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Abstract. We consider games which arise when two statisticians must make a
decision simultaneously, and the loss function depends on both decisions. We are
interested, in particular, in situations when information is detrimental, in a sense
to be made precise. We show that in certain problems related to Bayesian testing
and prediction the phenomenon of information rejection occurs for certain values
of the parameters involved.
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1 Introduction

In this note we expand on previous work by the same authors [4] concerning
the possibility that two interacting statisticians might prefer to refuse free
information. This phenomenon of information rejection may occur when the
loss of a statistician depends not only on his action and on the state of
Nature, but also on the decision made by another statistician. We refer to
[4] for general considerations on the problem, and also for references on the
relation between statistics and game theory.

Some real situations fit into the scheme of interacting statisticians. For
example, the so-called “inspection games”, where the statistician of the in-
spected party is trying to cheat the inspecting colleague (see [1]). Think also
of a buyer and a seller simultaneously testing a sample each from a stock of
items.

We consider here two examples that were presented in [4], drawn from the
theory of Bayesian testing and Bayesian prediction, and we rephrase them in
greater generality.
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2 Two interacting statisticians and information refusal

We shall consider two examples, relevant in statistics, of games in which
information rejection occurs, in the sense specified below. We shall use the
terms “player” and “statistician” indifferently.

The games considered are as follows:

1. Nature chooses between the following bimatrices of payoffs:

GA :
a1 a0

a1 0, 0 0, 0
a0 0, 0 1, 1

GB :
a1 a0

a1 1, 1 0, 0
a0 0, 0 0, 0

(1)

We shall refer to GA and GB as state-games. The probability with which
Nature selects each state-game is not exactly known to the players.

2. The two players have a common prior P about the behavior of Nature.
3. Each player acquires private information about the choice of Nature. This

information will be assumed to be binary. Thus, each player can be of
two types, in the sense of Harsanyi (1967/1968). We shall say that player
I is of type I0 or of type I1 according to whether he has seen, say, a Tail
or a Head. Analogously for player II. For k ∈ {I, II}, we shall denote
by PIk

the conditional probability given the private information acquired
by player Ik. We may think of PIk

as the updated beliefs of Ik about the
realized choice of Nature.

4. A binary public signal is shown to both players.
5. Each player chooses his action.
6. The state-game chosen by Nature is revealed and payoffs are collected

accordingly.

Several criteria can be taken into account to select actions; among these,
we consider the following:

CRITERION A: Each player chooses a1 if and only if he thinks that GB

is more likely than GA, conditionally on all the information available, private
and public.

CRITERION B: The same as above, but not taking into account the
public signal (namely, conditioning on private information only).

We may say that the phenomenon of information rejection occurs when
both criteria lead to Nash equilibria and Criterion B is more favorable than
Criterion A for at least one player. Recall that a Nash equilibrium is a strategy
profile such that no player can profit from unilaterally deviating from his
strategy in the profile.
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Remark 1. Private information plays a crucial role. In fact, it is proved in
[3] that in games with the structure described above, if the players have the
same information they want as much information as possible. A more general
result, relating positive value of information to uniqueness of Pareto optimal
Nash equilibria is given in [2].

Remark 2. Although the game presented here is somehow artificial, it is in a
sense the simplest possible example in which information refusal may occur.
Private information (which is necessary, as we mentioned above) is binary,
the action space is binary, public information is binary, the bimatrices of
payoff have only one non-zero entry.

Remark 3. The rationale underlying the examples of information refusal which
we are going to show can be phrased as follows. The games are coordination
games, and the prior law is such that both players believe that GB is more
likely than GA. It is known that one observation is not enough to reverse this
opinion, but two observations may lead a player to believe that GA is more
likely. Thus, after one private observation is taken, the players may prefer to
avoid an additional observation, in order not to run the risk of disrupting the
initial coordination.

In order to characterize games as described above, we need to specify:

(a) The prior law P and the way it relates to the mechanism of choice by
Nature

(b) The structure of private information and the way it helps to understand
the unknown probability distribution of Nature on the two state-games.

(c) The structure of the public signal.

