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Abstract. We consider a first—price auction when the ranking of bidders’ private
valuations is common knowledge among bidders. This new informational frame-
work is motivated by several applications, from procurement to privatization.
It induces a particular asymmetric auction model with affiliated private values
that has several interesting properties but raises serious technical complications.
We prove existence and uniqueness of equilibrium in pure strategies and show
that the seller’'s revenue is generally higher in a first—price than in second—price
and English auctions, in contrast to the ranking in the affiliated values model by
Milgrom and Weber. This also implies that in first—price auctions, providing in-
formation concerning the ranking of valuations among bidders tends to increase
the seller's expected revenue.
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1 Introduction

The theoretical auction literature has very strong results for the symmetric in-
dependent private values framework, some of which have been extended and
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modified for the symmetric affiliated values modaHowever, in many appli-
cations the symmetry assumption is not plausible. Therefore, the literature has
begun to analyze different kinds of asymmetries between bidders.

Adhering to the independent, private values framework, several authors have
assumed that bidders’ valuations are drawn from different probability distribu-
tions which arecommon knowledgamong them. Already in the early literature,
Vickrey (1961) considers auctions with two bidders where one knows the other’s
valuation with certainty, and Griesmer et al. (1967) analyze first-price auctions
with two bidders whose valuations are uniformly distributed over different sup-
ports. More recently, Plum (1992) analyzes the two bidder case for arbitrary con-
tinuous distribution functions, proves that the first-price auction has a unique pure
strategy equilibrium with strictly monotone increasing bid functions, and com-
putes the equilibrium strategies for a class of parametric distribution functions.
Using the same framework, Maskin and Riley (2000a) explain the properties
of several asymmetric two bidder examples, assuming a strong stochastic order
between distribution functions (stronger than first-order stochastic dominance).
Maskin and Riley (2000b), Reny (1999) and Simon and Zame (2000) analyze
existence of pure strategy equilibria in first-price auctions, and Lebrun (1999)
analyzes existence and uniqueness of pure strategy equilibria for-igder
case?

In this paper we consider another kind of asymmetry among bidders. We
assume that bidders do not only know their own valuation, but also know the
ranking of valuations. With two bidders, this means that the identity of the bidder
with the highest valuation is common knowledge. This assumption induces an
asymmetry among bidders that cannot be subsumed under the approach by Plum,
Lebrun, and Maskin and Riley, because after knowing their ranking and their
own valuation, each bidder computes conditional probabilities of other bidders’
valuations that are not common knowledge among them, and indeed induces
distinct results.

To motivate the kind of asymmetry assumed in this paper, consider a procure-
ment auction in which bidders know who is the strongest bidder. This information
may be due to experience accumulated in other bidding occasions or from in-
dustrial espionage. Similarly, in art auctions bidders often revise their strategies
after they learn that some wealthy collector participates who is known to have a
higher valuation. And in privatization or takeover bidding, participants often have
access to information about each others’ financial resources or other idiosyncratic
features that affect bidders’ valuations.

1 For basic results of standard auction models see the surveys by McAfee and McMillan (1987),
Milgrom (1989), Matthews (1995), and Wolfstetter (1996).

2 The different proofs of existence employ very different methods. Maskin and Riley (2000b)
use topological methods developed by Dasgupta and Maskin (1986). Plum (1992) and Lebrun (1999)
establish directly that a solution to a suitable set of differential equations exists. Reny (1999) employs
his concept of “payoff secure” games. And Simon and Zame (2000) view the tie-breaking rule as
part of the solution of the game, and show that there is always some tie-breaking rule for which an
equilibrium exists.
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Also note that the solution of an auction game induced by our model, where
the ranking of valuations is common knowledge among bidders, is an essential
ingredient of the analysis of some important multi-stage bidding games. This is
relevant in auction settings with several rounds of bidding before a transaction
takes place. Another case are auctions in which several identical units are sold
sequentially to the same set of bidders and, after each round, bidders find out
who the winner was but do not observe the winning bid. For example, in Italy the
formerly state owned industrial conglomerate EWhs privatized using precisely
such a procedure with essentially two rounds. In the first round bidders submitted
sealed bids and reorganization plans. Then, the auctioneer screened out the lowest
bidders, informed the remaining bidders whether their bid was the highest or not,
without revealing the highest bid, and finalized the sale in a first—price auction,
with the proviso that bids could not be lowered at this second stage. Clearly, in
the analysis of this and similar auction games, one has to solve all subgames,
including the subgames in which bidders have revealed the ranking of their
valuations through their first-round bids, regardless of whether these subgames
happen to occur on the equilibrium path of that game.

Although we start our model as one where valuations are independent, and
the distribution of valuations is common knowledge among bidders, after having
incorporated the information about ranking, the resulting conditional distributions
are not common knowledge. Yet, the resulting environment can be analyzed as
a game with common knowledge of the distribution on types provided that one
assumes that valuations are drawn from a commonly known joint probability
distribution with a triangular support (in case of two bidders), and where the
higher valuation is assigned to one particular bidder (say bidder 1).

