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Abstract:  Consider a parliamentary committee with an equal number of coalition and 

opposition members.  The opposition needs a strict majority to pass a motion, whereas 

for the coalition a tie is sufficient to block the motion and maintain the status quo.  

Passing or blocking the motion is a public good shared equally by all members of the 

winning group, and voting is voluntary and costly.  The members of which group are 

more likely to vote?  To answer this question, we studied an asymmetric participation 

game where a tie favors one prespecified group over the other.  The theoretical 

analysis of this game yielded two qualitatively different predictions, one in which 

members of the coalition are slightly more likely to participate than members of the 

opposition, and another in which members of the opposition are much more likely to 

participate than members of the coalition.  The experimental results clearly support 

the first prediction.   

Key words: Strategic Decision Making, Intergroup Competition, Voting Behavior, 

Participation Games. 
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1. Introduction 

 In this paper we study a type of competition between two groups in which the 

group whose members contribute more toward their collective group effort wins the 

competition and receives a reward.  The reward is a public good which is non-

excludable to individual members of the winning group, regardless of whether or not 

they contributed.  Since individual contribution is assumed to be costly and voluntary, 

a problem of free-riding is created within each of the competing groups (Bornstein, 

2003).  

 Past research on intergroup conflicts over public goods has focused mainly on 

the symmetric case where, if the competition is tied, the reward is divided equally 

between the two groups, or awarded to one of the groups at random (Palfrey & 

Rosenthal, 1983; Rapoport & Bornstein, 1987; Bornstein & Rapoport, 1988, 

Bornstein, 1992, Schram & Sonnemans, 1996ab).  In the current investigation we 

consider an asymmetric competition where, is case of a tie, one pre-specified group 

receives the reward while the other receives nothing.  In other words, to receive the 

public good one group must strictly win the competition while the other group need  

only not lose it.  

 To motivate this line of inquiry consider a parliamentary committee with an 

equal number of coalition and opposition members.  The opposition intends to pass a 

motion to which the coalition objects.  To pass the motion, the opposition needs a 

strict majority, whereas for the coalition a tie is sufficient to block the motion and 

maintain the status quo.  The members of both groups have to decide whether to 

attend the meeting and vote according to their preferences.  Attending the meeting is 

voluntary and costly (e.g., committee members have to forgo other, more personally 

beneficial, political activities).  The public good – passing or blocking the motion -- is 
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shared equally by all members of the winning group, whether or not they attended the 

meeting.   

Such asymmetric competition raises an interesting question: The members of 

which group, the group that wins in case of a tie or the one that loses, are more likely 

to contribute toward their group’s effort?  To answer this question we conducted a 

theoretical and experimental study of an asymmetric participation game (Palfrey & 

Rosenthal, 1983).  The game involves two competing groups with three members in 

each group.  Each group member receives an initial endowment of e (e>0) and has to 

decide whether or not to contribute it.  Players keep their endowment if they do not 

contribute, and contributions are not refunded regardless of the outcome of the game.2  

The decisions are made simultaneously, with no opportunity to communicate within 

or between the groups.  The group with more contributions wins the competition and 

each of its members receives a reward of r (r>e).  The reward is given to all the 

members of the winning group regardless of whether they contribute or not (hence the 

public good nature of the reward).  The members of the losing group are paid nothing.  

The asymmetry is created by selecting one group beforehand by tossing a fair coin to 

be the winning group in case of a tie.  The identity of this group is known to members 

of both groups.   

We compared this asymmetric game to a symmetric one where players first 

make their decisions, and, if the game is tied, one group is selected by a toss of a fair 

coin to be the winner and each of its members receives a reward of r.  The members 

of the other group receive nothing (Rapoport & Bornstein, 1987).  Thus, in both the 

asymmetric and symmetric games, the winner in case of a tie is determined by a toss 

                                                           
2 When the individual decision is binary the game can be conceptualized as a participation 
game where each player decides between participation (which is costly) and non-
participation.  We shall use the terms contribution and participation interchangeably.   
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of a coin.  The difference between the two games is that in the asymmetric game the 

coin is tossed to select the winner before the decisions are made (and the outcome is 

common knowledge), whereas in the symmetric game the coin is tossed (if necessary) 

to select the winner after the decisions are made.  We thus refer to these two 

treatments as the before and after treatments, respectively.  

 Section 2 below specifies the Nash equilibria of the symmetric and 

asymmetric participation games.  The following sections describe an experiment 

which examined actual choice behavior in the two games. 

