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Abstract. We consider a first–price auction when the ranking of bidders’ private
valuations is common knowledge among bidders. This new informational frame-
work is motivated by several applications, from procurement to privatization.
It induces a particular asymmetric auction model with affiliated private values
that has several interesting properties but raises serious technical complications.
We prove existence and uniqueness of equilibrium in pure strategies and show
that the seller’s revenue is generally higher in a first–price than in second–price
and English auctions, in contrast to the ranking in the affiliated values model by
Milgrom and Weber. This also implies that in first–price auctions, providing in-
formation concerning the ranking of valuations among bidders tends to increase
the seller’s expected revenue.
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1 Introduction

The theoretical auction literature has very strong results for the symmetric in-
dependent private values framework, some of which have been extended and
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und SimulationÖkonomischer Prozesse”), Humboldt–Universität zu Berlin, theU.S.–Israel Bina-
tional Science Foundation(BSF), theKoret Foundation,and theEU, TMR ENDEARproject.



462 M. Landsberger et al.

modified for the symmetric affiliated values model.1 However, in many appli-
cations the symmetry assumption is not plausible. Therefore, the literature has
begun to analyze different kinds of asymmetries between bidders.

Adhering to the independent, private values framework, several authors have
assumed that bidders’ valuations are drawn from different probability distribu-
tions which arecommon knowledgeamong them. Already in the early literature,
Vickrey (1961) considers auctions with two bidders where one knows the other’s
valuation with certainty, and Griesmer et al. (1967) analyze first-price auctions
with two bidders whose valuations are uniformly distributed over different sup-
ports. More recently, Plum (1992) analyzes the two bidder case for arbitrary con-
tinuous distribution functions, proves that the first-price auction has a unique pure
strategy equilibrium with strictly monotone increasing bid functions, and com-
putes the equilibrium strategies for a class of parametric distribution functions.
Using the same framework, Maskin and Riley (2000a) explain the properties
of several asymmetric two bidder examples, assuming a strong stochastic order
between distribution functions (stronger than first-order stochastic dominance).
Maskin and Riley (2000b), Reny (1999) and Simon and Zame (2000) analyze
existence of pure strategy equilibria in first-price auctions, and Lebrun (1999)
analyzes existence and uniqueness of pure strategy equilibria for then-bidder
case.2

In this paper we consider another kind of asymmetry among bidders. We
assume that bidders do not only know their own valuation, but also know the
ranking of valuations. With two bidders, this means that the identity of the bidder
with the highest valuation is common knowledge. This assumption induces an
asymmetry among bidders that cannot be subsumed under the approach by Plum,
Lebrun, and Maskin and Riley, because after knowing their ranking and their
own valuation, each bidder computes conditional probabilities of other bidders’
valuations that are not common knowledge among them, and indeed induces
distinct results.

To motivate the kind of asymmetry assumed in this paper, consider a procure-
ment auction in which bidders know who is the strongest bidder. This information
may be due to experience accumulated in other bidding occasions or from in-
dustrial espionage. Similarly, in art auctions bidders often revise their strategies
after they learn that some wealthy collector participates who is known to have a
higher valuation. And in privatization or takeover bidding, participants often have
access to information about each others’ financial resources or other idiosyncratic
features that affect bidders’ valuations.

1 For basic results of standard auction models see the surveys by McAfee and McMillan (1987),
Milgrom (1989), Matthews (1995), and Wolfstetter (1996).

2 The different proofs of existence employ very different methods. Maskin and Riley (2000b)
use topological methods developed by Dasgupta and Maskin (1986). Plum (1992) and Lebrun (1999)
establish directly that a solution to a suitable set of differential equations exists. Reny (1999) employs
his concept of “payoff secure” games. And Simon and Zame (2000) view the tie-breaking rule as
part of the solution of the game, and show that there is always some tie–breaking rule for which an
equilibrium exists.
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Also note that the solution of an auction game induced by our model, where
the ranking of valuations is common knowledge among bidders, is an essential
ingredient of the analysis of some important multi–stage bidding games. This is
relevant in auction settings with several rounds of bidding before a transaction
takes place. Another case are auctions in which several identical units are sold
sequentially to the same set of bidders and, after each round, bidders find out
who the winner was but do not observe the winning bid. For example, in Italy the
formerly state owned industrial conglomerate ENI3 was privatized using precisely
such a procedure with essentially two rounds. In the first round bidders submitted
sealed bids and reorganization plans. Then, the auctioneer screened out the lowest
bidders, informed the remaining bidders whether their bid was the highest or not,
without revealing the highest bid, and finalized the sale in a first–price auction,
with the proviso that bids could not be lowered at this second stage. Clearly, in
the analysis of this and similar auction games, one has to solve all subgames,
including the subgames in which bidders have revealed the ranking of their
valuations through their first–round bids, regardless of whether these subgames
happen to occur on the equilibrium path of that game.

Although we start our model as one where valuations are independent, and
the distribution of valuations is common knowledge among bidders, after having
incorporated the information about ranking, the resulting conditional distributions
are not common knowledge. Yet, the resulting environment can be analyzed as
a game with common knowledge of the distribution on types provided that one
assumes that valuations are drawn from a commonly known joint probability
distribution with a triangular support (in case of two bidders), and where the
higher valuation is assigned to one particular bidder (say bidder 1).

Technically speaking, knowing the ranking of valuations induces a particular
stochastic dependence or affiliation of valuations, even if the original context was
that of independent valuations. Indeed, it leads to an affiliated values model in the
spirit of Milgrom and Weber (1982), however, without their crucial assumption of
a symmetric distribution of signals. Therefore, our model can be viewed on one
hand as a particular extension of the Milgrom and Weber model that considers
a specific asymmetric distribution — triangular, and on the other hand as an
extension of the asymmetric models of Maskin and Riley (2000a), Lebrun, and
Plum to particular asymmetric values which arenot independent.