Technically speaking, knowing the ranking of valuations induces a particular
stochastic dependence or affiliation of valuations, even if the original context was
that of independent valuations. Indeed, it leads to an affiliated values model in the
spirit of Milgrom and Weber (1982), however, without their crucial assumption of
a symmetric distribution of signals. Therefore, our model can be viewed on one
hand as a particular extension of the Milgrom and Weber model that considers
a specific asymmetric distribution — triangular, and on the other hand as an
extension of the asymmetric models of Maskin and Riley (2000a), Lebrun, and
Plum to particular asymmetric values which ai@ independent

Our main results are as follows:

— The first-price auction has a unique equilibrium in pure strategies with strictly
monotone increasing bid functions.

— The first-price auction is generally inefficient (with positive probability), and
the well-known ranking of auction forms based on Milgrom and Weber’s
(1982) symmetric affiliated values model can be reversed.

— Assuming a uniform prior distribution function, the low valuation bidder
bids more aggressively than the high valuation bidder, and both bid more
aggressively than in the associated symmetric game.

3 ENI stands forltalian Oil and Energy CorporationFor a detailed account of the breaking—up
of ENI see Caffarelli (1998).
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— Assuming a uniform prior distribution function, the first-price auction is more
profitable for the seller. As for the bidders, the low valuation bidder also
prefers the first-price auction, whereas the high valuation bidder prefers the
second-price auction. Howeverx ante before the ranking of valuations is
known, bidders prefer the second-price auction.

Our results imply that the information structure that we address may be attractive
for the auctioneer; therefore, an interesting question is whether the auctioneer can
induce or exploit it strategically. This is in fact the topic of work in progress by
Kaplan and Zamir (2000).

Some of these results, such as the potential inefficiency of the first-price
auction and the failure of revenue equivalence, extend results obtained in the
asymmetric auction framework developed by Plum, Maskin and Riley, and Le-
brun to another asymmetric auction environment. However, other results, such
as bidders’ preference for auction formats, differ.

The plan of the paper is as follows. In Sect. 2 we present the model and ex-
plain its relationship to the affiliated values model. In Sect. 3 we prove existence
and uniqueness of equilibrium in pure strategies; the proof is by construction. In
general, the game does not have an analytic solution even in the case of sim-
ple distributions. In Sect. 4 we elaborate on the ranking of auction formats by
the seller and by bidders, and compare our results with those obtained in the
independent, asymmetric private values model by Plum, Maskin and Riley, and
Lebrun. Some of the more technical arguments are spelled out in the Appendix.

2 The model

Consider a first—price auction where an indivisible good is auctioned to two
risk neutral bidders. The seller's reserve price is equal to zero. Valuations
are realizations of a random variable independently drawn from a differenti-
able probability distribution functios (v) with densityg := G’ which is strictly
positive on the support [@].

Valuations are privately observed. In addition, each bidder knows whether his
valuation is the higher or lower of the two. Furthermore, the ranking of valuations
is common knowledge among bidders.

Denote bidders byH andL, whereH stands for the bidder with the higher
andL for the bidder with lower valuation. Ldty andb_ be the respective bid
functions ands := b %, o := b;* the associated inverse bid functions. We restrict
the analysis to equilibria in pure and strictly monotone increasing strategies.

As a technical requirement, we assume that the densit$ afround O is
positive and bounded away from 0.

An alternative interpretation.The present model is equivalent to the following
game in which the players are treated asymmetricllyand V, are indepen-
dently drawn (according to the distributioB), then Vy = max{Vy, V,}, is
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assigned to bidder 1 (who is called bidde) while V. := min{Vy, V,} is as-
signed to bidder 2 (who is called bidde). Equivalently, the bidders’ valuations
Vu, Vi are drawn from a joint probability distribution with probability density
f: Z° — .22, with the triangular suppor?” := {(vy,v.) € [0,1]? | v. < v},
which is equal to

f(on, v) = 29(on)g(wL), @

Of course,Vy, V. are stochastically dependent. In fact, from (1) it follows
immediately that the affiliation inequality (see Milgrom and Weber 1982)

fov @A) > f () (7) @)

is satisfied with equality for all vectors of valuationsv” € 7. Therefore, the
present model induces a particular auction game with affiliated valuations. The
crucial difference to Milgrom and Weber (1982) is that the distribufias not
symmetric.

Although the distributiorf is common knowledge among bidders, the mutual
beliefs about each other’s valuatiame notcommon knowledge (as they were
not also in the original interpretation, sindg andV_ are not independent).

Equilibrium conditions. Suppose biddeH has valuationv and bidsx. If the
rival bidder plays the strict monotone increasing strategythe probability that
H wins is

Pr{H wins} Prib.(V) <x |V <wv}
_ PV <min{¢(x),v}} 3)
G(v) ’

where¢ = b[l. Therefore, the expected payoff of biddérwith valuationwv if

he bidsx is .
PH{V < Zl(n{¢(x)a v}} - x). (4)
v)

To compute the best reply &f, note that in equilibrium mify(x), v} = ¢(x)

because otherwisel could lower his bid and still win with certainty. Conse-
qguently, the best reply is obtained by solving

maxG(¢(x))(v — x). (®)

It is readily seen that there is a unique local maximum to this problem thus,
differentiating (5) with respect t@, and using the fact that in equilibrium is
equal toby (v) (or equivalently,v = o(x) = bh‘l(x)), one obtains the differential
equation

Iy (X;v) =

¢'(x)g9(¢(x)) (7(x) — X)) = G((X))- (6)
Next, consider biddet. with valuation v who bids x. The probability of
winning is

4 vV’ denotes the componentwisgaximumandv A o the componentwiseinimumof (v, v7).
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Pr{L wins} Pr{by (V) <x |V > v}
PV >wvando(x) >V}

1-G(v)

)

Note that, in equilibrium, the bi¢ must satisfyo(x) > v, because otherwise, in
order to have a positive probability of winning, would have to raise his bid.