 

1.1  Theoretical Analysis 

The equilibria for the one-stage symmetric and asymmetric participation 

games are computed for the specific payoff parameters used in the experiment,  

e= 0.25, and r= 1.3 The general case with any payoff parameters e and r is analyzed in 

Appendix A.  

The after treatment (the symmetric game) has a unique pure-strategy 

equilibrium in which all six players contribute.  In this equilibrium the game is tied 

and one randomly selected group wins the reward.  As no player gets to keep his or 

her endowment, the expected payoff per player is r/2= 0.5.  This equilibrium is clearly 

collectively (Pareto) deficient.  Collective efficiency is achieved when all players 

withhold their contribution.  This would again result in a tie, but since all the players 

keep their endowments, each receives an expected payoff of r/2+e= 0.75.  The 

efficient outcome is unstable, however, as each player can benefit from unilaterally 

contributing his or her endowment and securing a payoff of r (a sure payoff of 1).  For 

                                                           
3 The payoffs are in New Israeli Shekels.  4 NIS equaled about 1US$ when the experiment took place.  
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the set of parameters chosen for the present study the symmetric game has no 

symmetric equilibria in mixed strategies (see appendix A).4  

In analyzing the before treatment we consider only equilibria that are 

symmetric within each group, that is, we assume that all the members of the 

“coalition” (i.e., the group which wins in case of a tie) contribute with the same 

probability p, and all the members of the “opposition” (i.e., the group which loses in 

case of a tie) contribute with a different probability q.5  For the set of parameters 

chosen, the asymmetric game has three such equilibria.  In one equilibrium, members 

of the coalition  are somewhat more likely to contribute than members of the 

opposition (p=0.579; q=0.421).  In the other two equilibria the opposition members 

are much more likely to contribute than the coalition members.  In one of these 

equilibria the coalition members contribute with p=0.237 and the opposition members 

with q=0.763, and in the other, members of the coalition contribute with a probability 

of p=0.5, while members of the opposition contribute with certainty (q=1). 

  The expected payoffs associated with each of the three solutions also differ 

substantially.  In the first equilibrium (p=0.579; q=0.421) the expected payoff is NIS 

0.90 for a coalition member and NIS 0.36 for an opposition member.  In the second 

equilibrium (p=0.237 and q=0.763) the expected payoff is NIS 0.35 for a coalition 

member and NIS 0.91 for a opposition member.  Note that in both solutions the sum 

of p and q is 1.6  As a consequence the sum of payoffs under these two equilibria is 

also constant (NIS 1.26).  Thus, even though the two equilibria are rather different, 

none is payoff-dominant over the other.  The third equilibrium (p=.5 and q=1) pays 

                                                           
4 The symmetric game has no mixed-strategy equilibrium in which all players in both groups contribute 
with the same probability p.  However, it does have mixed-strategy equilibria in which members of one 
group contribute with probability p, while the members of the other group contribute with a different 
probability q.  Specifically, there are two such equilibria, one in which p=0.662 and q=0.338, and 
another in which p=0.338 and q=0.662.  
5 This assumption reflects the fact that ex-ante players within each group are undistinguishable. 
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NIS 0.25 for a coalition member and NIS 0.875 for an opposition member and is thus 

Pareto-dominated by the second equilibrium and socially dominated by both (i.e. it is 

deficient when comparing total payoffs to all players).  

This theoretical analysis provides a useful baseline for evaluating the 

experimental results.  First, based on this analysis, we hypothesize that there will be 

more individual contribution or participation in the symmetric game (the after 

treatment) than in the asymmetric game (the before treatment).  Second, the analysis 

indicates that the asymmetric game has three different equilibria; in the first 

equilibrium the members of the coalition are slightly more likely to contribute than 

members of the opposition, while in the second and third equilibria the members of 

the opposition are much more likely to contribute than members of the coalition.  

Game theory does predict which of the three equilibria, if any, will be observed.  This 

remains an empirical issue which our experiment may help resolve.     

There is one more point that needs to be discussed before describing the 

experiment. The game-theoretic analysis above applies to the one-stage game, while 

in our experiment the game was repeated 100 times.  In order to avoid the theoretical 

complications of a repeated game, each experimental session included 12 participants 

(that is, two unrelated competitions were played on each round) and the participants 

were re-matched randomly at the beginning of each round.  This random-matching 

protocol effectively prevents the players from employing repeated-game strategies of 

reciprocation, while providing them with ample opportunity to learn the structure of 

the one-stage game and adapt their behavior accordingly (e.g., Smith, 1984; Harley, 

1981; Selten, 1991, Roth & Erev, 1995).   

