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ABSTRACT.We address the issue of belief revision in a multi-agent setting. We represent agents'

beliefs in a semantic manner, through a Kripke structure, and model a communication process

by which agents communicate their beliefs to one another. We define a revision rule that can

be applied even when agents have contradictory beliefs. We study its properties and show that

agents need not agree after communicating their beliefs. We finally address the dynamics of

revision and show that the order of communication may affect the resulting belief structure.

KEYWORDS:belief revision, KD45, Kripke structure.

1. Introduction

Situations in which agents have mistaken beliefs abound. In this paper, we propose
a revision rule that specifies how agents' beliefs evolve after communication among
themselves has taken place. Specifically, we work with KD45 kripke structures (e.g.,
[CBE 80]) and allow agents to communicate (non strategically) their beliefs. The is-
sue is to come up with a rule specifying how initial beliefs that are contradicted by
the announcement of some other agent are changed to cope with this contradiction.
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In the absence of any mistake (i.e., in 85), the process is simple: each agent simply
drops from his beliefs the ones that are not compatible with the announcements. This
yields a new 85 Kripke structure. However, in the presence of mistaken initial be-
liefs, the rule has to propose a way to correct these beliefs. We proceed in two steps.
First, we specify a selection procedure that specifies which initial beliefs the agent
retains upon hearing the other's announcement. We do so by defining agent selection
functions on the possible worlds. These selection functions allow for the possibility
that agents eliminate certain of their initial beliefs. We do not try to ground these
selection functions on some rational basis and leave them essentially unconstrained.
The only restriction we consider is a minimal consistency requirement which says the
folJowing: any state, initially believed possible, that is 11ot contradicted by the an-
nouncements is still considered possible after the revision process. We also modify
the accessibility relation so that the beliefs of the agents who have announced are now
commonly known. We show that this rule is always well defined, in the sense that
it leads to a KD45 Kripke structure. We provide conditions under which no revision
occurs. We also give conditions on the initial structure that guarantee the emergence
of consensus. We next extend this rule to a dynamic setting, in which agents announce
and revise their beliefs sequentially. We show that, interestingly, the rule proposed is
commutative whenever agents' beliefs are correct (that is, in 85), but that in general,
in KD45, the order according to which the agents announce their beliefs might matter.
For instance, the final epistemic situation reached is not the same whether all agents
announced simultaneously or one at a time.!

We consider only a semantic framework. In certain fields such as economics and
game theory, the semantic approach is favored while logicians rather prefers to con-
sider the syntax. We will discuss informaJJy along the text the issue of belief revision
from a syntaxical point of view. In particular, we will discuss the difficulties about
stating some axioms of belief revision in a multi agents situation with respect to the
AGM axioms for asingle agent's setting. Indeed, while it would be nice to adapt the
AGM [ALC 85] axiomatic method to multi-agent belief revision, this is far from being
a simple task.2 Indeed, belief revision in a multi-agent framework poses not only the
problem of integrating new information but also the issue of how agents perceive how
other agents will integrate new information. This could lead for instance to violations
of AGM's axiom of success.

.

2. Minimal Kripke structures:' definition and preliminaries

Let I = {l,...,i,...,n} be a finite set of agents and S a set of states of nature
(for instance the game that is being played among the agents).;A Kripke structure is
a representation of agents' beliefs about the state of nature s and about the beliefs of
the other agents.

1. The possibility of non commutativity of belief revision his already been noticed in the liter-
ature. See [GER 97].
2. For an attempt in that direction, see [BOA 03].

l



Communication in KD45 Kripke structures 479

DEFINITION 1. - A lvlinimal Kripke Structure (MKS) is
-
a collection

(D, wo, s, (ti)iEI), where D is a set, and the following conditions are satisfied:

(i) s is a mapping from 0 to S;

(ii) Vi E I, ti is a mapping from D to 2,11;

(iii) Vi E I, Vw E D, wf E ti(W) =? ti(W/) = ti(w);
(iv) Wo E D;

(v) there does not exist Of ~ 0 such that (01, wo, siD" (ti ID,)iEI) satisfies concli-
tions(i) to (iv).3

..

We will refer to an element (w; s(w); h(w), ..., tn(w)) as a state of the world. w
is the name of the state, s (w) is the state of nature in the world W, ti (w) is the set of
states of the world that i considers possible in state w. Finally, Wo is the true state
of the world. Abusing notation slightly we will denote a state of the world w =
(s(w), tl(W), ..., tn(w)).

Since we do not require that agents consider Wopossible, the structures we look at
may contain mistaken beliefs. Hence, we place ourselves in the system KD45 rather
than S5. Embedded in the definition are several assumptions about the nature of the
situations we model. First, we assume a form of consistency of the beliefs: (iii) of
the definition implies that beliefs are partitional (i.e., {ti (w) LJED is a partition of
Oi =: UwEDti(W)). Note however that Di is not necessarily equal to O. Second,
the true statewo is given, since by construction an MKS is a representation of given
beliefs (the ones encapsulated in wo, the other states being part of the description of
these beliefs). Third, we assume that the Kripke structure is minimal in the sense that
it does not contain a smaller Kripke structure (condition (v». This last condition is
equivalent to assuming that the system does not contain states that are not deemed
possible -via a finite sequence of steps of the form "I think that you think that she
thinks..." (condition (vI) in Proposition 2 below, which will be used repeatedly in the
proofs of this paper.) This does not imply that 0 is finite.

PROPOSITION 2. -:- 4 Let (0, wo,s, (ti)iEI) b~a collection which satisfies conditions
(i) to (iv ) of Definition 1. Then condition (v) is equivalent to

(v') Vw E D \ {wo}, there exists a finite sequence, {ik}~:~ with ik E I for all k
such that w E til (ti2 (...(tiJWO)))) where for any A C O,ti(A) = UwEAti(W).

Condition (v') defines what is often called the generated sub-model. The classical
example of the muddy children can be expressed in this formalism.

EXAMPLE 3. ~ Three children come home after playing in the field. They might
have a clean face (0) or a dirty face (D). Each child sees the other two's faces but does
not see whether there is mud on her own face. Assume that the three faces are actually
dirty. Denoting the states of nature by FIF2F3 where Fi E {C, D} is the state of i's
face, we represent this situation by an MKS given by 0 = {wo, ..., W7}where,

3. ti 10' is the restriction ofti to [21, i.e., ti In, : n' -+ 20 and ti
In' (w) = ti (w) for all W E n/.

4. All proofs are gathered in Appendix B.
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- Wo = (DDD, {wo, W4} , {WO,W2}, {wo,wd)

-wI = (DDG,{Wl,WS},{Wl,W3},{Wo,Wd)

-W2 = (DGD,{W2,W6},{WO,W2},{W2,w3})

-W3 = (DGG,{W3,Wd,{Wl,W3},{W2,W3})

-w4 = (GDD,{wO,W4},{w4,w6},{W4,WS})

- W5 = (G DG, {wI, W5} , {WS,w7} , {w4, wS} )

-W6 = (GGD,{W2,WG},{W4,W6},{W6,W7})

- w7 = (GGG, {w3,W7}, {wS,w7}, {w6,w7}) 0

The next example illustrates an instance of mistaken beliefs.

