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Abstract. We consider an infinitely repeated two-person zero-sum game with
incomplete information on one side, in which the maximizer is the (more) in-
formed player. Such games have value vyðpÞ for all 0 a p a 1. The informed
player can guarantee that all along the game the average payo¤ per stage will
be greater than or equal to vyðpÞ (and will converge from above to vyðpÞ if
the minimizer plays optimally). Thus there is a conflict of interest between the
two players as to the speed of convergence of the average payo¤s-to the value
vyðpÞ. In the context of such repeated games, we define a game for the speed
of convergence, denoted SGyðpÞ, and a value for this game. We prove that
the value exists for games with the highest error term, i.e., games in which
vnðpÞ � vyðpÞ is of the order of magnitude of 1ffiffi

n
p . In that case the value of

SGyðpÞ is of the order of magnitude of 1ffiffi
n
p . We then show a class of games for

which the value does not exist. Given any infinite martingale Xy ¼ fXkgyk¼1,
one defines for each n : VnðXyÞ :¼ E

Pn
k¼1 jXkþ1 � Xkj. For our first result we

prove that for a uniformly bounded, infinite martingale Xy, VnðXyÞ can be of
the order of magnitude of n1=2�e, for arbitrarily small e > 0.

Key words: Repeated Games, Incomplete Information, Variation of Bounded
martingales.

1. Introduction

In this paper we treat a two-person zero-sum infinitely repeated game with
incomplete information on one side.1 Let A1;A2 be 2� 2 matrices, each

1 For background see e.g. p. 175 of [1] and p. 116 of [8].
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corresponding to the payo¤ of a two-person zero-sum game, with elements
ak

ij , where k A f1; 2g represents the number of the matrix and i A I ¼
fT ;Bg and j A J ¼ fL;Rg are the pure strategies of PI (the maximizer) and
PII (the minimizer), respectively. For each p, 0 a p a 1, we consider the n-
stage repeated game GnðpÞ, defined as follows:

. At stage 0, chance chooses k ¼ 1 with probability p, and k ¼ 2 with proba-
bility p 0 ¼ 1� p. Both players know p, but (only) PI is informed about the
chosen value of k.

. At stage 1, PI, knowing k, chooses i1 A I , PII chooses j1 A J, and ði1; j1Þ is
publicly announced.

. At stage m, m ¼ 2; 3. . PI, knowing k and ði1; j1Þ � � � ðim�1; jm�1Þ, chooses
im A I . PII, knowing ði1; j1Þ � � � ðim�1; jm�1Þ, chooses jm A J and ðim; jmÞ is
announced.

. After stage n, PI receives from PII the amount:

1

n

Xn

m¼1

ak
im jm

:

Define vnðpÞ ¼ val GnðpÞ (the minmax value of the game GnðpÞ).
The strategies in GnðpÞ: Denote by hm, the random variable that represents

the history of announcements up to stage m: ði1; j1Þ � � � ðim�1; jm�1Þ, and by
Hm ¼ ðI � JÞm�1 the set of all m-stage histories. (H1 ¼q.)

A (behavioral) strategy for PI is sn ¼ ðs1
n ; s

2
nÞ, where for each k A f1; 2g:

sk
n ¼ ðsk

1 ; . . . sk
n Þ, and for all m, 1 a m a n, sk

m is a function from Hm into
the set of probability distributions on I. A (behavioral) strategy for PII is
tn ¼ ðt1 � � � tnÞ, where for all m, 1 a m a n, tm is a function from Hm into the
set of probability distributions on J.

Remark 1.1. The di¤erence in the structure of the strategies of the two players is
due to the fact that only PI knows the chosen value of k, and therefore can play
di¤erently in each of the two matrices.

We now define the infinitely repeated game GyðpÞ, as follows:
A strategy for PI in GyðpÞ is s ¼ ðs1; s2Þ, where for all k A f1; 2g, sk is

an infinite sequence fsk
n : n b 1g, and each sk

n is a function from Hn into the
set of probability distributions on I. A strategy for PII in GyðpÞ is t, where
t ¼ ftn : n b 1g, and tn is a function from Hn into the set of probability dis-
tributions on J.

For any pair of strategies, s; t, let gnðs; tÞ be the average expected payo¤
for the n first stages in GyðpÞ (or in any GlðpÞ l b n), when s and t are
played. That is:

gnðs; tÞ ¼ Ep;s; t
1

n

Xn

m¼1

ak
im jm

 !

:

(Ep;s; t is the expectation with respect to the probability measure on Hnþ1 in-
duced by p; s; t.) From now on, we use s and t to denote strategies of PI and
PII, respectively, in the game GyðpÞ.
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Definition 1.2. (see e.g. p. 187 in [1].)

. We say that PI can guarantee f ðpÞ in GyðpÞ if for any e > 0 there is se and
Ne, such that:

gnðse; tÞ � f ðpÞb�e En > Ne; Et:

. We say that PII can guarantee gðpÞ in GyðpÞ if for any e > 0 there is te and
Ne, such that:

gnðs; teÞ � gðpÞa e En > Ne; Es:

. We say that GyðpÞ has a value vyðpÞ if both players can guarantee vyðpÞ.

An alternative definition for the value of an infinitely repeated game would
be the limit of the values of the n-stage games GnðpÞ, namely: limn!y vnðpÞ, if
this limit exists. (For more details see Zamir [10]).

Denote by DðpÞ the one-stage zero-sum game with payo¤ matrix of
pA1 þ p 0A2.2 DðpÞ can be interpreted as the one-stage game in which both
players are not informed of the matrix chosen. Let uðpÞ ¼ val DðpÞ, and
Cav uðpÞ be the smallest concave function that is greater than or equal to uðpÞ
on ½0; 1�.

Theorem (Aumann and Maschler [1]):3 vyðpÞ and limn!y vnðpÞ both exist,
and:

vyðpÞ ¼ lim
n!y

vnðpÞ ¼ Cav uðpÞ:

In other words, in this model as long as we are only interested in the
asymptotic properties of GnðpÞ, both concepts – ‘the value of the limit-game’,
and the ‘limit of the values’ (of the finite games) – lead to the same result.

