existence of
a global bound (independent of the specialization of the defining parameters) on
the number of exceptional (rigid) solutions of a rigid limit group ([Se3],2.5), and a
global bound on the number of exceptional (strictly solid) families of solutions of
a solid limit group ([Se3],2.9). These global bounds are essential in our approach,
and in particular are used to prove that certain basic definable sets, that are later
proved to be the ”building blocks” of all the definable sets over a free group, are in
the Boolean algebra of AE sets (section 3 in [Se3]).

In [Se4] general AE sentences (sentences with two quantifiers) are analyzed.
Given a truth sentence of the form:

∀y ∃x Σ(x, y, a) = 1 ∧ Ψ(x, y, a) 6= 1

we presented an iterative procedure, that produces a sequence of varieties and
formal solutions defined over them, that together prove the validity of the given
sentence. The procedure uses a trial and error approach. It starts with a formal
solution (a formula) that proves the validity of the given sentence in a generic point
of the affine set associated with the corresponding universal (y) variables. If we
substitute the given formal solution into the system of equations Σ they hold over
the whole affine set. However, the inequalities Ψ fail on some proper subvariety
V . Hence, in the second step of the iterative procedure, we apply theorem 1.18
in [Se3] (what Kharlampovich and Myasnikov call ”implicit function theorem”),
and get formal solutions (formulas) that prove the validity of the given sentence in
generic points of certain Diophantine sets (closures of completions) of resolutions
in the Makanin-Razborov diagram of the variety V . Again, if we substitute the
given formal solutions into the inequalities Ψ, they fail to hold on some subsets of
the Diophantine sets that are associated the variety V . We continue iteratively by
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constructing formal solutions (formulas) over a decreasing sequence of Diophantine
sets, that are defined using systems of equations in increasing sets of variables.

Although in each step in the iterative procedure, one is forced to increase the
set of variables, and even though a decreasing sequence of Diophantine sets over
a free group does not have to terminate, the procedure that is presented in [Se4]
is constructed in such a way that a certain complexity of the varieties that are
constructed along the procedure strictly decreases, and forces the iterative proce-
dure to terminate after finitely many steps. It should be noted that even at this
stage we don’t know any conceptual reason that explains the ability to find such a
terminating procedure, except for its existence.

The outcome of the terminating iterative procedure for the analysis of an AE
set (that is presented in [Se4]) is a collection of varieties, together with a collection
of formal solutions that are defined over them. The varieties are determined by
the original universal variables y, and extra (auxiliary) variables. The collection of
varieties gives a partition of the initial domain of the universal variables y, which is
a power of the original free group of coefficients, into sets which are in the Boolean
algebra of universal sets, so that on each such set the sentence can be validated using
a finite family of formal solutions. Hence, the outcome of the iterative procedure
can be viewed as a stratification theorem that generalizes Merzlyakov’s theorem
from positive sentences to general AE ones.

In the two papers on quantifier elimination we apply the tools and techniques
that are presented in [Se1]-[Se4], to prove quantifier elimination in the elementary
theory of a free group. In order to prove quantifier elimination we show that the
Boolean algebra of AE sets is invariant under projections. The projection of a set
that is in the Boolean algebra of AE sets, is naturally an EAE set, hence, to show
that the Boolean algebra of AE sets is invariant under projections, we need to show
that a general EAE set is in the Boolean algebra of AE sets ([Se6],1.41).

To prove that an EAE set is in the Boolean algebra of AE sets we use a couple
of terminating iterative procedures that are based on the procedure for validation
of an AE sentence presented in the fourth paper. Given an EAE set, the first
(terminating) iterative procedure is devoted to uniformization of proofs. i.e., it
produces finitely many (graded) families of formal solutions together with (graded)
varieties on which these formal solutions are defined, so that each AE sentence
associated with a specialization of the defining parameters and a specialization of
the first existential variables, which is a truth sentence, can be proved using part
of the constructed families of formal solutions, in a similar way to our validation of
a (single) AE sentence obtained in the fourth paper.

Each step of this procedure ([Se5],2) is divided into two parts. In the first part we
collect all the formal solutions defined over the (finitely many, graded) varieties that
collect the set of those values of the universal variables, for which the corresponding
AE sentence is yet to be proved. The second part uses the constructed formal
solutions to get a proof for a subset of the relevant values of the universal variables,
and collect those values for which the proof is yet incomplete. We call the outcome
of this procedure, i.e., the families of formal solutions and the varieties on which they
are defined, the tree of stratified sets. Both its construction and its termination
are uniformizations of the procedure for validation of a single AE sentence that is
presented in ([Se4],4).

The procedure for uniformization of proofs constructs the tree of stratified sets,
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that leaves us with finitely many forms of proof, i.e., possible (finite) subsets of the
families of formal solutions encoded by this tree, for all the truth AE sentences
associated with the set EAE. we call each such form of proof a proof system

([Se5],1.20).
To analyze an EAE set, we start with the Zariski closures of all the valid proof

statements associated with each of the (finitely many) proof systems ([Se5],1.23).
The second terminating iterative procedure that we call the sieve procedure, pre-
sented in [Se6], starts with each of these Zariski closures and constructs a (finite)
sequence of bundles of (virtual) proof statements that are supposed to ”testify”
that a given specialization of the defining parameters is in the set EAE. This finite
sequence of bundles reduces the question of the existence of a possible witness (i.e.,
a value of the first existential variables) with a valid proof statement ([Se5],1.19)
for any given specialization of the defining parameters, to the structure of the bases
of these bundles of proof statements. Since by section 3 of [Se3] it is possible to
stratify the base of such bundle, and the existence of a witness for a given spe-
cialization of the defining parameters depends only on the stratum (and not on
the specific specialization), the set EAE is the union of finitely many strata in the
stratifications of the constructed bundles. Since every stratum in the stratification
is in the Boolean algebra of AE sets ([Se3],3), we are finally able to conclude that
the original EAE set is in the Boolean algebra of AE sets.

We should note that as in the procedure for validation of a sentence, presented in
[Se4], we still do not know a conceptual reason for obtaining quantifier elimination,
and for the ability to construct a terminating procedure like our sieve procedure,
apart from its existence. Indeed, the construction of the sieve procedure and its
termination are technically the heaviest part of our work, and require techniques
and methods to handle Diophantine sets.

The quantifier elimination is the key for the analysis of the first order theory of
a free group, and in particular the key for solving Tarski’s problems. The uniform
quantifier elimination, i.e., a quantifier elimination that does not depend on the
rank of the (free) coefficient group, implies that all the non-abelian free groups
are elementarily equivalent - a solution to the first Tarski’s problem. A possible
approach to prove that the first order theory of a free (or a hyperbolic) group is
decidable (the second Tarski’s problem), is proving that every step in our quantifier
elimination procedure can be made effective. This is precisely the approach that
Kharlampovich and Myasnikov tried to apply in their attempt to prove the decid-
ability of the theory. The quantifier elimination is also necessary and a key to later
results, like proving the stability of the theories of free and hyperbolic groups, prov-
ing (geometric) elimination of imaginaries, or analyzing the independence relation
in the theory of a free group.