EXAMPLE 4. - Let S = {a,,6}, I ~ {I, 2} and n = {WO,Wl,W2,W3}such that:

- Wo = (a, {WI, w~d , {W3})

-wI = (a,{Wl,W2},{Wl,W2})

- w2 = (,6, {wI, W2} , {wI, w2})

- w3 = (,6,{W3}, {W3}) 0

To describe the situation which is represented in this structure, let us introduce
some elements of syntax. First, for notational simplicity we will denote also by a, ,6...
the primitive propositions i.e: considered as a proposition, a means "the nature is in
state a". We note /\, V, " and --+ for respectively, the and, or, negation and material
implication operators. We consider individual belief operators bi and a common belief
operator cb. 5 Therefore, the previous example catches a situation where the proposi-
tion a /\ blcb (a V ,6) /\. b2cb,6 holds true, that is, in words, a situation where the state
of nature is a, where agent 1 believes that it is common belief that a or,6 and agent 2
believes that it is common belief that ,6.

A given epistemic situation could be captured by MKS that are formally different.
This fact is not bothersome in S5, i.e., if agents do not make any mistake. However,
aswe want to study revision in beliefs when agents potentially have initial mistaken
beliefs, we have to make sure that "irrelevant" mistakes can be dropped at the outset
so,as to focus 011beliefs that are mistaken in a meaningful way. A simple intuition of
why some mistakes are not meaningful is the following: imagine that wo tJ- ti(wo).

This can reflect two very different situations: either the agent is correct in the sense
that in Wohe believes possible a state w' which represents the same beliefs a'8Wo; or
the agent is making a mistake in the sense that he is not considering as possible the
true state of the world Woor any state of the world that represents the same epistemic
state.

5. The commori belief operator cb has the intuitive meaning that everybody believes that every-
body believes...an infinite number of time. Since we do not allow for infinite conjunction, the
definition of the common belief operator cannot be defined hom the individual belief operators
and its properties have to be defined per se. For instance, we have cb<.p--+ bi<.pand cb<.p--+ bicb<.p

forial1 i and proposition <.p.See [BON 96].
.
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EXAMPLE 5. - Let S = {ex}, I = {I, 2} and consider two MKS.
rl = {LUO, WI} such that:

-LUO = (ex,{wd,{wd)

-LUI = (ex, {LUI}, {WI})

and rll ={ LUb} such that:

- LUb = (ex, { wb} , {wb} )

These two MKS represent the same situation: ex is the state of nature and it is common
belief that ex isthe state of nature. 0

A way of getting around this difficulty is to define notions of representation and
equivalence ofMKS as well as a notion of irreducibility for MKS.

DEFINITION 6. - An MKS, (rll, LUb,Sl, (t~)iEI), is a representation of the MKS
(rl, LUO,5, (ti)iEI), if there exists a mapping a- from rl to sY such that

(i) a- (rl) = rll

(ii) a-(wo) = LUb

(iii) Sl 0 a- = s

(iv) Vi E I, t~ 0 a- = a- 0 ti.

DEFINITION 7. - TwoMKS, (rl,LUo,S,(ti)iEI)and(rll,wb,sl,(tDiEI),areequiv-

alent if they have a common representation, (rl/l, w~, sit, (t~f)iEI).

This notion of equivalence corresponds to bisimulation. We now define a notion
of redundancy within an MKS.

DEFINITION 8. - Let (rl, Wo,s, (ti)iEI) be an MKS. Two states WI, W2 E rl are said
to be identical if there exists an MKS, (rlf, LUb,Sf, (t~)iEI) and a mapping a- : 0 -+ 01
as in Definition 6 such that a-(WI) = a-(W2)'

Two states of the world are thus identical if there ~xists a representation of ~he
MKS in which these two states are represented by the same state of the world. Our
next step is to define irreducible MKS, in which such a problem does not arise.

DEFINITION 9. -

-An MKS, (rl,wo,S,.(ti)iEI) is irreducible ifno two distinct states of the world
w, wf E 0, are identical.

-An MKS, (Of,wb,sf,(t~)iEI) is an irreducible representation of
(0, Wo,s, (ti)iEI) if it is a representation of (0, Wo,s, (ti)iEI). and it is irreducible.

In the paper we deal exclusively with irreducible MKS. This is without loss of
generality as the next proposition makes it clear, since non irreducible MKS always
have an irreducible representation.

PROPOSITION 10. - Let (0, Wo,S, (ti)iEI) be an MKS. Then it has an irreducible
representation (rlf, wb, Sl, (tDiEI) and all its irreducible representations are equiva-
lent.

r

L
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Finally, we define a notion of correctness for MK8.

DEFINITION 1l. - Let (n, wo, s, (ti)iEI) be an irreducible MKS. An agent i E 1
correct beliefs if Wo E ti (wo). The MKS is correct if all agents have correct beliefs.
Ihe MKS is totally correct if w E ti (w) for all wEn and all i E I.6

Total correctness amounts to assume 85. Obviously, anMKS can be correct but .

not totally correct, as illustrated in the following example.

EXAMPLE 12. - LetS = {a,/3} and I = {1,2}. Considern = {wo,wd where

- Wo = (a, {wo} , {wo, w d )

- Wl = (/3,{wo} , {wo,wd) 0

3. Common belief in minimal Kripke structures

When agents hold mistaken beliefs, they do not necessarily all have the same view
of what the model actually is. We introduce here the notion of belief horizon of an
agent which is the model the agent has in mind.

DEFINITION13. - Let (n, wo,s, (ti)iEI) be an MKS. The belief horizon of agent
i E I, denoted by BHi(WO, i), is the minimal subset Y oln satisfying:

(i) ti (wo) ~ Y,

(ii) \:/w E Y, \:/j E I, tj(w) ~ Y,

Thus, BHi(WO, t) is the smallest set such that i believes it and believes that all
other agents believe it, believes that others believe that others believe it and so forth.
In Example 4, one has BHl (wo, t) = {Wl, W2} and BH2(WO, t) = {W3}'

PROPOSITION 14. - Let (n, Wo,s, (ti)iEI) be an MKs. Then,

n = {LUG}U
(u BHi(WO, i)

)iEI

'. Define now the notion of common belief.

D~FINITJON 15. - Let (n, Wo,s, (ti)iEI) be an MKS, An event E ~ n is common
bepef (CB) iffor any r E N and sequence {ikH~l' ik ,E I, til (ti2('" (tir(wo))) ~
E '

'I

! Note that as an MK8 describes a mutual belief structure at a specific, "true", state
orthe world, common belief is also defined at that state Wo. The following proposition
characterizes those events that are common beliefs.

6. ,If the MKS considered were not irreducible, the definition should be slightly more general:
an:MKS is correct if 'Vi E I, there exists W E ti(WO), such that wand Wo are identical. When
the MKS is irreducible, this definition and Definition 11 coincide.

!

~
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PROPOSITION '16. - Let (D, LuO,5, (ti)iEI) be an klKS. An event E ~ D is common
belief if and only if BHi(LUO,t) C E for all i E I.

This notion of common belief is meaningful for the analyst since, according to
i's beliefs, any event containing B Hi (LUO,t) is CB. As we shall see later, only at the
absence of mistakes, CB events have stronger meaning.

COROLLARY 17. - Let (D, LUO,5, (ti)iEI) be an MK5. An event E C D is common
belief if and only if

UiEIBHi(wo, t) ~ E ~ D = {LUO}U
(u BHi(LUO, i)

)~EI

This corollary establishes that in an MKS, at most two events can be common
belief. D is always commonly believed (by construction), while S1\ {LUO}is common
belief only if the true state Wo does not belong to the belief horizon of any agent. In
other words, D is the only common belief event at Woif and only if LUOis in the belief
of at least one agent, that is, if and only if there exists i such that LUOE ti (wo).

In syntaxical te~s, that means that cbtp is true (in the real state LUO)if and only if
t.pis true in all the worlds of BHi(WO, t) for all i.

