On a Repeated Game Without a Recursive Structure

By J.-F. Mertens, Louvain¹) and S. Zamir, Jerusalem²)

Abstract: The solution is given here for the infinitely repeated two-person zero-sum games of incomplete information characterized by 2×2 games, with information matrices (\mathbf{A}, \mathbf{B}) for the first game and (\mathbf{C}, \mathbf{D}) for the second game.

1. Introduction

Two main classes of repeated two-person zero-sum games with incomplete information are solved up to now:
- Games in which the information matrices matrices may depend on the player but not on the state of nature [Mertens and Zamir, Mertens].
- Games in which the information matrices do not depend on the players, may depend on the state of nature, with the additional assumption that each player recalls all prior moves [Kohlb erg and Zamir, Kohlb erg].

It seems that without those assumptions one loses the recursive structure that made those cases tractable.

Here an example is solved of a game not fulfilling those assumptions. It was mentioned as an open problem some six years ago [Zamir]:

There are two possible states of nature and accordingly two payoff matrices,

$A = \begin{pmatrix} a & b \\ d & c \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ q & r \end{pmatrix}$, the actual payoff matrix (i.e. the actual state of nature) is chosen once and for all by the referee (with probability p for matrix A), and told to neither player. There are in addition two information matrices $H^A = \begin{pmatrix} a & b \\ d & c \end{pmatrix}$ and $H^B = \begin{pmatrix} e & f \\ q & r \end{pmatrix}$, a and b being two different letters. After each stage, if T is the true payoff matrix $(A$ or $B)$, and the players I and II played their pure strategies i and j respectively, the referee transfers t_{ij} from player II's account to player I's and tell both players the letter t_{ij}. The players get no statement on their accounts before the end of the game. It is crucial here that the moves i and j are not stated explicitly by the referee. However, each player recalls his own move (i or j) and all his own previous moves in addition to the information statements t_{ij} made by the referee up to that stage.

¹) Prof. Jean-François Mertens, Université Catholique de Louvain, Belgium.
²) Prof. Shmuel Zamir, The Hebrew University of Jerusalem, Israel.
Notice that as soon as the letter e is announced by the referee, the true matrix is revealed to both players.

The payoff in the infinitely repeated game is thought of as being the limit $\lim_{n \to \infty} E \left(\frac{1}{n} \sum_{k=1}^{n} t_{kk} \right)$, but is not defined due to the possible non-existence of the limit. Nevertheless we will show that Min Max (and dually Max Min) of the infinite game exists in a well defined (and rather strong) sense:

Player II has an infinite game strategy that guarantees even in all sufficiently large finite games $E \left(\frac{1}{n} \sum_{k=1}^{n} t_{kk} \right) < \text{Min Max} + e$; conversely, for every infinite game strategy τ of player II, player I has an infinite game strategy σ such that $\liminf_{n \to \infty} E \left(\frac{1}{n} \sum_{k=1}^{n} t_{kk} \right) > \text{Min Max} - e$.

For a proof of this result let us introduce a few conventions: We may obviously subtract from the matrices A and B their values $\nu (A)$ and $\nu (B)$ respectively, which will subtract from all payoffs the constant $p \nu (A) + (1 - p) \nu (B)$. Hence we may assume without loss of generality that $\nu (A) = \nu (B) = 0$. We may multiply A by p and B by $(1 - p)$, and consider the payoff to be the sum of the payoffs that would be obtained if A was the true matrix and if B was the true matrix. We will do this in order to simplify slightly notations. Finally x' will always stand for $1 - x$.

1. We define the following auxiliary game \tilde{T}:

$\begin{align*}
\tilde{T} & = \begin{bmatrix}
L & R \\
\tilde{T} & \tilde{B}
\end{bmatrix} \\
(1 - e) T & = \begin{bmatrix}
\tilde{B} & \tilde{A}
\end{bmatrix} \\
(1 - e) B & = \begin{bmatrix}
\tilde{B} & \tilde{A}
\end{bmatrix}
\end{align*}$

