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Formulation of Bayesian Analysis
for Games with Incomplete Information

By Jean-Francois Mertens, Louvain-la-Neuve® ), and Shmuel Zamir, Jerusalem?)

Abstract: A formal madel is given of Harsanyi's infinite hierarchies of belisfs. It is shown that the
model closes with some Bayesian game with incomplete information, 2nd that any such game can
te approximated by one with a finite number of states of world.

1. Introduction

In analyzing a game with incomplete information, i.e. games in which players are
uncertain about all the parameters defining the strategy spaces and the payoff func-
tiohs, one is lad naturally to handle “an infinite hierarchy of beliefs for each player:
His beliefs (1.e. subjective probabilities) on the parameters of the games, his beliefs
on the beliefs of the other players on the parameters of the garnes, his beliefs on the
other players' beliefs on his own beliefs on the parameters of the games, his beliefs
on the other players’ beliefs on his awn beliefs on their beliefs on the parameters of
the games, etc. . .

In an attempt to overcome the difficulty of having to work with infinite sequences
of mutual beliefs. Harsanyi [1967 — 1968] introduced the concept of rype which
proved to be very useful in making games with incompleta information much more
manageable. Harsanyi’s idea was to summarize all parameters and beliefs concerning
a certain player, by one vector which he calls the artribute vector. In his words [sce
Harsanyi, 1967,p.171): *“.. . we can regard the vector ¢, a8 representing certain physical,

social, and psychological effributes of playet f himself in that it summarizes some cru-
cial parameters of player {’s own payoff function U, as well as the main parameters of

his beliefs about his social and physical environment . . . the rules of the game as such
allow any given player  to belong to any one of a number of possible rypes, correspond-
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Finally, in Section 5, we define a game in strategic form determined by the beliefs
space (or subspace), This wiil be typically a game “with vector payoffs"”, but the Nash
cquilibria are well defined. For a consistent beliefs subset, the Nash equilibria will be
the same as those of a certain extensive form game in which the state of the world
is chosen according to the (uniquely determined) probability distribution, and each
player is informed on what is his own type. This is Harsanyi's theorem [Harsanyi,
1967, part 11, p. 321] which is in the background of most models of games with in-
compiete information.

It should be pointed out that works in the same direction were done by Bdge et al.
who, being interested mainly in the equilibrium points of games with incomplete in-
formation, incorporated the strategy choices of the players as part of the space of
parameters on which the infinite hicrarchy of beliefs is buily,

2. The Universal Beliefs Space ¥

The main objective of this section is to prove Theorem 2.9 which establishes the
existence of a space of infinite hierarchy of beliefs, We consider a gituation of incomple-
te information involving a set of Players/ = (1,...,n }, the members of which are un-
certain about the parameters of the game they are playing which may be any element
of some s¢t § (we may think of a point of § as a full listing of the strategy spaces and
the payoff functions). We shall refer to & as the paramerer-Space.

Assurnprion: S 18 a compact space.

Remark: To see that this assumption is not too restrictive, let us see how, in a typical
and rather general model if incomplete information » the space § will in faet be com-
pact: Observe that § has most generally to include all the parameters of the game
including the parameters of the utility functions of the player. So let 5, be the set of
possible values of all the parameters of the game. Clearly Sy may be assumed (by
enlarging it if necessary) to be compact. For each player i let A’ be his action

set (enlarged so as to become independent of § € S¢o). The set of outcomes can

then be identified with the set C =8, X :’ﬁl Alandis compact if 47 are compact. The

Von-Neumann Morgenstern utility function of player is a (continuous) real map
;! C~+ R, which we may want to assume to be bounded (for instance by applying

the Von Neurnann-Morgenstern theory to all countable lotteries, in order to avoid the St.
Petersburg paradox). Hence we may take #;: €+ [0, 1] and the set of all possible

games is then § = 8, X [[0, 11" which is compact. A special case is of coursa that

in which §y andA* are finite then § will be in addition metrisable.