 

                                                                                                                                                                      
6 This result holds for all cases where 0 < e/r < 216/625; see Appendix A. 
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2.  Method 

Subjects and design: The participants were 192 undergraduate students at the Hebrew 

University of Jerusalem.  They were recruited by campus advertisements promising 

monetary reward for participation in a decision-making experiment.  The participants 

were scheduled in 16 cohorts of 12, and were paid contingent on their decisions and 

the decisions of their counterparts. Eight independent sessions were conducted in each 

of the two experimental treatments. 

Procedure: The experiment was held in a computerized laboratory.  Upon 

arrival each participant received NIS 10 for showing up and was seated in separate 

cubicle facing a personal computer.  The participants were given written instructions 

concerning the rules and payoffs of the game (see Appendix B) and were asked to 

listen to these instructions while the experimenter read them aloud.  Then the 

participants were given a quiz to test their understanding.  Their answers were 

checked by the experimenters and, when necessary, explanations were repeated.  The 

participants were also told that to ensure the confidentiality of their decisions they 

would receive their payment in sealed envelopes and leave the laboratory one at a 

time with no opportunity to meet the other participants. 

 Participants played 100 rounds of the same game.  The number of rounds to be 

played was made known in advance.  At the beginning of each round the 12 

individuals  were randomly divided into three-player groups and each group was 

paired randomly with another group.  This random-matching protocol was carefully 

explained to the participants.  In the before treatment, one group in each pair was 

randomly selected to be the winning group in case of a tie and the identity of this 

group was made known to members of both groups.  Each individual in the before 
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treatment played 50 rounds as a member of a “coalition” group and 50 rounds as a 

member of an “opposition” group.  The order of these rounds was randomized.  In 

both the before and after conditions, each player was given an initial endowment of 

NIS 0.25 at the beginning of each round and had to decide between contributing his or 

her endowment and keeping it.  Following the completion of a round, each player 

received feedback concerning (a)  the total number of contributors in his or her group; 

(b) the total number of contributors in the competing group; (c) his or her earnings in 

this round; and (d) his or her cumulative earnings.  Following the last round, the 

participants were debriefed on the rationale and purpose of the study.  They were then 

paid and dismissed individually without the opportunity to meet the other participants. 

 

3.  Results 

3.1 Contribution rates:  We hypothesized, based on the theoretical analysis, 

that overall contribution would be higher in the after treatment than in the before 

treatment.  Consistent with this hypothesis, we found that the mean number of 

contributions per player (summed over the 100 rounds of play) in the after treatment 

was 0.60, as compared with a contribution rate of 0.545 in the before treatment.  

However, this difference in contribution rates is only marginally significant 

(t14=1.456, p<0.08, one-tailed test).  In the before treatment members of the coalition 

(group Co) contributed at a rate of .58 and members of the opposition (group Op) at a 

rate of .51.  This difference in contribution rates is statistically significant (t7=2.37, 

p<0.05).   

Next we examine the distribution of outcomes across the 200 stage-games 

played in each treatment (two separate games per round X 100 rounds).  In 42.4% of 

the games played in the before treatment group Co had more contributors than group 
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Op, in 27.5% of the games group Op had more contributors than group Co, and in the 

remaining 30.1% of the games there was an equal number of contributors in both 

groups (meaning, of course, that group Co received the reward). Of the 200 games 

played in the after treatment, 68% ended with one group winning the competition and 

32% resulted in a tie.   

3.2 Equilibrium Selection:  In the before treatment we considered three Nash 

equilibria, all assuming that the members of the same group contribute with the same 

probability.  These equilibria are qualitatively quite different, as one predicts that the 

members of group Co will be slightly more likely to contribute than members of 

group Op, while the other two predict that members of group Op will be much more 

likely to contribute than members of group Co.   The observed behavior described 

above clearly corresponds to the first equilibrium.   

Figure 1 plots the mean contribution rates in groups Co and Op in each (20-

round) block.  As can be see in the figure, in the first 20 rounds of play members of 

group Co contributed with a probability of 0.63, which is higher than the 0.579 

probability prescribed by the equilibrium.  However, as the game progressed, the 

contribution rates of group Co decreased, as players presumably learned that, given 

the actual contribution rates in group Op, they could withhold contribution and still 

win or tie the game and get the reward.   