2. A general description of the crucial mistakes and gaps

in Kharlampovich and Myasnikov’s paper

In the previous section we briefly sketched the approach to Tarski’s problems as
presented in [Se1]-[Se7]. In this section 2 we use this brief survey to indicate the
main flaws and gaps in Kharlampovich and Myasnikov’s paper ”Elementary theory
of free nonabelian groups”. A detailed account of the main flaws together with
counterexamples to claims in their paper appears in the next section. These flaws
imply that none of Tarski’s problems is proved in this paper, and in particular,
the decidability of the first order theory of both free and hyperbolic groups, that is
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claimed in the paper and its more recent generalization to hyperbolic groups [KM5],
should be considered as open problems.

(1) The study of sets of solutions to systems of equations with parameters is
basic and necessary in any attempt to solve Tarski’s problems or to obtain
quantifier elimination. A fundamental property of these parametric systems
is the existence of a universal bound on the number of exceptional families
of solutions for such systems. This is the main goal of [Se3].

Kharlampovich and Myasnikov state a similar theorem in their paper,
but the proof, although similar to the one in [Se3], contains several serious
mistakes. In particular, for effective results, it is essential to get an effective
bound on the number of exceptional families of solutions of parametric
systems of equations. As the proof of the existence of a bound in KM’s
paper is wrong, needless to say that the claim regarding an effective bound
is meaningless.

(2) In the procedure for the analysis of an AE sentence [Se4], and in the quan-
tifier elimination procedure [Se5]-[Se6], one of the main objects that is used
repeatedly is the induced resolution that is presented in section 3 of [Se4].
The induced resolution is a canonical resolution, or a tower, that is inherited
by a subgroup of an ambient tower. Its construction is involved and uses
an iterative procedure that is guaranteed to terminate.

Kharlampovich and Myasnikov are trying to construct the induced reso-
lution and effectively compute it. However, their construction is wrong. It
does not produce a tower, and it can not serve for the purposes it was built
for, i.e., as a tool in the iterative procedure for analyzing definable sets.
Once again, the construction is wrong, so there is no point in considering
the effective claim.

(3) AE sentences are analyzed in [Se4], using an iterative procedure that is
guaranteed to terminate. This procedure is still far from analyzing general
definable sets, but it is essential in our approach for the analysis of such
general sets. For obtaining effective results, it seems necessary to be able
to run such a procedure effectively.

Kharlampovich and Myasnikov are trying to present exactly the same
procedure, and claim to run it effectively. However, their presentation is
wrong, and contains several fatal mistakes. What they describe may not
terminate after finitely many steps. Again, as the description of the proce-
dure itself is wrong, there is no point in considering the effective parts.

(4) The tools that are used in analyzing AE sentences are not sufficient for
analyzing general definable sets. One of the main new tools that we use for
obtaining quantifier elimination is the core resolution, that is presented in
section 4 of [Se5]. The construction of the core resolution is rather complex
and uses several iterative procedures. Any attempt to use the core resolution
in effective procedures requires an effective computation of it.

Kharlampovich and Myasnikov are trying to present a construction of
the core resolution. What they present contains several crucial mistakes
and few major gaps, and hence, does not have the essential properties that
core resolutions must have for the purposes of quantifier elimination later
in their paper. Again, the whole construction is wrong, so there is no point
in referring to the effective claims.
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(5) The heaviest machine or procedure that appears in our papers on Tarski’s
problems, is the sieve procedure for quantifier elimination [Se6]. This proce-
dure is rather technical and complex, and is guaranteed to terminate after
finitely many steps, a termination that finally implies uniform quantifier
elimination for all non-abelian free groups (and a similar one for torsion-
free hyperbolic groups).

Kharlampovich and Myasnikov aim to present precisely the same pro-
cedure, and run it effectively. However, already some of the main objects
that are used in the procedure, like the induced and the core resolutions,
were not constructed properly, and hence don’t have the required properties
for the procedure. In addition, the description of the procedure contains
several fatal mistakes and few gaps, so that the presented procedure cannot
be guaranteed to terminate. Again, there is no point in considering any of
the effective claims.

3. A detailed description of the fatal mistakes and gaps

in Kharlampovich and Myasnikov’s paper

In the previous section we briefly described some of the major flaws in Khar-
lampovich and Myasnikov’s paper. In this section we present a detailed account of
some of these fatal mistakes and gaps. The description of the mistakes is often fol-
lowed by counterexamples to the statements in the paper under review. We should
note that everything that appears in this section is contained in our previous report
that also describes the similarities with our papers.

(1) Page 470 lines 14-17. Lemma 8 is wrong. As stated, it is completely false.
Even modulo inner automorphisms, i.e., in Out(G), the lemma is wrong as
was observed by G. Levitt, who found this mistake in an analogous theorem
of mine for torsion-free hyperbolic groups (from 1991). Levitt presented a
counterexample and stated and proved a correct statement in [Le]. However,
the (false) statement of the lemma does not play an essential role in the
sequel.

(2) Page 482 line -1 to page 483 line 2: Lemma 18 is false (lines 8-10 on page
483 give a wrong argument). No similar statement can be correct, however,
as the authors borrowed all the study of equations with parameters (a fully
residually free group relative to a subgroup) from [Se1] and [Se3] no such
lemma is needed in the sequel.

Below is a counterexample to the statement of lemma 18 (we use the
notation of the lemma). Let K be the limit group:

K =< u1, . . . , u4 > ∗[u1,u2][u3,u4]=[a3,b3] < a, b > ∗[a4,b4]=[v1,v2][v3,v4]

< v1, . . . , v4 >

and K1 be the limit group:

K1 =< u1, v1 > ∗[u1,v1]=[a5,b5] < a, b >

Let ϕ : K → K1 be the epimorphism that maps the tuple u3, u4, v3, v4, u2, v2

to the tuple: a3, b3, a4, b4, 1, 1. Let Q1 be the QH vertex group < u1, v1 >,
which is the unique QH vertex group in the abelian JSJ decomposition of
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K1. Then no QH subgroup in K is mapped into a finite index subgroup in
Q1, a contradiction to the conclusion of lemma 18 on page 482.

(3) Page 483 lines 11-16. Lemma 19 is false. Below is a counterexample to its
statement. Let:

K =< a1, a2 > ∗[a1,a2]=[b1,b2] < b1, b2 > ∗[b1,b2]=[c1,c2] < c1, c2 >

H =< a1, a2 > ∗[a1,a2]=[b1,b2] < b1, b2 >

K has no sufficient splitting modulo H. Let τ : K → H be the epimor-
phism that maps the tuple c1, c2 to b1, b2. By the notions of the authors,
H is a reducing quotient of K. No homomorphism from H (which is the
fundamental group of a surface of genus 2) extends to a sequence of homo-
morphisms that discriminate H, a contradiction to the conclusion of lemma
19.