Our main results are as follows:
– The first-price auction has a unique equilibrium in pure strategies with strictly

monotone increasing bid functions.
– The first-price auction is generally inefficient (with positive probability), and

the well-known ranking of auction forms based on Milgrom and Weber’s
(1982) symmetric affiliated values model can be reversed.

– Assuming a uniform prior distribution function, the low valuation bidder
bids more aggressively than the high valuation bidder, and both bid more
aggressively than in the associated symmetric game.

3 ENI stands forItalian Oil and Energy Corporation.For a detailed account of the breaking–up
of ENI see Caffarelli (1998).
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– Assuming a uniform prior distribution function, the first-price auction is more
profitable for the seller. As for the bidders, the low valuation bidder also
prefers the first-price auction, whereas the high valuation bidder prefers the
second-price auction. However,ex ante, before the ranking of valuations is
known, bidders prefer the second-price auction.

Our results imply that the information structure that we address may be attractive
for the auctioneer; therefore, an interesting question is whether the auctioneer can
induce or exploit it strategically. This is in fact the topic of work in progress by
Kaplan and Zamir (2000).

Some of these results, such as the potential inefficiency of the first-price
auction and the failure of revenue equivalence, extend results obtained in the
asymmetric auction framework developed by Plum, Maskin and Riley, and Le-
brun to another asymmetric auction environment. However, other results, such
as bidders’ preference for auction formats, differ.

The plan of the paper is as follows. In Sect. 2 we present the model and ex-
plain its relationship to the affiliated values model. In Sect. 3 we prove existence
and uniqueness of equilibrium in pure strategies; the proof is by construction. In
general, the game does not have an analytic solution even in the case of sim-
ple distributions. In Sect. 4 we elaborate on the ranking of auction formats by
the seller and by bidders, and compare our results with those obtained in the
independent, asymmetric private values model by Plum, Maskin and Riley, and
Lebrun. Some of the more technical arguments are spelled out in the Appendix.

2 The model

Consider a first–price auction where an indivisible good is auctioned to two
risk neutral bidders. The seller’s reserve price is equal to zero. Valuationsv
are realizations of a random variableV , independently drawn from a differenti-
able probability distribution functionG(v) with densityg := G′ which is strictly
positive on the support [0, 1].

Valuations are privately observed. In addition, each bidder knows whether his
valuation is the higher or lower of the two. Furthermore, the ranking of valuations
is common knowledge among bidders.

Denote bidders byH andL, whereH stands for the bidder with the higher
andL for the bidder with lower valuation. LetbH andbL be the respective bid
functions andφ := b−1

L , σ := b−1
H the associated inverse bid functions. We restrict

the analysis to equilibria in pure and strictly monotone increasing strategies.
As a technical requirement, we assume that the density ofG around 0 is

positive and bounded away from 0.

An alternative interpretation.The present model is equivalent to the following
game in which the players are treated asymmetrically:V1 and V2 are indepen-
dently drawn (according to the distributionG), then VH := max{V1, V2}, is
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assigned to bidder 1 (who is called bidderH ) while VL := min{V1, V2} is as-
signed to bidder 2 (who is called bidderL). Equivalently, the bidders’ valuations
VH , VL are drawn from a joint probability distribution with probability density
f : V → R, with the triangular supportV := {(vH , vL) ∈ [0, 1]2 | vL ≤ vH },
which is equal to

f (vH , vL) = 2g(vH )g(vL), (1)

Of course,VH , VL are stochastically dependent. In fact, from (1) it follows
immediately that the affiliation inequality (see Milgrom and Weber 1982)4

f (v̄ ∨ v̄′)f (v̄ ∧ v̄′) ≥ f (v̄)f (v̄′) (2)

is satisfied with equality for all vectors of valuations ¯v, v̄′ ∈ V . Therefore, the
present model induces a particular auction game with affiliated valuations. The
crucial difference to Milgrom and Weber (1982) is that the distributionf is not
symmetric.

Although the distributionf is common knowledge among bidders, the mutual
beliefs about each other’s valuationare not common knowledge (as they were
not also in the original interpretation, sinceVH andVL are not independent).

Equilibrium conditions.Suppose bidderH has valuationv and bidsx. If the
rival bidder plays the strict monotone increasing strategybL, the probability that
H wins is

Pr{H wins} = Pr{bL(V ) < x | V < v}
=

Pr{V < min{φ(x), v}}
G(v)

, (3)

whereφ = b−1
L . Therefore, the expected payoff of bidderH with valuationv if

he bidsx is

ΠH (x; v) =
Pr{V < min{φ(x), v}}

G(v)
(v − x). (4)

To compute the best reply ofH , note that in equilibrium min{φ(x), v} = φ(x)
because otherwiseH could lower his bid and still win with certainty. Conse-
quently, the best reply is obtained by solving

max
x

G(φ(x))(v − x). (5)

It is readily seen that there is a unique local maximum to this problem thus,
differentiating (5) with respect tox, and using the fact that in equilibriumx is
equal tobH (v) (or equivalently,v = σ(x) = b−1

h (x)), one obtains the differential
equation

φ′(x)g(φ(x)) (σ(x) − x)) = G(φ(x)). (6)

Next, consider bidderL with valuation v who bids x. The probability of
winning is

4 v̄ ∨ v̄′ denotes the componentwisemaximumandv̄ ∧ v̄′ the componentwiseminimumof (v̄, v̄′).
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Pr{L wins} = Pr{bH (V ) < x | V > v}
=

Pr{V > v andσ(x) > V}
1 − G(v)

. (7)

Note that, in equilibrium, the bidx must satisfyσ(x) > v, because otherwise, in
order to have a positive probability of winning,L would have to raise his bid.
Therefore,

Pr{L wins} =
G(σ(x)) − G(v)

1 − G(v)
. (8)

Computing the best reply, as before, one obtains the differential equation

g(σ(x))σ′(x)(φ(x) − x) = G(σ(x)) − G(φ(x)). (9)

Two boundary conditions apply:

σ(0) = φ(0) = 0 and
σ(b) = φ(b) = 1 for someb ≤ 1.