2.1 First example: hypothesis testing

In this example we want to describe the situation when two (Bayesian) statis-
ticians need to simultaneously test a simple hypothesis vs another simple
hypothesis, and their payoff is positive iff both make the correct choice. We
may think of GA (resp.:GB) as the payoffs when the true hypothesis is the
null (resp.: the alternative).

We characterize the game along the lines sketched above.

(a) Description of the prior. The prior law P is a distribution on the param-
eter space Ψ := {θ0, θ1}, with 0 < θ0 < θ1 < 1. The value θ0 corresponds
to the null hypothesis, and θ1 to the alternative.
We denote by π0 the probability P that the state-game GA is selected by
Nature, i.e. that the null hypothesis holds true.

(b) Structure of private information. Let Θ be a Ψ -valued random variable
such that Θ = θ0 iff GA is selected by Nature. Let also XI, XII, Y be ran-
dom variables such that, conditionally on Θ = θ, they are i.i.d. Bernoulli
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with parameter θ, ∀θ ∈ Ψ (i.e. P(XI = 1|Θ = θ) = θ). It is common
knowledge that the value of XI is shown to player I only, and that the
value of XII is shown to player II only. Thus, each statistician has a pri-
vate sample of size one from the population to be tested. Y is the public
signal.

(c) Structure of the public signal. The value of Y is shown to both players.
Thus, an additional sample of size one is observed by both statisticians.

A strategy profile in this game is a string of 8 actions: the first two are
the actions taken by I0 (i.e. Player I with private information XI = 0) if
Y = 0 and Y = 1, respectively, and so on. The following proposition shows
that information refusal may occur.

Proposition 1. Consider the game previously described. If the parameters
θ0, θ1 and π0 satisfy

(
1− θ1

1− θ0

)2

max
{

θ1

1− θ0
, 1

}
≤ π0

1− π0
≤ 1− θ1

1− θ0
min

{
(θ1)

2

θ0 (1− θ0)
, 1

}
,

then:

1. The following strategy profile

(I0)
a0a1

(I1)
a1a1

(II0)
a0a1

(II1)
a1a1 , (2)

is an equilibrium. Each action is the same that a single statistician would
have taken if he were to maximize his expected utility based on all avail-
able information, namely, if he were to choose his action according to
Criterion A.

2. The following strategy profile

(I0)
a1a1

(I1)
a1a1

(II0)
a1a1

(II1)
a1a1 . (3)

is an equilibrium. Each action is the same that a single statistician would
have taken if he were to maximize his expected utility based on private
information only, namely, if he were to choose his action according to
Criterion B.

3. The payoff for I0 if (1.2) is played is less than his payoff when (1.3) is
played if and only if

π0

1− π0
≥

(
1− θ1

1− θ0

)2 1
(1− θ0)

(4)

4. The payoff for I1 if (1.2) is played is always less than his payoff when
(1.3) is played.
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Proof. First, we write the expressions for the payoffs:

• The expected payoff for I0 if (1.2) is played is

A(π0, θ0, θ1) := PI0 (Θ = θ0, Y = 0, XII = 0) + PI0 (Θ = θ1, Y = 1) . (5)

• If player I0 deviates from (1.2) and plays a1a1 (other moves are clearly
not advantageous) his expected payoff is

B(π0, θ0, θ1) := PI0 (Θ = θ1, Y = 0, XII = 1) +PI0 (Θ = θ1, Y = 1) . (6)

• The expected payoff for I1 if (1.2) is played is

C(π0, θ0, θ1) := PI1 (Θ = θ1, Y = 0, XII = 1) + PI1 (Θ = θ1, Y = 1) . (7)

• If player I1 deviates from (1.2) and plays a0a1 (other moves are clearly
not advantageous) his expected payoff is

D(π0, θ0, θ1) := PI1 (Θ = θ0, Y = 0, XII = 0)+PI1 (Θ = θ1, Y = 1) . (8)

• The expected payoff for I0 if (1.3) is played is

E(π0, θ0, θ1) := PI0 (Θ = θ1) (9)