(4) Page 485 lines -5 to -3. ”since the group K is ... one may assume that ... is
a monomorphism”.

It was true for the definitions and the statement of their theorem 11 in
some of their previous versions. However, in the current statement of theo-
rem 11, the authors ”adapted” our notion of strictly solid homomorphisms
(their ”algebraic solutions”), and for this current statement one can not
make this reduction.

It is worth noting that although the reduction that the authors make
is wrong, a counterexample for this reduction is impossible to find, as a
”growing sequence” does not exist by theorems 2.5 and 2.9 in [Se3] (but in
proving these theorems in [Se3], no reduction of the kind the authors make
is used).

(5) Page 486 lines 4-5: ”Generalized equations for which K is not embedded
into ... result some of the equations from R”. The authors are making the
same mistake as in page 485 lines -5 to -3. They (the authors) continue to re-
fer to the statement of the theorem that appears in their previous versions,
and not to the current statement that uses our strictly solid homomor-
phisms (”algebraic solutions”) and maximal flexible quotients (”complete
reducing system”).

Page 486 line -7: ”In case (2) we obtain an equation from the family
R”. The same mistake as in page 485 lines -5 to -3. Note that once again,
as ”growing sequences” do not exist by theorems 2.5 and 2.9 in [Se3], and
the authors study these ”growing sequences”, no counterexamples can be
constructed - still the arguments they use are wrong.

Theorem 11 (without its effective claim) is precisely theorem 2.9 in [Se1].
Hence, even though the argument the authors give has several mistakes,
the statement of the theorem (with the effective claim excluded) is correct.
However, the statement of theorem 11 further claims that the bound on
the number of exceptional solutions can be effectively found. Since the
argument that is given in the paper contains mistakes, the effective claim
still requires a correct proof. It should be noted that the existence of an
effective procedure to find a bound on the number of exceptional solutions
of a parametric equation (the effective claim in the statement of theorem
11) is crucial for proving decidability in the sequel.
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(6) Page 506 line 10 to page 507 line 14: In this section the authors describe
a construction that they call ”Induced NTQ system”. What the authors
aim to describe is the construction of our induced resolution (definition 3.5
in [Se4]), but the construction that the authors describe contains several
crucial mistakes.

Note that the induced resolution plays a major role in our papers, and
is crucial in obtaining quantifier elimination. In the sequel, wherever the
authors use the induced resolution (”Induced NTQ system”), they are ac-
tually using the object that is constructed in section 3 of [Se4], and not the
object that they are describing in their section 7.12. However, for decidabil-
ity one needs to effectively compute the induced resolution (as it appears in
[Se4]). Because of the crucial mistakes in the construction that the authors
describe, no such effective computation is available in the current paper.

Below is an example for which the construction that the authors describe
does not give an NTQ group at all (clearly in contradiction to what they
aim and claim to construct). Let K =< a, b > ∗[a3,b3]=[u,v] < u, v >. K is
clearly an NTQ group, where the base level is the free subgroup < a, b >,
and in the second level a fundamental group of a punctured torus Q =<

u, v > is amalgamated to the base < a, b > along its boundary subgroup.
A fundamental group of a punctured torus contains a subgroup of index 3,
that we denote Q1, which is the fundamental group of a punctured torus
with 3 punctures. Hence K has a subgroup, that we denote G, that has the
structure:

G = ((< a1, b1 > [a3
1,b31]=c1

Q1)∗[a3
2,b32]=c2

< a2, b2 >) ∗

∗[a3
3,b33]=c3

< a3, b3 >

where c1, c2, c3 are the 3 boundary components of Q1. The procedure that
the authors describe will not change the group G. But G does not have the
structure of an NTQ group.

(7) Page 506 lines -11 to -10: ”Increasing G1 by a finite number of suitable
elements from abelian vertex groups of FR(S) we join together ... from
abelian vertex groups in FR(S)”. The sentence does not give any hint at
what elements should be added. Could it be that the authors refer to what
appears in part (ii) in the construction of the induced resolution in section
3 of [Se4] (starting at the 3rd paragraph after definition 3.2 in [Se4])?

(8) In all the construction of their ”induced NTQ systems” the authors say
nothing about QH vertex groups. In other words, they completely ”skipped”
part (iii) in our construction of the induced resolution (they have a previous
section on ”induced QH vertex groups” (lemma 7 on page 466) that is not
mentioned here. In any case, this notion and lemma are not a replacement
of part (iii) in section 3 of [Se4]). Without this part (or any other part),
the construction that the authors describe doesn’t make any sense, and is
therefore, completely wrong (once again, in all their referrals to ”induced
NTQ systems”, the authors have to use an object that is constructed ac-
cording to the complete construction that appears in section 3 of [Se4], and
not the vague, partial and mistaken object that they are describing in this
section).
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(9) On page 507, lines 4 to 8, the authors aim to explain why the iterative
procedure terminates after finitely many steps (what is proved in proposi-
tion 3.3 in [Se4]). The 3 possible decreases they count are actually true.
However, according to the proof of proposition 3.3 in [Se4], these decreases
happen on a highest level, and on all the levels above that level the asso-
ciated decompositions have the same structure as in the step before, and
below that level there is no control on what happens with the associated
decompositions (their complexity may increase).

The authors just indicate that in ”some level” one of the possible de-
creases might occur. This does not imply termination of the procedure.
This mistake can be easily fixed according to the proof of proposition 3.3
in [Se4].

(10) Page 507 lines 9-10: ”the image of the to i levels of FRQ
on the level j + 1

is the same as the image of G on this level”. This is completely false. It
is true that the image is contained in the image of G in this level (this is
precisely the statement of lemma 3.6 in [Se4]).

Below is a counterexample. Suppose that K is the NTQ group:

K =< u1, u2 > ∗[u1,u2]=[a3,b3] < a, b >

K has a base group < a, b > and in the second level the subgroup < u1, u2 >,
which is the fundamental group of a punctured torus is amalgamated to
< a, b >.

Let G =< u2
1, u

2
2 >. Then the image of G in the base level of K is the

subgroup < a6, b6 >. However, FR(Q) is a free group of rank 2, and its
image in the base level is trivial, a contradiction to the claim of the authors
that the image of FR(Q) and G in the base level are the same.

(11) The construction of the induced resolution in section 3 of [Se4] takes as an
input a well-structured resolution and a subgroup of its completion. The
well-structured structure is fundamental in the construction (see part (iii)
in definition 3.5 in [Se4] that the authors completely skipped).

A well-structured structure is a slightly weaker assumption than a well-
separated structure (all these are our notions), that the authors ”borrowed”
in their sections 7.8 and 7.9 (pages 504-505) ”first and second restrictions on
fundamental sequences”. In section 7.10 ”Induced NTQ systems” the ”first
and second requirements on fundamental sequences” are never assumed or
mentioned. Without this (geometric) structure, the whole construction of
”induced NTQ systems” can not make any sense (and once again, when it
is used in the sequel it’s always according to the construction that appears
in section 3 of [Se4], and (implicitly) under its assumptions and input).