Therefore,
G(o(x)) — G(v) .

Pr{Lwins} = 1-G() (8)
Computing the best reply, as before, one obtains the differential equation
9(@ (X))o’ (X)(p(x) — x) = G(a(x)) — G(¢(X))- )

Two boundary conditions apply:
o(0)=¢(0)=0 and (10)

o(b)=¢(b)=1 for someb < 1.

The first boundary condition in (10) follows from the fact that in equilibrium
a bidder withv = 0 does not make a positive bid i.dy (0) = b, (0) = 0. The
other boundary condition is due to the fact that in equilibrium the maximum bid,
b (that of valuationv = 1), must be the same for both bidders, because if it
differed, the bidder with the higher bid could lower it, still win the object with
probability 1, and thus strictly increase his expected payoff. Consequently,

br (1) =b (1) =b. 11)

3 Equilibrium

In this section we show that the game has a unique equilibrium in pure strategies.
We also note that this solution is generally not an analytic solution (in the sense
that the bidding functions have no expansion about O to power series with rational
powers).

In order to prove existence and uniqueness of equilibrium in pure strategies
for arbitrary probability distributions consider the following system:

G(p(x))
g(A(x))(o(x) — x)
_ G(o(x)) — G(o(x))
g(a (X)) (@(x) — x)
Jb € (0,1) such that ¢(b) = (b) = 1
0(0) =¢(0) = 0.

We prove that this system, to which we refer as tbastrained systenhas
a unique solution. The proof follows from a sequence of Lemmas.

¢'(x) =

o'(x)

(12)
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The main idea of the proof is to start from an arbitrary boundary pujras
defined by the first boundary condition in (12), and move along the trajectories
governed by the differential equations in (12). In what follows, we refer to this
system as theartially constrained syster(that is the system (12) without the
boundary condition at 0). Note, the partially constrained system can be written
in the form

dG(¢(x)) _  G(e(x)

dx T o(x) — X (13)
dG(e(x)) _  G(o(x)) — G(#(x))

dx - (X) — X (14)

o(b)=0oc(b) = 1L (15)

By a standard property of ordinary differential equatfyrisr everyb € (0, 1)
the partially constrained system (13)—(15) has a unique solution which we denote
by ¢, andoy,. We show that there is exactly obeat which the second boundary
condition in (12) is also satisfied i.ep,(0) = o, (0) = 0.

We distinguish between two kinds of solutions to which we refef2as(2,:

Definition 1. A solution of the partially constrained system belongs(p if
dp(X) > x for all x € (0, b]; it belongs tof2, if ¢p(x) = x for some xe [0, b).

Lemma 1. Both setsf?; and {2, are not empty.

Proof. The proof is in two parts: (i) We show that fdr sufficiently small
(éb, o) € 21, while (ii) for b sufficiently close to 1,¢y, op) € (2.

(i) By our assumptiory := min g(x) > 0. We claim that forb = 11/4 we
have ¢y, op) € £2;. In fact we show that, for this value df, both functions
¢p and o, are above the liné : y = 1/2 + (2/u)x (see Fig. 1). By (12), the
derivatives of the functions are bounded by

Pp(X) < 1/(oo() = X) and op(x) < 1/(d(X) = X)pt -

In particular gy, (b) < m andof(b) < ﬁ which is smaller than 2u, the
slope of¢ , and hence both functions are abdvie the neighborhood db = 1./4
(see Fig. 1).

Assume, contrary to our claim, that the functions do not lie entirely above
L. Let X be the largest crossing points of one of the two functions,¢gawith
¢. Note that sinceu < 1, the slope of is at least 2, s@y(Xp) — % > 1/2 and
hencegy, (%) < 2/1 which means thab,(x) is below? at the right ofxy which
is in contradiction to the fact thag is the largest crossing point gi,.

(i) Let c := min%gxSl %, then, by (12)¢,(x) > c/(1—x) for allb > 1/2
andx > 1/2. Takex; > 1/2 such thatt/(1 — x3) > 2 andb = (1 +x;)/2 (see
Fig. 1), then

Pp(x1) < dp(b) —2(b — x1) = Xy,

5 See e.g., Corduneanu (1971).
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0 1 x

Fig. 1. The solutions of the partially constrained system for small and large values of

and hencedy, op) € (2. m]
For anyb € (0,1) definex, € [0, b) by

[0 if pp(X) > x ¥X € [0,b)
o = max{X | #p(x) =x} otherwise.