(10)

The first boundary condition in (10) follows from the fact that in equilibrium
a bidder withv = 0 does not make a positive bid i.e.,bH (0) = bL(0) = 0. The
other boundary condition is due to the fact that in equilibrium the maximum bid,
b (that of valuationv = 1), must be the same for both bidders, because if it
differed, the bidder with the higher bid could lower it, still win the object with
probability 1, and thus strictly increase his expected payoff. Consequently,

bH (1) = bL(1) = b. (11)

3 Equilibrium

In this section we show that the game has a unique equilibrium in pure strategies.
We also note that this solution is generally not an analytic solution (in the sense
that the bidding functions have no expansion about 0 to power series with rational
powers).

In order to prove existence and uniqueness of equilibrium in pure strategies
for arbitrary probability distributions consider the following system:

φ′(x) =
G(φ(x))

g(φ(x))(σ(x) − x)

σ′(x) =
G(σ(x)) − G(φ(x))
g(σ(x))(φ(x) − x)

∃b ∈ (0, 1) such that φ(b) = σ(b) = 1
σ(0) = φ(0) = 0.

(12)

We prove that this system, to which we refer as theconstrained system, has
a unique solution. The proof follows from a sequence of Lemmas.
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The main idea of the proof is to start from an arbitrary boundary pointb, as
defined by the first boundary condition in (12), and move along the trajectories
governed by the differential equations in (12). In what follows, we refer to this
system as thepartially constrained system(that is the system (12) without the
boundary condition at 0). Note, the partially constrained system can be written
in the form

dG(φ(x))
dx

=
G(φ(x))
σ(x) − x

(13)

dG(σ(x))
dx

=
G(σ(x)) − G(φ(x))

φ(x) − x
(14)

φ(b) = σ(b) = 1. (15)

By a standard property of ordinary differential equations5, for everyb ∈ (0, 1)
the partially constrained system (13)–(15) has a unique solution which we denote
by φb andσb. We show that there is exactly oneb at which the second boundary
condition in (12) is also satisfied i.e.,φb(0) = σb(0) = 0.

We distinguish between two kinds of solutions to which we refer asΩ1, Ω2:

Definition 1. A solution of the partially constrained system belongs toΩ1 if
φb(x) > x for all x ∈ (0, b]; it belongs toΩ2 if φb(x) = x for some x∈ [0, b).

Lemma 1. Both setsΩ1 andΩ2 are not empty.

Proof. The proof is in two parts: (i) We show that forb sufficiently small
(φb, σb) ∈ Ω1, while (ii) for b sufficiently close to 1, (φb, σb) ∈ Ω2.

(i) By our assumptionµ := minx g(x) > 0. We claim that forb = µ/4 we
have (φb, σb) ∈ Ω1. In fact we show that, for this value ofb, both functions
φb and σb are above the line
 : y = 1/2 + (2/µ)x (see Fig. 1). By (12), the
derivatives of the functions are bounded by

φ′
b(x) ≤ 1/(σb(x) − x)µ and σ′

b(x) ≤ 1/(φb(x) − x)µ .

In particularφ′
b(b) ≤ 1

(1−b)µ andσ′
b(b) ≤ 1

(1−b)µ which is smaller than 2/µ, the
slope of
 , and hence both functions are above
 in the neighborhood ofb = µ/4
(see Fig. 1).

Assume, contrary to our claim, that the functions do not lie entirely above

. Let x0 be the largest crossing points of one of the two functions, sayφb with

. Note that sinceµ ≤ 1, the slope of
 is at least 2, soσb(x0) − x0 > 1/2 and
henceφ′

b(x0) < 2/µ which means thatφb(x) is below
 at the right ofx0 which
is in contradiction to the fact thatx0 is the largest crossing point ofφb.

(ii) Let c := min1
2≤x≤1

G(x)
g(x) , then, by (12),φ′

b(x) > c/(1− x) for all b > 1/2
and x > 1/2. Takex1 > 1/2 such thatc/(1 − x1) > 2 andb = (1 + x1)/2 (see
Fig. 1), then

φb(x1) < φb(b) − 2(b − x1) = x1,

5 See e.g., Corduneanu (1971).
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Fig. 1. The solutions of the partially constrained system for small and large values ofb

and hence (φb, σb) ∈ Ω2. �


For anyb ∈ (0, 1) definexb ∈ [0, b) by

xb =

{
0 if φb(x) > x ∀x ∈ [0, b)
max{x | φb(x) = x} otherwise.

Lemma 2. σb(x) > φb(x), for all b ∈ (0, 1) and for all x ∈ (xb, b).