Therefore, no effective procedure that gets as input a resolution (funda-
mental sequence) with a well-structured structure, and a subgroup of the
corresponding limit group, and computes effectively the induced resolution
is available in the current paper. Such an effective procedure is crucial for
proving decidability.

(12) Page 518 lines 20-22: ”We may assume that FR(U0) is freely indecomposable,
otherwise we can effectively split into a free product of finitely many freely
irreducible factors...and continue with each of the factors in the place of
FR(U0)”. This is a crucial mistake - a factorization followed by a reduction
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that the authors suggest is absolutely forbidden. It demonstrates a basic
misunderstanding of the procedure that is presented in section 4 of [Se4],
and leads to technical mistakes in the procedure itself.

Below is a counterexample. Consider the AE sentence:

∀y1, y2, y3, y4 [y1, y2] 6= 1 ∨ [y3, y4] 6= 1 ∨ y1 6= y3

∨ y2 6= y4 ∨ [y1, y4] = 1

The sentence is obviously true over a free group. However, after using the
first two inequalities, the procedure gives a freely decomposable subgroup:
< y1, y2, y3, y4 > | [y1, y2], [y3, y4] > which is clearly freely decomposable.
Any attempt to apply any form of a generalized Merzlyakov’s theorem (what
the authors call ”implicit function theorem”), involves the two factors in the
free decomposition. Hence, no reduction to separate factor(s) is possible, a
contradiction to the authors claim.

(13) Page 520 line -2 to page 521 line 1: ”Let ... be the subset of homomor-
phisms... and satisfying the additional equation U1(X1, . . . , Xk) = 1”. This
is a crucial mistake that leads to further mistakes in the sequel. What one
should consider are only homomorphisms in shortest form as they are de-
fined in definition 4.1 in [Se4].

(14) Page 521 lines 5-6: ”modulo the images ... of the factors in the free de-
composition of H1 =< X2, . . . , Xm >”. This is what is done in the first
step in section 4 of [Se4], but it it is true only if the authors would have
considered only shortest form homomorphisms (definition 4.1 in [Se4]).
page 521 lines 21-22: ”canonical sequences for H1 modulo the factors in
the free decomposition of the subgroup < X3, . . . , Xm >” - again the same
mistake (true only for shortest form homomorphisms, but these are not
the homomorphisms that the authors consider).

(15) Page 521 lines -11 to -9: Lemma 23 is supposed to be identical to propo-
sition 4.3 in [Se4], which is a key observation for the construction and the
termination of the iterative procedure for the analysis of AE sentences.
However, because the authors haven’t used shortest form homomorphisms
in the construction of their fundamental sequences, both the formulation
of lemma 23 and the argument that is used for its proof (that imitates
the proof of proposition 4.3 in [Se4], but the assumptions there are slightly
different) are wrong.

In the formulation of the lemma, it is not true that ”it is possible to
replace H(p) by a finite number of proper quotients of it without losing
values of initial variables of U = 1” (page 521 lines -10 to -9).

The argument that is used to prove the lemma is very confused. The
authors are trying to change homomorphisms to be in shortest form (def-
inition 4.1 in [Se4]), but it is somewhat late at this stage (they should have
considered only such homomorphisms to start with). In particular, at this
stage, taking ”minimal solutions with respect to ADt

” (line -3 page 521)
changes the values of ”variables of U = 1” and this is not allowed (i.e., by
doing that one loses ”values of initial variables of U = 1” (line -2) that the
procedure must handle).

The following is a counterexample to lemma 23. Let L be the limit group:

L =< a1, a2 > ∗[a1,a2]=[b1,b2] < b1, b2 > ∗[b1,b2]=[c1,c2] < c1, c2 >
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This cyclic splitting is clearly the JSJ decomposition of L. L admits the
resolution (”fundamental sequence” in the terminology of the authors): L →
π1(S2), where S2 is the fundamental group of an orientable surface of genus
2. Hence, L naturally embeds into the NTQ group N , that is the completion
of the given resolution, and is obtained from an amalgamated product of
π1(S2) and L, along the edge groups in L and a separating s.c.c. on π1(S2):

N = L ∗[b1,b2]=[d1,d2] < d1, d2 > ∗[d1,d2]=[e1,e2] < e1, e2 >

Now, we impose a new relation on the NTQ group N , that the authors
denote U1. The new relation U1 that we impose is given by the relations:

d1(a1)
−1, d2(a2)

−1, e1(b1)
−1, e2(b2)

−1.

The group that is obtained from the NTQ limit group N by adding these
relations has several (maximal) limit quotients. One of these maximal limit
quotients is L itself, where the map from the NTQ group N onto L is the
natural retraction. In our terminology this retraction L is solid with respect
to the group that is generated by π1(S2). This contradicts the conclusion of
lemma 23 that claims that in every such limit quotient, the original group
L does not embed.

(16) Page 522 lines 5-7” ”block-NTQ group ... generated by the top p levels of
the NTQ group corresponding to the fundamental group c and the group
... corresponding to some branch of the tree TCE(G(p))”. This is supposed
to be the construction of the anvil, as it is presented in part (2) of the first
step of the procedure in section 4 of [Se4], and in definition 4.5 in [Se4].

Note that what the authors write is mistaken, as in general one can
not take an amalgamated product as they suggest, because the group G(p)

that is associated with the terminal level of their NTQ group may not be
embedded in the group that is associated with the top level of the branch of
the tree TCE(G(p)). This technical difficulty is treated in part (2) of [Se4]
but somehow the authors missed it...

Below is a simple counterexample. Let L be the limit group that we used
in comment (15):

L =< a1, a2 > ∗[a1,a2]=[b1,b2] < b1, b2 > ∗[b1,b2]=[c1,c2] < c1, c2 >

With the terminology of [Se2], the strict Makanin-Razborov diagram of L

contains 3 resolutions that starts with an epimorphism: L → π1(S2), where
S2 is an orientable surface of genus 2, and an additional resolution that
starts with a proper quotient of L, that is obtained from L by killing the
element [b1, b2], and is isomorphic to Z2 ∗Z2 ∗Z2 (which is already a tower
or a NTQ group in the terminology of the authors).

In constructing the anvil, one should attach this last group Z2∗Z2∗Z2 to
the previously constructed group, in which the limit group L is embedded.
This can not be done by amalgamation (as the authors claim), as Z2∗Z2∗Z2

is a proper quotient of L and is not isomorphic to it.
(17) Page 522 lines 8-10: ”One can extract from c ... induced by the fundamental

sequence c. Denote this extracted fundamental sequence by c2”. What
11



the authors are really refering to here is their ”Induced NTQ systems”
(page 506 section 7.12). However, whatever is constructed in section 7.12
can not work here (as what they constructed in section 7.12 is not even an
NTQ group, and no generalized form of Merzlyakov theorem (i.e., what the
authors call implicit function theorem) can be applied to it).