Here \tilde{T} (resp. $\tilde{R}, \tilde{F}, \tilde{B}$) stands for the strategy (of player II) of playing always Left (resp. Right, Top, Bottom); $(1 - e) T$ (resp. $(1 - e) B$) stands for the strategy of playing at every stage independently with probability $(1 - e)$ Top (resp. B) and with probability e Bottom (resp. T). (β, β') stands for strategy of playing at each stage and independently with probability β Left and with probability β' Right. Finally T_1 (resp. B_1) stands for a strategy consisting of playing once T (resp. B) and all other times B (resp. T). The entries \tilde{T} can be easily obtained as asymptotic payoffs corresponding to those strategies, using our previous conventions (and thinking of β as strictly between 0 and 1).
On a Repeated Game Without a Recursive Structure

Denote by \(\overline{v} \) the value of \(\bar{\Gamma} \). If we denote by Max Min \(\bar{\Gamma} \) and Min Max \(\bar{\Gamma} \) the max Min and Min Max value of our original game in the strong sense that we described we shall prove that Min Max \(\bar{\Gamma} = \overline{v} \) and that it may be different from Max Min \(\bar{\Gamma} \). To make these statements rigorous we need still two more definitions:

2. Let us define:

\[
\underbar{v}_\infty = \inf \{ U | \exists N \exists \tau \text{ s.t. } \forall n \geq N \forall \sigma_n, \rho_n (\sigma_n, \tau) < U \}
\]

\[
\overbar{v}_\infty = \sup \{ U | \forall \tau \exists \sigma \text{ s.t. } \lim_{n \to \infty} \inf \rho_n (\sigma, \tau) \geq U \}
\]

where \(\sigma \) (resp. \(\tau \)) stands for a strategy of player I (resp. II) in the infinite game while \(\sigma_n \) (resp. \(\tau_n \)) stands for a strategy of player I (resp. II) in a game consisting of \(n \) stages only, \(\rho_n \) (\(\sigma, \tau \)) is the expected average payoff per stage in the first \(n \) stages, given \(\sigma, \tau \) and \(\rho \); i.e., \(\rho_n (\sigma, \tau) = E \sum_{t=0}^{n-1} \rho (T_{k+1}, k_t \sigma, k_t \tau) \), where \(T = (t_N) \) is the true payoff matrix chosen by the referee at the beginning of the game.

Loosely speaking, \(\overbar{v}_\infty \) is the lowest value of \(\lim sup \rho_n \) that player II can guarantee in the infinite game while \(\underbar{v}_\infty \) is the highest value of \(\lim inf \rho_n \) that cannot be guaranteed by player II. Clearly \(\overbar{v}_\infty \leq \underbar{v}_\infty \). In the next section we will prove that \(\overline{v} = \overbar{v}_\infty - \underbar{v}_\infty \), which establishes that \(\overline{v} \) is Min Max \(\bar{\Gamma} \) in the above explained sense.

3. Proofs

For a strategy of player I in \(\bar{\Gamma} \) let \((\alpha, \alpha') \) be the probability distribution induced on \((1 - \varepsilon) T \) and \((1 - \varepsilon) B \).

Lemma 1. For any \(\alpha \) corresponding to any undominated optimal strategy of Player I in \(\bar{\Gamma} \) that uses \((1 - \varepsilon) T \) or \((1 - \varepsilon) B \) with a positive probability, one of the following holds:

\[
\alpha b_{12} > 0 \quad \text{and} \quad \alpha' b_{21} > 0 \quad (3.1)
\]

\[
\alpha b_{11} > 0 \quad \text{and} \quad \alpha' b_{22} > 0 \quad (3.2)
\]

Proof. Assume that for some optimal \(\alpha \) neither of (3.1) and (3.2) holds, so for instance \(\alpha b_{12} < 0 \) (the case \(\alpha' b_{21} < 0 \) is completely symmetric). Since \(\alpha b_{11} < 0 \) and \(\nu (B) = 0 \), we have \(b_{21} > 0 \) and thus also \(\alpha b_{12} < 0 \) (since 3.1 does not hold). Since \(\alpha a_{12} < 0 \) and \(\nu (A) = 0 \), we have \(a_{22} > 0 \). But this implies that the strategy \((1 - \varepsilon) B \) of player I strictly dominates his strategy \((1 - \varepsilon) T \) in \(\bar{\Gamma} \), and thus that \(\alpha = 0 \) which contradicts the assumption \(\alpha b_{11} < 0 \).
Theorem 1. \(v \gg v \).