Proof. By the two differential equations and the first boundary condition in (12),
φ′

b(b) > 0 andσ′
b(b) = 0. Therefore,σb(x) > φb(x) at least in a neighborhood of

b. If our claim is false then let ¯x be the largestx in (xb, b) such thatσb(x) = φb(x).
Then againφ′

b(x̄) > 0 (sinceφb(x) > x in (xb, b) by definition of xb), and
σ′

b(x̄) = 0 and hence,σb(x̄+ε) < φb(x̄+ε) for sufficiently smallε, in contradiction
to the definition of ¯x. �


For b ∈ (0, 1) let Ib = {x ∈ (xb, b]|φb(x) ≥ x}.

Lemma 3. If b′ > b, thenφb(x) > φb′ (x) andσb(x) > σb′ (x), for all x in Ib∩Ib′ .

Proof. By the differential equations,σb(x), φb(x) are strictly increasing inIb so
φb(b) = 1 = φb′ (b′) > φb′ (b), and similarlyσb(b) = 1 = σb′ (b′) > σb′ (b). Hence,
the assertion is valid in some (left) neighborhood ofb. Assume, it does not hold
everywhere inIb ∩ Ib′ . Then, there exists a largest (closest tob) crossing point
z of either theφ functions or of theσ functions. If this last crossing is of theφ
functions only, we haveφb(z) = φb′ (z) andσb(z) > σb′ (z) and therefore,
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φ′
b(z) =

G(φb(z))
g(φb(z))(σb(z) − z)

<
G(φb′ (z))

g(φb′ (z))(σb′ (z) − z)
= φ′

b′ (z), (16)

implying that in the right neighborhood ofz we haveφb(x) < φb′ (x), in con-
tradiction to the fact thatz is the largest crossing point. Similarly, we can rule
out the possibility thatσb(z) = σb′ (z), andφb(z) > φb′ (z). Finally, we rule out
the possibility thatz is the crossing point both of theφ functions and of theσ
functions i.e.,σb(z) = σb′ (z) andφb(z) = φb′ (z). In fact this means that the two
differential equations in (12), with the boundary condition atz, have two distinct
solutions in [z, b] namely (φb, σb) and (φb′ , σb′ ), violating the uniqueness of the
solution to such a system (guaranteed by standard results). �

Lemma 4. There exists a unique b∗ that induces a solution of the partially con-
strained system which belongs to both setsΩ1 and Ω2. This solution satisfies
φb∗ (0) = 0 andφb∗ (x) > x ∀x ∈ (0, b∗].

Proof. For convenience we shall writeb ∈ Ωi for (φb, σb) ∈ Ωi . The mono-
tonicity properties established in Lemmas 2 and 3 imply that ifb ∈ Ω1 and
b′ < b, then alsob′ ∈ Ω1. Similarly, if b ∈ Ω2, andb′ > b, then alsob′ ∈ Ω2.
Let b∗ := sup{b | b ∈ Ω1}. We claim that this is the desiredb∗. In fact if
b∗ ∈ Ω1 ∩ Ω2, thenφb∗ (0) = 0 andφb∗ (x) > x for all x > 0. We have thus to
rule out the possibilityb∗ �∈ Ω1 ∩ Ω2 which (sinceΩ1 ∪ Ω2 = [0, 1]) consists of
two cases:

Case 1. b∗ ∈ Ω1 andb∗ /∈ Ω2. Then,φb∗ (x) > x for all x ∈ (0, b∗], and hence
(by continuity)φb∗ (0) > 0. Since the solution (φb∗ , σb∗ ) is C∞, a known result
about stability of smooth solutions to ordinary differential equations with respect
to changes in initial conditions, implies the existence of nearby solutions (see
Corduneanu (1971), Theorem 3.4). In the present case this implies that there
exists ab > b∗ and yetb ∈ Ω1, in contradiction to the definitionb∗.

Case 2. b∗ ∈ Ω2, b∗ /∈ Ω1. Then, by definition, there exists 0< xb∗ < b∗ where
φb∗ (xb∗ ) = xb∗ (recall that, by its definition,xb∗ is the largest value in (0, b∗)
satisfying this equality). Hence by Lemma 2,σb∗ (xb∗ ) ≥ xb∗ since the opposite
inequality would imply (by continuity)σb∗ (xb∗ + ε) < φ(xb∗ + ε), in contradiction
to Lemma 2. We now show that this inequality leads to a contradiction:

(i) If σb∗ (xb∗ ) > xb∗ then (by the differential equation)φ′
b∗ (xb∗ ) is finite, and

thereforeφb∗ (x) is C1 on [xb∗ , b∗], and forx in the neighborhood [xb∗ , xb∗ + δ],
it can be expressed in the formφb∗ (x) = xb∗ +γ(x̃ −xb∗ ), wherex̃ ∈ [xb∗ , x]. But
then it follows from the second differential equation in (12) that the singularity
of σb∗ (x) at xb∗ is not integrable, and thereforeσb∗ cannot attain a finite value
at xb∗ , a contradiction.

(ii) The only case that remains to be considered isσb∗ (xb∗ ) = φb∗ (xb∗ ) = xb∗

for some fixedxb∗ > 0. We prove that (φb∗ , σb∗ ) areC0 in [xb∗ , b∗]: In fact these
functions are smooth in (xb∗ , b∗], monotone increasing and bounded from below
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by xb∗ in [xb∗ , b∗]. Therefore, for any monotone sequencexn ↓ xb∗ we have
also the convergence:φb∗ (xn) → φ∗ andσb∗ (xn) → σ∗, with xb∗ ≤ φ∗ ≤ σ∗. If
φ∗ > xb∗ , then we could pass to the limitx ↓ xb∗ in the differential equations
(12) and thus, obtain a solution starting atb∗ which is different from (φb∗ , σb∗ ),
in contradiction to the uniqueness theorem. The caseφ∗ = xb∗ < σ∗ is ruled out
by the same argument used in (Case 1), and we conclude thatxb∗ = φ∗ = σ∗,
establishing the continuity.