See the counterexample in part (6) - it explains why the authors’ ”In-
duced NTQ system” can not serve for the purposes they need it here - the
generalized form of Merzlyakov’s theorem, what the authors call ”implicit
function theorem”, simply doesn’t apply to it as in general it is not an NTQ
group.

(18) Page 522 lines 23 to 25: ”Consider the set of those homomorphisms... and
satisfy some additional equation U2 = 1”. Once again, the same mistake
as in the first step - only shortest form homomorphisms (definition 4.1 in
[Se4]) should be considered. Omitting the shortest form requirement will
cause difficulties in the sequel (as in the first step).

(19) Page 523 lines 1 to 5: ”Case 2” - the same mistakes that the authors made
in their ”first step” recurs here.

See the counterexample to lemma 23 in part (15). As the conclusion of
lemma 23 is false, and Case 2 of the authors is based on the validity of this
conclusion, Case 2 of the authors simply can not be executed.

(20) Page 523 lines 6 to 11: ”Case 3”. According to the authors, the case in
which G is mapped to a proper quotient, and the case in which N1

0 is
mapped to a proper quotient are treated in the same way. This is a crucial
mistake. First, in both cases the authors use the conclusion of lemma 23,
which is false (see part (15)). Second, in part (4) of the second step in
[Se4] these two cases are treated differently. The authors make the same
mistake in the general case, and using this mistake it’s possible to construct
a non-terminating procedure (see comment (21) below).

(21) Page 523 line -11 to -6: ”Case 2” The crucial mistake that the authors made
in their construction of the ”block NTQ group” (i.e., the anvil) in Case 3 of
the second step, recurs here. In lines -7 to -6 the authors construct an NTQ
group ”with the top part being c(n) above level p and the bottom part fi.
This is wrong, and the argument that the authors use for the termination
of their procedure (the proof of theorem 36 on page 524), which is the
argument that is used in proving theorem 4.12 in [Se4], can not work for
the construction that the authors describe (it does work for the construction
that appears in [Se4]).

In fact, by slightly modifying the counterexample of a non-terminating
procedure that we presented in 2001 [Se8] (as a counterexample to Theorem
5 in the original version of the paper under review), it is not difficult to con-
struct a concrete iterative procedure of the type that the authors describe,
that doesn’t terminate after finitely many steps. i.e., the whole analysis of
AE sentences in the current paper is wrong.

(22) Page 523 lines -16 to line -12. What is written there is completely wrong. If
cases 2 and 3 do not apply at any level, one needs to look at the structure
of the induced resolution. By proposition 4.11 in [Se4], the complexity of
the induced resolution is guaranteed to drop in this case.

The authors messed up all that. First, the authors do not consider the
possibility of a change in the induced resolution (what they call ”induced
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NTQ system” in section 7.12 on page 506). Second, what they do suggest
is to replace the original group (that they denote as G) by some sort of an
envelope, which is the image of our developing resolution that was con-
structed in the previous step. A change (an increase) of the original group
by some sort of ”envelope” is what we do (under different assumptions,
and after checking the structure of the induced resolution!) in the proce-
dure that analyzes formulas with more than 2 quantifiers (i.e., the sculpted

resolution), but not in this procedure that analyzes sentences with only 2
quantifiers. Here, no such ”envelope” is used in our procedure (there is no
need to consider such), and of course, there is no referral to anything like
that later in proving the termination of the procedure (the whole proof of
theorem 36 on page 524 breaks down because of what the authors do in
their ”Case 1”). So the authors are ”proving” (in their theorem 36) the
termination of our procedure in section 4 of [Se4], but the procedure that
they construct is completely different (and fatally wrong). In other words,
there is no reason why the procedure that the authors describe will actually
terminate.

As in comment (21) it is not difficult to use the mistake in Case 1 of
the authors (the replacement of the group G by the group G′), to construct
a procedure of the type that is described by the authors that does not
terminate after finitely many steps.

(23) Page 524 line 3. As we have already mentioned, the conclusion of theorem 36
is false (see comments (21) and (22)), and the proof of theorem 36 applies
to the procedure in section 4 in [Se4], not to the (actual details of the)
procedure that the authors describe in their general step on page 523. The
procedure that the authors describe does not terminate in general. It is not
difficult to modify the non-terminating procedure in [Se8], to construct a
counterexample to theorem 36 of the authors.

(24) Page 525 lines 1 to 5: The conclusion of lemma 24 is correct for the top
level of the original fundamental sequence. However, lemma 23 is false (see
comment (15)), so it makes it impossible to apply the constructions that
appear in the authors’ procedure and apply lemma 24 in the next levels.

(25) The argument that is supposed to prove theorem 36 and appears on page
525 line -12 to page 526 line 3, that actually briefly sketches the proof of
theorem 4.12 in [Se4], applies to the procedure that is presented in section
4 of [Se4], but not to the procedure for the construction of the tree TAE(G)
that the authors presented in pages 520-523. This is mainly because of
the serious mistakes in Cases 1 and 2 of the authors’ general step (see
comments 21-23), and because the authors do not use homomorphisms in
shortest form (definition 4.1 in [Se4]).

(26) Page 528 lines 19-21: ”Consider a finite family of terminal groups of funda-
mental sequences of P modulo factors in the free decomposition of FR(U)”.
This is a fatal mistake. The diagram that the authors consider is with re-
spect to the freely indecomposable non-cyclic factors of FR(U). However,
in a resolution (fundamental sequence in their terminology) of such a di-
agram, the values of the free factor of FR(U) are being changed, and the
values of the other factors are modified by conjugation. Hence, not every
value of FR(U) that can be extended to a value of FR(P ) can be extended to
a value of one of the terminal groups in the diagram that the authors are
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constructing. For example, it may be that N1 is embedded in FR(P ) but
is not embedded in FR(T ). Therefore, the group FR(P ) can not be replaced
by the terminal groups in the diagram that the authors constructed for the
continuation of the procedure. This is a crucial mistake.

Below is a counterexample. Let F be a free group of rank 4, F =<

a, b, c, d >. Let G be the double: G =< u, v > ∗u3v3=x3y3 < x, y >. F

embeds into G by ν : F → G, where ν maps the generating tuple a, b, c, d

to u4, v4, x4, y4. However, G has a resolution (fundamental sequence) that
maps G onto a free group of rank 2 (by identifying the images of < u, v >

and < x, y >), and ν(F ) is mapped onto a (free) subgroup of rank 2 in
that image. In particular, F does not embed into the terminal level of that
resolution. In any case, in contradiction to what the authors claim, one can
not replace the original limit group G, with the embedding ν : F → G, with
the terminal limit group of the resolution (fundamental sequence) and the
image of F in that terminal limit group, which is a proper quotient of F .

