A Duality Theorem on a Pair of Simultaneous Functional Equations

by
JEAN FRANCOIS MERTENS
and
SHMUEL ZAMIR

Abstract

Given P and Q convex compact sets in R^{k} and R^{s}, respectively, and u a continuous real valued function on $P \times Q$, we consider the following pair of dual problems: PROBLEM I - Minimize f so that $f: P \times Q->R$ and $f>=\operatorname{Cav}_{p} \operatorname{Vex}_{q} \times \max (u, f)$. PROBLEM II - Maximize g so that $g: P \times Q->R$ and $g \leq \operatorname{Vex}_{q} \times C a v_{p} \max (u, g)$. Here, Cav_{p} is the operation of concavification of a function with respect to the variable $p \in P$ (for each fixed $q \in Q$). Similarly, $V e x_{q}$ is the operation of convexification with respect to $q \in Q$. Maximum and minimum are taken here in the partial ordering of pointwise comparison: $f \leq g$ means $f(p, q) \leq g(p, q) \forall(p, q) \in P \times Q$. It is proved here that both problems have the same solution which is also the unique simultaneous solution of the following pair of functional equations: (i) $f=\operatorname{Vex}_{q} \max (u, f)$. (ii) $f=\operatorname{Cav}_{p} \min (u, f)$. The problem arises in game theory, but the proof here is purely analytical and makes no use of game-theoretical concepts.