Lemma 2. op(X) > ¢p(x), for all b € (0, 1) and for all x € (X,, b).

Proof. By the two differential equations and the first boundary condition in (12),
¢p(b) > 0 andoy (b) = 0. Thereforegy(x) > ¢u(X) at least in a neighborhood of
b. If our claim is false then let be the largest in (X,, b) such thatry(X) = ¢p(X).
Then againgy(X) > 0 (since¢p(x) > x in (X, b) by definition of x,), and
op(X) = 0 and henceg,(X+e) < ¢p(X+e) for sufficiently smalle, in contradiction

to the definition ofx. O

Forb € (0,1) letl, = {X € (X, b]|pp(X) > X}.
Lemma 3. If b’ > b, thengp(X) > ¢p (X) @andop(X) > op(X), forall x in lpNlp .

Proof. By the differential equationssy(x), ¢n(x) are strictly increasing i, so
dp(b) =1 =¢p (b') > ¢p(b), and similarlyo,(b) = 1 = oy (b’) > op(b). Hence,
the assertion is valid in some (left) neighborhoocdhofAssume, it does not hold
everywhere inl, N ly. Then, there exists a largest (closesbjocrossing point
z of either the¢ functions or of thes functions. If this last crossing is of the
functions only, we havey,(z) = ¢ (z) and oy (z) > op (z) and therefore,
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G(¢n(2) < G(¢v(2)
9(@p(2)(o6(2) —2)  9(dp (2))(ow (2) — 2)

implying that in the right neighborhood af we havegy(x) < ¢u (X), in con-
tradiction to the fact that is the largest crossing point. Similarly, we can rule
out the possibility that,(z) = 0w (z), and ¢p(z) > ¢ (2). Finally, we rule out
the possibility thatz is the crossing point both of thé functions and of ther
functions i.e.,op(2) = op/(2) and ¢p(2) = ¢/ (2). In fact this means that the two
differential equations in (12), with the boundary conditiorz ghave two distinct
solutions in g, b] namely ¢y, op) and @y, o), Violating the uniqueness of the
solution to such a system (guaranteed by standard results). O

Pp(2) = =¢p(2),  (16)

Lemma 4. There exists a unique*ithat induces a solution of the partially con-
strained system which belongs to both s&sand (2,. This solution satisfies
¢p-(0) = 0and ¢p-(X) > x Vx € (0,b*].

Proof. For convenience we shall write € (2 for (¢p,0p) € 2. The mono-
tonicity properties established in Lemmas 2 and 3 imply that i€ (2; and
b’ < b, then alsab’ € 2. Similarly, if b € £2,, andb’ > b, then alsab’ € (2,.
Let b* := supg{b | b € ;}. We claim that this is the desired®. In fact if
b* € 2, N 25, then ¢y« (0) = 0 andgy-(x) > x for all x > 0. We have thus to
rule out the possibilityp* ¢ £2; N 2, which (sincef2; U £2, = [0, 1]) consists of
two cases:

Case 1. b € 2, andb* ¢ (2. Then,¢p-(x) > x for all x € (0,b*], and hence

(by continuity) ¢p-(0) > 0. Since the solutiong(«, op+) is C>°, a known result
about stability of smooth solutions to ordinary differential equations with respect
to changes in initial conditions, implies the existence of nearby solutions (see
Corduneanu (1971), Theorem 3.4). In the present case this implies that there
exists ab > b* and yetb € (24, in contradiction to the definitiob*.

Case 2. b € (2, b* ¢ (1. Then, by definition, there existsf x,» < b* where
dp- (Xp=) = Xp« (recall that, by its definitionx,~ is the largest value in (®*)
satisfying this equality). Hence by Lemmad,-(Xy+) > Xp+ Since the opposite
inequality would imply (by continuityyp« (X« +€) < ¢(Xp+ +€), in contradiction
to Lemma 2. We now show that this inequality leads to a contradiction:

(i) If op+(Xo+) > Xo~ then (by the differential equatiom,. (xy-) is finite, and
thereforegy-(x) is C* on [x,-, b*], and forx in the neighborhoodxy- , Xy« + 4],
it can be expressed in the forg: (X) = Xp- +7(X — Xp+ ), WherexX € [xy«, X]. But
then it follows from the second differential equation in (12) that the singularity
of op+(X) at x,+ is not integrable, and thereforg« cannot attain a finite value
at xp=, a contradiction.

(i) The only case that remains to be consideredpsXy«) = ¢p+ (Xp+) = X~
for some fixedk,- > 0. We prove thatdy-, o+ ) areC in [xy+, b*]: In fact these
functions are smooth irx¢- , b*], monotone increasing and bounded from below
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by Xy« in [xp+,b*]. Therefore, for any monotone sequenge| X, we have
also the convergenc@y-(Xn) — ¢« andop«(Xn) — s, With Xp« < ¢, < oy If
¢+ > Xp+, then we could pass to the limit | x,« in the differential equations
(12) and thus, obtain a solution startingbétwhich is different from ép«, op+),
in contradiction to the uniqueness theorem. The @ase Xy~ < o, is ruled out
by the same argument used in (Case 1), and we concludeghat ¢. = o,
establishing the continuity.