2. Motivation

We interpret GyðpÞ as a model for finite long games in which the number of
stages n is not known in advance. In such situations, the players have to play
‘‘uniformly well’’ in n, since any stage n can turn out to be the end of the game
after which the payment procedure takes place. Aumann and Maschler con-
structed a strategy s� in GyðpÞ (the splitting strategy, see e.g. p. 126 of [8],)
such that

gnðs�; tÞb Cav uðpÞ; En; Et: ð1Þ

Similarly, they constructed an optimal strategy t� for PII (the Blackwell ap-
proachability strategy), such that there is a c > 0 satisfying that:

gnðs; t�Þa Cav uðpÞ þ c
ffiffiffi
n
p ; En; Es: ð2Þ

2 see e.g., Definition 3.10 p. 123 of [8].
3 Aumann and Maschler proposition A, p. 187 and Theorem C.
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Property (1) is the key property of our model, on the basis of which we con-
struct the game for the speed of convergence. By this result of Aumann and
Maschler, PI can guarantee at least Cav uðpÞ for all n. Thus playing optimally
for him means guaranteeing the slowest possible speed of convergence from
above to Cav uðpÞ. Note that monotonicity of the sequence of payo¤s is not a
requirement (nor can it be guaranteed by PI, since it depends also on PII’s
actions). The fact that PI should be interested in a slow speed of convergence
follows from Property (1) which states that PI can guarantee that the payo¤s
will converge to vyðpÞ from above. Similarly, for PII playing optimally means
guaranteeing the fastest speed possible. This leads naturally to the definition
of the game for the speed of convergence, which we will denote SGyðpÞ. The
two main applications of SGyðpÞ are:

. To define formally the level at which PI plays uniformly well in all finite
games. The fact that PI does not know n and therefore cannot in general
achieve vnðpÞ, causes him a loss. A strategy which guarantees just Cav uðpÞ
yields a loss of ðvnðpÞ � Cav uðpÞÞ (compared to the situation in which PI
knows n). This di¤erence can be of the order of magnitude of 1ffiffi

n
p (Section 3).

We will show that PI can reduce his loss to the order of 1ffiffi
n
p 1� 1

n e

� �
En for ar-

bitrarily small e > 0.
. Our game refines the notion of optimality (for PI) for the strategies in GyðpÞ:

Any strategy s satisfying (1) is optimal in GyðpÞ. We shall parameterize
this set of optimal strategies by the speed of convergence of inf t gnðs; tÞ to
Cav uðpÞ. An optimal strategy for which ðinf t gnðs; tÞ � Cav uðpÞÞ is of the
same order of magnitude as f ðnÞ will be denoted by sf . This defines a nat-
ural ‘‘preference’’ of PI: If f is of a greater order of magnitude than g (i.e.,
gðnÞ
f ðnÞ ! 0), then sg �PI sf .

Although this paper deals mostly with repeated games of incomplete infor-
mation on one side, it is clear from this discussion that SGyðpÞ is of interest in
any infinite zero-sum game with the following properties: The infinite game
has a value vyðpÞ, and one of the players has the advantage of being able to
guarantee vyðpÞ uniformly in n. (e.g., PII has a strategy t, satisfying that:
gnðs; tÞa vyðpÞ En; Es).

3. Definitions and preliminary results

For all x denote: x 0 ¼ 1� x.
enðpÞ :¼ vnðpÞ � Cav uðpÞ n b 1 is called the nth error term of the game.

The nth error term is the extra gain that PI can guarantee (over Cav uðpÞ) in
GnðpÞ. The sequence eðpÞ ¼ fenðpÞgyn¼1 is called the error term of the game. In
analogy with the nth error term defined in GnðpÞ, given s in GyðpÞ, we look at

inf
t

gnðs; tÞ � Cav uðpÞ:

This is the extra gain that PI can guarantee by using s if the game ends after n
stages (and similarly for PII: sups gnðs; tÞ � Cav uðpÞ).

The following proposition states the relationship between vnðpÞ and its
analogs in GyðpÞ.
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Proposition 3.1. For all s 0, t 0, strategies in GyðpÞ and for all n:

inf
t

gnðs 0; tÞa vnðpÞa sup
s

gnðs; t 0Þ:

This proposition expresses the intuition that both PI and PII have more
freedom in their choices of strategies in GnðpÞ than in GyðpÞ, since a strategy
in GnðpÞ can depend on n, and a strategy in GyðpÞ (where the end of the game
is not known to the players) cannot depend on n. In other words, any strategy
available to any of the players in GyðpÞ is available to them also in GnðpÞ (as
its n-truncation); hence they can not ‘‘do better’’ in GyðpÞ than in GnðpÞ.

Proof: For any pair of strategies s and t of PI and PII in GyðpÞ, we denote by
sn, tn the n-truncation of s, t, respectively. Then for all s 0, t 0 and for all n:

. inf t gnðs 0; tÞ ¼ inf tn
gnðs 0; tnÞa vnðpÞ.

. sups gnðs; t 0Þ ¼ supsn
gnðsn; t

0Þb vnðpÞ. r

We are now in a position to define the game SGyðpÞ and its value:

. The payo¤ matrices and the strategy spaces for each player are the same as
in GyðpÞ.

. The payo¤ function in this game is not a real number but rather the infinite
sequence of expected payo¤s in the nth stage game generated by s and t,
namely: fgnðs; tÞg

y
n¼1. Since the value of SGyðpÞ that we will define next

involves only the order of magnitude of sequences, comparing di¤erent strat-
egies will be done only by comparing the order of magnitude of their respec-
tive payo¤ sequences.

Definition 3.2.

. Two sequences f and g of non-negative numbers are said to be of the same
order of magnitude if there are constants c1; c2 > 0, and N, such that

c2gðnÞa f ðnÞa c1gðnÞ; En b N:

This will be denoted by f ¼ O�ðgÞ, or g ¼ O�ð f Þ.
. If there is a c > 0, and N, such that cgðnÞa f ðnÞ, En b N, we write that

g a O�ð f Þ.