4. Communication and revision in minimal Kripke structures

We are interested in studying the evolution of beliefs when ag'ents can communi-
cate their beliefs to each other and update accordingly. In this section we provide a
rule according to which agents revise their beliefs in a communication process. At
this stage of our work, we do not allow agents to announce false (or partly false) or
even imprecise beliefs. Thus, the analysis will concentrate on the case in which agents
announce truthfully and precisely their beliefs.

. .

DEFINITION18. - Let (D,wo, 5, (ti)iEI) be an MKS. A communication is simply a
subset JC of I, of agents that announce their beliefs (i.e., (ti(WO))iElc),

A communication can be identified by Ic C I, the group of agents who announce
their true beliefs. We'll refer to it as full communication when IC = I. The restriction
that agents announce precisely their true beliefs can be understood as an assumption
that the infonnation revealed can be somehow certified. We will assume in the se-
quel that it is "common belief' that agents announce precisely their true beliefs. For
instance, in Example 4, full communication by agent 1 and 2 means concretely that
agent 1 announces publicly that he believes that the state of nature is a or /3, that
he believes that this is' common belief, while agent 2 announces that he believes it is
common belief that the state of nature is /3.

L
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4.1. Selection junctions

Before introducing the revision rule we propose, we need to add a sort
-sonal attitude of the agents as part of the data of the illodel. Assume that'

MKS, (0, wo, s, (ti)iEI) and a communication IC we consider the selection
satisfying the following definition:

DEFINITION19. - A selectionfunction Ji is a mappingfrom 0 to 2° that
fies:7

(i) Vw E 0, Ji (w) ~ ti (w)

(ii) Vw,w' E 0 such thatti (w) = ti (w') we have Ii (w) = Ii (w')

(iii) consistency: Vw E 0 ifti (w) n {w' E °ltj (w') = tj (wo) Vj E IC} # 0 then
Ii (w) - ti (w) n {w' E rlltj (w') = tj (wo) Vj E IC}

The consistency condition states that every state of the world initially deemed to .

be possibly believed by i (i.e., states that are in Oi) and that explains (is compatible
with) the others' announcements should be kept and furthermore, if there exist such
states, only these states should be kept.

A particular selection function which fits the definition is the following: Vw EO.

Ji(w) ti (w)"n {w' E rlltj (w') = tj (wo) Vf E IC} if it is not empty

ti (w) otherwise

This selection function corresponds to a conservative attitude: if the initialbe-'
liefs of an agent were proven false by the announcement, then the agent keeps all th'e
possible world he initially believed in.

,
The revision rule we are about to introduce is based on these selection functions

and on the assumption that, loosely speaking, they are commonly believed by all
agents so as to enable interactive reasoning about mutual beliefs. It should be noted
that the function Ii is defined on 0, which does not, in general, coincide with i's be-
lief horizon. This is important since j might (mistakenly) believe that i might believe
possible states that are not in i's belief horizon. Hence, j needs to know how to revise
i 'Slbeliefs in these worlds and the selection function precisely tells him how to do so.
Implicit in the fact that the selection function for agent i is defined on all of rl is the
idea that all agents agree on how to revise i's beliefs. If states wand w' belong to -

both .j and j"s belief horizon, then these two agents agree on which states are kept
ac~ording to i's selection function. Furthermore, this fact is commonly believed by
all agents. Hence, we'll make the maintained implicit assumption that given an MKS,
(0, wo, s, (ti)iEI) and a communication, all selection functions Ii are commonly be-
lieved by a11agents.

7. Rigorously, one should index a selection function by the communication, that is, if. For
sake of simplicity we drop the reference to the communication and simply write Ii.
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4.2. Revision rule: definition and example

We now propose a revision rule that copes with announcements contradicting ini-
tial beliefs. We first define the rule and then illustrate it via a few examples. Given an
MKS and a communication, the revision rule captures two elements: (i) each agent i
retains all states of the world according to the selection function fi and this selection
process is commonly believed among the agent, (ii) all announcements made become
common beliefs.

DEFINITION 20. - Let (0, wo, s, (ti)iEI) be an irreducible MKS, Ic a communi-

cation, and (fi)iEI be selection functions. 8 The revision of (0, Wo,s, (ti)iEI) is
(Oc, Wo,s, (tniEI) where tf(.) is defined as follows:

- Vw E 0, Vi E I \]C, tHw) = fi(W)

- Vw EO, Vi E Ic, tHw) = h(wo)

andOc = {LUG}U (UiEIBHi(wo,tC))

REMARK 21. - There is a slight abuse of notation in the previous definition, as Oc
is defined via belief horizons that are only defined once Oc is given. 0

To understand the logic of the revision rule we propose, let us examine in details
the following example.

EXAMPLE 22. - (Example 4 continued) Consider first a simple communication by
agent 2. For agent 1 there are three possible selection functions corresponding to the
three possible non-empty subset of {WI, W2}while the selection function 12 is simply
equal to t2. Consider for instance the "conservative" selection function for h, that is:

h (wo) = h (WI) = {WI, W2} and h (W3) = {W3}'

The revision rule leads to the following MKS:
-

- Wo = (a, {WI, W2} , {W3})

-WI = (a'{Wl,w2},{W3})

- w2 = (;3, {Wl,W2}, {W3})

- w3 = (;3, {W3}, {W3})

It is easy to check that in the above MKS, states Woand WI actually express the same
hierarchy of beliefs and hence, it can be reduced to the following MKS:

- Wo = (a, {wo, W2} , {W3})

- W2 = (;3, {WO,W2}, {W3})

- W3 = (;3, {W3}, {W3})

Therefore, in syntaxical tenns we start from a situation where the proposition a 1\
blcb (a V ;3) l\.b2cb;3 is true (the state of nature is a, agent 1 believes that it is common

8. We define the revision rule only for irreducible MKS, since otherwise the outcome of the
revision process might depend on the representation used.

I.
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belief that a or fJ and agent 2 believes that it is common belief that fJ) to a situation
where a /\ bl (a V fJ) /\ bl b2cbfJ /\ b2cbfJ is true, that is the state of nature is a, agent
] believes a or fJ' believes that agent 2 believes that it is common belief that fJ and
agent 2 stil1 believes that it is common belief that fJ.

The result seems intuitive:
'

- there is no reason why agent 2 should change his beliefs since he received no
announcement and he believes that his own announcements brings no news to agent
],

.

- agent 1 who discovered that he was wrong about agent 2's beliefs, simply takes
them into account in order to modify his own beliefs.

In fact, this case is a very special case which is no more than a single agent revision
process: the content of the announcement (i.e: the proposition b2cbfJ) is taken literally
in the revised behefs of agent 1. This does not have to be the case in general (even in
the case where there is only one agent who announces) as we will see below.

Consider now full communication and let us use the "conservative" selection func-
tions, that is: h (wo) = h (WI) = h (W2) = h(WI) = h(W2) = {WI,W2}and
!1(W3) = h(wo) = h(W3) = {W3}'

The revision rule leads to the following MKS:

-Wo = (a,{WI,W2},{W3})
-WI = (C~,{Wl,W2},{W3})

- w2 = (fJ, {WI, W2} , {W3})

- W3 = (fJ, {Wl,W2}, {W3})

which can be reduced to the following MKS:

- Wo = (a, {wo, W2}, {W2})

- W2 = (fJ,{Wo, W2}, {W2})

The final situation is a situation where a /\ cb(b1 (a V fJ) /\ b2fJ) is true, that is the
state of nature is a and it is commonly believed that agent 1 believes a or fJ and agent
2 ~e1ieves fJ.

i

i Note that contrarily to the previous single announcement, agent] does not simply

incorporate in his beliefs agent 2's announcement. Indeed, for instance, the fact that
agent 2 believes that agent I believes fJ (i.e., b2bIfJ) is no longer true since agent 1
has announced b1(a V fJ) and therefore we can not consider that agent 1 will believe
th<,ttagent 2 believes that. agent I believes fJ (i.e., bl b2bIfJ). Hence starting from
the announcements, agents are deducing new beliefs by calculating how the others
ar~ deducing their new belief~ We do not try to fonnalize the detail of this cross-
deduction process and the rule we propose can be seen as a short cut for this process.