The continuity implies that for a fixed smallε > 0 (to be chosen later), there
is a smallη(ε) > 0 such thatφb∗ (xb∗ +ε)−xb∗ < η(ε), andσb∗ (xb∗ +ε)−xb∗ < η(ε)
(and hence alsoφb∗ (xb∗ +ε)− (xb∗ +ε) < η(ε), andσb∗ (xb∗ +ε)− (xb∗ +ε) < η(ε)),
with η(ε) → 0 asε → 0.

Consider now the partially constrained system on [xb∗ + ε, b∗]. Since the
solution is smooth there, we can findb < b∗ (and very close to it), so that
φb(xb∗ + ε) − xb∗ < δ(ε) andσb(xb∗ + ε) − xb∗ < δ(ε), with δ(ε) → 0 asε → 0.
But thenφ′

b(xb∗ + ε) > c/δ(ε) (for somec > 0), and sinceσb decreases as we
move to the left ofxb∗ + ε, the inequalityφ′

b(x) > c/δ(ε) still holds in some
small (but ε – independent) interval to the left ofxb∗ . Sinceφb(xb∗ ) is η(ε)–
close to the diagonaly = x, and its derivative isδ−1(ε) large, it must cross the
diagonal at some point 0< x̄ < xb∗ and thusb �∈ Ω1, contradicting the definition
b∗ := sup{b | b ∈ Ω1}. �

Combining the above Lemmas we prove that:

Theorem 1. The auction game has a unique pure strategy equilibrium.

Proof. We need to show that the full system in (12) has a unique solution.
By Lemma 4 we know already that (φb∗ , σb∗ ) solve the partially constrained
system and satisfiesφb∗ (0) = 0. It remains to be shown thatσb∗ (0) = 0. Recall
that σb∗ (x) > x for x > 0. Assumeσb∗ (0) > 0. Then, by the first differential
equation in (12),φ′

b∗ (0) = 0 (becauseG(0) = 0 and the denominator is positive),
and thereforeφb∗ (x) < x in some small interval [0, ε), in contradiction with
Lemma 4. Therefore, (φb∗ , σb∗ ) satisfy also the second boundary condition in
(12) as well. Uniqueness follows from the uniqueness ofb∗. �


We now point out that the model does not have a closed–form solution even
if the distribution of valuations is uniform.

AssumeG is uniform on [0, 1]. Rewriting (6), (9) and (10), we obtain

φ′(x) =
φ(x)

σ(x) − x

σ′(x) =
σ(x) − φ(x)
φ(x) − x

φ(0) = σ(0) = 0
φ(b) = σ(b) = 1 for some b ≤ 1.

(17)

Proposition 1. System (17) does not have an analytic solution.

Proof. The proof is in the Appendix. �
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4 Equilibrium properties

How does the introduction of common knowledge concerning the ranking of val-
uations among bidders affect equilibrium bid functions? Does the bidder with the
lower valuation always bid more aggressively? Does it affect the efficiency of the
first–price auction? And how does it change the ranking of the seller’s expected
revenue and bidders’ expected payoff in first– and second–price auctions? In the
following we draw comparisons to the symmetric independent and the symmetric
affiliated private values models, and also to the models of asymmetric auctions
by Plum (1992), Lebrun (1999), and Maskin and Riley (2000a).

4.1 Inefficiency of the first–price auction

Although Lemma 2 was established as part of the proof of Theorem 1, it is of
independent interest. It shows that the low valuation bidder bids higher than his
rival:

bL(v) > bH (v) ∀v ∈ (0, 1).

The straightforward intuitive explanation is that otherwise the low valuation bid-
der would stand no chance of winning, which cannot be part of an equilibrium.
An important consequence of this relationship between the bid functions is:

Corollary 1. If the ranking of valuations is common knowledge, the object is
awarded to the bidder with the lower valuation with positive probability; therefore,
the first–price auction is inefficient.

Proof. For anyx ∈ (0, 1) we haveσ(x) > φ(x). Using the monotonicity of these
functions, this implies that any Low bidder with valuation higher thanφ(x) bids
more thanx while any High bidder with valuation smaller thanσ(x) bids less
thanx. It follows that whenever both valuations are in the interval (φ(x), σ(x)),
which occurs with positive probability, the low valuation bidder wins the auction
and gets the object. �


The inefficiency is due to the fact that the two bid functions are apart, and
hence the distance betweenσ andφ is related to the “degree” of inefficiency. For
example, if we measure the inefficiency by the probability that bidderL, with
the lower valuation, gets the object then it can be easily verified that:

Pr{the object is awarded toL} = 2
∫ b

0
(G(σ(x)) − G(φ(x))) σ′(x)g(σ(x)) dx.

For the uniform distribution, this measure simplifies to

2
∫ b

0
(σ(x) − φ(x)) σ′(x) dx.

As it has been already noticed in the auction literature, the inefficiency of
the first-price auction is closely related to the asymmetry of bidders, and it is of
course also a feature of the asymmetric auction model by Plum (1992), Lebrun
(1999) and Maskin and Riley (2000a).
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4.2 Strategy comparison

Does the present model result in more aggressive bidding by one or both bidders,
relative to the standard symmetric independent private value model? Proposition
2 shows that both biddersmaybid more aggressively.

Proposition 2. If valuations are drawn from a uniform distribution, then, the bid
functions of the high and the low valuation bidders are above the equilibrium bid
function b(v) in the symmetric independent private values case.

b(v) < bH (v) < bL(v), ∀v ∈ (0, 1) (18)

Proof. See Appendix. �

The equilibrium bid functions for the uniform distribution case are given in

Fig. 2 where we see also the bid function of the symmetric modelb(v) = v/2;
These functions are from a numerical solution of the differential equations (17).