Definition 3.3.

. We say that PI can guarantee a rate of convergence of f b 0 in SGyðpÞ if
bc > 0 such that for all e > 0 bseð f Þ:

gnðseð f Þ; tÞ � vyðpÞb cf ðnÞn�e; Et; n:

. We say that PII can guarantee a rate of convergence of g b 0 in SGyðpÞ if
bb > 0 such that for all e > 0 bteðgÞ:

gnðs; teðgÞÞ � vyðpÞa bgðnÞne; Es; n:
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. We say that SGyðpÞ has a value vsðpÞ if both PI and PII can guarantee vsðpÞ
in SGyðpÞ.

Remark 3.4. Note that if g ¼ O�ð f Þ, then if PI (or PII) can guarantee f , then
he can also guarantee g. In other words, if vsðpÞ exists, then it represents not a
unique function, but an equivalence class of functions, where the equivalence
relation is defined in Definition 3.2.

Remark 3.5. . The reason we define asymptotic guaranteeing is that PI can
never guarantee a speed as slow as 1ffiffi

n
p , (as we will soon show). However, he

can guarantee 1
n1=2þe for arbitrarily small e.

. The choice of ne for the definition of the asymptotic convergence is somewhat
arbitrary and one could think of other, more general definitions. However, this
is rather natural in the context of repeated games of incomplete information,
where the upper bounds of the speed of convergence are known to be 1ffiffi

n
p (see

Section 3) and 1
n2=3 (see [6]).

Note that for SGyð0Þ and SGyð1Þ, there is always a value, and this value is 0
(where 0 is the constant zero sequence), since this is a game with complete
information.

Proposition 3.6. If there is a value vsðpÞ for SGyðpÞ, then it satisfies

vsðpÞ ¼ O�ðeðpÞÞ:

(Recall that eðpÞ ¼ fenðpÞgnb1 ¼ fvnðpÞ � vyðpÞgnb1 is the error term of the
game.)

Proof: From Proposition 3.1 we get that for any s 0, t 0:

inf
t

gnðs 0; tÞ � vyðpÞa enðpÞa sup
s

gnðs; t 0Þ � vyðpÞ; En:

Denote vsðp; nÞ as the nth element of the sequence vsðpÞ.
If there is a value vsðpÞ for SGyðpÞ, then by Definition 3.3 there are

c; b > 0 such that for all e > 0 there exist se ¼ seðvsðpÞÞ, te ¼ teðvsðpÞÞ sat-
isfying that

cn�evsðp; nÞa inf
t

gnðse; tÞ � vyðpÞa enðpÞa sup
s

gnðs; teÞ � vyðpÞ

a bnevsðp; nÞ; En:

Letting e go to 0, we get that cvsðp; nÞa enðpÞa bvsðp; nÞ; hence by Definition
3.2: vsðpÞ ¼ O�ðeðpÞÞ. r

Remark 3.7. For any sequence fang, we abbreviate O�ðfangÞ as O�ðanÞ.

Our main result is that although vsðpÞ (unlike eðpÞ) does not always exist,

it does exist for the special class of games in which eðpÞ ¼ O� 1ffiffi
n
p
� �

Ep A ð0; 1Þ,
and hence equals O� 1ffiffi

n
p
� �

by Proposition 3.6.
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The games for which eðpÞ ¼ O� 1ffiffi
n
p
� �

Ep A ð0; 1Þ were characterized by

Mertens and Zamir as the games for which
ffiffiffi
n
p
ðvnðpÞ � Cav uðpÞÞ ! FðpÞ,

where FðpÞ is an appropriately scaled normal density function. (For details
see e.g. Mertens and Zamir [6]).

We shall refer to this class of games as ‘‘normal games’’.
For any strategy s of PI in GyðpÞ (or in GnðpÞ), define a sequence of ran-

dom variables:4

P1 1 p

and for each n > 1,

Pn :¼ Pp;s; tðk ¼ 1 j hnÞ:

That is, given hn, s and t, Pn is the conditional probability that at stage 0
chance chose k ¼ 1. It can be shown that the distribution Pn is independent of
t since t is independent of k. The reason for this is that PI’s belief as to the
matrix that was chosen is dependent on PII’s strategy only through PII’s ac-
tions. Therefore, given the history, PI’s belief is no longer dependent on PII’s
strategy. It can also be shown that Py ¼ fPngyn¼1 is a martingale. Hence, any
strategy of PI in GyðpÞ, yields an infinite martingale Py ¼ fPngyn¼1 satisfying
0 a Pn a 1, En.

For all n and all m b n let:

VnðPmÞ ¼ E
Xn

k¼1

jPkþ1 � Pkj

be the nth variation of Pm ¼ fPkgm
k¼1. The nth variation is a measure for the

expected amount of information revealed by PI up to (and including) stage n,
when he uses the strategy s. Note that the definition for VnðPmÞ holds also for
m ¼y.

The variation VnðPmÞ plays a key role in the analysis, since the extra gain
of PI (beyond Cav uðpÞ) is constrained by the amount of information he re-
veals. More precisely: it is proved (see p. 224 of [3]) that there is c > 0, such
that

inf
t

gnðs; tÞa
1

n

Xn

k¼1

EuðPkÞ þ
c

n
VnðPmÞa Cav uðpÞ þ c

n
VnðPmÞ ð3Þ

for all n a m and all s (a strategy in GmðpÞ, m b n).
By the Cauchy-Schwarts inequality and the fact that Py is a uniformly

bounded martingale, one can prove that5

VnðPmÞa
ffiffiffiffiffiffiffi
pp 0

p ffiffiffi
n
p

; for all n; ðm b nÞ: ð4Þ

Remark 3.8. It follows from (3) and (4) that eðpÞa O� 1ffiffi
n
p
� �

.