Proof. Consider an arbitrary strategy \(\tau \) of player II and an arbitrary \(e \) (\(0 < e < 1 \)). \(\tau \) may be considered as a probability measure \(P \) on the space \(\Omega \) of all sequences of \(L \) (left) and \(R \) (right) with the understanding that as soon as the true matrix is revealed, player II switches to his optimal strategy in that matrix.

Let \(p_1 = P(L), p_2 = P(R), p_3 = P(\Omega \setminus (L \cup R)) = 1 - p_1 - p_2 \). Let \(\Omega_{\omega} \) denote the subset of \(\Omega \) consisting of sequences with infinitely many \(L \) and infinitely many \(R \). Let \(L_{\omega} \) denote the subset of \(\Omega \) with a finite non-zero number of \(L \) in the sequence, and similarly \(R_{\omega} \) is the subset of those sequences with a finite non-zero number of \(R \).

We shall refer to these finitely many \(L \) or \(R \) as the exceptional moves.

Define \(N_2 \) by:

\[
\text{Prob. [player II has not played all his exceptional moves before } N_1 \setminus (L_{\omega} \cup R_{\omega}) < e \text{ and } N_2 \text{ by:}
\]

\[
\text{Prob. [number of } L \text{ and } R \text{ in the interval }]_{N_1, N_2} \text{ are both at least}
\]

\[
\ln \frac{e}{1 - \varepsilon} > 1 - \varepsilon
\]

with the understanding that whenever the conditioning set has zero probability, the corresponding integer takes its least possible value (1 or \(N_1 + 1 \)).

It follows from the definitions that even if player I plays \((1 - e) \) in \(J_{N_1, N_2} \) matrix \(A \) (if it is the true matrix) will be revealed with probability greater than \(1 - 2e \), given \(\Omega_{\omega} \), and also that:

\[
\text{Prob. [Both } L \text{ and } R \text{ appear before } N_1 \setminus (L_{\omega} \cup R_{\omega}) < e \text{]
}

Let \((q_1, q_2, q_3, q_4, q_4, q_4, q_4, q_4) \) be an undominated optimal strategy of player I in \(\pi \). For any \(k > N_1 \), let \(q_k \) be the following strategy of player I:

- with probability \(q_1 \), play \(L \);
- with probability \(q_2 \), play \(R \);
- with probability \(q_3 \), choose \(H \) with probability \(\alpha \) and \(S \) with probability \(\alpha' \) and play:
 - if (3.1) holds: if \(H : \; F \) up to \(N_1 \) and \((1 - e) T \) after \(N_1 \),
 - if \(S : \; F \) up to \(N_1 \) and \((1 - e) T + B \) after \(N_1 \),
- if (3.2) holds: if \(H : \; F \) up to \(N_1 \) and \((1 - e) T + B \) after \(N_1 \),
- with probability \(q_4 \), play a strategy \(B_1 \), with the time of playing \(B \) chosen independently of all other choices and uniformly in \([1, k]\);
- with probability \(q_4 \), play a strategy \(T_1 \), with the time of playing \(T \) chosen independently of all other choices and uniformly in \([1, k]\).

We have for all \(n > k \):

\[
1/n \ll N_1/n \ll N_1/n \ll k/n; 1/n \ll k/n, 1/k \ll e.
\]

(3.3)

Let \(f_n = (1/n) \cdot (\text{number of } L \text{ up to time } n) \).
On a Repeated Game Without a Recursive Structure

Let \(M = \max \{ \max_{ij} a_{ij} - \min_{ij} a_{ij}; \max_{ij} b_{ij} - \min_{ij} b_{ij} \} \),

and let 0(e) stand for any quantity x such that |x| ≤ Me

similarly 0(1/k) stands for any y such that |y| ≤ M/k, etc.

