Yolume 6, Number 5

OPERATIONS RESEARCH LETTERS

November 1987

CONTINUOUS AND DISCRETE SEARCH FOR ONE OF MANY OBJECTS

David ASSAF and Shmusl ZAMIR

Hebrew University of Jerusalem, Mount Secopus, Jerusalem, Israel

Reccived May 1587
Revised Seplember 1987

By an casy obscrvation we show that the basic result of Blackwell {2], according te which the most inviling strategy 13 optimal
in a discrete search for one cobject, is alse trus when the number of objects is random provided the search is made in
continuous time. This result docs net hold in the diserete search model even when only two boxce arc prezent (contrary to a
conjecturs of Smith and Kimeldorl [7]). For the casc of twe boxes, a convenient sulficient condition on the distribution of the
number of objecis is provided which ensures optimality of the most inviling strategy, As a result, this strategy iz shown Lo be

optimal for several important distributions.

opiimal search * most inviting strategy + uniformly optimal strategy

1. Introduction and summary

Suppose N objects are hidden in m boxes. The
number of objects, N, is unknown, but has a
known (prior) distribution, { P, 7, (F,=FP(N=
n), 2 1 P,=1). The number of boxes, m=2, is
assumed known and we denote the set of boxes by
M=1/1,2,...,m}. Bach of the objects is hidden
in bex ¢/ with known probability @, (m, = 0, Z/L, =,
=1). The objects are hidden indapently of each
other, so that if X, denotes the number of objects
in box /, then, given N=n, X={X,,..., X,p) has
a multinomial distribution with parameters » and
w=(”1?"':wm)' .

Associated with each box / are two quantities
which are first described for the conlinuous szarch
Version:

(1) A cost of search for objects in box / for ¢
units of time, which is assumed to be of the
form ¢;t. The vector e = (¢y,..., €,y) 1 Known
with ¢, > 0 for all 1 & i < m.

(i) A (conditional) probability of finding an ob-
ject which is hidden in box { when that box is
searched for ¢ time units.

This probability iz assumed to be of the form

a(i, )=1=e"A7 with 8,>0, 1 £i<m known.

Searches for different objects hidden in the same

box are assumed independent in the sense that if

there are & objects in box i, then the probability

of Bnding at least one of them when searching
that box for ¢ time units is 1 — (1 — a(i, ¥

In the discrete search version comsidered in
Section 2, only integer multiples of r=1 are al-
lowed and the resulting parameters are denoted by
¢; and e; (e, = a(i, 1)).

The primary objective considered is to search
the boxes until an ohject is found and to do so
with a minimal total expeeted cost. Other objec-
tives are also mentionad in Scction 3. ‘

For the special case, p, =1, the results are well
known (Blackwell [2], Stone [9]); the optimal
strategy is to start the search in a ‘most inviting'
box, i.c., a box { for which the ‘marginal probabil-
ity per unit cost’ of finding the object, «,m /¢, is
highest (A, /¢, in the continucus version). This
remains the strategy until the object is found but
rather than the initial =, we substitute a modified
7 which reflects the conditional probabilities of
the boxas given the current history of unsuecessful
scarches. A strategy of this type is called a most
inviting straiegy.

When AN has an arbitrary distnbution, the
problem is apparently much harder. The disercte
search version was studied by Smith ard Kimel-
dorf [7} (8=K henceforth), and their basic result is
that for m = 3, the most inviting strategy is opti-
mal when N has a PP(A) distribution (Poisson
conditioned on N = 1), but if N is not PP(A) then
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thera axiat a, = and ¢ for which this strategy is
not optimal. {For an arbitrary N, tha most inviting
box is one whose k,/c; is highest where A, is the
‘current’ probability of finding at least one object
when searching box i.) The case m = 2 is different
and 5-K conjecture that the most inviting strategy
15 optimal for any distribution { &, 17,

The case m =2 ig clogely studied in Section 2.
We first show that the S-K conjecture iz false
(Example 1). A convenient sufficient condition on
the distribution of N wlich ensures optimality of
the most inviting strategy is then provided (The-
orem 1). Properties of this condition are studied
and as a result, it is shiown to hold in several
standard cases such as the binomial, and Poisson
distributions.