To test whether the decreasing trend in contribution rate is statistically 

significant, we fitted a regression line for each of the eight independent sessions in 

this treatment to predict the contribution rate from the block number, and extracted 

the unstandardized B coefficients.  Except for one session, all the B coefficients were 

negative, indicating a decrease in contribution rates over time.  The mean B was –0.01 

(sd=0.008), which is significantly different from zero (t(7) =-3.363, p<0.012).   
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Members of group Op started out with a contribution rate of 0.47 in the first 20-round 

block, which is slightly higher than the 0.421 contribution rate that the equilibrium 

predicts, and their contribution level did not change much during the course of the 

game.  The trend in contribution rates in the Op treatment is not significantly different 

from 0 (mean B= 0.002, sd=0.0017; p(7)=0.35, ns).    

 

<Insert Figure 1 about here> 

 

The contribution rates in the after condition are presented in Figure 1 (the 

contribution rates in this condition are superimposed on the results of the before 

condition).  As can be seen in this figure, the players contributed at a rate of .60 in the 

first 20-round block and maintained this contribution rate throughout the game.  To 

explain this result, we computed the expected payoff of player i in the symmetric 

game, given that all the other players contribute with a probability of 0.6 (the 

observed  probability of contribution).  The best response for player i is to contribute 

with probability 1.  His or her worst response is to withhold contribution.  However, 

the difference in payoffs between the best and worst responses is only NIS 0.05 -- a 

negligible amount.  In other words, player i has little incentive to change his or her 

behavior toward the equilibrium.7 

 

3.4 Payoffs:  The mean payoff per player is 0.60 per round in the before 

treatment and 0.615 in the after treatment.  The mean bpayoff in the after condition is 

higher than the equilibrium payoff (i.e., 0.5), reflecting the fact that contribution rates 

were lower than predicted by the equilibrium.  In the before condition the mean 
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payoff is similar to that predicted by the equilibrium.  Specifically, the equilibrium 

(p=0.579; q=0.421) predicts a mean payoff of 0.9 for a Co member and 0.36 for an Op 

member per round, while the actual payoffs are 0.83 and 0.40, for Co and Op 

members, respectively .  Given the inherent asymmetry of the before game, the 

members of group Co earned more than twice as much as members of group Op, even 

though their contribution rates were only slightly higher.  

 

4.  Discussion 

 In this paper we focused on an asymmetric intergroup competition where a tie 

favors one prespecified group over the other, and asked a question that seems central 

to the understanding of such situations: The members of which group are more likely 

to put costly effort into the competition? The example we had in mind is a 

parliamentary committee, where the opposition typically needs a strict majority to win 

a vote, whereas for the coalition a tie is sufficient to maintain the status quo.   

 The intergroup competition was modeled as a participation game, assuming 

that the group’s payoff is a public good and that individual contribution or 

participation is voluntary and costly.  The theoretical analysis of the asymmetric 

participation game yielded two qualitatively different predictions, one in which 

members of the coalition are slightly more likely to contribute than members of the 

opposition, and another in which members of the opposition are much more likely to 

contribute than members of the coalition.  The experimental results clearly support the 

first prediction.  Members of the “coalition” contributed on average on 58% of the 

rounds as compared with a contribution rate of 51% by members of the “opposition”.  

                                                                                                                                                                      
7 A very slow learning process in the symmetric participation game is predicted by Roth & Erev’s 

(1995) learning model.  An experiment by Bornstein, Erev, & Goren (1994) corroborates this 
prediction.  

 11



Consequently, a “coalition” member earned more than twice as much as an  

“opposition” member.   

As a baseline for evaluating our results, we compared the asymmetric game to 

a symmetric one. Based on the theoretical analysis of the two games, we predicted 

that overall contribution rates would be higher in the symmetric game than in the 

asymmetric one.  The results show that although players contributed much less in the 

symmetric game than theoretically prescribed, they did contribute somewhat more 

than players in the asymmetric game.  