Denote by \(\rho_n (\sigma_k, \tau) \) the average payoff per stage resulting from strategies \(\sigma_k \) and \(\tau \),

we have that \(\rho_n (\sigma_k, \tau) \) is the expectation of:

\[
\begin{align*}
q_1 [& p_1(b_{11} + 0(1/n)) + p_2(a_{12} + b_{12}) + p_3(\gamma a_{b_{11}} + \gamma a_{b_{12}}) + 0(N_1/n) + 0(e)] \\
+ & q_2 [p_1(a_{21} + b_{21}) + p_2(a_{22} + 0(1/n)) + p_3(\gamma a_{a_{21}} + \gamma a_{a_{22}}) + 0(N_1/n) + 0(e)] \\
+ & q_3 [p_1(\gamma a_{a_{b_{11}}}) + \gamma a_{a_{b_{12}}}) + 0(N_1/n) + 20 + (0(1/n)) \text{ if (3.2) holds} + \\
+ & q_4 [\gamma a_{a_{b_{11}}} + \gamma a_{a_{b_{12}}}) + 0(N_1/n) + 20 + 0(e) + 0(1/n)) \text{ if (3.2) holds}], \\
+ & P([\Omega_n] + 0(e) + 0(N_1/n))
\end{align*}
\]

if (3.1) holds:

\[
P([L_1]) (\omega a_{11} + 30 + 0(N_1/n)) + P([R_1]) (\omega a_{b_{11}} + 30 + 0(N_1/n))
\]

if (3.2) holds:

\[
P([L_1]) (\omega a_{11} + 30 + 0(N_1/n) + 0(1/n)) + P([R_1]) (\omega a_{b_{11}} + 30 + 0(N_1/n) + 0(1/n))
\]

\[
+ q_4 [p_1(b_{11} + 0(1/n)) + p_2(a_{12} + 0(k/n)) + p_3(\gamma a_{b_{11}} + \gamma a_{b_{12}}) + 0(1/k) + 0(e) + 0(k/n)])
\]

\[
+ q_3 [p_1(b_{21} + 0(k/n)) + p_2(a_{22} + 0(1/n)) + p_3(\gamma a_{b_{21}} + \gamma a_{b_{22}}) + 0(1/k) + 0(e) + 0(k/n)]
\]

Using relations (3.3) and Lemma 1 we get that for all \(n > k \):

\[
\rho_n (\sigma_k, \tau) \geq E(H(k, n, \tau, \omega)) - 4Me - 0(k/n),
\]

where

\[
H(k, n, \tau, \omega) = \begin{bmatrix}
q_1 & b_{11} & a_{12} + b_{12} & b_{11} & b_{12} \\
q_2 & a_{21} + b_{11} & a_{22} & a_{21} & a_{22} \\
q_3 & b_{11} & a_{12} & 0 & 0 & \gamma a_{b_{11}} + \gamma a_{b_{12}} \\
q_4 & b_{21} & a_{22} & 0 & 0 & \gamma a_{a_{b_{11}}} + \gamma a_{a_{b_{12}}} \\
q_5 & b_{21} & a_{22} & \gamma a_{a_{b_{11}}} + \gamma a_{a_{b_{12}}} \\
\end{bmatrix}
\begin{bmatrix}
p_1 \\
p_2 \\
p_3 \\
p_4 \\
p_5 \\
\end{bmatrix}
\]
Denote $E(H(k,n,\tau,\omega))$ by $\phi(f_k,f_n)$. The function $\phi : L_\infty \times L_\infty \rightarrow \mathbb{R}$ is weakly continuous and affine in each variable separately on L_∞ endowed with the weak topology $\sigma(L_\infty,L_1)$.

Let C be the closed convex hull of $\{f_i \mid i > N_1\}$ in L_∞, and consider ϕ on $C \times C$. We have $\phi(f,f) \geq \sup \{f \in C, \inf f_k = f, H(k,n,\tau,\omega) \geq \gamma\}$ holds for each value of ω since $(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)$ is an optimal strategy for player I in Γ. In addition C is compact and convex for $\sigma(L_\infty,L_1)$ and is affine and continuous in each variable separately on C. It follows that ϕ has a saddle point, hence:

$$\exists f \in C \ \forall f \in C : \phi(g,f) \geq \inf \sup \phi(u,f) \geq \inf \phi(f,f) = \bar{u}.$$