4 For background see e.g. p. 189 of [4] and p. 122 of [8].
5 See e.g. proposition 3.8 p. 122 of [8].
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It was proved (see Mertens and Zamir [5]) that O� 1ffiffi
n
p
� �

is the least upper

bound for the order of magnitude of eðpÞ. In other words there exists a game
in which enðpÞb bpp 0ffiffi

n
p , for some b > 0, En and Ep A ð0; 1Þ.

Hence from (3) it follows that there is a c > 0 such that for each n there is
an n-length martingale of probabilities Pn satisfying that

VnðPnÞb c
ffiffiffi
n
p

:

Mertens and Zamir also proved6 that for any infinite uniformly bounded

martingale Py, limn!y
VnðPyÞffiffi

n
p

n o
¼ 0.

Result 3.9. From the above we get that if vsðpÞ exists, then it satisfies:
0 a vsðpÞ < O�ðn1=2Þ.

From this point we proceed as follows:

. Although there isn’t any infinite uniformly bounded martingale Xy satisfy-
ing VnðXyÞb a

ffiffiffi
n
p

, En for some a > 0, we prove in Part 4 that
ffiffiffi
n
p

can be
reached asymptotically. That is, for every e > 0, we will construct an infinite
martingale Xy

e satisfying

VnðXy
e Þb cn1=2�e; En

for some c > 0.
. In Part 5 we construct for any e > 0, a strategy se in GyðpÞ, that yields an

infinite martingale Py
e that coincides with Xy

e in some interval ðl; uÞ in ½0; 1�.
. In Part 6 we prove that by using the strategy constructed in part 5 in the

normal games, PI guarantees a rate of convergence of O� 1ffiffi
n
p
� �

. We prove

that in these games there is a value vsðpÞ for SGyðpÞ Ep A ð0; 1Þ, and that

vsðpÞ ¼ O� 1ffiffi
n
p
� �

.
. We conclude by showing in Part 7 a class of games that for all 0 < p < 1,

does not have a value for SGyðpÞ.

4. On the variation of uniformly bounded infinite martingales

As mentioned earlier, Mertens and Zamir proved7 that for any infinite uni-

formly bounded martingale Py, limn!y
VnðPyÞffiffi

n
p

n o
¼ 0.

Our first result states that although the n-stage variation of a uniformly
bounded infinite martingale is strictly smaller than O�ð

ffiffiffi
n
p
Þ, it can be of

O�ðn1=2�eÞ for arbitrarily small e > 0.

Theorem 4.1. For any e > 0 there is a c > 0 and a uniformly bounded y-
martingale Py

e ¼ fPngyn¼1 satisfying

VnðPy
e Þb cn1=2�e; En:

6 For details see Theorem 2.4 p. 255 of [5].
7 see Theorem 2.4 p. 255 of [5].
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From the discussion above it is clear that the behavior of infinite bounded
martingales plays a central role in our model; therefore, it is not surprising
that our result will be based on the following theorem.

Theorem 4.2. For any e > 0, h > 0 and 0 a l < p < u a 1, there is c > 0 and a
martingale Xy

e ¼ fXngyn¼1 with EX1 ¼ p that satisfies:

(a) Pðl < Xn < u; EnÞ > 1� h
(b) VnðXy

e Þb cn1=2�e En.

Furthermore:

P
Xn

k¼1

jXkþ1 � Xkjb cn1=2�e; En

( )

¼ 1:

Proof: We construct a martingale that satisfies (a) and (b).
For a given 0 < y < 1, let Yk, k ¼ 1; 2 . . . ; be i.i.d. random variables, de-

fined by:

PðYk ¼ yÞ ¼ y 0 and PðYk ¼ �y 0Þ ¼ y

(where y 0 ¼ 1� y).
The required martingale Xy

e is now defined as follows:
X1 1 p, and for all n > 1:

Xn :¼ Xn�1 þ
Yn0þn

ðn0 þ nÞ1=2þe
;

where n0 ¼ nðe; p; l; uÞ is a constant that we choose so that Xy
e satisfies (a) and

(b). To prove that there is an n0 such that Xy
e satisfies (a) and (b), we shall

prove the following two lemmas.

Lemma 4.3. Xy ¼ limn!y Xn exists and it satisfies:

. Xy is finite almost surely.

. EXy ¼ p.

. The convergence of Xn to Xy is almost uniform; that is, for all h; d > 0, there
is an N such that

PðjXn � Xyj < d; En > NÞb 1� h:

Proof:

VarðXnÞ ¼ Var
Xn0þn

k¼n0þ2

Yk

k1=2þe

( )

¼
Xn0þn

k¼n0þ2

yy 0

k1þ2e
a Me;

where Me ¼
Py

k¼1
yy 0

K 1þ2e.

Note that EjXnja
ffiffiffiffiffiffiffiffiffiffi
EX 2

n

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2Xn þVar Xn

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þVar Xn

p
a1þMe.
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Since EjXnja Me þ 1 En, we get that by the martingale Convergence
Theorem,8 Xy ¼ limn!y Xn exists and is finite, and EXy ¼ p.

Using Egoro¤ ’s theorem9, we get that the convergence of Xn to Xy is al-
most uniform. r

Lemma 4.4. For any d; h > 0, there is an N ¼ Nðd; hÞ, such that for any n0 > N,
the process Xy

e constructed using n0 will satisfy

PðjXn � Xyj < d; EnÞb 1� h:

Proof: Consider the above-defined process with n0 ¼ 0; that is, for each n > 1

~XXn ¼ pþ
Xn

k¼2

Yk

k1=2þe
ð5Þ

~XXy ¼ pþ
Xy

k¼2

Yk

k1=2þe
ð6Þ

By Lemma 4.3 we have that for any d > 0 and h > 0, there is an N ¼ Nðd; hÞ
such that

Pðj ~XXn � ~XXyj < d; En > NÞb 1� h: ð7Þ

Now for any n0: Xy � Xn 1 ~XXy � ~XXnþn0
, so we have

PðjXy � Xnj < d; EnÞ ¼ Pðj ~XXy � ~XXnþn0
j < d; EnÞ

¼ Pðj ~XXy � ~XXnj < d; En > n0Þ:

So for any such process defined with n0 > N, where N satisfies (7), we get:

PðjXy � Xnj < d; EnÞ ¼ Pðj ~XXy � ~XXnj < d; En > n0Þ

b Pðj ~XXy � ~XXnj < d; En > NÞ

b 1� h;

and with that we have proved lemma 4.4. r

To complete the definition of the martingale Xy
e , we now define n0 as fol-

lows.
Given e; p; l and u, such that 0 a l < p < u a 1, define d� ¼ min

p�l

2
;

u�p

2

n o
.