 The participation games operationalized in the present study model quite 

closely voting in small groups such as parliamentary committees and boards of 

directors.  However, the games can be used, albeit more loosely, to model a larger 

class of intergroup conflicts and competitions (e.g., wars, soccer games) where a tie or 

a stalemate, with neither side clearly winning nor losing the competition, is a potential 

outcome.  In some of these competitions, as in our asymmetric game, the utility of a 

tie may be different for each of the competing sides (Snidal, 1986).  One group may 

only aspire to maintain the status quo and therefore may value a tie as if it were a win, 

whereas a tie and the ensuing status quo may be valued more like a loss by the other 

group.  To the extent that our experimental results can be generalized to such 

situations, it seems that less voluntary effort is to be expected from members of the 

group that must win than from members of the group that need only not lose.   
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Figure 1: Mean Contribution Rates
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Appendix A: Theoretical analysis

In this section we provide a full analysis of the (within group) symmetric Nash equilibria
of the two games in our experiment. We consider all such games parameterized by the
payoff parameterse and r. We normalize the payoff units so as to haver = 1, making
e/r = e to be the only parameter of the payoffs in the game. In our analysis which covers
all positive values ofe, we consider only equilibrium that is either pure orsymmetric
mixed, that is, equilibrium in which symmetric players use the same (mixed) strategy. In
the after condition this means that all players use the same mixed strategy while in the
before condition, all players in the same team use the same mixed strategy, but the two
strategies may be different.

Equilibrium analysis of the after treatment

Pure equilibrium

A pure strategy profile is (up to permutation of symmetric players)(n,m) wheren andm
are the number of contributors in the two teams. We shall show that:

• If e> 1/2, then the only pure equilibrium is that in which no player contributes.

• If e< 1/2, then the only pure equilibrium is that in which all players contribute.

• If e= 1/2, then the set of pure equilibria consists of all strategy profiles in which
| n−m |≤ 1.

To see this, assume that(n,m) is a Nash equilibrium then,

• For any 0 < e < 1, | n−m |≥ 2 is impossible since in such a case, any con-
tributor in team with more contributors has a profitable deviation to ‘do not con-
tribute’(keepingeand still winning the prize).

• For any0 < e< 1; e 6= 1/2 it is not possible that| n−m |= 1. First, for anye> 0,
there can be no contributor in the losing team since such a player could deviate to
not contributing (yieldinge instead of0). As to a configurationn = 1;m = 0; If
e< 1/2, a non contributor in the losing team could deviate and contribute (getting
1 with probability1/2 which is higher thane). If e > 1/2, the contributor could
deviate and not contribute (gettinge+1/2 which is higher than1). If e= 1/2, such
a profile is in fact an equilibrium.

• It remains to check the casen= m. It is readily verified that this is equilibrium when
e= 1/2. Otherwise,0 < n = m < 3 is not possible since then, ife< 1/2, a non
contributor could contribute and get1 instead ofe+1/2. If e> 1/2, a contributor
could not contribute and gete instead of1/2. Finally n = m= 3 is an equilibrium
if e< 1/2 while n = m= 0 is an equilibrium ife> 1/2.
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Symmetric mixed equilibrium

We now look for equilibrium in which each player contributes with probabilityp∈ (0,1);
which is the same for all players.

When all other players contribute with probabilityp, the numberY of contributors in
theout team (the other team) has a binomial distributionY ∼ B(3, p) and the numberX
of contributors in thein team (among the other two players) has a binomial distribution
X ∼ B(2, p). In this situation, consider theadditionalexpected prize due to the player’s
contribution (that is, her expected prize if she contributes minus her expected prize when
she does not contribute). The contribution of the player affects the prize in two events:
WhenX = Y (in which case, by contributing, the player will win the prize with certainty
instead of probability1/2) and whenX+1=Y (in which case, by contributing, the player
will win the prize with probability1/2 instead of losing). Thus her own contribution will
increase her expected prize by (P(A) stands for the probability of eventA):

f (p) :=
1
2

[P(X = Y)+P(X +1 = Y)]

The equilibrium condition is that the player is indifferent between contributing or not
(since she is using both options with positive probability) that is:f (p) = e. Now, by
straightforward computation we have:

f (p) = 1
2 [P(X = Y)+P(X +1 = Y)]

= 1
2

[
(1− p)5 +3p(1+ p)(1− p)3 +3p3(2− p)(1− p)+ p5

]
= 1

2−2z+2z2 Where z= z(p) = p(1− p)

From this it follows that:

• f (p) is symmetric aboutp = 1/2 that is, f (p) = f (1− p). This is becausef is a
function ofz(p) which has this property,z(1− p) = z(p).