Fig. 2. Equilibrium bid functions for the uniform distribution case

The numerical integration of this system requires some care because of the
singularity at the origin. We used an asymptotic expansion given by (19), (20),
(23) and (24) in Appendix A to compute the value ofφ and σ at dx > 0 for
an arbitrary choice of the free parameterα. We then divided [dx, 1] into small
subintervals of sizedx, and integrated the partially constrained system obtained
from (17) by ignoring the second boundary condition, by a finite difference
scheme. We started with a small positiveα and repeated the procedure outlined
above with increasing values of this parameter, until we hit a numerical solution
that also satisfies the second boundary condition in (17). To ensure that the
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solution obtained is not a numerical artifact, we performed similar calculations
with different choices ofdx. The solution is plotted in Fig. 2.

It is natural to ask about the generality of the qualitative properties of the
bidding functions stated in Proposition 2. Note first that by Lemma 2, the in-
equalitybH (v) < bL(v) holds for any distributionG. In ongoing work, Philippe
Fevrier proved that the inequalitiesb(v) < bL(v) andbH (v) < bL(v) hold for any
distribution and any number of bidders if the identity of the highest valuation is
common knowledge among bidders. That is, informing a bidder that he or she
does not have the highest valuation results in more aggressive bidding compared
to the standard model and more aggressive than the bidder informed to have the
highest valuation. However, the inequalityb(v) < bH (v), does not always hold.
Indeed, there are distributions for which in equilibriumbH (v) < b(v) for some
values ofv. Such examples were generated numerically and an existence proof
is given in the Appendix under the subtitle “counterexample”.

We mention that the inequalitiesbL(v) > bH (v),∀v, are also observed in
Maskin and Riley (2000a), for their notion of strong (ourH ) and weak (our
L) bidder (see their Proposition 3.5). However, in their framework it cannot
occur that the strong bidder bids also more aggressively than in the associated
symmetric game, as we have it in the uniform distribution case.

4.3 Revenue ranking

As is well–known, in the symmetric independent private values model first–
and second–price auctions are payoff equivalent. However, if independence is
replaced by affiliation, as proposed by Milgrom and Weber (1982), the seller’s
expected revenue is higher in a second–price auction. In the present model, this
revenue ranking can be reversed.6 This may contribute to explain why procure-
ments are usually conducted as first–price auctions.

Proposition 3. If valuations are drawn from a uniform distribution, the seller’s
expected revenue is higher in a first–price auction than in a second–price (or open
English) auction; the low valuation bidder (L) also prefers the first-price auction,
whereas the high valuation bidder (H) prefers the second price auction. However,
ex ante, before the ranking of valuations is known, bidders unanimously prefer
the second-price auction.

Proof. Recall the ranking of bid functions from Proposition 2. It follows imme-
diately that the winning bid is always higher than in the standard symmetric case,
for each configuration of valuations, even though the item is not always awarded
to the bidder with the highest valuation. Therefore, the seller’s revenue is also
higher than in the symmetric independent private values model, for each config-
uration of valuations. Since in a second–price auction bidding is unaffected by

6 Milgrom and Weber show that the open English auction is even better for the seller. Although
with two bidders, the open English and the second–price auction are equivalent, the actual reversed
ordering in fact occurs as our result for the uniform distribution holds for any number of biddersn
when it is common knowledge who has the highest valuation.
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the assumed common knowledge, it follows that a first–price auction generates
higher revenue to the seller.

Bidder L prefers the first-price auction, because in the second-price auction
he stands no chance of winning the auction. In turn, bidderH prefers the second-
price auction, because compared to the first-price auction he wins more often (in
fact he always wins in the second-price auction) and consistently pays less in
expectation, for each of his valuations.7 However,ex ante, before the ranking
of valuation is known, bidders unambiguously prefer the second-price auction
because the seller’s expected revenue is higher and the entire expected surplus
is lower, due to inefficiency. �


The result that the seller prefers the first-price auction to the second-price
auction was obtained also in the models by Plum (1992), Lebrun (1999) and
Maskin and Riley (2000a). However, bidders’ ranking of auction formats differs
from what was obtained in our model. Indeed, assuming uniform distributions,
both bidders may prefer the second-price auction in their asymmetric auctions
framework. At first glance this seems to contradict Proposition 3.6 in Maskin and
Riley (2000a) where it is claimed that bidders rank auctions in the same way as
in our model. Notice, however, that uniform distributions do not satisfy the “con-
ditional stochastic dominance condition” which is assumed in that Proposition,
even though uniform distributions are a perfect example of first-oder stochas-
tic dominance. Using Plum’s (1992) explicit solution of equilibrium strategies,
one can compute bidders’ equilibrium payoffs and confirm8 that both weak and
strong bidders may prefer the second-price auction.9

We have also computed the equilibrium expected revenues for a variety of
other probability distributions and always found that making the ranking known
among bidders raises the seller’s expected revenue and that, if the ranking of
valuations is common knowledge among bidders, the first–price auction gives the
seller a higher expected revenue than the second–price or English auction. We
therefore conjecture that these two properties, derived for the case of the uniform
distribution, are valid for a large class of probability distributions. Since the
present model can be viewed as anasymmetricaffiliated private values auction,
this implies that the superiority of the second–price or English auction derived
by Milgrom and Weber (1982) does not survive the introduction of asymmetry
to the affiliated private values model.