For fixed h > 0, let n0 be the minimal Nðd�; hÞ that satisfies the inequality of
lemma 4.4 for d ¼ d�.

8 see e.g. p. 244 of [7].
9 see e.g. p. 88 of [2].
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. We now prove that the martingale Xy
e satisfies (a):

Pðl < Xn < u; EnÞb PðjXn � pj < 2d�; EnÞ

b PðjXn � Xyj þ jXy � pj < 2d�; EnÞ

b PðjXn � Xyj < d� En; and jXy � X1j < d�Þ

¼ PðjXn � Xyj < d�; EnÞb 1� h:

. To prove that Xy
e satisfies (b):

Denote minðy; y 0Þ by a.

Xn

k¼1

jXkþ1 � Xkj ¼
Xn0þnþ1

k¼n0þ2

jYkj
k1=2þe

b
Xn0þn

k¼n0þ2

a

k1=2þe
b cn1=2�e

for some c > 0; hence

P
Xn

k¼1

jXkþ1 � Xkjb cn1=2�e; En

( )

¼ 1:

In particular, VnðXy
e Þb cn1=2�e, En, which concludes the proof of Theorem

4.2. r

Proof of Theorem 4.1: Define Py
e as follows: For any 0 a l < p < u a 1, we

defined, the constant n0 ¼ nðe; p; l; uÞ in the proof of Theorem 4.2. Since e and
p are fixed, we abbreviate this by n0ðl; uÞ. For a given 0 < y < 1, let Yk,
k ¼ 1; 2 . . . ; be i.i.d. random variables, defined by:

PðYk ¼ yÞ ¼ y 0 and PðYk ¼ �y 0Þ ¼ y

(where y 0 ¼ 1� y).
The required martingale Py

e is now defined as follows:
P1 1 p.

. As long as Pn�1 A ðl; uÞ; then:

Pn :¼ Pn�1 þ
Yn0þn

ðn0 þ nÞ1=2þe
:

. If there is N such that PN B ðl; uÞ, then for all n b N : Pn 1PN ; in other
words, Py

e absorbs outside ðl; uÞ.

Since in ðl; uÞ Py
e ¼ fPngyn¼1 coincides with the Xy

e ¼ fXngyn¼1 defined in the
proof of Theorem 4.2, then:

Pðl < Pn < u; EnÞ ¼ Pðl < Xn < u; EnÞb 1� h:

In particular, for all n: Pðl < Pm < u; Em a nÞb 1� h.
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And so:

VnðPy
e Þ ¼ E

Xn

k¼1

jPkþ1 � Pkj

b E
Xn

k¼1

jPkþ1 � Pkj j l < Pm < u; Em a n

( )

� Pðl < Pm < u; Em a nÞ

b E
Xn0þn

k¼n0þ2

jYkj
ðn0ðl; uÞ þ kÞ1=2þe

� ð1� hÞ

b
Xn0þn

k¼n0þ2

að1� hÞ
ðn0ðl; uÞ þ kÞ1=2þe

b cn1=2�e;

for some c > 0. r

Remark 4.5. Theorem 4.1 can be generalized as follows (and proved in the same
manner):

Theorem 4.6. For all positive functions hðxÞ satisfying that
Py

k¼1 h2ðkÞ is finite,
there is c > 0 and an infinite uniformly bounded martingale wy

h ¼ fXngyn¼1, with
EX1 ¼ p that satisfies:

Vnðwy
h Þb c

ð n

0

hðxÞ dx; En:

Example: hðxÞ ¼ 1
x1=2ðln xÞa for any a > 1

2. Note that the order of magnitude of

h is strictly greater than O� 1
x1=2þe

� �
for all e > 0.

5. Constructing a strategy for PI with maximal variation

As mentioned earlier:

inf
t

gnðs; tÞa Cav uðpÞ þ c

n
VnðPy

e Þ; En:

Therefore, a strategy for PI that will give him the highest O�ðinf t gnðs; tÞÞ
must have maximal O�ðVnðPy

e ÞÞ, where Py
e is the martingale of the condi-

tional probabilities derived from s. Note that any 0 < y < 1 defines the fol-
lowing strategy for PI in DðpÞ: For any p Play pðTÞ ¼ y and pðBÞ ¼ y 0.

We concentrate on the normal games. These games have the following
characteristics:

. PI has a strategy y, which is optimal for all p in DðpÞ and in GyðpÞ.
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. Cav uðpÞ1 uðpÞ1 0, which implies that, from any stage n on, PI can guar-
antee Cav uðpÞ (since uðPnÞ1Cav uðpÞ1 0.) Thus he can deviate from the
non-revealing optimal strategy y while guaranteeing the asymptotic value
Cav uðpÞ.

In order to use his extra information PI would like to deviate from y. He
would like to do so in such a way that he would gain as close as possible to
cn�1=2. In particular, he has to make sure that with positive probability, Py

e
never absorbs to zero or one. The way to achieve that is to create a ‘‘safe
zone’’ ðl; uÞ inside ð0; 1Þ and to construct a strategy that yields a martingale
Py

e which, as long as Py
e is inside this zone, satisfies:

VnðPy
e Þb cn1=2�e; En

for some c > 0, (by exploiting our construction in the proof of Theorem 4.1.)
Outside that zone, Py

e is absorbed as PI will play the non-revealing optimal
strategy y, and guarantee Cav uðpÞ ¼ 0 from there on. Theorem 4.1 guaran-
tees that with positive probability Py

e will always stay in the safe zone and
hence achieve the maximal variation.