(27) Page 528 line 25: ”Therefore, we can further assume that (it) is freely in-
decomposable modulo these factors”. A false (critical) reduction. Probably
caused by the same reasons that led to the mistake in lines 19-21.

To construct a counterexample let G be the limit group:

G =< u, v > ∗[u3v3]=t < t, x1, y1, x2, y2 > ∗

∗t[x1,y1][x2,y2]=[z3,w3] < z, w >

Let F be a free group < a, b >, and let ν : F → G, map the pair a, b to
x5

1, y
7
2 . G has a resolution (fundamental sequence) in which G is mapped to

the free product F2 ∗F2, where < u, v > is mapped onto the first factor, and
< z, w > is mapped onto the second factor. F2 ∗F2 is freely decomposable,
but it is certainly not true that to analyze the Diophantine set that is
associated with the embedding ν : F → G, it is enough to consider the two
separate factors in the free decomposition F2 ∗ F2 (note that we gave an
example where F2 ∗ F2 is free, but it’s easy to give an example with freely
indecomposable factors).

(28) Page 529 lines 17-18: ”because we add only elements from abelian sub-
groups”. This is completely false. It follows from the wrong construction
of the induced resolution (”Induced NTQ system”) in section 7.12. The
counterexample that is presented in comment (15) clarifies that in general
one must add additional elements, not only elements from ”abelian groups”
as the authors claim.

(29) Page 529 line 29: ”by levels from top to the bottom”. This is wrong.
The construction of the induced resolution is done iteratively from top to
bottom. However, to calculate dimensions, when adding QH vertex groups
and pegs of abelian vertex groups, and mostly to finally obtain a firm

subresolution (definition 4.1 in [Se5]), one has to go from bottom to top.
(30) Page 529 lines -10 to -8: Note that the notion of ”dimension” of a ”funda-

mental sequence”, which is central in the construction of the ”tight NTQ
envelope”, has a meaning only for fundamental sequences that satisfy the
restrictions that are listed in sections 7.8 and 7.9 on pages 504-505 (our
well-separated resolutions). However, these restrictions are not assumed or
used in the construction of ”induced NTQ systems” in section 7.12 on page
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506, and this construction is essential in the construction of ”tight NTQ
envelope” (i.e., the core resolution).

(31) Page 529 lines 11 to -8. In these lines, the authors construct their ”tight
enveloping system” (line -10), which is the authors’ analogue for our core

resolutions. However, the authors slightly modified the construction in
section 4 of [Se5], and what they are actually describing is completely wrong,
and can not serve for the purposes that will be needed in the sequel, i.e., for
the purposes that the core resolutions in section 4 of [Se5] was constructed
for.

Needless to say, this mistaken construction immediately leads to false
statements in the sequel, that can be fixed only if the construction that is
described by the authors is replaced by our actual core resolutions.

(32) Page 529 lines -3 to page 530 line 1: ”If the dimensions are the same, we
can always reorganize the levels so that... If all the parameters .. are the
same, then TEnv(S1) has one level the same as S1”. This statement of
the authors is valid for our core resolution (theorem 4.13 in [Se5]), and
is indeed a fundamental property of the core resolution and one of its
basic properties, but it is completely false for the construction of the ”tight
enveloping system” that the authors presented in this page (lines 11 to -8).

Consider the following counterexample (that is based on the counterex-
ample from 2001 [Se8]). Let F2g be a free group of rank 2g, g ≥ 2. Let L

be the limit group:

L =< x1, x2, x3 > ∗x3[x3
1,x3

2]=[u1,u2]...[u2g−1,u2g] < u1, . . . , u2g >

The limit group L embeds into the NTQ group (i.e., the completion or the
tower) N :

N = L ∗x3=[v1,v2]...[v2g−3,v2g−2] < v1, . . . , v2g−2 >

F2g naturally embeds into N by mapping it onto the (punctured surface
subgroup) < u1, . . . , u2g >. We denote this image of F2g in N by Q. By
the construction of the induced NTQ system (section 7.12 of the authors),
the induced NTQ system that Q inherits from the NTQ N is:

M =< u1, . . . , u2g > ∗[u1,u2]...[u2g−1,u2g ]=x3[x3
1,x3

2]
< x3

1, x
3
2, x3 > ∗

∗x3=[v1,v2]...[v2g−3,v2g−2] < v1, . . . , v2g−2 >

And this ”induced NTQ system” M is also the ”tight enveloping system”
of the authors in this case. Now, the ”dimension” (in the terminology of
the authors) of F2g is 2g, which is exactly the dimension of the induced
NTQ system M . However, the ”size” of M is bigger than the size of F2g,
a contradiction to what the authors claim on page 529 line -1 (and this is
a fatal mistake, as the inequality claimed by the authors is a fundamental
property that is later needed for proving that the procedure for quantifier
elimination actually terminates).

(33) Page 530 lines 1 to 4: ”Notice that the dimension of the tight enveloping
NTQ fundamental sequence... is the same as the maximal dimension of the
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corresponding subgroup in the terminal group in the enveloping fundamen-
tal sequence modulo...” This is completely false.

It is easy to cook a counterexample to this statement using a modifica-
tion of the counterexample that we used in comment (32); hence, we don’t
see a point in writing such an example in detail. This is again a fatal mis-
take, as it is an essential property of our core resolution (but not of the
”tight enveloping system” that the authors describe), that the procedure
for quantifier elimination is based on.

(34) One of the main properties of our core resolution (in comparison with in-
duced resolution) is that it is a firm resolution (definition 4.1 in [Se5]).
This is crucial for the termination of the sieve procedure (that the authors
borrow in the sequel), and makes our construction of a core resolution (sec-
tion 4 in [Se5]) much more complicated. However, the authors don’t seem
to mention or care about the firm condition (or property).

(35) Page 530 lines 6-7: Lemma 25 is crucial. In the construction that the authors
present they take ”solutions of FR(Mi) minimal with respect to the group of
canonical automorphisms corresponding to this splitting” (page 529 lines 7-
8), and they don’t discuss any analogue of our auxiliary resolutions. This
is what we do in case there are no parameters, and it would suffice for a
similar lemma with no parameters (see proposition 4.3 in [Se4]). However,
taking these minimal solutions does not suffice in the presence of parameters.
Hence, the lemma as stated is false.

(36) Page 530 lines 16-20. The authors are explaining how to find the funda-
mental sequences that are discussed in lemma 25 effectively. However, the
”algorithm” they give is completely false. One can not analyze all the ho-
momorphisms of a tower (instead of only minimal ones), and then continue
the fundamental sequence after a Diophantine condition is added. This is
misunderstanding of some basic concepts and a crucial mistake.