• The expected payoff for I1 if (1.3) is played is

F (π0, θ0, θ1) := PI1 (Θ = θ1) (10)

It is clear that (1.3) is an equilibrium. In order to show that (1.2) is an
equilibrium, we need to show that A−B ≥ 0 and C −D ≥ 0. In fact,

A(π0, θ0, θ1)−B(π0, θ0, θ1) = PI0 (Θ = θ0Y = 0, XII = 0)− PI0 (Θ = θ1Y = 0, XII = 1)
= PI0 (Θ = θ0)PI0 (Y = 0, XII = 0|Θ = θ0)− PI0 (Θ = θ1)PI0 (Y = 0, XII = 1|Θ = θ1)

=
π0 (1− θ0)

π0 (1− θ0) + (1− π0) (1− θ1)
(1− θ0)

2 − (1− π0) (1− θ1)
π0 (1− θ0) + (1− π0) (1− θ1)

θ1(1− θ1)

≥ 0 ⇔ π0

1− π0
≥ θ1

1− θ0

(
1− θ1

1− θ0

)2

and

C(π0, θ0, θ1)−D(π0, θ0, θ1) = PI1 (Θ = θ1Y = 0, XII = 1)− PI1 (Θ = θ0Y = 0, XII = 0)

=
(1− π0)θ1

(1− π0)θ1 + π0θ0
θ1(1− θ1)− π0θ0

(1− π0)θ1 + π0θ0
(1− θ0)

2

≥ 0 ⇔ π0

1− π0
≤

(
1− θ1

1− θ0

)
θ2
1

θ0(1− θ0)
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Next, we show that the actions in (1.2) (resp.: (1.3)) are those that a single
statistician following Criterion A (resp.: Criterion B) would have chosen.

Preliminarily, we observe the following: if θ0 < θ1 and if Z1, Z2, . . . are
i.i.d. conditionally on Θ = θ, for θ ∈ {θ0, θ1}, with conditional distribution
Bernoulli with parameter θ, then P(Θ = θ1|

∑
Zi = z) is increasing in z, as

it is easy to check.
In view of these considerations, it is clear that we need only to show

PI0 (Θ = θ1|Y = 0) <
1
2

< PI0 (Θ = θ1) (11)

In fact,

PI0 (Θ = θ1|Y = 0) =
P (Θ = θ1)P (XI = 0, Y = 0|Θ = θ1)

P (XI = 0, Y = 0)

=
(1− π0) (1− θ1)

2

(1− π0) (1− θ1)
2 + π0 (1− θ0)

2

<
1
2
⇔ π0

1− π0
>

(
1− θ1

1− θ0

)2

Furthermore,

PI0 (Θ = θ1) =
(1− π0) (1− θ1)

(1− π0) (1− θ1) + π0 (1− θ0)
>

1
2
⇔ π0

1− π0
<

1− θ1

1− θ0
.

Thus, (1.11) is proved, and the claim follows.

Now, we compare the payoffs of I0 and I1 in the two equilibria (1.2) and
(1.3). It is easy to check that C−F < 0 for all values of the parameters. Hence,
if given the choice, player I1 would choose that the additional information Y
not be revealed.

As far as I0 is concerned, we must compare A and E:

A(π0, θ0, θ1)− E(π0, θ0, θ1) = PI0 (Θ = θ0Y = 0, XII = 0)− PI0 (Θ = θ1Y = 0)

=
π0(1− θ0)

π0(1− θ0) + (1− π0)(1− θ1)
(1− θ0)

2 − (1− π0)(1− θ1)
π0(1− θ0) + (1− π0)(1− θ1)

(1− θ1)

≥ 0 ⇔ π0

1− π0
≥

(
1− θ1

1− θ0

)2 1
(1− θ0)

Hence, only for high enough values of π0 the payoff in the equilibrium emerg-
ing when Y is considered is higher. Thus, if given the choice, player I0 would
prefer that information be revealed for certain values of π0 and would prefer
that it be withheld for other values.
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2.2 Second example: prediction

We want to describe here a situation in which two statisticians must si-
multaneously predict correctly a binary outcome in order to guarantee for
themselves a positive reward.