• Since0≤ z(p) ≤ 1/4, and sincef is a strictly decreasing function ofz, it follows
that

f (p)≤ 1
2
−2

1
4

+2

(
1
4

)2

=
5
16

• consequently, the equationf (p) = e has no solution ife< 5/16, has one solution
namely,p = 1/2 if e= 5/16, and has onez-solution if e> 5/16 corresponding to
two p-solutions symmetric about1/2.

We conclude that,

• If 0 < e< 5/16, there is no symmetric mixed equilibrium.

• If e= 5/16, there is one symmetric mixed equilibrium which isp = 1/2.

• If 5/16< e≤ 1/2, there are exactly two symmetric mixed equilibriap andq with
p+q = 1.
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• If e> 1/2, there is no symmetric, strictly mixed equilibrium. (Recall that in this
case there is a unique symmetric pure equilibrium in which no player contributes).

pure-mixed equilibrium

We next look for pure-mixed equilibria namely equilibrium points in which all players
in one team use the same pure strategy while all players of the other team use the same
mixed strategyp. We denote such strategy profiles by(1, p) and(0, p) (corresponding
to whether the pure strategy is contribute or not). To find such equilibrium points we
note that if(1, p) is an equilibrium then a player who contributes with probabilityp has
to be indifferent between contributing or not, which implies1/2p2 = e while a player
contributing with certainty has to (weakly) prefer contributing, which implies

1/2
[
3p2(1− p)+ p3]≥ e

These two conditions implye≤ 2/9. Similarly the equilibrium conditions for(0, p) are
1/2(1− p)2 = eand

1/2
[
3p(1− p)2 +(1− p)3]≥ e

These two conditions cannot be satisfied forp≥ 0 and hence there is no such equilibrium.
It follows that:

• pure-mixed equilibrium exists only for0 < e< 2/9 and then it is of the form(1, p)
wherep =

√
2e.

In particular, for the parameters of our experiment there is no pure-mixed equilibrium
(sincee> 2/9).

Equilibrium analysis of the beforetreatment

We shall denote the two teams byI (for ‘incumbent’, the team team that wins in case of
tie), andE (for ‘entrant’, the team that loses in case of tie).

Pure equilibrium

A pure strategy profile is(n,m) wheren is the number of contributors in teamI andm is
the number of contributors in teamE. Assume that(n,m) is a Nash equilibrium then,

• It must be that| n−m |≤ 1 since otherwise any of the contributors in the winning
team could profit by not contributing (savingewhile his team is still winning).

• It cannot be the case thatn = m+1 since again, any contributor inI would have a
profitable deviation (namely, by not contributing, she savese while the teamI still
wins).
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• It cannot be the case thatm= n+1 since then, any non contributor inI would have
a profitable deviation (namely, by contributing, theI team will win instead of losing
and her payoff will be1 instead ofe).

• Thus, if there is an equilibrium it must be the case thatn = m. Clearlyn = m= 0 is
not an equilibrium since then contribution would be a profitable deviation for any
player inE. But n = m≥ 1 cannot be an equilibrium since not contributing is then
a profitable deviation for any contributor inE.

We conclude that, for anye∈ (0,1), there is no pure Nash equilibrium. This does
not exclude the possibility of equilibrium in which all members of one team use pure
strategy while the members of the other team use mixed strategies. In fact it follows from
the results of the following section that fore = 4/9 the following pure-mixed strategy
profiles are equilibria:

• All members ofI do not contribute while each member ofE contributes with prob-
ability 1/3. (Expected payoffs for the players in the two teams are(2/3,1).)

• All members ofE contribute while each member ofI contributes with probability
2/3. (Expected payoffs for the players in the two teams are(4/9,19/27).)

Symmetric mixed equilibrium

A symmetric (strictly) mixed strategy profile is a pair(p,q); with 0< p< 1 and0< q< 1:
Each of the players in teamI contributes with probabilityp while each of the players in
teamE contributes with probabilityq.