The following is a counterexample - it uses the example in comment (15).
Let L be the limit group:

L =< a1, a2 > ∗[a1,a2]=[b1,b2] < b1, b2 > ∗[b1,b2]=[c1,c2] < c1, c2 >

L admits the resolution (”fundamental sequence” in the terminology of the
authors): L → π1(S2), where S2 is the fundamental group of an orientable
surface of genus 2. Hence, L naturally embeds into the NTQ group N , that
is the completion of the given resolution:

N = L ∗[b1,b2]=[d1,d2] < d1, d2 > ∗[d1,d2]=[e1,e2] < e1, e2 >

Now, we look at a quotient of N by imposing the new relations:

d1(a1)
−1, d2(a2)

−1, e1(b1)
−1, e2(b2)

−1.

The group that is obtained from the NTQ limit group N by adding these
relations has several (maximal) limit quotients. One of these maximal limit
quotients is L itself, where the map from the NTQ group N onto L is the
natural retraction. In our terminology this retraction L is solid with respect
to the group that is generated by π1(S2), hence, its resolution (fundamental
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sequence) with respect to the base level of N has a single step (this quo-
tient of N). But L is embedded in this quotient, where the map from L to
any terminal limit group of a graded (relative) resolution (fundamental se-
quence) that is obtained from homomorphisms in shortest form (minimal
in the authors terminology) can not be a monomorphism by proposition
4.3 in [Se4], a contradiction to the claim of the authors that their ”algo-
rithm” produces fundamental sequences (or terminal limit groups of these
sequences) that are obtained from minimal homomorphisms.

(37) Page 530 line 25: ”Amalgamate ... along H̄”. In general, H̄ is not embedded
in a fundamental sequence that is associated with it. Hence, in such a case,
one needs to replace the fundamental sequence that appears in top, or take
appropriate limit quotients (see comment (16) for a counterexample).

(38) Page 530 lines 27-28: ”Consider a fundamental sequence obtained by taking
a fundamental sequence for ... and pasting to it a fundamental sequence
corresponding to H̄”. The mistaken construction of the ”tight enveloping
system” that caused severe problems in the construction of the ”block NTQ”
(i.e., the anvil), causes similar difficulties here. Hence, the construction
that the authors describe in lines 27-28 will work in the sequel, only if their
”tight enveloping system” will be fixed to coincide with (or to have the same
fundamental properties as) our core resolution.

In particular, the counterexamples in comments (15), (32) and (33) show
that the construction that is described in Case 1 can not be executed. On
line 25 (page 530) it is claimed that the original group is replaced by a
proper quotient, but the counterexample in comment (15) shows that this
is not always the case. The counterexample in comment (32) shows that not
always there is a reduction in the complexity of the quotient resolution, and
the complexity may actually increase. The counterexample in comment (33)
(that we didn’t specify in detail) show that Case 2 (lines -11 to -7 on page
530) can not be executed - this is because the complexity may increase,
and if there is an equality in complexities, this does not mean that the
modular groups that are associated with the ”tight enveloping system” can
be identified with the original modular group that are associated with what
the authors denote by S1 (see line -11).

(39) Page 531 lines 9-10: ”which do not have sufficient splittings modulo FR(U)

and which are terminal groups for fundamental sequences modulo FR(U)”.
This is a serious mistake. A fundamental sequence, as the authors suggest,
may change the values of the original group, hence, it is absolutely forbidden
to use such sequences as a preliminary step. The authors made a similar
mistake in their first step.

(40) Page 531 lines 20-21: ”We construct .. modulo the rigid subgroups in the
decomposition of the top level..”. Without using our auxiliary resolutions

(as they appear in definitions 8 and 9 in [Se6]), what the authors do does
not make any sense and immediately leads to critical mistakes in the sequel.

(41) Page 531 lines -16 to -15: ”then using Lemma 11 we can make its size to be
smaller than size(TEnv(Wn−1))”. Because the construction of the ”tight
enveloping system” on page 529 is wrong (i.e., doesn’t have the fundamental
properties of our core resolutions), theorem 4.13 in [Se5] is not valid here,
and the statement of the authors is completely false. This is indeed a fatal
mistake. See the counterexample in comment (32) that applies here as well.
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(42) Page 531 lines -15 to -13: ”Similarly to Lemma 25... that the image of H in
En−1 ... is a proper quotient of En−1 or ... does not have a sufficient splitting
modulo J”. Since the authors don’t use our auxiliary resolutions and they
consider (multi-graded) resolutions (fundamental sequences) ”modulo rigid
subgroups in the top level of F

R(L
(n−1)
1 )

” their conclusion (which is similar

to the conclusion of our proposition 3 in [Se6]) is false. Again, a critical
mistake.

The counterexample in comment (15) can be easily modified to give a
counterexample to what the authors claim in these lines (i.e., that ”the
image H ... in the terminal group ... is a proper quotient” - lines -5 to -14
on page 531).

(43) Page 531 lines -4 to -3: ”We can consider in this case only fundamental
sequences that either do not have a maximal dimension or.. do not have
maximal size”. The authors do not provide any argument for that. Indeed,
because of the wrong construction of their ”tight enveloping system” the
statement is false. The statement is correct if the ”tight enveloping system”
is fixed to be our core resolutions (or a replacement with the same funda-
mental properties), and then the argument can be found in theorem 4.18 in
[Se5].

The counterexample in comment (32) can be easily modified to provide
a counterexample to what the authors claim in these lines (note that the
counterexample in comment (32) show that the complexity (or the ”size”)
may increase, and if it remains equal there is no direct connection between
the modular groups of the new ”tight enveloping system” and the original
modular groups).

(44) Page 532 line 10: ”modulo the variables of the next level of L
(n−1)
1 ”. With-

out any analogue of our auxiliary resolution (definitions 8 and 9 in [Se6])
this doesn’t make any sense. Once again, the counterexample in comment
(15) demonstrates that the construction that is described in these lines can
not work.

(45) Page 532 lines -10 to -1: Because of the wrong construction of ”tight en-
veloping systems” on page 529, theorem 38 as stated is wrong.

Each of the counterexamples in comments (32) and (33) gives a coun-
terexample to the conclusion of theorem 38. In fact, it is not difficult to
use these counterexamples to construct a procedure of the type that is
described by the authors that never terminate (somewhat similar to the
non-terminating procedure that we presented in 2001 [Se8]).

The theorem can be made correct only if the ”tight enveloping system”
is replaced by our core resolutions or an object with the same fundamental
properties. Even after such a replacement, the arguments and the con-
structions that the authors use for the proof of theorem 38 need to be
(significantly) modified to agree with the constructions that are presented
in the general step of the sieve procedure in [Se6].