Now g is also in the closure of the convex hull of $\{f_i \mid i > N_1\}$ when L_∞ is endowed with the Mackey topology $\tau(L_\infty,L_1)$ due to the convexity of the set $-$ this is a well-known result that follows from the Hahn-Banach theorem. Since on bounded sets of L_∞ the Mackey topology $\tau(L_\infty,L_1)$ coincides with the topology of convergence in probability, it follows that there exist $\lambda_i (1 \leq i \leq l, \lambda_i \geq 0, \sum_{i=1}^l \lambda_i = 1)$ and $k_i (1 \leq i \leq l, k_i > N_1)$ such that:

$$P(\sum_{i=1}^l \lambda_i f_{k_i} - g \geq \epsilon) < \epsilon.$$

Let now $\sigma_{\epsilon,n}$ be the strategy of player I consisting of choosing at the start of the game a number $i (1 \leq i \leq l)$ with probability λ_{i} and thereafter using his strategy σ_{k_i}. Let also $K_M = \max \{K_i \mid 1 \leq i \leq l\}$ then we have:

$$\rho_n (\sigma_{\epsilon,n},\tau) \geq \phi(g,f_n) - 6\epsilon - 0 (K_M/n) \text{ for all } n > K_M.$$

Thus: $\forall \tau$, strategy of player II, $\forall \epsilon, 0 < \epsilon \leq 1$, $\exists \sigma_{\epsilon,n}$, strategy of player I, such that:

$$\lim_{n \rightarrow \infty} \inf_{\tau} \rho_n (\sigma_{\epsilon,n},\tau) \geq \inf_{\tau} \phi(g,f) - 6\epsilon \geq \bar{u} - 6\epsilon.$$

This completes the proof of Theorem 1.

Lemma 2. Player II has an optimal strategy in Γ using only a single value of β.

Proof. A priori player II's optimal strategy in Γ consists of a probability vector (p_1, p_2, p_3) together with a probability measure μ on $[0,1]$ to choose β. We want to show that player II has an optimal strategy in which μ's support is a single point in $[0,1]$.

1. If $b_{11} > b_{12}$ and $a_{11} > a_{12}$ the result follows from the convexity in β of the payoff function.
On a Repeated Game Without a Recursive Structure

L 2) Otherwise we have either $b_{11} < b_{12}$ or $a_{22} < a_{21}$, by symmetry we may assume that $a_{22} < a_{21}$. Since $\nu(A) = 0$ it follows that $a_{22} \leq 0$.

L 2.1) If in addition $b_{11} < b_{12}$, the payoff function is concave in β and thus ν is dominated by the probability on $(0, 1)$ that has the same mean. So without loss of generality we may assume that in this case $\mu(D, I) = 0$. We get thus for $\Gamma = 6 \times 4$ matrix with $\bar{L}, \bar{R}, \bar{b} = 1$ and $\beta = 0$ as pure strategies for player II. The other strategies are eliminated by dominance. In addition $\nu(B) = 0$ implies $b_{11} \leq 0$, and thus we conclude that rows B_{1}, and T_{1} are dominated by $(1 - \epsilon T$ and $(1 - \epsilon) B$ respectively.

Let $R = \begin{pmatrix} b_{11} & b_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad C = \begin{pmatrix} b_{11} & a_{12} \\ b_{21} & a_{22} \end{pmatrix}$

$L 2.1.1$ If $r \leq 0$ and if we denote by (β, β'), the relative weights of the columns $\beta = 1$ and $\beta = 0$, then there exists an optimal β for which $\beta' b_{11} + \beta b_{12} \leq 0$ and $\beta' a_{21} + \beta b_{22} \leq 0$ (if $c < 0$, the required β is the relative weight of the last two columns in the equalizing strategy of player II, if $c > 0$ the value of the game is 0 and an optimal strategy of player II is $(0, 0, \beta, \beta')$ where β is optimal in R and hence satisfies the required inequalities). It follows that if in that optimal strategy, player II would replace the columns $\beta = 1$ and $\beta = 0$ by i.i.d. (β, β'), rows B_{1} and T_{1} would still be dominated by $(1 - \epsilon) T$ and $(1 - \epsilon) B$ respectively and hence player II has in this case an optimal strategy using a single β.

