A Duality Theorem on a Pair of Simultaneous Functional Equations

by JEAN FRANCOIS MERTENS and SHMUEL ZAMIR

Abstract

Given *P* and *Q* convex compact sets in \mathbb{R}^k and \mathbb{R}^s , respectively, and *u* a continuous real valued function on $P \times Q$, we consider the following pair of dual problems: PROBLEM I – Minimize *f* so that *f*: $P \times Q \rightarrow R$ and $f \geq Cav_p Vex_q \times max(u,f)$. PROBLEM II – Maximize *g* so that *g*: $P \times Q \rightarrow R$ and $g \notin Vex_q \times Cav_p \max(u,g)$. Here, Cav_p is the operation of concavification of a function with respect to the variable $p \in P$ (for each fixed $q \in Q$). Similarly, Vex_q is the operation of convexification with respect to $q \in Q$. Maximum and minimum are taken here in the partial ordering of pointwise comparison: $f \notin g$ means $f(p,q) \notin g(p,q) \parallel (p,q) \in P \times Q$. It is proved here that both problems have the same solution which is also the unique simultaneous solution of the following pair of functional equations: (i) $f = Vex_q \max(u,f)$. (ii) $f = Cav_p \min(u,f)$. The problem arises in game theory, but the proof here is purely analytical and makes no use of game-theoretical concepts.