(46) Page 533 lines 9 to 16. The argument regarding the size of the ”tight
enveloping system” that the authors present is completely false (because of
the wrong construction of the authors ”tight enveloping system” on page
529). It would work for our core resolution, according to theorem 4.13 in
[Se5]. For a counterexample, see the counterexample in comment (32).
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(47) Page 541 line 18: ”generic family of solutions”. The authors have defined
”generic families” in definition 23, page 508 lines 15-25. However, this
definition of ”generic family” can be used only in the procedure for the
analysis of sentences with 2 quantifiers (the authors’ construction of the
tree TAE(G) in section 9 that starts on page 514 line 8). In the sieve
procedure, i.e., the procedure that the authors borrowed for the analysis
of formulas with more than 2 quantifiers (the one that is used in their
”projective images” section), the notion of a ”generic family” as defined in
definition 23, is false. For that procedure, one needs to consider reduced
modular groups, and technically to use any form of Merzlyakov theorem in
the current context the authors should have borrowed our notion of framed

resolutions (definition 5 in [Se6]). Without framed resolutions, the use of
”generic families” and general forms of Merzlyakov’s theorem is completely
wrong in the current context.

As an example let G = π1(S2), the fundamental group of a surface of
genus 2. Let ν : G → Z2 (where Z2 is the group with two elements), and let
H be the kernel of this map. Then there exists a fixed element in h ∈ H,
so that for a ”generic” homomorphism f : H → Fk, f(h) does not have
a square root. On the other hand for every homomorphism v : G → Fk,
v(h) does have a square root. Hence, (for first order considerations) the
”genericity” notions are different, and the one that is used by the authors
in the sequel is the wrong one.

(48) Page 542 line 16: ”the sequence of proper projective images stabilizes”. The
authors apply their theorem 38 on page 532 to get these stable ”projective
images”. However, as we have already commented in (45), the conclusion
of theorem 38, which is supposed to be one of the authors’ main results,
is false (this is mainly because of the wrong construction of their ”tight
enveloping system”, see comments (32) and (33)).

(49) Because of the authors’ wrong perception of our core resolution (their ”tight
enveloping system”), and their wrong interpretation of ”generic families” in
the context of the procedure for quantifier elimination (our sieve procedure),
the authors have no way (i.e., a notion or a construction) to distinguish
between our core resolution and our penetrated core resolution (definition
4.20 in [Se4]). Both of these resolutions, the core and the penetrated core

are essential in obtaining any form of stability of what the authors call
”block NTQ” (our anvils) and their associated fundamental sequences (our
developing resolutions). Without these notions (or rather constructions),
and without examining their appropriate induced resolutions (see definition
9 in [Se6]), there is no real meaning to the sentence ”projective images
stabilize”. To see how the sentence of the authors could be made precise
(with all the notions and procedures at hand) see the statement and the
proof of proposition 23 in [Se6].

(50) Page 541 lines 20-24: ”fundamental sequences induced by the subgroup of
the enveloping group generated by... We call this group a second principal
group and consider projective images for these fundamental sequences”.
The authors are trying to define our sculpted resolution as it appears in
part (4) of the first step of the sieve procedure, and parts (6) and (7) of the
general step of the sieve procedure in [Se6]. However, what they do write
is completely wrong (i.e., one can not work or continue the procedure with
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the construction that the authors suggest, and hope for termination).
The authors perform things in reverse order - once one fixes the (second)

algebraic envelope, one should first look at its sequence of core resolutions

(”tight enveloping system”) and then construct a resolution that is com-
posed of a sequence of induced resolutions.

(51) Page 541 lines 23-24: ”second principal group” is supposed to be the au-
thors’ analogue of our second sculpted resolution, as it appears in part (4)
of the first step of the sieve procedure. Probably because of the mistaken
construction of their ”tight enveloping system” on page 529, the authors do
not realize that beside the sculpted resolution, one needs to construct, keep,
and examine the structure of a related resolution, the penetrated sculpted

resolution (see parts (6)-(7) of the general step of the sieve procedure
in [Se6]). Without penetrated core resolutions and penetrated sculpted

resolutions, the procedure that the authors describe has no reason to ter-
minate.

(52) Page 541 lines -11 to -9: ”When the chain of projective images of these
sequences of increasing depth (and fixed thickness) stabilizes, we add new
variables, increase thickness, and so on”. This is wrong.

In the general step of the sieve procedure (the procedure for quantifier
elimination) in [Se6], it is impossible (conceptually) to ”know” when the
constructions that are associated with a certain algebraic envelope stabilize.
What we do in the general step (parts (6)-(7)) is check the objects that are
associated with every algebraic envelope (sculpted, penetrated sculpted,
and developing resolutions, core and penetrated core resolutions, Carriers)
at every step, going from the first algebraic envelope to the last (the one
with maximal width), and for the first one in which there is a change we
modify the constructions that are associated with it, and basically forget or
remove the higher width algebraic envelopes. If there is no change in any
of them we add an algebraic envelope of a bigger width.

A major principle of the sieve procedure is that not only the construc-
tions that are associated with algebraic envelopes are changed along the
procedure, but also the algebraic envelopes themselves are changed! only
when we examine an infinite path of the procedure we can talk about stable
algebraic envelope with its stable associated objects (see proposition 23 and
definition 24 in [Se6]).

Therefore, what the authors write in lines -14 to -9 on page 541 does
not agree with the basic concepts of the sieve procedure in [Se6]. From our
point of view, it’s not only a mistake, but a basic misunderstanding that
doesn’t allow one to construct our sieve procedure, or in fact any procedure
that is supposed to analyze Diophantine or more generally definable sets.

(53) Page 542 line 6: ”minimal values from some NTQ system”. What does
minimal have to do in this context?

(54) Page 543 lines 1 to 3: ”As we did in the proof of theorem 11, we construct
for KE ... such that KE is not conjugated into a fundamental group of a
proper subgraph of the JSJ decomposition D ...”. This statement is wrong,
but it is supposed to be the authors’ translation of theorem 32 in [Se6].

(55) Page 543 lines 8-9: ”Therefore the quadratic system ... has smaller size
than the quadratic system of..”. This is precisely proposition 37 in [Se6].
The proof of this proposition is not as simple as the authors claim in lines
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5-8, and requires significant modifications to the argument that was used
to prove theorems 2.5 and 2.9 in [Se3] (i.e., what the authors call theorem
11).

(56) Page 544 lines 1-14. The exact statement of lemma 29 is still wrong (it
is identical to the statement of theorem 1.33 in [Se5] that is false in this
context). The authors use the term ”generic family” in part (1) of the
lemma (line 6). They define a ”generic family” in definition 23 on page 508
lines 15-25. However, this definition of ”generic family” (i.e., our graded

test sequence) is invalid here. One has to define framed resolutions (as
they appear in definition 5 in [Se6]), and prove a form of a generalized
Merzlyakov theorem, in order to make the notion ”generic family” precise
in the context of the lemma (see the difference between the formulations
of lemma 6 in [Se6] and theorem 1.33 in [Se5]). For an example for the
difference between the different notions of ”generic families” see comment
(47).

(57) Page 546 line -10 to -9. Theorem 41 is identical with theorem 7 in [Se7].
The formulation of theorem 7 in [Se7] has a mistake, that was found and
fixed by C. Perin [Pe]. Exactly the same mistake exists in the formulation
of theorem 41 of the authors.
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