7 Another argument proving the preference ofH is: As the expected sellers’ payoff is higher in
the first-price auction than in the second-price auction, the sum of the two bidders payoffs is lower
in the first-price auction. And since the payoff ofL is higher in the first-price auction, it must be that
the expected payoff ofH is lower in the first-price auction than in the second-price auction.

8 An example are uniformly distributed valuations on the support [50, 150], resp. [50, 200].
9 In footnote 16 on p. 425 of their paper, Maskin and Riley (2000a) write: “Under the weaker

assumption of first-order stochastic dominance, it can be shown that the ranking by buyers continues
to hold for all those buyers with sufficiently high valuations.” This is, evidently, incorrect without
additional assumptions on the distributions .
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5 Conclusions

The present paper has modified the standard symmetric private value models,
with and without affiliation, by assuming that bidders know the rank order of
their valuations. This modification is relevant in many real–world auctions. We
presented a constructive proof of existence and uniqueness of equilibrium in
pure strategies for the first–price sealed bid auction with two bidders. In this
equilibrium the low valuation bidder always bids higher (than a high valuation
bidder with the same value). Consequently, the first–price auction is not efficient
since it occurs with positive probability that the object is sold to the bidder with
the lower valuation. In the case of uniformly distributed valuations, we showed
that both bidders bid higher than in the standard symmetric case (i.e. without
the common knowledge of ranking). Therefore, the seller’s revenue is higher for
all configurations of valuations. Noting that bidding the true value is a dominant
strategy in second-price auction also when the ranking is common knowledge,
this indicates that a revenue maximizer seller should prefer the first–price to the
second–price auction. This reverses the well–known revenue ranking in private
values auctions with and without affiliation.

Appendix

Proof of Proposition 1.Evidently, φ(x) = 4
3x and σ(x) = 2x is an analytic

solution of the two differential equations in (17) which satisfy the first boundary
condition but violates the second one. We now show that this is the only analytic
solution of the system in (17) without the second boundary condition.

Since both differential equations in (17) are singular atx = 0, to obtainσ′(0)
andφ′(0) we apply L’Hôpital’s rule which givesσ′(0) = 2 andφ′(0) = 4

3. Since
every solution around 0 can be expressed as an asymptotic expansion inx, the
power series expansions ofφ(x) andσ(x) around 0 are

φ(x) =
4
3

x + αxk + . . . (19)

σ(x) = 2x + βxr + . . . . (20)

wherek, r > 1 are the first powers whose coefficients are non–zero.
Substitute (19) and (20) into the first differential equation in (17), rearrange

terms, and one obtains

4
3

x + αkxk +
4
3
βxr + βαkxk+r−1 + . . . =

4
3

x + αxk + . . . . (21)

If r > k > 1 thenα = 0, which is a contradiction. Ifk > r > 1 thenβ = 0,
again a contradiction. Therefore,k = r which in turn implies

α(k − 1) +
4
3
β = 0. (22)
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Applying similar reasoning to (19), (20) and the second differential equation
in (17), one obtains

(
k
3

− 1)β + 3α = 0. (23)

These two linear equations inα, β have a non–trivial solution if and only if the
determinant of coefficients vanishes, which implies 4− (k − 1)(k

3 − 1) = 0, i.e.

k = 2 +
√

13. (24)

This proves the Lemma since for a solution to be analytic, the exponents must
be integers. �


Proof of Proposition 2.The proof of the proposition is obtained as part of a proof
of existence of a unique solution of constrained system (17). As a by–product we
thus have two quite different proofs of existence and uniqueness for the uniform
distribution case.

In general, a system like (17) has a solution if the corresponding partially con-
strained system (i.e., if the second boundary condition is ignored) has infinitely
many solutions. We will show that this is indeed the case.

Restricting attention to the partially constrained system in (17) we observe
the following:

(i) σ2 = 4
3x, φ2 = 2x is a solution.

(ii) every solution must satisfyσ′(0) = 2, φ′(0) = 4
3 (using L’Hôpital’s rule and

the differential equations).
(iii) the asymptotic behavior of every solution, nearx = 0, is described by the

following power series expansions which are obtained by insertingk from
(24) into (19), (20)

φ(x) =
4
3

x + αx2+
√

13 + . . . (25)

σ(x) = 2x + βx2+
√

13 + . . . . (26)

Insertingk = 2 +
√

13 into (22) and (23) yields two linearly dependent equa-
tions and therefore they have one parameter family of solutions:

β(α) = −3α(
√

13 + 1)
4

, for all α /= 0. (27)

Define the functionsq(x) := φ(x)/x andh(x) := σ(x)/x. Rewriting the two
first differential equation in (17) in terms ofq(x) andh(x) gives

xq′(x) =
q(x)

h(x) − 1
− q(x) (28)

xh′(x) =
h(x) − q(x)

q(x) − 1
− h(x) (29)

and dividing (28) by (29) yields
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dq
dh

=
q − 1
h − 1

q(2 − h)
h(2 − q) − q

. (30)

Note that (28) and (29) are invariant to changes in the scale ofx, i.e. if (h, q)
is a solution, so is (hc, qc) = (h(cx), q(cx)), for all c > 0. If we interpret the
variablex as ‘time’ thenc is the ‘speed’ of motion along the trajectory of the
solution in the (h, q) plane. We shall use this phase–plane to show that there exist
infinitely many solutions to (17) if the second boundary condition is ignored, and
then show that one and only one of them satisfies the second boundary condition
in (17).

Although the following argument is self contained, it is based on methods
explained in Boyce and DiPrima (1992, Ch. 9) where more detailed discussion
and examples can be found.