The continuity implies that for a fixed small> 0 (to be chosen later), there
is a smally(e) > 0 such thathy (Xp+ +€) —Xp+ < 1(€), andop (Xp= +€) —Xp+ < 1(€)
(and hence als@p- (Xp- +€) — (Xp= +€) < n(€), andop= (Xp= +€) — (Xp= +€) < 1(e)),
with n(e) — 0 ase — 0.

Consider now the partially constrained system &g [+ ¢,b*]. Since the
solution is smooth there, we can firlm < b* (and very close to it), so that
Pp(Xp+ +€) — Xpx < 0(€) and op(Xp= + €) — Xp= < d(€), with d(¢) — 0 ase — 0.
But then ¢y, (xp+ +€) > ¢/d(e) (for somec > 0), and sincer, decreases as we
move to the left ofxy- + ¢, the inequalitygg(x) > c/d(e) still holds in some
small (bute — independent) interval to the left of-. Since ¢p(Xy+) is n(e)—
close to the diagonal = x, and its derivative i9~(¢) large, it must cross the
diagonal at some point @ X < x,- and thusb ¢ (2;, contradicting the definition
b* :=suplb | b € 1}. O

Combining the above Lemmas we prove that:
Theorem 1. The auction game has a unique pure strategy equilibrium.

Proof. We need to show that the full system in (12) has a unique solution.
By Lemma 4 we know already that){-, on-) solve the partially constrained
system and satisfieg,- (0) = 0. It remains to be shown that-(0) = 0. Recall
that op-(x) > x for x > 0. Assumeoy,-(0) > 0. Then, by the first differential
equation in (12)¢4,.(0) = 0 (becaus&(0) = 0 and the denominator is positive),
and thereforegy-(X) < x in some small interval [&), in contradiction with
Lemma 4. Therefore,¢-, op+) satisfy also the second boundary condition in
(12) as well. Uniqueness follows from the uniquenes®of O

We now point out that the model does not have a closed—form solution even
if the distribution of valuations is uniform.

AssumeG is uniform on [Q 1]. Rewriting (6), (9) and (10), we obtain

o B(X)
¢'(x) = 200 X
o'(X) = % (17)
$(0)=0(0)=0

o) =0o(b)=1 forsome b< 1
Proposition 1. System (17) does not have an analytic solution.

Proof. The proof is in the Appendix. O
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4 Equilibrium properties

How does the introduction of common knowledge concerning the ranking of val-
uations among bidders affect equilibrium bid functions? Does the bidder with the
lower valuation always bid more aggressively? Does it affect the efficiency of the
first—price auction? And how does it change the ranking of the seller’s expected
revenue and bidders’ expected payoff in first— and second—price auctions? In the
following we draw comparisons to the symmetric independent and the symmetric
affiliated private values models, and also to the models of asymmetric auctions
by Plum (1992), Lebrun (1999), and Maskin and Riley (2000a).

4.1 Inefficiency of the first—price auction

Although Lemma 2 was established as part of the proof of Theorem 1, it is of
independent interest. It shows that the low valuation bidder bids higher than his
rival:

b (v) > by (v) Vv e (0,1).
The straightforward intuitive explanation is that otherwise the low valuation bid-
der would stand no chance of winning, which cannot be part of an equilibrium.
An important consequence of this relationship between the bid functions is:

Corollary 1. If the ranking of valuations is common knowledge, the object is
awarded to the bidder with the lower valuation with positive probability; therefore,
the first—price auction is inefficient.

Proof. For anyx € (0, 1) we haves(x) > ¢(x). Using the monotonicity of these
functions, this implies that any Low bidder with valuation higher tkigx) bids
more thanx while any High bidder with valuation smaller thar(x) bids less
thanx. It follows that whenever both valuations are in the intervgk{, o(x)),
which occurs with positive probability, the low valuation bidder wins the auction
and gets the object. O

The inefficiency is due to the fact that the two bid functions are apart, and
hence the distance betweerand¢ is related to the “degree” of inefficiency. For
example, if we measure the inefficiency by the probability that biddewith
the lower valuation, gets the object then it can be easily verified that:

b
Pr{the object is awarded tb} = 2 / (G(a(X)) — G(p(X))) o’ (X)g(o (X)) dx.
0
For the uniform distribution, this measure simplifies to

b
2 /0 (0(x) — 6(x)) o’ (x) dx.

As it has been already noticed in the auction literature, the inefficiency of
the first-price auction is closely related to the asymmetry of bidders, and it is of
course also a feature of the asymmetric auction model by Plum (1992), Lebrun
(1999) and Maskin and Riley (2000a).
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4.2 Strategy comparison

Does the present model result in more aggressive bidding by one or both bidders,
relative to the standard symmetric independent private value model? Proposition
2 shows that both biddersaybid more aggressively.