For any compact space X, H (X) will denote the compact space of probability
measures on X, endowed with the weak* topology. [It is clearly closed in the set of
all measures of norm = 1 since the function 1 is continuous-, and the set is by Riesz
theorem the unit ball of the dual of C (X), hence weak*-compact by Alaoglu’s
theorem.]
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Definition 2.1: A coherent beligfs hicrarchy of level K (K =1, 2, .. . ) is a sequence
(Co, Cryuis ‘CK) where:

1) €y is a compact subset of § and fork=1,..., K, 0:‘.',‘7 isa compact subzet of
Cpoq X [T (Cy.y)]" (as topological spaces). (We denote by oy, and t the
projections of C;, on €}, _; and the i-th copy of Tl Cy.1) respectively.)

pkl(c) kllk=1y"FsK' (2)
Ve, €C lete, ) =pp, {c) then v & 3

H1) the marginal distribution of o (e )onCy 5 is rt (cp1)s
H2) the marginal distribution of ¢ (¢, ) on the i-th copy of I1 (€} _5) is the unit
mass at ¢! (ep.)= ¢ (Pr.y (o)

vivted (€)k=1,....K, t o, @H ! @ =1. @

We interpret C,, as a set of beliefs up to level & and thus a point in C) consists of
hicrarchy of beliefs up to level (¢ — 1) (i.e. 2 point in 7 ;) and for each playeria
probability distribution tf,c on hierarchies of beliefs up to level (k — 1) (ie.

th, €EI1(C;_,))- Condition HI says that player i's k-level beliefs coincide with his

(% — 1) level beliefs in whatever concerns hierarchies up to level (k — 2}. Con-
dition H2 says that player { knows his own previous order beliefs,

In the next definition we formalize the properties of the space of states of the
world € we would like to obtain: Any pointe €C deterrmnes uniquely a set of
parameters § € 5 and the type #' of each player. The type t! is a probability distri-
bution on & whlch is coherent in the sense that each player knows his own type.
In other words if #/ &€ IT (C) i¢ a certain type of player /, then in all points in the

support of ¢! (Supp (1)) player i is of type #¢. This motivates the following.

Definition 2.2: An S-based abstract belicfs space (BL-space) is an (n + 3) tuple

(C.8 1 (ti)?= 1) where C is a compact set, § is some compact space, Fis a continuous
mapping f: C=+Sand ¢/, i =1,...,n, are continuous mappings t': C = IT (C) (with
respact to the weak* topology) satisfying:

™ FeCandZeSup ! ()=t (@ =1 (o)

When no confusion may result we shall denote the BL-space simply by C.

The space £ is a space in which each point ¢ & C contains a full description not
only of the state of nature £ €8 but also of all beliefs, beliefs on beliefs etc. on S.
In fact if we interpret ¢ as player i's (subjective) probability distribution on C, then
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combined with f it defines a probability distribution on §, which is the first level
beliefs of player . But r' also defines a probability distribution on (¢/ ), «» 301 hence

on the first level beliefs of the other players. This may be called the second lavel
beliefs of playsr i. Proceeding inductively we find that with each ¢ € C is associated one
infinite hierarchy of beliefs for each player. The condition (*) is a consistency con-
dition which says basically that a player { assigns positive probability ( in the discrete
casg) only to points of C In which he has the same beliefs. In other words he is certain
of his own beliefs.

Lat us write now formally the above mentioned observation;

Given § we define the spaces X, T, by

Xo =S
Ty =11X)

X =X X[T1" =8 X [g [T": k=1,2,...

Define also X =5 X X [T;]", which is & well defined compact space when 50 is 5.
Note that X' is generated by § and whenever we want to specify the generating
space we shall write X (§). We shali denote a typical peint in X (§) as
x =5 ti,-..,ti’,.,.,r,:,.. .y bR, .. .), where for each § and each k t;ETi =
=exG.)-
If ¢: €~ Cis a continuous mapping between two compact spaces ¢ and €, we
denote by ¢ the mapping IT (C) = II () canonically induced by , namely the
mapping &: I (C) = T (C) which maps p €T () to GETI (€) such that for any

continuous function fon & f F(8) df = ?.E (F o) () du,
C
To any S-based abstract BLspace (C, 8, £, (¢))%L, ) we define now a certain natural

continuous mapping 2t: C -+ X (5). This will be done by defining for aach
k=0,.,2,...amappingh, : € X, such that