The setup can be described as follows. Nature chooses repeatedly a state-
game, each time with a probability Θ which is unknown to the players. They
must predict which state-game Nature will choose next. Preliminary obser-
vations will help the players in assessing the value of Θ.

As we shall see below, we shall include in this example the possibility of
partial signaling.

Here is a description of the game.

(a) Description of the prior. The prior law P determines the “a priori” dis-
tribution of Θ. We assume that this distribution is a Beta(α, β).

(b) Structure of private information. Let Y, X, XI , XII be exchangeable Bernoulli
random variables, i.i.d. conditionally on Θ, with P(X = 1|Θ = θ) = θ. It
is common knowledge that the value of XI is shown to player I only, and
that the value of XII is shown to player II only. Y is the public signal (see
below), and X represents the choice of Nature to be predicted: X = 1 if
and only if the state-game GB is selected.

(c) Structure of the public signal. A binary signal ξp is shown to both players
(0 ≤ p ≤ 1). It is such that, independently of the values of Y and of all
random variables involved,

P (ξp = Y ) = p = 1− P (ξp = Z)

where Z is the outcome of a fair coin independent of X; thus, with prob-
ability p the r.v. ξp yields valuable information, namely Y , and with
probability 1 − p it gives irrelevant information, namely the outcome of
an independent coin toss ; for an example of such a variable, see the
Remark below.
We may think of p as the clarity of the signal revealed. For each value of
p we have a game, say Gp.

A strategy profile is described by a string of 8 actions. The first two are
the actions taken by I0 when ξp = 0 and ξp = 1, respectively, and so forth.

Remark 4. In order to describe the public signalling mechanism, consider
first three independent Bernoulli random variables Y,W,Z such that

- Y,XI, XII, X are exchangeable;
- W is independent of XI, XII, X and P (W = 1) = p;
- Z is independent of XI, XII, X and P (Z = 1) = 1

2 .
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The Bernoulli random variable ξp is described as follows: the coin W is
tossed by a referee; if W = 1, then the value of Y is revealed, otherwise the
fair coin Z is tossed and the result of the toss is revealed. Thus

ξp =
{

Y if W = 1,
Z if W = 0,

(12)

i.e.

{ξp = k} = {W = 1, Y = k} ∪ {W = 0, Z = k} , k ∈ {0, 1} .

This mechanism is common knowledge, but the players don’t know the out-
come of W . They are only told the value of ξp (in addition to their private
information). Observe that relevant information is given only when W = 1,
which happens with probability p. If p = 1, then the players have an addi-
tional observation (exchangeable with X) before predicting X. If p = 0, then
the additional observation Y is not available to the players.

Proposition 2. Consider the games Gp as described above. If the parameters
of the prior law of Θ satisfy the relation

2 ≤ β + 1 < α < β + 2,

then:

1. The following strategy profile

(I0)
a0a1

(I1)
a1a1

(II0)
a0a1

(II1)
a1a1 . (13)

is an equilibrium. For

p > p0 :=
1− 2 β+1

α+β+1

1− 4 β+1
α+β+1

α
α+β+2

,

each action is the same that a single statistician would have taken if he
were to maximize his expected utility based on private information only,
namely, if he were to choose his action according to Criterion A.

2. The following strategy profile

(I0)
a1a1

(I1)
a1a1

(II0)
a1a1

(II1)
a1a1 . (14)

is an equilibrium. Each action is the same that a single statistician would
have taken if he were to maximize his expected utility based on private
information only, namely, if he were to choose his action according to
Criterion B. Furthermore, for p < p0, each action is the same that a
single statistician following Criterion A would have taken.
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3. For p > p0, Criterion A is Pareto-dominated by Criterion B. Obviously,
it leads to the same payoff for other values of p.

Proof (of Proposition 2). First of all, since β + 1 < α, we have

PIk
(X = 1) =

α + k

α + β + 1
>

1
2
, k = 0, 1.

Hence, it is obvious that Criterion B leads to (1.14), and this is clearly an
equilibrium.