Proposition 2. If valuations are drawn from a uniform distribution, then, the bid
functions of the high and the low valuation bidders are above the equilibrium bid
function (v) in the symmetric independent private values case.

b(v) < by (v) < b (v), Vv € (0,1) (18)
Proof. See Appendix. O

The equilibrium bid functions for the uniform distribution case are given in
Fig. 2 where we see also the bid function of the symmetric mb@el = v/2;
These functions are from a numerical solution of the differential equations (17).

by, by,

A

0.64 1

; v
1

Fig. 2. Equilibrium bid functions for the uniform distribution case

The numerical integration of this system requires some care because of the
singularity at the origin. We used an asymptotic expansion given by (19), (20),
(23) and (24) in Appendix A to compute the value @fand o at dx > 0 for
an arbitrary choice of the free parameterWe then divided dx, 1] into small
subintervals of sizelx, and integrated the partially constrained system obtained
from (17) by ignoring the second boundary condition, by a finite difference
scheme. We started with a small positiveand repeated the procedure outlined
above with increasing values of this parameter, until we hit a numerical solution
that also satisfies the second boundary condition in (17). To ensure that the
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solution obtained is not a numerical artifact, we performed similar calculations
with different choices ofix. The solution is plotted in Fig. 2.

It is natural to ask about the generality of the qualitative properties of the
bidding functions stated in Proposition 2. Note first that by Lemma 2, the in-
equality by (v) < b_(v) holds for any distributiorG. In ongoing work, Philippe
Fevrier proved that the inequalitié$v) < b_(v) andby (v) < b_(v) hold for any
distribution and any number of bidders if the identity of the highest valuation is
common knowledge among bidders. That is, informing a bidder that he or she
does not have the highest valuation results in more aggressive bidding compared
to the standard model and more aggressive than the bidder informed to have the
highest valuation. However, the inequalliyv) < by (v), does not always hold.
Indeed, there are distributions for which in equilibridogg(v) < b(v) for some
values ofv. Such examples were generated numerically and an existence proof
is given in the Appendix under the subtitle “counterexample”.

We mention that the inequalitids (v) > by (v), Vo, are also observed in
Maskin and Riley (2000a), for their notion of strong (ddr) and weak (our
L) bidder (see their Proposition 3.5). However, in their framework it cannot
occur that the strong bidder bids also more aggressively than in the associated
symmetric game, as we have it in the uniform distribution case.

4.3 Revenue ranking

As is well-known, in the symmetric independent private values model first—
and second—price auctions are payoff equivalent. However, if independence is
replaced by affiliation, as proposed by Milgrom and Weber (1982), the seller’s
expected revenue is higher in a second—price auction. In the present model, this
revenue ranking can be reverse@his may contribute to explain why procure-
ments are usually conducted as first—price auctions.

Proposition 3. If valuations are drawn from a uniform distribution, the seller's
expected revenue is higher in a first—price auction than in a second—price (or open
English) auction; the low valuation bidder (L) also prefers the first-price auction,
whereas the high valuation bidder (H) prefers the second price auction. However,
ex ante before the ranking of valuations is known, bidders unanimously prefer
the second-price auction.

Proof. Recall the ranking of bid functions from Proposition 2. It follows imme-

diately that the winning bid is always higher than in the standard symmetric case,
for each configuration of valuations, even though the item is not always awarded
to the bidder with the highest valuation. Therefore, the seller’s revenue is also
higher than in the symmetric independent private values model, for each config-
uration of valuations. Since in a second—price auction bidding is unaffected by

6 Milgrom and Weber show that the open English auction is even better for the seller. Although
with two bidders, the open English and the second—price auction are equivalent, the actual reversed
ordering in fact occurs as our result for the uniform distribution holds for any number of bidders
when it is common knowledge who has the highest valuation.
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the assumed common knowledge, it follows that a first—price auction generates
higher revenue to the seller.

Bidder L prefers the first-price auction, because in the second-price auction
he stands no chance of winning the auction. In turn, bittigrefers the second-
price auction, because compared to the first-price auction he wins more often (in
fact he always wins in the second-price auction) and consistently pays less in
expectation, for each of his valuatiohsdowever, ex ante before the ranking
of valuation is known, bidders unambiguously prefer the second-price auction
because the seller's expected revenue is higher and the entire expected surplus
is lower, due to inefficiency. O

The result that the seller prefers the first-price auction to the second-price
auction was obtained also in the models by Plum (1992), Lebrun (1999) and
Maskin and Riley (2000a). However, bidders’ ranking of auction formats differs
from what was obtained in our model. Indeed, assuming uniform distributions,
both bidders may prefer the second-price auction in their asymmetric auctions
framework. At first glance this seems to contradict Proposition 3.6 in Maskin and
Riley (2000a) where it is claimed that bidders rank auctions in the same way as
in our model. Notice, however, that uniform distributions do not satisfy the “con-
ditional stochastic dominance condition” which is assumed in that Proposition,
even though uniform distributions are a perfect example of first-oder stochas-
tic dominance. Using Plum’s (1992) explicit solution of equilibrium strategies,
one can compute bidders’ equilibrium payoffs and corflithat both weak and
strong bidders may prefer the second-price auction.

We have also computed the equilibrium expected revenues for a variety of
other probability distributions and always found that making the ranking known
among bidders raises the seller’'s expected revenue and that, if the ranking of
valuations is common knowledge among bidders, the first—price auction gives the
seller a higher expected revenue than the second—price or English auction. We
therefore conjecture that these two properties, derived for the case of the uniform
distribution, are valid for a large class of probability distributions. Since the
present model can be viewed asasymmetricaffiliated private values auction,
this implies that the superiority of the second—price or English auction derived
by Milgrom and Weber (1982) does not survive the introduction of asymmetry
to the affiliated private values model.