In Part 4, we defined the abbreviation: n0ðl; uÞ, for fixed e and p. We now
define the safe zone ðl; uÞ as follows:

. If 1ffiffiffiffiffiffiffiffiffiffi
n0ð0;1Þ
p < p < 1� 1ffiffiffiffiffiffiffiffiffiffi

n0ð0;1Þ
p , then l ¼ 1ffiffiffiffiffiffiffiffiffiffi

n0ð0;1Þ
p and u ¼ 1� 1ffiffiffiffiffiffiffiffiffiffi

n0ð0;1Þ
p .

. Otherwise l ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ð0;1ÞþM
p and u ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0ð0;1ÞþM
p , where M is the smallest

integer that satisfies p A ðl; uÞ.

We also define the following sequence jðnÞ as follows.

. If 1ffiffiffiffiffiffiffiffiffiffi
n0ð0;1Þ
p < p < 1� 1ffiffiffiffiffiffiffiffiffiffi

n0ð0;1Þ
p , then: jðnÞ ¼ ðn0ðl; uÞ þ nÞ1=2þe.

. Otherwise, jðnÞ ¼ ðn0ðl; uÞ þ nþMÞ1=2þe, where M is defined as above.

For any e > 0, we will construct a strategy se for PI such that the sequence
of conditional probabilities yielded by it will be the same as Py

e for that e. The
only information about the history that PI will use at stage n is the conditional
probability Pn, and so by abuse of notation we denote sk

n ðPnÞ as the proba-
bility that PI will choose T at stage n, given K ¼ k and Pn.

Definition of se: Given 0 < y < 1, for any stage n ¼ 1; 2 . . . ;

. If l < Pn < u, then:

s1
nðPnÞ ¼ yþ yy 0

jðnÞPn

s2
nðPnÞ ¼ y� yy 0

jðnÞP 0n
:

. Otherwise, sk
n ðPnÞ ¼ sðPnÞ for k ¼ 1; 2, where sðPnÞ is an optimal strategy of

PI in DðPnÞ ¼ PnA1 þ ð1� PnÞA2.

Remark 5.1. Note that for any two intervals such that ða; bÞJ ðc; dÞ, we have
n0ða; bÞb n0ðc; dÞ, since by the definition of d� we get that d�ða; bÞa d�ðc; dÞ
(where d�ðx; yÞ is d� that correspond to the case of interval ðx; yÞ). Hence,
any N that satisfies (7) for d�ða; bÞ, satisfies (7) for d�ðc; dÞ. Since we
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defined n0ðc; dÞ as the minimal N that satisfies (7) for d�ðc; dÞ, we get that
n0ða; bÞb n0ðc; dÞ.

Lemma 5.2. The se defined above is well defined, meaning; For all k; n, Pn sat-
isfies 0 a sk

n ðPnÞa 1.

Proof: First, if l ¼ 1ffiffiffiffiffiffiffiffiffiffi
n0ð0;1Þ
p and u ¼ 1� 1ffiffiffiffiffiffiffiffiffiffi

n0ð0;1Þ
p ,

. If Pn B ðl; uÞ, then it is obvious since sk
n ðPnÞ is an optimal strategy of PI in

DðPnÞ.
. If Pn A ðl; uÞ then:

s1
nðPnÞ ¼ yþ yy 0

jðnÞPn

:

We have to prove that yþ yy 0

jðnÞPn
a 1. This is equivalent to yy 0

jðnÞPn
a y 0, which

is equivalent to y a jðnÞPn. Now jðnÞ ¼ ðn0ðl; uÞ þ nÞ1=2þe, so,

jðnÞPn b ðn0ðl; uÞ þ nÞ1=2þe
l >

n0ðl; uÞ
n0ð0; 1Þ

� �1=2

:

By Remark 5.1:
n0ðl;uÞ
n0ð0;1Þ b 1, so we get:

jðnÞPn b 1 > y:

In the same way we prove that 0 a s2
nðPnÞa 1.

Secondly, if l ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ð0;1ÞþM
p u ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0ð0;1ÞþM
p , where M is defined above, then

the proof of this lemma is again straightforward. r

Lemma 5.3. The strategy se yields a martingale Py
e ¼ fPngyn¼1, which coincides

with Py
e defined in the proof of Theorem 4.1.

Proof: fPngyn¼1 is a martingale that satisfies:

Pnþ1 ¼

s1
nðPnÞ

snðPnÞ
Pn; if in ¼ T

s1
n

0ðPnÞ
s 0nðPnÞ

Pn; if in ¼ B

8
>>>><

>>>>:

ð8Þ

(recall snðPnÞ ¼ Pns1
nðPnÞ þ P 0ns2

nðPnÞ, where P 0n ¼ 1� Pn) so Pðin ¼ TÞ ¼
snðPnÞ and Pðin ¼ BÞ ¼ s 0nðPnÞ and so:

. If Pn A ðl; uÞ, then by definition:

snðPnÞ ¼ Pn yþ yy 0

jðnÞPn

� �
þ P 0n y� yy 0

jðnÞP 0n

� �
¼ y:
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And so by (8), if Pn A ðl; uÞ, then:

Pnþ1 ¼

yþ yy 0
jðnÞPn

� �
Pn

y
; If in ¼ T

y 0� yy 0
jðnÞPn

� �
Pn

y 0
; If in ¼ B.