Next, we consider Criterion A. We have

PI0 (ξp = 0) = PI0 (ξp = Y, Y = 0)+PI0 (ξp = Z, Z = 0) = p
β + 1

α + β + 1
+(1−p)

1
2
,

and

PI0 (X = 0, ξp = 0) = p
β + 1

α + β + 1
β + 2

α + β + 2
+ (1− p)

1
2

β + 1
α + β + 1

.

Hence,

PI0 (X = 0|ξp = 0) =
β+1

α+β+1

[
p β+2

α+β+2 + (1− p)1
2

]

p β+1
α+β+1 + (1− p)1

2

>
1
2
⇔ p >

1− 2 β+1
α+β+1

1− 4 β+1
α+β+1

α
α+β+2

= p0.

Thus, the action of I0 if he sees ξp = 0 is a0. The other strategies in the
profile can be established similarly.

Next, we show that the strategy profile (1.13) yields a Nash equilibrium
of Gp, for every p > p0. First, we write the expressions of the relevant payoffs:

• The payoff of I0 in Gp if (1.13) is played is

PI0(ξp = 0, XII = 0, X = 0) + PI0(ξp = 1, X = 1) (15)

=
1− p

2
PI0(XII = 0, X = 0) + pPI0(Y = 0, XII = 0, X = 0) + PI0(ξp = 1, X = 1)

• The payoff of I0 in Gp if he deviates and plays a1a1 is

PI0(ξp = 0, XII = 1, X = 1) + PI0(ξp = 1, X = 1) (16)

=
1− p

2
PI0(XII = 1, X = 1) + pPI0(Y = 0, XII = 1, X = 1) + PI0(ξp = 1, X = 1)
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We show now that the difference between (1.13) and (1.14), namely
(

1− p

2

) [
β + 1

α + β + 1
β + 2

α + β + 2
− α

α + β + 1
α + 1

α + β + 2

]

+ p

[
β + 1

α + β + 1

(
β + 2

α + β + 2
β + 3

α + β + 3
− α

α + β + 2
α + 1

α + β + 3

)]

is positive iff p > p0. In fact, the above quantity is positive iff

p >

α
α+β+1

α+1
α+β+2 − β+1

α+β+1
β+2

α+β+2

α
α+β+1

α+1
α+β+2 − β+1

α+β+1
β+2

α+β+2 + 2 β+1
α+β+1

(
β+2

α+β+2
β+3

α+β+3 − α
α+β+2

α+1
α+β+3

) .

Now, we see after some straightforward calculations that the right hand side
equals p0.

Next, we repeat the same arguments for player I1. If (1.13) is played, his
payoff is

PI1(ξp = 1, X = 1) + PI1(ξp = 0, XII = 1, X = 1),

whereas if he deviates and plays a0a1 his payoff becomes

PI1(ξp = 1, X = 1) + PI1(ξp = 0, XII = 0, X = 0).

It is a simple matter to check that for every value of p there is no interest in
deviating.

In order to prove the last claim of the Proposition, we first show that the
payoff for I0 if (1.14) is played , namely PI0(X = 1), is greater than (1.15).
In fact, their difference yields

PI0(ξp = 0, X = 1)− PI0(ξp = 0, XII = 0, X = 0)

= p
β + 1∏3

k=1(α + β + k)
[α(α + β + 3)− (β + 2)(β + 3)]

+
1− p

2
∏2

k=1(α + β + k)
[α(α + β + 2)− (β + 1)(β + 2)]

This difference is positive, since

α(α+β+3)−(β+2)(β+3) ≥ (β+1)(2β+4)−(β+2)(β+3) = (β+2)(β−1) ≥ 0,

and
α(α + β + 2)− (β + 1)(β + 2) ≥ (β + 1)α > 0.

It is even simpler to show that the payoff for I1 is greater in the equilibrium
(1.14) than in (1.15) In fact, if (1.14) is played, player I1 collects a non-zero
reward if and only if the event {X = 1} occurs, whereas in (1.15) his reward
is non-zero iff a proper subset of {X = 1} occurs.
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