7 Another argument proving the preferencetbfis: As the expected sellers’ payoff is higher in
the first-price auction than in the second-price auction, the sum of the two bidders payoffs is lower
in the first-price auction. And since the payofflois higher in the first-price auction, it must be that
the expected payoff dfl is lower in the first-price auction than in the second-price auction.

8 An example are uniformly distributed valuations on the support 150], resp. [50200].

9 In footnote 16 on p. 425 of their paper, Maskin and Riley (2000a) write: “Under the weaker
assumption of first-order stochastic dominance, it can be shown that the ranking by buyers continues
to hold for all those buyers with sufficiently high valuations.” This is, evidently, incorrect without
additional assumptions on the distributions .
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5 Conclusions

The present paper has modified the standard symmetric private value models,
with and without affiliation, by assuming that bidders know the rank order of
their valuations. This modification is relevant in many real-world auctions. We
presented a constructive proof of existence and uniqueness of equilibrium in
pure strategies for the first—price sealed bid auction with two bidders. In this
equilibrium the low valuation bidder always bids higher (than a high valuation
bidder with the same value). Consequently, the first—price auction is not efficient
since it occurs with positive probability that the object is sold to the bidder with
the lower valuation. In the case of uniformly distributed valuations, we showed
that both bidders bid higher than in the standard symmetric case (i.e. without
the common knowledge of ranking). Therefore, the seller’s revenue is higher for
all configurations of valuations. Noting that bidding the true value is a dominant
strategy in second-price auction also when the ranking is common knowledge,
this indicates that a revenue maximizer seller should prefer the first—price to the
second—price auction. This reverses the well-known revenue ranking in private
values auctions with and without affiliation.

Appendix

Proof of Proposition 1.Evidently, ¢(x) = %x and o(x) = 2x is an analytic
solution of the two differential equations in (17) which satisfy the first boundary
condition but violates the second one. We now show that this is the only analytic
solution of the system in (17) without the second boundary condition.

Since both differential equations in (17) are singulax at0, to obtains’(0)
and ¢’(0) we apply L’'Hopital's rule which givess’(0) = 2 and¢’(0) = %‘. Since
every solution around 0 can be expressed as an asymptotic expansipthi
power series expansions ¢tx) ando(x) around 0 are

H(X) = gx+omk+”. (19)
o(X) = xX+3x"+.... (20)

wherek,r > 1 are the first powers whose coefficients are non-zero.
Substitute (19) and (20) into the first differential equation in (17), rearrange
terms, and one obtains

gx+akxk+gﬁxr+ﬂakxk+r’1+...=gx+axk+.... (21)

If r > k > 1 thena = 0, which is a contradiction. Ik > r > 1 theng = 0,
again a contradiction. Therefork,=r which in turn implies

Mk—n+gﬁ=a 22)
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Applying similar reasoning to (19), (20) and the second differential equation
in (17), one obtains

(g —1)8+3a=0. (23)

These two linear equations i, 3 have a non-trivial solution if and only if the
determinant of coefficients vanishes, which implies &k — 1)(% —-1)=0,i.e.

k=2+V13 (24)
This proves the Lemma since for a solution to be analytic, the exponents must
be integers. 0

Proof of Proposition 2. The proof of the proposition is obtained as part of a proof
of existence of a unique solution of constrained system (17). As a by—product we
thus have two quite different proofs of existence and uniqueness for the uniform
distribution case.

In general, a system like (17) has a solution if the corresponding partially con-
strained system (i.e., if the second boundary condition is ignored) has infinitely
many solutions. We will show that this is indeed the case.

Restricting attention to the partially constrained system in (17) we observe
the following:

(i) o2 =3, ¢»=2x is a solution.

(ii) every solution must satisfy’(0) = 2, ¢'(0) = ‘3‘ (using L'Hopital’s rule and
the differential equations).

(i) the asymptotic behavior of every solution, near 0, is described by the
following power series expansions which are obtained by inseRirfigpm
(24) into (19), (20)

H(X) = gx +ax?VBBy (25)
o(X) = 2x + B2V 4 (26)

Insertingk = 2 ++/13 into (22) and (23) yields two linearly dependent equa-
tions and therefore they have one parameter family of solutions:

30(V13+ 1)
4

Bla) = — , foralla#0. 27)

Define the functiong(x) := ¢(x)/x andh(x) := o(x)/x. Rewriting the two
first differential equation in (17) in terms of(x) andh(x) gives

() = o a0 (29)
o < N0 — a0
xh'(x) = a0~ 1 h(x) (29)

and dividing (28) by (29) yields
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dg_gq-1 q-h)

dh " h—-1 h2-q)—-q (30)

Note that (28) and (29) are invariant to changes in the scate icé. if (h, Q)
is a solution, so ish;, q.) = (h(cx), q(cx)), for all ¢ > 0. If we interpret the
variablex as ‘time’ thenc is the ‘speed’ of motion along the trajectory of the
solution in the £, q) plane. We shall use this phase—plane to show that there exist
infinitely many solutions to (17) if the second boundary condition is ignored, and
then show that one and only one of them satisfies the second boundary condition
in (17).