8
>>>><

>>>>:

That is: P Pnþ1 ¼ Pn þ y 0

jðnÞ

� �
¼ Pðin ¼ TÞ ¼ y and:

P Pnþ1 ¼ Pn �
y

jðnÞ

� �
¼ Pðin ¼ BÞ ¼ y 0:

In other words, if Pn A ðl; uÞ, then:

Pnþ1 ¼ Pn þ
Yn

ðn0ðl; uÞ þ nÞ1=2þe
:

. If Pn B ðl; uÞ, then sk
n ðPnÞ ¼ sðPnÞ, k ¼ 1; 2. That is se is then non revealing,

and so: Pm ¼ Pn En; i.e., Pn is absorbed outside ðl; uÞ, which concludes the
proof of lemma 5.3. r

6. The speed of convergence in the normal games

We will now use se which we constructed in Section 5 for the normal games.
We will show that by using it, PI guarantees maximal speed of convergence.
That is, there is a c > 0 such that for all t: gnðse; tÞ � Cav uðpÞb c

n1=2þe, En.

Theorem 6.1. In the normal games there is a value vsðpÞ for SGyðpÞ, for all

0 < p < 1, and vsðpÞ ¼ O� 1ffiffi
n
p
� �

.

The normal games were characterized by Mertens and Zamir,10 who
showed that a normal game has a presentation of:

A1 ¼
y 0a �y 0a 0

�ya ya 0

� �
A2 ¼

y 0b �y 0b 0

�yb yb 0

� �

0 < y; a; b < 1 and without loss of generality a > b.
We will prove the theorem by proving two lemmas:

Lemma 6.2. In the normal games: PI can guarantee O� 1ffiffi
n
p
� �

in SGyðpÞ for all
0 < p < 1.

Proof: For e > 0, use se which was defined in Part 5.
At stage n:

. If Pn A ðl; uÞ, and PII is using ðt; t 0Þ, then the payo¤ for this stage is:

10 For details see Theorem 2.1 of [6].
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�
Pnðs1

nðPnÞ; s1
n

0ðPnÞÞ
y 0a �y 0a 0

�ya ya 0

� �

þ P 0nðs2
nðpnÞ; s2

n

0ðPnÞÞ
y 0b �y 0b 0

�yb yb 0

� ��
t

t 0

� �

¼ yy 0

jðnÞ ða� bÞðtþ t 0Þ ¼ yy 0ða� bÞ
jðnÞ :

This is true for all t, and for all l < Pn < u, so when se is used by PI, the
payo¤ gn for stage n satisfies:

Eðgn j l < Pn < uÞ ¼ yy 0ða� bÞ
jðnÞ ; Et: ð9Þ

. Now, if Pn B ðl; uÞ then sk
n ðPnÞ ¼ sðPnÞ ¼ y, so:

Eðgn jPn B ðl; uÞÞ ¼ 0 Et:

Hence for all n; t:

gnðse; tÞ ¼
1

n

Xn

k¼1

Eðgkðse; tÞÞ

¼ 1

n
E
Xn

k¼1

ðgkðse; tÞÞ j l < Pm < u; Em a n

( )

ð1� hÞ

and so by equation (9):

gnðse; tÞ ¼
1

n

Xn

k¼1

yy 0ða� bÞ
jðkÞ

" #

ð1� hÞ

¼ ð1� hÞyy 0ða� bÞ
n

Xn

k¼1

1

jðkÞ b
c

n1=2þe
; for some c > 0:

Hence, by Definition 3.3, this concludes the proof of lemma 6.2. r

Lemma 6.3. PII can guarantee O� 1ffiffi
n
p
� �

in SGyðpÞ for all 0 < p < 1.

Proof: PII has a strategy tB, based on Blackwell’s approachability theorem (see
e.g. Aumann and Maschler p. 225 of [3]), which guarantees that in any GyðpÞ
(not just in the normal games,) he need not pay more than Cav uðpÞ þ affiffi

n
p , for

some 0 < a, for all 0 < p < 1. r

Proof of Theorem 6.1: By the definition of vsðpÞ, Lemmas 6.2 and 6.3 im-
ply that there is a value vsðpÞ for SGyðpÞ in the normal games, and that:

vsðpÞ ¼ O� 1ffiffi
n
p
� �

Ep A ð0; 1Þ. r
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7. A case in which the game SGyyy( p), does not have a value

Since for all p, vnðpÞ is monotonically decreasing function in n (see Propo-
sition 3.19 in [8]) and vnðpÞb Cav uðpÞ En, then v1ðpÞ ¼ Cav uðpÞ implies
vnðpÞ ¼ Cav uðpÞ En, and thus enðpÞ ¼ 0, En. Hence, in this special case PI
cannot gain any benefit that exceeds Cav uðpÞ by using his extra knowledge,
and therefore we consider this game to be trivial.

Definition 7.1. If v1ðpÞ ¼ Cav uðpÞ, then we say that GyðpÞ is a trivial game.

It is easy to see that if GyðpÞ is trivial, then vsðpÞ exists and vsðpÞ ¼ O�ð0Þ.
Note that Gyð0Þ and Gyð1Þ are always trivial.

Theorem 7.2. If uðpÞ is strictly concave on ½0; 1� and GyðpÞ is not trivial, then
the game SGyðpÞ does not have a value.

Games with strictly concave uðpÞ represent cases in which PI prefers the
situation that none of the players know which is the game played, rather than
the situation that both of them do know. To see that, note that when none of
the players know which game is being played then they play DðpÞ and the
value is uðpÞ. If both players know which game is being played, then both can
play optimal in that game, so the value is:

pv1 þ p 0v2;

where v1, v2 are the values of A1, A2, respectively. (Note that uð1Þ ¼ v1 and
uð0Þ ¼ v2.) By the strict concavity of uðpÞ, we have:

uðpÞ > puð1Þ þ p 0uð0Þ ¼ pv1 þ p 0v2; for all 0 < p < 1:

So in such games we would expect PI to be conservative in his use of infor-
mation, in order not to reveal it to PII. It turns out that in GyðpÞ, PI should
never use his information.

Lemma 7.3. If uðpÞ is strictly concave on ½0; 1�, then if PI guarantees f in
SGyðpÞ, then f ¼ O�ð0Þ.