First we make the dynamic system (28) and (29) an autonomous system by
changing variable fromx to t ; letting x = et , q̃(t) := q(et ) and h̃(t) := h(et ) we
obtain

q̃′(t) =
q̃(t)

h̃(t) − 1
− q̃(t) (31)

h̃′(t) =
h̃(t) − q̃(t)

q̃(t) − 1
− h̃(t) (32)

Since dividing these two equations yields the same differential equation (30), the
two dynamic systems{(28), (29)} and{(31), (32)} havethe same trajectoriesin
the phase plane (q, h) or (q̃, h̃); they are governed by the differential equation.
This phase diagram is given in Fig. 3.

The pointω := (2, 4
3) corresponds to the first boundary condition in (17); at

x = 0 in the system{(28), (29)} or t = −∞ in the system{(31), (32)}. It is a
critical point of both systems which means that at this point (h̃′, q̃′)(−∞) = (0, 0)
and (h′, q′)(0) = (0, 0). The local behavior of (30) can be studied by first finding
the possible directions of the trajectories emanating from the critical pointω in
the phase space. To do this we consider the linear approximation to the dynamic
system aroundω: Let

δ =

(
δ1

δ2

)
:=

(
q − 4

3
h − 2

)
=

(
q̃ − 4

3
h̃ − 2

)
,

be the vector of distance fromω, then the linear approximation of the dynamic
system ({(28), (29)}) or {(31), (32)}) yields:

(
δ′

1
δ′

2

)
=

(
0 − 4

3
−9 2

) (
δ1

δ2

)
+ O(δ2).

The matrix of coefficients in this equation has two eigenvalues:

1. r1 = (1 − √
13) ≈ −2.6 which corresponds to the eigenvectorξ1 =(

1 +
√

13
9

)
.
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Fig. 3. Trajectories in the phase plane

2. r2 = (1+
√

13) ≈ 4.6 which corresponds to the eigenvectorξ2 =

(
1 − √

13
9

)
.

The two directionsξ1 and ξ2 are indicated in Fig. 3. The trajectory at the
direction of ξ1 is irrelevant to our dynamic system: Sincer1 < 0, a solution of
the form δ = ξ1 exp(r1t) does not satisfyδ → 0 as t → −∞ (which is the first
boundary condition atx = 0). On the other hand, the trajectory starting atω in the
directionξ2 is the “unstable manifold” of the system, that is, this is the solution
that leaves the critical pointω as t increases from−∞ (or asx increases from
0). This corresponds to a negative value ofβ in (20) (see also (27)). The slope
of this trajectory cannot become positive before it hits the lineq = h, because
a reversal requires that it becomes zero somewhere, which cannot occur as long
as h < 2 (see Fig. 3). Therefore, the trajectory must cross the lineq = h at
some point that we denote byf ∗. While there is a unique trajectory of this sort,
it corresponds to infinitely many solutions of the system{(28), (29)} (or to the
two differential equations in (17)) that differ in their “speed”c. To choose the
“right” speed we choosec for which

qc(
1
f ∗ ) = hc(

1
f ∗ ) = f ∗. (33)

Since other solutions move either faster or slower along the same trajectory, there
is a unique solution that satisfies (33). Taking nowb∗ = 1/f ∗ we have:

φb∗ (b∗) = b∗hc(
1
f ∗ ) =

1
f ∗ · f ∗ = 1
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and

σb∗ (b∗) = b∗qc(
1
f ∗ ) =

1
f ∗ · f ∗ = 1

Thus, we establish a unique solution to the full system (17) withb∗ ∈ ( 1
2, 1)

(sincef ∗ ∈ (1, 2)).
As we proved, along the equilibrium trajectory the functionh is always

smaller than 2 which implies thath(x) = σ(x)
x < 2, and thereforeσ(x) < 2x. and

by Lemma 2,φ(x) < σ(x) < 2x. Recalling that 2x is the inverse of the symmetric
case bidding functionb(v) = v/2, we conclude thatb(v) < bH (v) < bL(v) �


Counterexample.Consider the constrained system (12) with the class of distri-
butions for which we proved the existence and uniqueness of solution namely,
distributionsG which have a Taylor expansion around 0:

G(x) = αx + βx2 + . . . ,

with α > 0. This implies that the densityq has the expansion (around 0):

q(x) = α + 2βx + . . . .

Recall that in the symmetric case, the inverse bidding functionρ := b−1 is
determined by the following differential equation (which can be easily derived
directly),

ρ′(x) =
G(ρ(x))

q(ρ(x))(ρ(x) − x)
with the boundary conditionρ(0) = 0. (34)

First it can be shown although, the inverse bidding functions may be not
analytic at 0, they do have the first two terms of Taylor expansion (linear and
quadratic; non rational powers must be higher than 2). Using the Taylor expansion
for G in equation (34), we obtain the following asymptotic expansion ofρ(x)
nearx = 0,

ρ(x) = 2x + Cx2 + o(x2) with C = −4β

3α
.

On the other hand carrying out an asymptotic expansion forφ(x) and σ(x)
(nearx = 0), solving the differential equations of the system (12), we obtain that
both inφ(x) andσ(x) the second term (after the linear term) is quadratic (again,
non–rational powers must be higher than 2):

φ(x) =
4
3

x + Ax2 + o(x2)

σ(x) = 2x + Bx2 + o(x2)

with
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A +
4
3

B = −16β
9α

3A − 1
3

B = −4β

9α
.

This implies

B = −44β
39α

,

and therefore forβ > 0 we haveB > C , and henceσ(x) > ρ(x) at least for some
interval nearx = 0 that is,bH (v) < b(v) at least in some interval of valuations
nearv = 0. �
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