Tl1e resuJt it gives is a rather natural one. '

i This example illustrates some difficulties with tr~nsposing AGM's axiom of suc-

ce~s in a multi.:agent setting. If one takes that beliefs are revised by the announcements;

.
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of both agents, i.e., b1cb (a V 18)I\b2cblB, then this announcement is not true any longer
in the revised system.

Next, let us still consider full communication but let us change agent l's selection
function: h(wo) = h(Wl) = h(W2) = {WI} andh(w3) = {W3},maintaining 12 as
before.

Then we get the following MKS:

-Wo = (a,{Wl},{W3})

-WI = (a,{wl},{wd)

- W2 = C6, {WI} , {W3})

- W3 = CB, {WI} , {W3})

which can be reduced to the following MKS:

- Wo = (ex, { Wo}, {W2} )

~ W2 = (iJ,{Wo}, {W2 })

The final situation is a situation where ex 1\ cb(b1ex 1\ b2iJ) is true, that is the true
state of nature is a and it is commonly believed that agent 1 believes a and agent 2
believes iJ. Compared to the "conservative selection function" case, we see that agent
1 has also revised his beliefs on the state of nature, although there is not much intuition
as to why agent 1 should deduce that iJ is not the case. Perhaps, it is reasonable to
impose more restrictive conditions on the selection function. But it is not clear which
kind of restriction to impose. Indeed, in more complex examples, it is not clear why
we should only restrict our attention to "conservative selection functions".

Finally, we illustrate on that example what would possibly happen when agents
communicate in a less precise manner than the one assumed so far. Consider for
instance the case in which agent 1 announces simply that he believes a or iJ (i.e.,

.
b1(a V iJ)). The event in which this is true is {wo, WI, W2}. It seems natural to think
that beliefs will change in the following manner: whenever we had ex 1\ b1 [cb( ex V
iJ)] 1\ b2cbiJ, we now have a 1\ b1[cb(a V iJ)] 1\ b2cb[b1(ex V iJ) 1\ b2fJ]. In our semantic
approach, the MKS representing this change would be:

-Wo = (ex,{Wl,W2},{W3})

- WI = (ex, {WI, W2} , {WI, W2})

- W2 = (iJ, {WI,W2}, {WI,W2})

-W3 = (iJ,{W3,W4}, {W3})

- W4 = (a, {W3,W4}, {W4})

It is however not clear what the general revision rule should be when faced with
. this type of partial communication. Previous work (see [GER 97]) addressed this

question for general type of communication. They however do not consider Kripke

semantics; but a representation based on non-wen-founded sets. This means, loosely
speaking, that they tolerate empty belief sets when there exists some contradictions:

agents do not attempt to solve the inconsistencies they face. 0
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4.3. Revision rule: agreement and consensus

Before studying properties of the revision rule, we check that it is well defined.

PROPOSITION 23. - Let (0, LUa,S, (ti)iEI) be an irreducible MKS. Then,

(Oc,LUa,S,(tf)iEI) isaMKS.

We now seek to characterize conditions under which the revision leads to different
forms of agreements among agents. This requires making a detour via the definition
and characterization of common S-beliefs systems, in which agents' beliefs about the
state of nature are common belief.

For a given MKS, (0, LUa,s, (ti)iEI) define the S-beliefto be the event

SB(LUO, t) = {LUE °IS(ti(LU)) = S(ti(LUO)) Vi E I}

The S -belief is the event "for all i E I, agent i believes that the state of nature is in
s (ti (LUa))". In other words, S B (LUO,t) is the subset of 0 in whi ch the first level beliefs
about S are as those in wa, i.e., the beliefs in the true state. We define now a special
case of belief systems, where the first level beliefs about S are common beliefs.

DEFINITION 24. - An MKS, (0, wa,s, (ti)iEI) is a common S-belief systetJI

(henceforth CSBS) (f SB(LUa, t) is common belief

In a CSBS, the agents' beliefs about the state of nature are common beliefs. Agents
need not agree in a CSBS. It is thus possible to represent situations in which agents'
disagreement is common belief. Example 12 is an instance of such a situation: 1
believes 0;, 2 believes 0; or (3 and this is common belief, i.e., agents disagree and
this disagreement is common belief. We now establish properties about the degree to
which agents agree after communication and revision have occurred. When all agents
communicate, the revision leads to a situation in which beliefs about the state of nature
are common belief. When agents still disagree about the state of nature, this models
situation in which this disagreement is common belief. Such a case is illustrated in
Example 22 above.

PROPOSITION 25. - Let (0, wa, s, (ti)iEl) be an irreducible MKS. Then,

(Oc, LUn,s, (ti)iEI) is a CSBS whenever Ic = I.

:When the initial MKS is already a CSBS, that is, when the beliefs about the state

of Jlature of all agents are common belief, then communication does not lead to any
further revision.

PJ~OPOSIT[ON26. - Let (0, LUO,s, (ti)iEI) be an irreducible CSBS. Then,
I

([ie, LUO,s, (tf)iEI) = (0, LUa,s, (ti)iEI)

iThe notion of CSBS does not entail a strong notion of agreement since indeed,
di~agreement can be common belief. A particular case of a CSBS is when the first
le~el beliefs of all agents are the same, and thusti(w) ~ tj(w) for all i,j E I and

!
!
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all wED. This represents a situation of consensus, when all agents have the same
beliefs.

DEFINITION27. - An irreducible 1vlKS, (D, wo, s, (ti)iEI) is consensual iffor all
i, j E I, ti (wo) = tj (wo). 9

We now give a sufficient condition that entails that revision leads to a consensual
MKS.

PROPOSITION 28. - Let (D, wo, s, (ti\EI) be an irreducible MKS and let Ic =
I. Assume {w E Dltj(w) = tj(wo)Vj E I} n ti(WO) =I-0 for all i E I. Then,
(Dc,wo,s, (tniEI) is consensual ifand only if

{w E D[tj(w) = tj(wo)Vj E I} n ti(WOJ= niElti(WO)

This proposition establishes necessary and sufficient conditions for consensus to
emerge in the case in which the announcements entail no contradiction. A direct
corollary is that consensus is implied by total correctness.

COROLLARY 29. - Let (D, wo, s, (ti)iEI) be an irreducible MKS and assume it is
totally correct. Assume further that Ic = I. Then, (Dc, wo, s, (tn iEI) is consensual.

4.4. Revision rule: dynamics

We now extend the static framework considered so far to study situations in which
announcements are made sequentially. A communication sequence of length T, is
the specification of a sequence of sets {I~}T=l,...,T. At each stage T, agents in I;
announce precisely their true beliefs. We'll say that the communication is exhaustive
if UT=l,...,TI~ = I, i.e., if all agents announce at some point in time. One can also
easily adapt the definition of the selection function to take into account this temporal
aspect (it is enough to have selection functions indexed by T).