Proof: Since uðpÞ is strictly concave, then for all p:

Cav uðpÞ ¼ uðpÞ:

(1) If s is a non-revealing (NR) strategy, that is for all n: s1
nðhnÞ1 s2

nðhnÞ then
for all n:

inf
t

gnðs; tÞa uðpÞ ¼ Cav uðpÞ:

Thus the NR optimal strategy in GyðpÞ, consisting of playing repeatedly
an optimal strategy in DðpÞ, guarantees 0 in SGyðpÞ.

(2) We claim that any other strategy s is not (even) optimal in GyðpÞ. We
do that by proving that there is an N and d > 0 such that inf t gnðs; tÞ <
uðpÞ � d. En > N.
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Let n̂n be the first stage such that s1
nðhnÞ2 s2

nðhnÞ.
For all n:

inf
t

gnðs; tÞa
1

n

Xn

i¼1

EuðPiÞ þ
c
ffiffiffi
n
p

(see (3) and (4) in Part 3).
. For all n a n̂n: Pi 1 p.
. For n ¼ n̂n: Pn̂nþ1 2Pn̂n.

So by the strict concavity of uðpÞ:

EðuðPn̂nþ1 jPn̂nÞÞ < uðEðPn̂nþ1 jPn̂nÞÞ ¼ uðPn̂nÞ ¼ uðpÞ:

. Let �d ¼ EuðPn̂nþ1Þ � uðpÞ.
fuðPnÞg is a super-martingale, since, using Jensen’s inequality:

EðuðPnÞ jPn�1Þa uððEPn jPn�1ÞÞ ¼ uðPn�1Þ:

So for all n > n̂n: EuðPnÞ � uðpÞa�d. Hence:

inf
t

gnðs; tÞa
1

n

X̂nn

i¼1

EuðPiÞ þ
Xn

n̂nþ1

EuðPiÞ
" #

þ c
ffiffiffi
n
p

inf
t

gnðs; tÞa
1

n

X̂nn

i¼1

uðpÞ þ
Xn

n̂nþ1

ðuðpÞ � dÞÞ
" #

þ c
ffiffiffi
n
p

inf
t

gnðs; tÞa uðpÞ � d � n� n̂n

n
þ c

ffiffiffi
n
p :

Thus: inf
t

gnðs; tÞ � uðpÞa�d 1� n̂n

n

� �
þ c

ffiffiffi
n
p .

For n large enough, the right side of the last inequality is strictly
smaller than zero, so s is not an optimal strategy in GyðpÞ, which
concludes the proof of Lemma 7.3. r

Lemma 7.4. If uðpÞ is concave on ½0; 1� and GyðpÞ is not trivial, then if PII
guarantees g in SGyðpÞ, then g b O� 1

n

� �
.

Proof: If the game is not trivial, then PI can play s�n in GnðpÞ defined as fol-
lows. For the first n� 1 stages play for every realization of hm, m a n, optimal
in DðpÞ. Thus, up to stage ðn� 1Þ:

inf
t

gn�1ðs�n ; tÞ ¼ uðpÞ:

At stage n, play optimally in G1ðpÞ, to guarantee in this stage: v1ðpÞ > uðpÞ.
Denote v1ðpÞ � uðpÞ, by cðpÞ. Then PI can guarantee:
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inf
t

gnðs�n ; tÞ ¼ uðpÞ þ cðpÞ
n

:

So, for any strategy tn of PII in GnðpÞ:

gnðs�n ; tnÞb uðpÞ þ cðpÞ
n

:

Since uðpÞ is concave, for all p: uðpÞ ¼ Cav uðpÞ, and so:

gnðs�n ; tnÞb Cav uðpÞ þ cðpÞ
n

:

Now PII cannot play better in GyðpÞ than in any GnðpÞ, (see Proposition 3.1
in part 3), which implies that if PII guarantees g in SGyðpÞ, then:

g b O�
1

n

� �
: r

Proof of Theorem 7.2: By Lemmas 7.3 and 7.4 and by the Definition of vsðpÞ,
we get that the game SGyðpÞ does not have a value. r

We conclude with an example of a game in which for all 0 < p < 1, vsðpÞ
does not exist and the gap between any f ; g that PI and PII can respectively
guarantee in SGyðpÞ is bounded away from zero by ln n

n
.

Let:

A1 ¼
1 0

0 0

� �
and A2 ¼

0 0

0 1

� �
:

This game was presented by Aumann and Maschler and it was proved by
Zamir, (see Theorem 4 of [9]) that eðpÞ ¼ O� ln n

n

� �
, Ep A ð0; 1Þ. For this game

uðpÞ ¼ pð1� pÞ, which is a strict concave function and hence by lemma 7.3, if
PI can guarantee f in SGyðpÞ, then: f ¼ O�ð0Þ.

On the other hand, PII cannot do better in GyðpÞ than in any GnðpÞ;
hence if PII can guarantee g in SGyðpÞ then: g b O� ln n

n

� �
.
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lique de Louvain, Louvain-la-Neuve, Belgium., Discussion Paper 21
[4] Mertens JF and Zamir S (1976) The normal distribution and repeated games. International

Journal of Game Theory, 5:187–197
[5] Mertens JF and Zamir S (1977) The maximal variation of a bounded martingale. Israel

Journal of Mathematics, 27. No 3–4
[6] Mertens JF and Zamir S (1995) Incomplete information games and the normal distribution.

Center for Rationality and Interactive decision theory, the Hebrew Universiy of Jerusalem.,
Discussion Paper 70

The speed of convergence in repeated games 221



[7] Ross SM (1983) Stochastic Processes. John Wiley and Sons. p. 244
[8] Zamir S (1992) Repeated games of incomplete information. Hand Book of Game Theory,

Edited by Aumann RJ and Hart S, 1:ch. 5
[9] Zamir S (1971–72) On the relation between finitely and infinitely repeated games with in-

complete information. International Journal of Game Theory, 1:179–198
[10] Zamir S (1973) On the notion of value for games with infinitely many stages. The Annals of

Statistics 1. No 4:791–796
[11] Zamir S (1973) On repeated games with general information function. International Journal

of Game Theory Vol 2 Issue 4

222 I. Nowik, S. Zamir