Although the following argument is self contained, it is based on methods
explained in Boyce and DiPrima (1992, Ch. 9) where more detailed discussion
and examples can be found.

First we make the dynamic system (28) and (29) an autonomous system by
changing variable fronx to t; letting x = €', §(t) := q(e') andh(t) := h(e') we
obtain

PR« (9
1O =57 0O (31)
= h) -6 -
h'(t) = a0 -1 h(t) (32)

Since dividing these two equations yields the same differential equation (30), the
two dynamic system$(28), (29) and{(31), (32)} havethe same trajectoriem
the phase plangy(h) or (d, h); they are governed by the differential equation.
This phase diagram is given in Fig. 3.

The pointw := (2, ‘é‘) corresponds to the first boundary condition in (17); at
x = 0 in the system{(28), (29) or t = —oc in the system{(31), (32). It is a
critical point of both systems which means that at this pdittd’)(—oo) = (0, 0)
and @’,g’)(0) = (0,0). The local behavior of (30) can be studied by first finding
the possible directions of the trajectories emanating from the critical point
the phase space. To do this we consider the linear approximation to the dynamic
system around: Let

J = 01 = q- % = q - %
02 h—2 h—2 )’
be the vector of distance from, then the linear approximation of the dynamic
system {(28), (29)}) or {(31), (32)) yields:

/ _4
(5)=(5 2)(5)rom

The matrix of coefficients in this equation has two eigenvalues:

1.r; = (1 — V13) ~ —2.6 which corresponds to the eigenvectéy =
< 1++/13 )
9 .
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Fig. 3. Trajectories in the phase plane

2. r, = (1+V/13) ~ 4.6 which corresponds to the eigenvectpre ( ! _9\53 >

The two directionst; and & are indicated in Fig. 3. The trajectory at the
direction of&; is irrelevant to our dynamic system: Since< 0, a solution of
the form§ = & exp(it) does not satisfyy — 0 ast — —oo (which is the first
boundary condition at = 0). On the other hand, the trajectory starting ah the
direction & is the “unstable manifold” of the system, that is, this is the solution
that leaves the critical point ast increases from-oco (or asx increases from
0). This corresponds to a negative valuetoin (20) (see also (27)). The slope
of this trajectory cannot become positive before it hits the tine h, because
a reversal requires that it becomes zero somewhere, which cannot occur as long
ash < 2 (see Fig. 3). Therefore, the trajectory must cross the dire h at
some point that we denote lfy. While there is a unique trajectory of this sort,
it corresponds to infinitely many solutions of the systéf@8), (29) (or to the
two differential equations in (17)) that differ in their “speed” To choose the
“right” speed we choose for which

1, 1. ..
Qe(5) = he(5) =F . (33)

Since other solutions move either faster or slower along the same trajectory, there
is a unique solution that satisfies (33). Taking nbtv= 1/f * we have:

1 1
do-(07) =0 () = 57 = 1
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and
1 1
= __ .f*=1

ob-(67) = b7e() =

Thus, we establish a unique solution to the full system (17) withe (%, 1)
(sincef* € (1, 2)).

As we proved, along the equilibrium trajectory the functibnis always
smaller than 2 which implies thdi(x) = @ < 2, and thereforer(x) < 2x. and
by Lemma 25(x) < o(X) < 2x. Recalling that R is the inverse of the symmetric
case bidding functiom(v) = v/2, we conclude thab(v) < by (v) < b (v) O

Counterexample Consider the constrained system (12) with the class of distri-
butions for which we proved the existence and uniqueness of solution namely,
distributionsG which have a Taylor expansion around O:

G(X) = ax + X% +.. .,
with a > 0. This implies that the density has the expansion (around 0):
qx) =a+26x+....

Recall that in the symmetric case, the inverse bidding fungtion b= is
determined by the following differential equation (which can be easily derived
directly),

G
70 = G0N0 — %)

First it can be shown although, the inverse bidding functions may be not
analytic at 0, they do have the first two terms of Taylor expansion (linear and
guadratic; non rational powers must be higher than 2). Using the Taylor expansion
for G in equation (34), we obtain the following asymptotic expansiom(d)
nearx =0,

with the boundary conditionp(0) = 0. (34)

p(x) = 2x + Cx? +0(x?) with C = —:—ﬂ.
167
On the other hand carrying out an asymptotic expansionstgy and o(x)
(nearx = 0), solving the differential equations of the system (12), we obtain that
both in ¢(x) ando(x) the second term (after the linear term) is quadratic (again,
non—rational powers must be higher than 2):

¢(x)

a(x)

4
X+ Ax? +0(x?)

2x + Bx? + 0(x?)

with
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4 163
A+-B = —-—Z
3 9«
1 43
A— =B = ———.
3 3 9«
This implies
.4
T 3%

and therefore fop > 0 we haveB > C, and hence(x) > p(x) at least for some
interval nearx = 0 that is,by (v) < b(v) at least in some interval of valuations
nearv = 0. O
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