The continuous ssarch version for N =1 was
apparently never studied. In Section 3 we make a
simple observation the consequence of which is
that the most inviting strategy is optimal for any
m and any distribution { 2,17.;. Moreover, this
strategy is shown to be uniformly optimal (opti-
mal for any given budget) and in a sense ig also
the stratogy that provides the best mnformation on
the distribution of N, This actually means that the
non-opiimality of the most inviting strategy in the
diserete case is due to ‘non-divisibility’ of the
search effort.

Some recent papers which deal with othor
aspects of the problem when NV =1 are (1], [3), [4],
(5], [8] and [6]

We would like to thank Isaac Meilijson for
many helpful discussions.

2. Discrete search

When searching for at least one object in dis-
crete time, a search strategy is a sequence s=
(51, 55,...), where 1< s, <=tm is the box to be
searched at stage ¢ if no object was found in the
first r—1 stages. Lat 4, be the probability of
success (i.e, finding at least one object) when
searching box i. That is,

4]
B=1- ¥ (1-am) B =1-El-am)",
n=1

lxism.
Following an unsuccessful search of box k the
number of objects N has the modified distribu-
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tion { {5719 . given by
(1 —am,) "R,
E(l — QT ) M

and the revised (conditional) probability of succegs
when scarching box 7 is

PR =

n

E(l - ﬂkﬂk)ﬂ - E(l - am— atk'h'k)N

7 =

E{1 - a,c'rrk)N
if ik, )
and
N
R = E(1 —aym)" — E(l - 2aym, + afm, ) -

E(i— ak'rr,c)N
3)

The most inviting strategy is one which searches
at each stage box i, where / is a maximizer of the
‘current’ A/c;. This strategy was suggesied by
Blackwell [2] who proved its optimality for N =1
(in the sense of minimizing the total expected ¢cost
until an object is found). What are the distribu-
tions of N for which the most inviting strategy is
optimal? 8-K {7] basically answer this question
for m =3 and conjecture that for m =2 the most
inviting strategy is optimal for any distribution of
N,

Qnur first observation is that this conjecture is
false, as can be seen from the following exampie,

Example 1. Let a; =0.999, a;=09, ¢ =053,
e;=1 m =001, m =099, and take N as a two
point random variable such that p, = & and p, =1
for some large n (n =500 will do). Thé most
inviting strategy is checked to have the form S =
(1,2, 2, 54, $s,...). The expected cost of using this
strategy can be written as

C{S)y=0C(1,2,2)+¢(1,2,2)C{R|1, 2, 2),

where C(1, 2, 2) is the expected cost of the first
three stages (stopping at each stage if an object is
found), (1, 2, 2) the probability of not finding
any objects in the first three stages and
C(R|1, 2,2 the expected cost of the scarch sc-
quence R = (54, §5,...) given that no object was
found in the first three stages.

Consider the search strategy 8= (2, 2, 1, 4,
8g,...). Then,

C(8')=0C(2,2,1) + (2,2, DC(RI2, 2, 1).
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Clearly (1,2, 2)=¢g(2,2,1) and C(R |1, 2, 2) =
C(R|2, 2, 1). Careful computation reveals that for
n = 300 these quantities are C(1, 2, 2) = 1.075; and
C(2, 2, 1) =1.060. Thus, 5’ is better than § and
the most inviting strategy is not optimal.

Facing this negative result we proceed now to
logk for useful sufficient conditions for the opti-
mality of the most inviting strategy.

Let gy(s)= 3, P,s" be the (probability) gen-

n—>0
erating function of the random variable N,

Theorem 1. For m =2, if log gy (5) i concave on
0 <51 then the most inuiting strategy is optimal.