$L 2.1.2$ If $r > 0$, the optimal mixture of the columns $\beta = 1$ and $\beta = 0$ is (β, β'). β being optimal in R and hence $\beta' b_{11} + \beta b_{12} > 0$ and $\beta' a_{21} + \beta b_{22} > 0$. It follows again that replacing the last two columns by i.i.d. (β', β'), rows B_{1} and T_{1} remain dominated, this time by T and \bar{B} respectively, providing again a single β optimal strategy for player II.

L 2.2) We are thus left with the case:

$a_{22} < a_{21}, \quad a_{22} < 0, \quad b_{12} < b_{11}, \quad b_{12} < 0$.

Consider player II's optimal strategy in the game $\bar{\Gamma}$ without the rows B_{1} and T_{1}; it obviously implies $\beta = 0$. For this β, B_{1}, is dominated by $(1 - \epsilon) T$ and T_{1} by $(1 - \epsilon) B$ and thus this single β strategy is also optimal in $\bar{\Gamma}$ This completes the proof of Lemma 2.

Notice that the strategies $\beta = 1$ and $\beta = 0$ in $\bar{\Gamma}$ should be interpreted as playing i.i.d. $(1 - \epsilon, \epsilon)$ and $(\epsilon, 1 - \epsilon)$ respectively. Thus in the single β optimal strategy for player II established in Lemma 2 we may assume $0 < \beta < 1$.

Theorem 2. \(\varphi_n \leq \nu. \)

Proof. We will show that whenever player II plays in \(\Gamma \) one of his strategies \(r \) in \(\Gamma, \)
consisting of a mixture of \(\bar{L}, \bar{R} \) and one \((\beta, \beta') \) with \(0 < \beta < 1 \) — any pure strategy
of player I yields in \(\Gamma_n \) a payoff dominated up to terms \(0 (1/n) \) by a convex combination
of rows of \(\Gamma. \) Since by Lemma 2 player II can guarantee \(r \) — up to \(r \) — by such
mixtures \(r \) against rows of \(\Gamma, \) the result will then follow.

If the pure strategy of player I is \(\bar{L} \) or \(\bar{R} \) then it is already a row of \(\Gamma. \) Take any other
pure strategy that begins say with \(T \) (for strategies starting with \(\bar{R} \) the discussion is completely
dual). Let \(\omega_1 = 1 \) if \(T \) occurs at time \(1 \) in the strategy and \(\omega_1 = 0 \)
otherwise. Let \(f_n = \frac{1}{n} \sum_{i=1}^{n} \omega_i, \) and \(\omega_{n+1} \) be the first zero in the sequence \((\omega_i). \) Let
\(y = t/n; \) we have \(1/n \leq y \leq f_n \leq (n - 1)/n. \)

Let \(D = \beta b_{11} + \beta' b_{21}, \) \(G = \beta b_{21} + \beta' b_{22}, \)
\(X = \frac{1}{n} \left[\omega_1 (1 - \beta \omega_1) + \ldots + \omega_n (1 - \beta \omega_n) \right] \)
\(Y = \frac{1}{n} \left[\omega_1 (1 - \beta' \omega_1) + \ldots + \omega_n (1 - \beta' \omega_n) \right] \).

We have \(f_n \beta^m \leq X \leq f_n \beta^m y \) and
\(y + (\gamma_n - y) \beta^m \leq Y \leq y + (\gamma_n - y) \beta, \) neglecting terms \(0 (1/n). \)

The strategy of player I obtains, up to \(0 (1/n); \) against \(\bar{L}, f, b_{11} + f_n b_{21}; \) against
\(\bar{R} ; y b_{12} + f_n a_{12} + f_n a_{22} \) and against \((\beta, \beta') : GX + DY. \) Majoring the last term
according to the sign of \(G \) and \(D \) we obtain (writing \(f \) for \(f_n) : \)

\[
\begin{array}{ccc}
\text{against} & \bar{L} & \bar{R} \\
\text{a payoff} \leq & f b_{11} + f' b_{21} & y b_{12} + f a_{12} + f' a_{22} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{against} & (\beta, \beta') \text{ with} & G \geq 0, D \geq 0 & G < 0, D < 0 & G > 0, D < 0 & G < 0, D > 0 \\
\text{a payoff} \leq & (y' \delta + D y' \delta') \\
\end{array}
\]