For (p,q) to be an equilibrium, each player has to be indifferent between contributing
or not. As argued before (in the analysis of theafter game), this means that for each
player, theadditionalexpected prize due to the player’s own contribution (given that all
other players are contributing according to(p,q)) must equal toe. If X is the number
of contributors among the other two players in her own team, andY is the number of
contributors in the other team, then for a player inI this condition is

P(X +1 = Y) = e where X ∼ B(2, p) andY ∼ B(3,q)

while for a player inE the condition is

P(X = Y) = e where X ∼ B(2,q) andY ∼ B(3, p)

Explicitly, these equations are:

f (p,q) := 3q(1− p)2(1−q)2 +6pq2(1− p)(1−q)+ p2q3 = e (1)

g(p,q) := (1− p)3(1−q)2 +6pq(1− p)2(1−q)+3p2q2(1− p) = e (2)
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We first note that the two functions are related to each other by:

g(p,q) = f (1−q,1− p) (3)

In particular, forq= 1− p, we haveg(p,1− p) = f (p,1− p) and the two equations 1 and
2 coincide to yield a single equation:

10p2(1− p)3 = e (4)

It is readily verified that the function10p2(1− p)3 increases in(0,2/5), decreases in
(2/5,1) attaining its maximum atp = 2/5 with value63/54 = 0.3456. It follows that:

• If 0 < e < 0.3456, then there are two equilibrium points of the form(p,1− p)
namely, the two solutions of equation (4).

• If e = 0.3456 then there is only one equilibrium of the form(p,1− p) namely
(2/5,3/5).

• If e> 0.3456then there is no equilibrium of the form(p,1− p).

• For the parameters of our experiment we obtain the following two equilibrium
points (by numerical solution of equation 4 withe= 0.25):

(p1,1− p1) = (0.237,0.763) and (p2,1− p2) = (0.579,0.421)

The analysis up to this stage is in line with that of Palfrey and Rosenthal (1983). In
fact our game is a special case of their voting game with the “status quo rule” (in case of
tie) and our equations 1 and 2 are special case of their equations (16) and (17) on page 33
for M = N = 3. The solutions of the formq= 1− p were treated as a special case which is
analytically manageable as it requires to solve a single equation with one variable rather
than two (rather complex) equations with two variables. Our contribution here is in what
follows: We proceed now to findall symmetric mixed equilibria for all values ofe.

Proposition 1 The set of all symmetric mixed equilibria of the formp,q) is given by:

• If 0< e< 216/625, then there are exactly two symmetric mixed equilibria and they
are of the form(p,1− p) . (The two equilibria correspond to two different values
of p. The constant216/625 is 63/54 = 0.3456.)

• If 216/625≤ e< 4/9, then there are exactly two symmetric mixed equilibria and
they are of the form(p(q),q), where the functionp(q) is defined by:

p(q) =
1−6q+6q2 +q

√
3−8q+6q2

1−8q+10q2 (5)

The two equilibria correspond to two different values ofq.
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• If e= 216/625, then there is a unique symmetric mixed equilibrium(2/5,3/5). This
is in accordance to both previous cases which coincide for this boundary value of
e.

• If 4/9 < e< 1 then there is no symmetric mixed equilibrium.

Figure 1. provides a complete description of the quasi-symmetric mixed equilibria for
all values ofe.

0

216
625

A

B

C

q

e

4/9

1

1/3 3/5 1

RegionA: e= 10q3(1−q)2; p = 1−q
RegionB: e= ψ(q); p = p(q)
RegionC: e= (1−q)2; p = 0
Regions A&B:e= (1− p)2; q = 1

Figure 1. Symmetric equilibria in thebeforegame.
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Proof of Proposition 1

We start from equations 1 and 2 which, whenp andq are strictly between0 and1, are
necessary and sufficient conditions for(p,q) to be a symmetric mixed equilibrium. A
consequence of these two equations is thatf (p,q)−g(p,q) = 0. As we know that this
is satisfied forp+q = 1, it follows that the left hand side of this equation is divisible by
1− p−q) and in fact we find (with the kind help of Mathematica...) that

f (p,q)−g(p,q) = (1− p−q)
(
1−4q+3q2−2p(1−6q+6q2)+ p2(1−8q+10q2)

)

As we have already found all solutions for which1− p−q = 0, all other solutions
must solve the equation:

a(p,q) := 1−4q+3q2−2p(1−6q+6q2)+ p2(1−8q+10q2) = 0 (6)

Solving this as a quadratic function ofp and doing some simple, but tedious, algebra
we find that the only solutions of equation (6) with bothp andq in [0,1] are the pairs
(p(q),q) where1/3≤ q≤ 1 and the functionp(q) is that given by (5). Note that although
the denominator of this function has a zero in the domain, the function is still a smooth
(concave) function from(0,1/3) to (2/3,1).