Proof, Observe first that if f(5) is a concave
funetion on (0, 1) then for any x, y, z in (0, 1)
such that x +y < 1, the following inequality holds:

A=) 1= 2)+f((1-»)1~2))
2 ~x—p)(1-2))+f(1=2). (4)

This follows readily from the definition of con-
cavity noting that

(1-x)(1~z)= x-T—_y

S-a)

1-x-y)1-2)

+

and
Q=-2)= Z50-x-y)1-2)

+

X
1—1z).
X4y ( z)

Writing (4) for f{s)=1log gy(s) and taking
exponential of both sides of the inequality we
obtain
E[(1~x)1-=)]VE[(1 -»)1 - 2)]”

Y

2 B[(1-x-y)1-2)]YE(1- )" (5)

Next note that if the distribution of N satisfies
(5) then the conditional distribution given an un-
suceessful search in box & also satisfies (5). In Fact
by (1) the modified probabilities for ¥ are of the
form B* = (1 —u)"P,/E(1 — u)". Substituting
this in (5) yields the same inequality with the
original distribution P, and (1 —z) replaced by
(1=5)=(1-:2)1—u). As a result we conclude
that concavity of log g,(s) implies that (5) hoids
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for the updated distribution of N following any
search history,

Next we show that if box 2 is more inviting
than box 1 then (5) implies that it remains more
inviting following an unsuccessful search of box 1.
Ini fact, we show that (3) implies

RS hy
IR ©

Ta prove (6) substitute x = a7, and p = a,my
in (2) to obtain using (5) with z =0 that A" » A,
Alse (1= 2eym +alm) 2 (1 = 2eym + aimiyt =
(1~ eym)*”. Using this and EW? = (EW)2, we
have k(" g /1, and inequality (6) now follows.

Inequality (6) implies that if box 2 is more
inviting than box 1 it remaing more inviting fol-
lowing an unsuccessful search of box 1.

‘The proof of our theorem is now completed by
using the basic result which states: If a most
inviting box remains most inviting as long as it is
not scarched then the most inviting strategy is
optimal (see [1, Lernma 2 and Theorem 2). O

We say that the random variable N is GLC if it
has a log concave generating function. The follow-
ing simple propositions are worth noting for fu-
ture applications:

Proposition 1 (closure under convolution). If N,
and N, are independent and both GLC then N, -+ N,
is GLC.

Proof, Straightforward. O

Proposition 2 (closure under conditioning on
positiveness). If N ir an integer valued non-negative
GLC then N~ defined by P(N*=k)=P(N=k|N
= 1) is also GLC.

Proof, A variable NV is GLC if and only if g + gy
~(g4)* = 0. Since g/ =0 it follows that for any
=0, B=0, log(Bgy—ea) is also concave. In
particular: log ga+(4) = logl(gn(s) — By)A(1 —
Pyl 1s concave, O

Proposition 3 (closure under translations). If N is
GLC and n 1 is a fixed integer then N + n is also
GLC,

Proof. Since log g,(s) = r log 5 is concave, the
proof follows from Proposition 1. 0O
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An immediate consequence of Theorem 1 and
the above propositions is that the most inviting
strategy is optimal for the following distributions
of N:

(a) M is constant.

(b) & is Bernoulli (F, + P, = 1). (Immediate since
guw(s)=Fy+ Pis)

(c) N is Poisson or pesitive Poisson. (For Poisson
log gu(s)=A(s=1) and for positive Poisson
uge Proposition 2.)

(d) N is binomial or positive binomial (combine
(b} with Propositions 1 and 2).

(&) £+ Pt Pya=1 for some nx 1. (Verfy
directly for n =1 and apply Proposition 3.) It
may be of interest to note that this is not true
for n=0 (for example, F, =098, P, =pF,=
0.01).

(f) N is a convolution of two Bernoulli r.v. with
different values of P. Such distributions on
{0, 1, 2} will be GLC by (b) and Proposition
1. However, not all distributions on {G,1, 2
are GLC a3 shown in example (e).