In view of Proposition 23, that asserts that the revision of an MKS is a well defined
MKS, the sequential rule of revision in that case is a straightforward extension of the
revision rule proposed in Definition 20. This rule is implemented at each stage, yield-
ing an MKS at stage T denoted D~. Recall however that, without further restrictions
on agents' selectiOIl function, the revision rule has to be applied to MKS that are irre,..
ducible. Hence, if at the end of any given stage, the resulting MKS is not irreducible,
the? we replace it by one of its irreducible representations before proceeding to the
next round of announcement/revision. In this process, we always make sure that the
labelling of the true state remains Waat all stages. The revision process is well defined

9. Recall that the MKS we are interested in are irreducible. If the MKS is not irreducible then
the definition of consensus needs to be modified: an MKS that has a representation that is
consensual would then be deemed "consensual" itself.
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in the sense that it does not depend on the choice of the irreducible representation (see
Proposition 37 in Appendix A).

..

Of particular interest in this dynamic setting are first whether agreement is even~
tually reached and second, whether the order of the announcements (who announces
when) might matter for the situation eventually reached. We answer these two ques-
tions affirmatively.

PROPOSITION 30. - Let (n, wo, s, (ti)iEI) be an irreducible MKS and assume the

communication (I~)T=l,...,T is exhaustive, then (nT' Wo,s, (ti,T) iEI) is a CSBS.

The revision process ends when the smallest k such that UT=l,...,kI~ = I is
reached. Hence, we established that convergence occurs and at the point of conver-
gence, beliefs about the state of nature are common beliefs (but might be different).
The following proposition shows that there is no loss of generality in restricting at-
tention to communication in which an agent announces his beliefs only once, i.e.,
having an agent announcing his beliefs at two different stages of the communication
is useless.

PROPOSITION 31. - Let (n,wo,s, (ti)iEI) be an irreducible MKS, (I~)T=l,...,T
be a communication, and (Ji,T)T;=l,...,T selection functions. Define the communica'-

tion (I~) T=l,...,T by If = If and I~ = I~ \ UTI<TI~I for 1" = 2, ..., T. Then, if

(n~, Wo,s, (tf,T) iE!) T=l,...,T is a sequence of revised MKS afte: communication Ic,

then, it is also a sequence of revised MKS after communication Ic.

The next point we address is whether the order of announcements matters and
show that it does not if the MKS is totally correct, but might otherwise.

PROPOSITION 32. - Let (n, wo, s, (ti)iEI) be an irreducible totally correct MKS.
Cons~der two sequential communications (I~)T=l,...,T a~d (I~)T=l,...,T of length T
and T respectively, such that UT=l,...,TI~ = UT=l,...,TI~. Then, the revision rule
leads to two equivalent MKS.

.

The proposition provides a rather strong sufficient condition (that the MKS is to-
tally correct) under which the order of announcement does not matter. This sufficient
condition can be relaxed but not much. In Example 33, it is shown that as soon as one
has to cope with 'contradictions, the order matters. One may wonder whether commu-
tativity holds when there is no contradiction. Example 34 is a case of a correct MKS
in which the final beliefs depend on whether the agents announce simultaneously or
sequentially. In this case, the order does matter. This points out the fact that as soon
as ,we depart from MKS that satisfies S5, that is situation where all agents satisfy the.
truth axiom and it is common beliefthat all agents satisfy the truth axiom, then the or-
der does matter. In Example 34, all agents satisfy the truth axiom but it is not common
belief that this is the case. Therefore, in sequential announcement, agents believe that
other agents may have to deal with contradictions aridJhis makes the difference.

EXAMPLE 33. - LetS = {a,;3,')'} and I = {1,2,3}. ConsiderSl = {WO,Wl,W2}
where
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-Wo = (a,{wI,w2},{WO,WI},{WO,W2})

- WI = (;3, {WI, W2} , {Wo, WI} , {WI} )

- W2 = ("Y,{WI, W2} , {W2}, {wo, W2})

491

I) First consider the case where there is only one round of announcement and IC =
{I, 2, 3}: Given this announcement, there is only one possible selection function for
each agent 2 and 3,

h(wo) = h(WI) = 13(wo) = 13(w2)= {wo}, h(W2) = {W2},13(wl) = {wI}
,

while there are three possible selection functions for agent 1

(a) h(wo) = h(WI) = h(W2) = {WI,W2}
(b) h(wo) = h(WI) = h(W2) = {WI}

(c) fI(WO.)= h(Wl) = h(W2) = {W2}

We give the outcome of the revision in these three cases:
case (a): the revision rule yields the following MKS

- Wo = (a, {WI,LU2}, {wo}, {LUO})

- WI = (;3, {WI, wd , {wo} , { LUO} )

- W2 = ("(,{WI , W2} , {Wo} , {LUO})

case (b): the revision rule yields the following MKS

- LUO - (a, {WI},{wo}, {WO})
-WI = (;3,{WI},{WO} , {LUO})

case (c): the revision rule yields the following MKS

- Wo = (a, {W2} , {wo} , {LUO})

- W2 = b, {W2}, {wo} , {LUO})

II) Consider now the case where 1 and 2 announce first, revision occurs, and then
..3 announces, that is, If = {1,2} and Dj = {3}. In the first round, the only pos-

sible selection functions are that h (wo) = h (WI) = h (W2) = {wd for agent 1,
h(wo) = !2(WI) = {wo,wd, !2(W2) = {W2}for agent 2 and 13(wd) = 13(w2) =c

{wo} , 13(LUI)= {WI} for agent 3. Thus, the revised MKS after the first round is given
by

-Wo = (a,{wd,{WO,LUI},{LUO})

- WI = (;3, {WI} , {wo, LUI}, {WI})

The same type of computation after 3's announcement yields:

-LUO = (a,{wI},{WO},{LUO})

- WI = (;3, { wd , {LUO}, { LUO} )

l
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III) Final1y, consider the case where 1 and 3 announce first, revision occurs and then
2 announces, that is, If = {I, 3} and Ii = {2}. Here again, selection functions are
uniquely determined and we obtain after the first round:

-wa = (ex,{w2},{wa},{wa,w2})

- W2 = b, {wd , {w2} , {wa, W2})

and final1y we have, after 2's announcement:

- wa = (();,{w2} , {wa} , {wa })

- W2 = (r, {w2} , {LUG},{wa})

Thus, we end up with different MKS according to the order of announcements. 0

In this example, observe that non-commutativity does not come from possible in-
consistencies in the selection functions. Non-commutativity comes from the fact that
agents' revisions are done sequentially without keeping track of the reason why they
changed their initial beliefs to. begin with. This absence of memory explains why, in
the sequential process in which 1 and 3 announce first and 2 second, 1 does not re-
consider the elimination of WI (made upon 3's announcement) when 2 announces in
the second stage. In the next example, the outcome of the revision process depends on '

the sequence of announcements although the MKS is initially correct (but not totally
correct).

EXAMPLE 34. - LetS = {ex,,6} and! = {1,2}. ConsiderSl = {wO,wl,w2}
where

.

- W(J = (ex, {w(J, wd , {wa} )

- W] = (,6,{w(J,wI}, {w2})

- W2 = (ex,{w2}, {w2})

I.) First consider the case where agents announce simultaneously. The only possible
selection function for agent 1 is h(wa) = h(wI) = {wa}, h(w2) = {W2}'Then we
obtain the following MKS:

- wa = (ex, {wa} , {wa} )
,

11.) Consi del' now the case where If = {I} and 1/] = {2}. After the first announce-
111~nt,we obtain the followingMKS:

,

- W(J = (ex, {wa , wI} , {wa} )

- WI = (,6, {wa, wI} , {w2})

-W2 = (ex,{w(J,wI},{W2})

Before proceeding to the second round of revision, observe that the MKS after the first
ro~nd is not irreducible since state 0 and 2 are identical. Hence, it has an irreducible
representation:

- wa = (ex, {wa , WI} , {wa} )
]

- W] = (,6,{wa,wI} , {wa})
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Now, consider the second step, in which 2 announces his beliefs, i.e., woo This does
not lead to any further revision.