k=l=p (h(D)y="h,(c) veadl,

in other words, %, (¢} is the prajection of 2 (¢) on X ey

The mappings &, are defined inductively as follows: &g (¢) = f (¢). Assume
by €= X is defined then we want to define 1, ,: € > X, . Take any ¢ € C and
leth, (@)= (s, r},...,rf,‘..,:;c,...,zg)exk then hy . ; (¢) =
=Gttt D D E X, where Vi,
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they =hp O 1 O+ T (Xp) = Ty, , and ky, is the mapping &, : 11 (€)= T (X,)
canonically induced by Ay

It follows that the so deflned i: €~ X (5) is continuous. Let & = & (C) € X (5).
When we want to emphasize the undetlying S we shall write & (5). By construction,
the image / (¢) contains all possible information concerning § and beliefs on S. There-
fore it is intuitively pretty clear that i (¢) # Ak (¢") for ¢ 7 ¢’ unleaz ¢ and ¢’ are identis
cal in whatever concerns § and differ only by something which is redundant to S and
to the beliefs structure on §,

To define this notion of nonredundancy more formally, given an BL-space

(C, 5, £, (¢"Y2,) let  be the smallest o-field (of subsets of €) for which 7 {s measur-
able and ¢, (! (¢)) (B) is measurable VB &€ F.

Definition 2.4: A Bl.space (C, 8, f. (r‘)'."= 1) is said to satisfy the non-redundancy

condition (NR-condition) if the o-ficld F separates each two distinct points in .
By our previous dizeussion we thus have:

Proposition 2.5 If an S-based abstract BL-space (C, S, 7, (r")l."_ 1) satisfies the NR-

condition then the mapping k! C — X is also one to one hence it is an isomorphism.

In dealing with BZ -spaces we would like to consider homeomorphisms between
£L-spaces which (in addition to their topological properties) will also preserve the
beliefs structure. These mappings will be called BL-morphisms and we proceed now to
define them formally.

Definition 2.6: A beliefs morphism (BL-morphism) from a BL-space (C, S, F, (t"),ff__ 1)
to a BL-space (C. §, 7, (;‘.)E'.__l) is 2 pair (@, ») where ' is a continuous mapping

of C onto € and ¢ is a continuous mapping of § onto S such that for each i,
i=1,...,n,the following diagram comutes:

k2

H':
t— 0 —3 w
g
&— i —>»
Hhl

T

S

n(C) ————s (7Y

where @' ig the mapping ¢": 11 (C) =11 (5) canonically induced by ',
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Definition 2.7: A BL-morphism (g, ¢") from (C, §, £, (#)fL,) to (€ 8. 7 (O )is
called a BL-isomorphism if the inverse mappings ¢! and (") ' exist and
(o™, (¢")"1) is a BL-morphism from (€, §, £ (72 ) to (G, 8, £ ()P, ). The two
Bl -spaces are said to be BL-isomorphic.

Some thought on the diagramm of Definition 2.6 leads us to the aobservation that
if (i, ©") is a BL-morphism from C to & then there is actually one essential mapping

and not two since t,g: seems to be determined by ¢ via the above diagram,. This is in
fact true provided £ satisfies the NR-condition:

Lemma 2.8: ¥ (¢, ¢') is a BL-morphism from (C, S, f, ¢y to (€, 8 7, (FHL))
and if the latter satisfies the NR-condition, then ¢’ is uniquely determined by

Proof: Using our notation i: €= X (S) and %: €= X (3) we denote by

B oy C=X (2 (5) € X (5) the mapping which maps ¢ € C to Z (¢) in which the
underlying § is replaced by w (S). The fact that the diagram of Definition 2.6
computes implies that ¥ ¢ € C we have R @)=t X (B, since
satisfies the NR-condition % iz one to ene (hy Proposition 2.5) and hence invertible.
Therefora:

' @ =k (o) ().

In words, the idea of the proof is that ¢ combined with the d.tagrarn determmes for
each ¢ € C uniquely the mfinite hierarchy i (c') associated with ¢’ = ¢’ (¢), and hence
it determines uniquely ¢’ itself since C satisfies the NR-condition.