Since all terms are convex in \(y, \) we may replace \(y \) by its extreme values \(1/n \) and \(f. \)
Neglecting terms \(0 (1/n) \) one gets thus:

\[
\begin{array}{c|ccc|ccc}
\chi = 1/n & f b_{11} - f b_{21} & f a_{12} - f a_{22} & G \geq 0, D \geq 0 & G < 0, D > 0 & G > 0, D < 0 & G < 0, D < 0 \\
\chi = f & f b_{11} - f b_{21} & f a_{12} - f a_{22} & (y' \delta + D y' \delta') \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c|c|c}
\chi = 1/n & f b_{11} - f b_{21} & f a_{12} - f a_{22} & G \geq 0, D \geq 0 & G < 0, D > 0 & G > 0, D < 0 & G < 0, D < 0 \\
\chi = f & f b_{11} - f b_{21} & f a_{12} - f a_{22} & (y' \delta + D y' \delta') \\
\end{array}
\]
On a Repeated Game Without a Recursive Structure

$f^{m'}$ and $f^{m''}$ are convex. When their coefficients are negative let us majorize them by zero. All functions get then linear or convex in f, so we may replace f by its extreme values $1/n$ and $(1 - 1/n)$. Neglecting terms $O(1/n)$ one obtains:

<table>
<thead>
<tr>
<th>$f = 1/n$</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f = m/n$</td>
<td>b_1</td>
<td>a_{11}</td>
<td>$G b$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$m' = m/n$</td>
<td>b_{11}</td>
<td>$a_{11} + b_{11}$</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

We conclude that player I's strategy is dominated by the mixture of three similar strategies with $(y = 1/n, f = 1 - 1/n), (y = f = 1/n)$ and $(y = f = 1 - 1/n)$, the weights being f', f'' and y respectively. But this mixture is dominated by the convex combination with the same weights of the following rows of $f':$

<table>
<thead>
<tr>
<th>Case</th>
<th>$G > 0, D > 0$</th>
<th>$G < 0, D > 0$</th>
<th>$G > 0, D < 0$</th>
<th>$G < 0, D < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f' - y$</td>
<td>B_1</td>
<td>B_1</td>
<td>$(1 - e)T$</td>
<td>$(1 - e)T$</td>
</tr>
<tr>
<td>f''</td>
<td>T_1</td>
<td>$(1 - e)B$</td>
<td>T_1</td>
<td>$(1 - e)B$</td>
</tr>
</tbody>
</table>
| y | T | T | T | Tf

This completes the proof of Theorem 2.

4. Conclusions

(i) $\tilde{w}_m = \tilde{w}_m = \tilde{v} = \min \max \Gamma$

(ii) Player II has an "e-MinMax" strategy of the type: With probability p_1 play always L, with probability p_2 play always R and with probability $1 - p_1 - p_2$ play always i.i.d. with probability $\beta), L$ and with probability β, R.

(iii) This strategy also guarantees that in any finite sufficiently long game the payoff is less than $\tilde{v} + e$.

(iv) Dual results hold for player I.

(v) Analysis of the game Γ' and its' dual Γ shows that the only cases where there is no value (i.e. $\tilde{v} > y$) are: $(c \lor r < 0$ and $a_{21} > 0$ and either $a_{12} \wedge b_{21} > 0$ or $a_{12} (a_{21} - a_{22}) + b_{21} a_{22} < 0$) and its symmetries obtained by either permuting the games

\[(a_{ij} \leftrightarrow b_{ij}'$ where $1' = 2$ and $2' = 1$) or permuting the players $(a_{ij} \leftrightarrow -a_{ij}; b_{ij} \leftrightarrow -b_{ij})$ or both.
An example of a game without value is the following:

\[A = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix} \]

Optimal strategies in \(\Gamma \) are: For player I; \((1/4, 1/4, 1/4, 1/4, 0, 0)\) and for player II; \((1/4, 1/4, 1/2, 1/2, 1/2)\) giving \(\gamma = -1/2 \). Optimal strategies in \(\Gamma^l \) are: For player I; \((1/6, 1/6, 2/3, 1/2, 1/2)\) and for player II; \((1/6, 1/6, 0, 0, 1/3, 1/3)\) giving \(\gamma = -2/3 \).

References

Received October, 1974
(revised version February, 1977)