Hence, the MKS we end up with is different from the one in which both agents
were making their announcements simultaneously, showing that the order of these
announcements matters, even though the initial MKS was correct.

Another feature of the example is to show that although the agents reach a con-
sensus in the simultaneous case (the conditions of Proposition 28 are satisfied), the
sequential revision does not lead to consensus. 0

The two previous examples show that the revision process is not necessarily com-
mutative, unless the initial MKS is well behaved (i.e., totally correct) as established
in Proposition 32. This points out a few interesting issues. First, the non commuta-
tivity is not directly linked to the procedure we adopted to treat announcements that
are in contradiction with the initial beliefs of the agents. Indeed, in Example 34, the
two sequential processes studied do not entail any contradiction: in both cases, the
announcements made in tht:: first round are compatible with part of the initial beliefs.
Thus, agents only keep those states that are exactly compatible with the announce-
ments. Second, non-commutativity of the revision procedure arises because agents
treat each new MKS afresh, without keeping track of how they arrived at it. In that
respect the sequential revision process we have described is myopic. Another way of
saying this is to describe the revision process we have defined as a markovian pro-
cess: at each stage, the only information taken into account to revise is the state of the
system at that stage. An alternative, more demanding, way of modelling things would
be to go back, after each round of announcement, to the initial MKS and use all the
sequence of announcements made up to that point in time to revise it. It is not clear
whether the framework developed here is the most appropriate to treat this way of
revising. Further, the "unbounded" memory assumption that this alternative approach
would require might be too demanding in terms of the amount of information agents
would have to keep at each stage of the revision process. Indeed, it is not necessary for
totally correct MKS. Here again, an intuition that is correct in the absence of mistakes
(i.e., the path through which one arrives at a given state of the epistemic system is not

.
relevant) appears to be misleading in the more general case. Finally, non commutativ-
ity points out the fact that communication has another strategic aspect to it beyond its
mere content: the order of the agenda (i.e., who gets to speak when) is important and
agents are bound to take this into account if they have the choice as to when to speak.

Beyond these general remarks, we would like to argue that there is an important
difference between the two examples of non~commutativity. In Example 33, non-
commutativity is problematic: for instance, in the case where agents 1 and 2 announce

.

first and then 3 announces, agent 1 should be allowed to reconsider the elimination of
state w2,since 2's and 3's announcements have essentially the same value to agent
1. The situation in Example 34 is different: the mistakes were not on the first level
beliefs but on higher order beliefs. Hence, these beliefs do change after a first round
of announcement. Thus, the non-commutativity of the rule simply reflects that higher
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order mistaken beliefs are corrected according to the announcements made at a given
stage, before further revision is done.
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A. Irreducibility and revision of MKS

In this appendix, we tackle the issue of whether the revision process we defined
depend on the representation of the MKS we consider. We first establish that if an
MKS is correct so must be any representation of it.

PROPOSITION 35. - Let (n,wO,S,(ti)iEI) and (n',wb,s',(t~)iEI) be irreducible
and equivalent MKS. IjTl is correct then, n' is also correct.

In the last proposition of this appendix, we show that the sequential revision pro-
cess does not depend on the choice of an irreducible representation at each stage.
We first need to define a notion of compatibility of an agent's ordering between two
equivalent irreducible MKS.

DEFINITION36. - Let (n, wo, s, (ti)iEI) and (n', wb, s', (tDiEI) be two irreducible
and equivalent MKS. Two functions f from n to 2r2 and l' from n' to 2r2'are com-

patible if there exists a function r/J : n -t n' such that that conditions (i) to (iv) of
Definition 6 hold and such thatVw E n, f'(r/J(w)) = r/J(f(w)).

PROPOSITlON 37. - Let (n,wO,S,(ti)iEJ) and (n',wb,s',(tDiEI) be two irre-
ducible equivalent MKS. Assume that agents' selection functions are compatible.,

Th~n (s1C,wo, s, (tDiEI) and ((n')C, wb, (s'), ((tDC)iEI) are equivalent MKS.

B. Proofs

PROOF(PROPOSITiON2). Assume (v) and define the set D/ ~. n by 0' -
{LJo}U {w E nlJr E N,J{ik}~~J:,ik E I,ir = i s.th. w E til(ti2('" (tir(WO)))}
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We show that ([lI,wo,sID" (ti!D')iEI) satisfies conditions (i) to (iv) of Definition 1.
Conditions (i), (iii), and (iv) are obvious. Consider i E I, w E [ll and take wI E
tilD' (w) = ti(w)o It is easy to see that by definition of[ll, wI E [ll which proves that

tilD' is a mapping from 01 to 2D'. Therefore, condition (v) implies that [ll = 0 and
thus condition (vI) holds.

Assume now (vI) and suppose there exists [l' ~ 0 such that (lY, wo, siD', (ti In, )iEI )
satisfy conditions (i) to (iv) of Definition 1. Hence, 3w E 0 \ [l'. However by (v'),
3r E Nand {i kH~I, i k E I, iT = i s. tho w E til (ti2 (. . . (tir (wo) ) ). Since Wo E 0',
then fir ID'(wO) = fir (WO)C [l' since condition (ii) applies. By induction, we can
show that for all k = 1, ..r, (ti,clD' (0" (tirID' (wo))) = (tik (000 (tir (wo») ~ 0' and
thusw E [ll yieldinga contradiction. .

PROOF (PROPOSITION 10). - Let R(O) be the set of representations of[l, i.e., the
set of MKS (SY,wb, s', (tDiEI) such that there exists a mapping u from [l to 0' that
satisfies the properties of Definition 6.

Let u be a mapping from 0 to 0 that satisfies u (WI) = u (W2) if and only if there
exists an MKS (0', wb,s', (tDiEI) and a mapping u from 0 to 0' that satisfies the
properties of Definition 6 such that u (WI) = 0" (W2)' Let 0 = u ([2) and Wa = 0"(w6).

Define s : [2 ---+ S by s(w) = S(WI) where WI E [2 is such that a (WI) = W.

This is well defined since if 0"(WI) = u (W2)we know that there exists 0- such that
a (WI) = U (W2) which iplplies that S(WI) = S(W2) since 01 is a representation of [2
VIa 0".

Next, we show that if a (WI) = 0"(W2) then u (ti (WI) = 0"(ti (W2)). Since
U (WI) = (j (W2) , it must be the case that there exists a such that U (wI) = a (W2)'

Then, U (ti (WI) = a (ti (W2»)' Now, let w E U (ti (WI»)' There exists W3 E t~ (WI)
such that 0"(W3) = w. Since 0- (W3) E a (ti (WI)) = 0- (ti (W2)) , there exists W4 E

ti (W2) such that U (W3) = 0- (W4) . Hence, 0- (W3) = 0- (W4) E 0- (ti (W2)) and there-
fore W E U (ti (W2» proving that (j (ti (WI)) C U (ti (W2»)' Similarly, the reverse
inclusion holds and hence 0-(ti (WI)) = 0" (ti (W2))'

Finally, define Ii : [2 ---+2D by Ii (w) = Ii (0-(w)) = 0-(ti (w») where WE 0 is such
that (j (w) = W. This is well defined since we showed that if Whas two antecedents

WI and W2,0- (ti (WI)) = a- (ti (W2))'

We first show that (0, Wo,s, (Ii) iEI) so defined is an MKS. The two conditions

to check are condition (iii) and (v) of Definition 1. Check first condition (iii) and let
W2 E ti(Wl). There exist WI and W2 such that 0-(WI) = WI and U (W2) = W2 and

W2 E ti (WI)' Hence ti (WI) = ti (W2) and therefore a-(ti (wr)) =. u(ti (W2)), i.e.,
ti(WI) . ti(W2).