Remaric: In view of Lemma 2.8 we shall shorten our notation and terminology and
speak of BL.-morphism y from BL-space C to BL-space C. Thiz iz the BL.morphism
induced by the mapping @: § -+5.

We are now ready to state the main theorem of this section.

Theorem 2.9: For any compact S and positive integer n there are spaces Vand T
Such that:

1) Y=8X[T)"
2 T=0@EX[T"H up to BL-morphisms,
3) There are compact spaces {¥; Yp—q 84, ¥ & (Yo, ¥1,..., Y,)isa coherent beliefs

hierarchy and Y is the projective limit {Yk };;0 {with respect to the naturdl projec-
tionp, Y, =Y, , Wedenoteby p € also the projection af V on ij.
4) ¥ is an S-based BL-space fwith the projections 13 Y = Sand t¥: ¥ -~ T0),

5) Any S-based abstract BL-space, which satisfies the NR-condition, is canonically
BL-homeomorphic to a compact subser aof Y {which will be called a BL-subspace

af V).
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G) For any coherent beliefs hierarchy (Co, Cry. ., CK) there is & BLwsubscpace C

of Yt g (O)=C, k=0,... . K

7) Any YV and T which sztisfy 1) and 2) or &) and 5) can be mapped continuously onto
Y and T respectively. This map induces a BL-homeomorphism between Y and a
BL-subspace of V. Any V which satisfier 3) and 6) can be BL-morphicaily mepped
onto Y.

¥ will be called the Universal BL-space generated by & (and n) and T will be called
the Universal type space generated by S fand n),

FProof: We shall prove the theorem by constructing the sequence {¥, }z_q in (3} and

define V as its projective limit and T! as the projection of ¥ on player I's coordinates.
Then we shall prove that these ¥ and T satisfy the required properties.

Construction of Y
Define the sequence of spaces {¥, };_, 8¢ follows:

Yo=Sandfork=1,2,...

(2.1) ¥ = (¥ € Ypy X [ (Y.1)]" | (@) Vi the marginal distribution of

t @ lonY, ,is # (¥}..1) and (b) the marginal distribution of tt o)

on the i-th copy of I1 (Y}, ,) is the unit mass at £ (v, ; )}.
Az we have already noted if X i2 compact, then IT (X) is also compact. Note also that
the conditions (a) and (b) in the definition of Y, are closed conditions. It follows that
if ¥, is compact, then ¥, is also compact. Since Yo =S is compact, it follows
inductively that ¥, is compact ¥ &. Let ¥ be the projective limit of {¥), };_, with

respect to the natural projections g, : ¥, = ¥,.;. ¥ is a well defined compact
sef.
Now by definition of Y, we have that ¥ &, (Yo, . . ., ¥),) satisfy automatically

all propetties of a coharent beliefs hierarchy (Definition 2.1) except for condition
(2), namely that p, (¥y,,) =Y, £ =0, 1, ... This we prove now:
Proposition 2.10: p, (Y, )=Y,, k=0,1.2,...

This proposition has the following immediate corollaries.

Corollary 2,11:
i) vk, (Yo, Yy....,Y,)isa coherent beliefs hierarchy,
@) Yk pp (V)= Y, inparticular Y # Q.

The proof of Proposition 2.10 will follow from the following.



14 AU "B88  B9: 26 CEMTER FATIOMALITY 972 2 6213631

Formulation of Bayesian Analyegis ]

Lemma 2.12: Let A and B be compact sets, I} a compact subset of A X B and

q = [1 (A). A necessary and sufficilent condition for the existence of p €11 (D)
whose marginal distribufion on A is q, is that q (D ,) =1, where ) 4 5 the profec-
HonofDon A

Proof: Bince D C D, X B, the necessity is obvious. To prove the sufficiency assume
q(D,)=1.Define L, H=S fda Lq is a linear functional defined on C'(D ), (the
linear space of conitinuous real functions on D, ). If we consider a function on D, as

a function on I, by the natural deflnition F (g, ) =f (z) ¥ {g. ) €1, and writc
L, (F)= [ Fdgq, Lg is then a linear functional defined on a linear subspace of

C (D). This is cleazly a positive functional with || L, It = 1. By Hahn-Banach extension
theorem L g can be extended to a positive linear functional Z of norm 1 on € (/).