Next, we substitute the value ofp given by (5) into equation (1) (or (1)) to obtain the
equilibrium condition which becomes (after some algebraic manipulations):

2qs
[
(5−18q+18q2−4q3)+(3−8q+6q2)

√
3−8q+6q2

]

(1−8q+10q2)2 = e (7)

The left hand side is a smooth convex function with minimum atq = 3/5 wheree=
216/625, and maximum at the boundariesq = 1/3 andq = 1 wheree = 4/9 (at both
points). Hence for any value ofe in the interval216/625< e< 4/9 there are precisely two
solutions to the equation (7) which correspond to (theq values of) two mixed equilibrium
points (in which thep values are given by (5)). At the minimum pointe = 216/625,
there is a unique mixed equilibrium withq = 2/3 and p = 1/3. This is the equilibrium
at the boundary (the maximum) of the region where the mixed equilibrium is of the form
p+q = 1 (see Figure 1).

pure-mixed equilibrium

Note that the two boundary points(0,1/3) and(2/3,1) correspond to pure-mixed equi-
librium points in which the players in one team use a mixed strategy while the players
in the other team use a pure strategy. To find all such equilibria, note that if(0,q) is n
equilibrium then equation (2) is still a necessary condition while equation (1) has to be
satisfied as an inequality≤ e. The equilibrium conditions for(p,1) are equation (2) and
equation (1) replaced by an inequality≥ e. Similarly for equilibria of the form(1,q) and
(p,0). By solving these conditions it is readily verified that all pure-mixed equilibria are
given by:

21



• Equilibrium of the form(p,1) exists only for0 < e< 4/9 and thenp =
√

e

• Equilibrium of the form(0,q) exists only for4/9 < e< 1 and thenq = 1−√e (i.e.
e= (1−q)2).

• There is no pure-mixed equilibrium of the form(p,0) or (1,q).

In particular, for the parameters of our experiment,e = 1/4, there is a pure-mixed
equilibrium which is(1/2,1) namely, all players in the unfavored team contribute while
all players in the favored team contribute with probability1/2.

22



Appendix B: Instructions  
 

The after treatment:  

 You are about to participate in a decision-making experiment.   During the 

experiment you will be asked to make decisions, and so will the other participants.  

Your own decisions, as well as the decisions of the others, will determine your 

monetary payoff according to rules that will be explained shortly. 

 You will be paid in cash at the end of the experiment exactly according to the 

rules.  Please remain silent throughout the entire experiment and do not communicate 

in any way with the other participants. 

 The experiment is computerized.  You will make all your decisions by 

entering the information at the specified locations on the screen.  Twelve people are 

participating in this experiment, which includes 100 decision rounds.  At the 

beginning of each round, the 12 participants will be divided randomly into four 

groups of three persons each, and each group will be paired with another group.  The 

pairing will be done randomly by the computer.  For each new round, the computer 

will again divide the participants at random into four groups and each group will be 

paired at random with another group.  You will have no way of knowing who belongs 

to your group and who belongs to the other group.   

 At the beginning of each round each of you will receive a stake of NIS 0.25 

and will have to decide whether to invest your stake or keep it.  After all the 

participants have entered their decisions, the computer will sum up the number of 

investors in your own group and will compare it with the number of investors in the 

competing group.   

• If the number of contributors in your group is larger than that in the other group, 

each member of your group will receive a bonus of NIS 1. 
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• If the number of contributors in your group is smaller than that in the other group, 

each member of your group will receive nothing (0 points).  

• If the number of contributors in your group is equal to that in the other group, one 

group will be selected at random by the computer, and each member of that group 

will receive a bonus of NIS 1.  Members of the other group will receive nothing (0 

points). 

 At the end of each round you will receive information concerning (a) the total 

number of contributors in your group; (b) the total number of contributors in the other 

group; (c) the number of points you earned on that round;  and (d) your cumulative 

earnings up to this point.  Then we will move to the next round.  Remember that for 

this new round you will be randomly divided into new groups.  

 At the end of the experiment the computer will count the total number of 

points you have earned and we will pay you in cash at a rate of 10 points =  NIS 1.  

 

The before treatment:  

 The instructions for the before treatment were identical except for the 

following changes in the payoff rules:  

 Before each round, one group will be selected at random by the computer to 

be the winning group in case there is an equal number of contributors in both groups.  

The identity of this group will be made known to members of both groups.    

 After reading the instructions, the participants answered a quiz containing 

three examples.  Each example listed the investment decisions of each of the six 

players, and the participants were asked to fill in the earnings for each player.  The 

experimenter went over the examples and explained the payoff rules until they were 

fully understood.  The examples used in the two treatments were identical. 
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