.

We next check that condition (v') holds (by Proposition 2, this is equivalent to
check condition (v) of Definition 1 directly). Let W E 0. By construction, there exists
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w E [2 such that CJ(w) = w. Thu,s, there exists T finite and a sequence {ik}~:~ with
ik E I for all i such that w E til (1\2 (...(ti1' (wo)))). Hence,

CJ(w) E:= CJ[til(ti2(...(ti1'(WO))))]

Recall that O'(ti(W)) = Ii(CJ(w)). Hence,

CJ[til (ti2 (... (ti1' Cwo))))] = IiI (CJ[ti2 (... (ti1' (wo)))])

and, eventually,
\

CJ[til (ti2 (... (ti" (wo))))] = Iii (ti2 (... (ti1' (CJwo)))) = Iii (ti2 (... (ti" (wo))))
I

proving condition (vf) of ProposHion 2. Observe that ([2, wo, s; (Ii) iEI) is a repre-

sentation of ([2, Wo,s, (ti)iEI), sir,lce CJsatisfies the conditions of Definition 6.

We next want to sho~ that ([2,:wo, 5, (Ii) iEI) is irreducible. Assume this is not the

case and that there exists a repre~ientation (n, &)0,s, (J:) iEI) of (S1,Wo,s, (Ii)iEI)
~

- I -
and a mapping (j : S1 -t S1 such tDlat 0:(W1) = 0:(W2) for some WI, W2 E S1, WI =I W2.

Let w~ and W2 i~ S1 be such that iWl = CJ(Wl) and UJ2 = 0=(W2).It is easy to show
that (D, wo,s, (ti) iEI) is also a r\epresentation of (D, Wo,s, (ti)iEI) via the mapping

0: 0 0'. Hence, n E R(S1) and CJ(wh) = CJ(W2),i.e., WI= W2,a contradiction. .

PROOF (PROPOSITIONS 14 AND 16). - First, we prove the following lemma:
, ,

LE0MA 38. - Let (S1,Wo,s, (ti)iEI) be an MKS. For all i E I, Vw E S1,
, ,

w E BHi(WO, t) B ~T E N,~{ik}~:l,ik E I, iT i s.th. w E ti~ (ti2('" (tir(wo)))
I

PROOF(LEMMA 38). ~ Fior i E I consider NHi(wo,t) = {w E
B-fIi (wo, t) IVTE Nand {ikH~I, lik E I, iT = i s.th. w ~ til (ti2 (. . . (ti1' (wo)))} and ,
suppose N Hi(WO, t) =10. ConsidE,:r Y = BHi(WO,t)\N Hi (wo', i). 'Jii'

i
Note that Y is strictly ind uded!in B Hi (wo, t) since N Hi (wo, t) -I- 0. Remark that

trivially ti (wo) ~ Y which show!s that Y =I 0 and condition (i) of Definition 13 is
satisfied. "

f ,

[Consider wI E Y and j E I. Slince wf E BHi(WO, t),tj(W/) C BHi(WO, i). Sup-
po~e that tj(w/) % Y and thus thelre exists w E NHi(wo, t) n tj(w/). Since wI E Y,
there exists a sequence {ik}~:l' ih E I, iT = i such that wI E til (ti2 (. . . (ti,. (wo))).
Thrn define the sequence {i~}~~~--Jll-lby i~ = j, i~ = ik-l for all k ~ 2, ..,r+ 1. Note
that i~+ l = i. Then we have that W,

I' E ti, (ti' (. . . (ti' (wo))) which is a contradiction
, 1 2 1'+1

,

with wEN Hi (wo, t). Thus, cOLldition (ii) of Definition 13 is also satisfied. That
proves that B Hi (wo, t) is not the iirreducible subset which satisfies these conditions.

i ,-

iThus N Hi (wo, t) = 0 and B l:Ii(wo,t) C {w E S11~T E Nand {i k} ~~1 , ik E I,
iT j= i s.th. w E til (ti2 (.. .(ti1'(Wo;)))}I ,
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Conversely, consider wED such that there existslO TEN and {ikH~~, ik E I,

iT = i such that w E til (ti2 (. . . (tir (wo))) and let us suppose that w ~ B Hi (wo, t).
Then there exists {wk}~~~such that WT= Wo,Vk = 1, .., T -1 Wk E tik+l (Wk+l) and
W E til (WI)' Since W ~ B Hi (wo, t), condition (ii) of Definition 13 implies that WI ~
BHi(WO, i). Recursively, we have that Vk = 1, .., T - 1, Wk ~ BHi(WO, i). Hence,
since WT-l tJ-BHi(wo, i), ti(WO) ct BHi(WO, i), contradicting (i) of Definition 13. .

Propositions 14 and 16 are direct consequences of the lemma. .
PROOF(PROPOSITION23). - It is straightforward to check conditions (i) to (v) of
Definition1forbothsystems. .

PROOF(PROPOSITION25). - Before proceeding to the proof of the proposition
itself, we need a lemma in which CSBS is characterized by the fact that any given
agent must have the same beliefs in all the states of the world.

LEMMA 39. - Let (0, wo, s, (ti)iEI) be an irreducible MK5. Then, the following
assertions are equivalent

(i) (.0, Wo,s, (ti)iEI) is CSBS

(ii) SB(wo, t) = .0
(iii) 'VwE .0,'ViE I, ti(W) = ti(WO)

PROOF (LEMMA 39). - We first prove (i){:} (ii). Since SB(wo, t) is common be-
liefs, we know by Corollary 17 that UiEIBHi(wo, t) C SB(wo, t) ~ .0 - {wo} UiEI

BHi(WO, i). Note that by definition, Wo E SB(wo, t) and thus SB(wo, t) = .o. Con-
versely,if SB(wo, t) = 0, then (0, wo,s, (ti)iEI) is a CSBS.

We next prove (i){:}(iii). From what we just proved, one way is obvious: since the
condition ti(W) = ti(WO) Vw E D, 'Vi E I implies that SB(wo, t) = 0, and hence the
MKS is CSBS.