Finally we remark that the geometric distribu-
tion is not GLC ‘and hence Thearem 1 is not
applicable. In fact it is proved in Sharlin [6] that
for geometrically distributed N the most inviting
strategy may not be optimal.

3. Continuous search

In this section we make some observations
ehowing that the non-optimality of the most in-
viting strategy is due to the nen-divisibility of the
search effort. In fact in a continuous time model
the most inviting strategy is optimal in a very
strong sense for any distribution of N.

A search strategy is a function f: RxM - R
(here R denotes [0, eo)), such that

L

2af(b, iYeb forall
i=1

b= 0, (N

f(B, i) is non-decreasing in &
foreach 1=i<m. (%)

Here b = O represents some budget and f(4, i)
is the total time of search allocated to box i when
the budget is &, Requirement () states that we
cannot ‘change our minds’ and spend less time in
box 7 then the time we have already spent there.

The probability of finding at least one object
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when using the strategy 7 and a given budget b i3
given by

o m i)
Py (f)=1- 3, PH[ZW: e_ﬁ'ﬁb'”] . (9}
n—=1 i—1

For any fixed b 0, define a b-allocation as 3
function g1 M = R satisfying &7 c,g(i) < b, The
probability of finding at least one object using the
b-allocation g is given by Py(g) = Py (f) with ¢
satisfying f(b, i)=g(i), 1si<m Let G(b) be
the set of all h-allocations and dafine Fib)=
SUPy = gysy P (£)-

A strategy f* is called b-optimal if Py (f*)
= V(b) and uniformly optimal 1f Py ,(f*) = V(b)
for all bz 0.

First observe that (9) can be rewritien in terms
of P, ,(f), the probability of success under f
when there is one object,

PvsN =1 % B0 -2/

N

=1-E(1-2,(f)". (10}

Since the constraints (7) and (8) do not depend on

the distribution of N we readily have the Follow-
ing:

Obsetvation. A scarch strategy f* is uniformly
optimal for any random N if and only if it is
uniformly optimal for N = 1.

The case ¥ =1 is studied in Stone [¥] using
Lagrange multiplier techniques. It is proven (see
Chapter 2, mainly Theorems 2.1.2, 2.4.3 and 2.4.4)
that the most inviting strategy is indeed uniformly
optimal for the model described in this paper, and
in fact for more gencral models as well. Our
affirmative results for random N in the continu-
ous search model are summarized in the following
theorem.

Theorem 2, The most inviting strategy F* with any

random N:

{a) Is uniformly optimal.

(&) Minimizes the posterior expecied value of N.
Furthermare it provides the highest rate of de-
crease for the (conditional) expectation of N.

(¢) Minimizes the expected cost of searching wntil
an object is found.

Proof. (1) Immediate from the ocbservation and the
results for N =1,
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{b) We elaim here that if E{°N is the condi-
tional expectation of ¥ following an unsucczsstul
search with budget b according to the strategy f
then
forall b=0 E{"'NgEYN forall 7. (11)

In fact

nEPH) (12)

]

I°r

Ei/)N -_—

where

n
i = BL= P (1)
E(1 -Pl\b(f))
= P(N = n|unsuccessful f, b search). (13)

So for ail f, BUD/PILD=((1 =P ,(f*N/0 -~
Punl/D]" is non-increasing in » since by the
b-optimality of f* P, (/%)= P, (/). I follows
that { 24"} is stochastically smaller than or equal
te (P14} implying (11).

Now by (12), (13} and (9) we have

1 a

L3 ENN = = A"
. 8f (bs 7) &

S8ince f* searches at sach instant at box /
which maximizes the current value of 8,7, /c;, this
iz also the box which provides the highest decreass
of EYYN. This completes the proof of (b).

(¢) Let B(f) be the (random) cost of searching
with strategy f until an object is found, then

P(B(f)=b)=Py.(f),

vartD{N),
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and henqe
EB(f)= ["(1=Puy(1)) de,

and this is minimized for £* since by {(a)
Pyu(f*) = Py,u{f)forall b, forall . O
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