Conversely, assume that the MKS is CSBS. Then SB(wo, t) = 0. Consider 0' =
{w~LES(D) and the MKS, (O/,W~(wo)' Sl, (tDiEI) defined by 'Vw~ E 0/, Sl (w~) = s

and 'ViE I,t~ (w~) = {w~J E Ols' E s(ti(wo))}. Define the mapping a : 0 ---+01 by
Vw E 0, a(w) = w~(w)' By construction, we have that a(O) = 0/, a(wo) = w~(wo)'

and S' 0 a = s. Consider now i E I and wED. Then

t~ 0 a(w) = t~ (w~(w)) = {w~J E O\SI E S(ti(WO)n

while

a 0 ti (w) {w~J E OI::3w" E ti(W) such thatw~J = a-(w"n

{w~J E OI::3w" E ti(W) such that S' = s (w"n

{w~J E Ols' E s(ti(w))}

1O.By Proposition 2, such an r exists.
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But since 8B(wo, t) = {w E nIS(ti(W» = s(ti(wo» Vi E I} = n, we have
,

0- 0 ti(W) = {W~IE nlsf E s(ti(wo»)} = t~ 0 o-(w)

Thus ti 00- = 0- ~ ti which shows that the MKS, (Slf,WS(UlO)'Sf, (tDiEI) is a repre-
sentation of the MKS, (n, Wa,s, Gti)iEI). Since (n, Wa, s, (ti)iEI) is irreducible; ()' is
a one-to-one mapping. Remark now that by construction Vw~ E Slf, Vi E I, ti(W~) =
ti(W~(Ulo) and since 0--1 is a one-to-one mapping, ti((T-1(w~» - ti((T-l(W~(Ulo))'
establishing that Vw E Sl,Vi E I" ti(W) ,= ti(WO)' .

The proof of Proposition 25 i~ now trivial: If Ic = I,' then by the construction of
tf given in Definition 20, Vi, Vw ~ Slc, tf(w) = fi(WO) = tf(wo) and thus according
toProposition39, (nC,wo,S,(tDJEI)isaCSBS. .,

!
'

PROOF (PROPOSITJON 26). -' Since (Sl, Wo,S, (ti)iEI) is a CSBS, Lemma 39
yields that Vw, E Sl, Vi E ,J, fli(W) = ti(WO)' Hence, Sl = {w E Slltj(w) ~

tj (wo),Vj E IC} 'and hence, giv~n that the selection functions have the consistency
property, Vw E Sl, Vi, if( w) ,:=0:ti(Luo) and thus

I
I

Slc = {wo} U (UiEIBHi(wo, tC») = Sl

which establishes that (nc,wo,S,(tDiEI) - (n,wO,S,(ti)iEI)' .i '

PROOF (PROPOSITJON 28). - Slc is consensual if and only if Ji(wo) = fj(wo) for
all i,j E I. Given that {Wlti(W) ~= ti(wo)Vi E I} n ti(WO)=): O, SlC is consensualif

and only if '
.. I

i

ti(WO)n {Wlti(W)=ti(wo)Vi E It} = tj(wo) n {wlti(w) = ti(wo)Vi E I} Vi,j E I.
,
[=}] Assume Dc consensual. i

:It is easy to check that if niiElti(WO) =): O, then niElti(WO) - {wlti(w) -

ti(0o), Vi E I}.
\

f

Since for all i, j E I,
I

.
.

~ti(WO)n {Wlti(W) = ti(i»o)Vi E I} = tj(wo) n {Wlti(W)= ti(wo)Vi E I} =f O

W
,

e! get that n
.
iEIti(WO)

.

=):"'

,

0. Tlierefore, ti(WO) n {Wlti(W)= ti(wo)Vi E I} =
t~(Lo) n~EI t~(wo) - n~EIti(WO)

I
I[~] Assume ti(wo) n {wltj(w:) = tj(u,Jo)\l.j E I} - niEIti(WO)' T

.

.he

.

n, trivially,

ti(~O) n {wlti(w) = ti(wo)Vi El,} = tj(wo) n {wlti(w) = ti(wo)Vi E I} Vi,j E 1
and[lCisconsensual. .

I
PR:OOF(PROPOSITION 30). - This is readily deduced from three observations:

I-After a communication, if'iE Ic, then by definition, for all w E SlC,tf(w)

,

if( wa). '
"

I-Jfwel start from a situation where the MKS is such that for i, Vw E Sl, ti(u.;) ='
ti(WO),then after a communication, it is also the case that Vw E Slc, tiew) = ti(wo).

II
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- Reducing MKS at each stage to irreducible MKS if necessary, does not affect
the two previous properties.

Thus if the sequential communication is exhaustive, we have that \/UJ EDT,
tf,T(W)= tf,T(UJO)whichcharacterizesCSBS. .

PROOF (PROPOSITION 31). - We prove the proposition by induction. It is trivial
that the proposition is true for T = 1 since the two communications are identical. Let

now T > 2 and assume that for all I-= 1, . . . , T - 1, (DZ, UJO,s, (tf,J iEI)
-. &-l,...,T-l

is a sequence of revised MKS for communication (I;)&=l,...,T-l'

Consider (Ji,T)' the selection functions at stage T for communication Ic. Observe
that these are also selection functions at stage T for communication Ic. Indeed, con-
ditions (i) and (ii) of definition 19 are satisfied. To prove condition (iii), consider
j E I~ \ I~. Then, there exists I-< T - 1 such that j E I;. According to the revision
rule, we have tj,& (UJ) = tj ,&(UJo) for all UJ E DZ' Then, it is easy to see that for all

K = 1-,..., T -1, we also have tj,K,(UJ)= tj,K,(UJo)for allUJ E D~.

Hence, for all j E I~ \ I~,tj,T-l (UJ) = tj,T-l (wo) for allUJ E D~-l and hence,

{UJED~-lltj,T-l(W) = tj,T-l(UJO)\/j E I~}

= {UJE D~-lltj,T-l(W) = tj,T-l(WO)\/j E I~}

which proves that the selection functions are consistent for communication Ie.

Since for all j E I~ \ J~, tj,T-l (w) = tj,T-l (wo) for all w E D~-l' it is easy
to check that applying the revision rule ac~ording to the selection functions (fi,T) for
communication1:;or for communicationI~ leads to the sameresult. .

PROOF (PROPOSITION 32). - This is readily deduced from the following observa-
tions:

.

- When the MKS is totally correct the revision rule can be applied even if the MKS
is not irreducible. It yields the same MKS as if it were applied on the irreducible MKS

.J

to begin with.

-.-At each stage, the revised MKS is totally correct.

- Therefore, revision can be done without worrying about irreducibility of the
MKS.

- Thus, the MKS eventually reached corresponds to taking the intersection of all
the agents' announcements, an operation that does not depend on the order of these
announcements. .
PROOF(PROPOSITION35). - Observe that for all i E I, t~(O'(w)) = 0' (ti(W)) by
construction and W. E ti (UJ) by assumption. Hence, 0' (w) E. 0' (ti (w )) and therefore

a(w) Et~(O'(w))for all i E I. .

PROOF (PROPOSITION 37). - First, we prove the following lemma:
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LEMMA 40. - Let (O,wo,S,(ti)iEl) and (O',wb,s',(t~)iEI) be irreducible and
equivalent MK5. Then there exists a one-to-one and onto mapping <p from 0 to 0'
such that conditions (i) to. (i v) of Definition 6 hold.

PROOF(LEMMA40). - By Proposition 10, 0 and 0' have a common irreducible
representation 0". Let 0- : 0 ---+0" and 0-' : 0' ---+0" be the associated mappings.
By definition, 0-and 0-' are onto. Assume 0- is not one-to-one, i.e., there exist WI, w2 E
0, WI I- W2, such that o-(WI) = 0-(W2)' This implies that D is not irreducible, a

J.

contradiction. Hence 0- is one-to-one. A similar argument holds for 0-'. Therefore,
(0-')-1 00- is a weJ1 defined mapping from 0 to 0' that is one-to-one and onto. Take

4Y = (0-')-100-.Conditions(i) to (iv)holdby construction. .

Let now 4Ybe defined as in Lemma 40. Since the selection functions are com-
patible, it is easy to check that (' o4Y(w) = 4Y0 tf(w) for all w E O. Hence,
((r!')c, wb,s', ((tDC)iEI) is a representationof (OC,Wo,s, (tDiEI)' .

I