Finally by Riesz representation theorem there is a probability measure p € IT (D),
st L (N =£ Jdp ¥ f € C (D). This p is the required extension of g.

FProof of Proposition 2.10: We prove the proposition inductively on &, It holds for
k=0since ¥y =Fand ¥, =8 X [T ()", thus gy (Y1) = Y. Assume that
Py (¥ ) =Y, ; and let us prove that oy (Yk+1) = Y. In other words we have to

show that any pointy € ¥}, can be extended to a point (v, 73,1, - ., 151 ) E ¥y
50 we have to establish the existence of an n-tuple t,i_,, qreea tg +1 ©f probability
distributions t}; w1 = 1 (Y, ) satisfying conditions (a) and (b) in the definition of
Y, namely that the marginal disitribution on ¥, X [IT (Y3, is t; x Bti(y)’
where & i) is the element IT (¥, , ) which assigns mass 1 to ¢ (). We have thus

!

to show that each of these marginals can be extended to a probability distribution
Perp on Yoy X [I1(Y, )] X ... X [[1(¥,.,)], supported by its subset Y, ie.

t£+1 (¥,)=1. Using Lemma 2.12 it remains to prove that

Sup (¢! ) X £ ()} = Supp [¢' () X S €
projection of ¥y on ¥, X [I1 (¥, ));.

8o let (Fp.p, £ (V) € Supp £ 0 X {t! ()} ie. F, ESupp 2! () C ¥, ;. Since
() assigns probability 1 to ¢ (py.; O)) it follows that ¢t Gl = # (Pr.y O
Since by induction hypothesis Pry (Yk) = ¥, _;,there is an extension

Frrs s - -2 EF) €Y, We claim that if in this point we replace Tiby £ () we
obtain a point which is also in ¥, , proving that (i')‘k_l,, r (»)) is in the projection of
Y.on¥, ; X [It (¥, )], and thus completing the proof.
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To see that (v, _; » ?’.j, L C) R ?’;') €Y, note that all conditions con-
ceming 7'{, j %1 are satisfied since (¥, Fp -+ v £F) €Y. The conditions concem-
ing 7’ () are satisfied since these are the conditions required for ¥ € ¥, (recalling
that rf Gr.)= ¢ (0.1 ©))). This completes the proof of Proposition 2.10.

Remark: Note that when y € ¥, is such that all distributions tj‘ are of finite support,
the extension of y to a point in ¥, is straightforward and an extension, also with

finite support, can be pointed at explicitely,
For anlyy = (Yo, V1. ) E ¥ and for each { €, consider the sequence of prob-
abillties 2* (01), ¥ P2)s- . on Yo, Y1, ¥z, .0 respectively. By the definitiva of

{¥, o=, this sequence satisfies that V k, the marginal of ¢{ (epp)on Yy is tt )
Since also p, (V) =T, vk, it follows that for any continuous real function [ on

¥ which depends only on K coordinates, the sequence of integrals (J fi d N0 3))
is well defined and constant for k = K + 1. Therefore the sequence @ O D=1
defines a linear positive functional of norm 1 on the space of alt such functions fj

and hence on the closure of this apace which is the space of all continuous functions
on Y. By Riesz representation theorem there is a uniquely determined probability
measure in T (Y) which represents this linear functional.

Definition 2.13:

) Foreachy €Y and v.{ €N, define by ' (¥) the probability distribution on
Y determined by ¥ in the above described way

(@) Let TP =t (V)CT (V).

Remark: Note that the mappings ¢! are continuous.

Clearly all T* are copies of the same space which we denote by T,

The spaces ¥ and T are respectively the universal beliefs space and the universal
type space generated by S (and r), and the rest of this section is devoted to prove
that these ¥ and T in fact satisfy the properties claimed in Theorem 2.9. 5o far we
have that 3) is satisfied by construction.

Froperty 1: Y =8 X [Iﬁl T thomeomorphically ),
=

Proof: First let us establish a one to one mapping between the two sets. Each
y € V determines uniquely some s €§ (namely § = pq (7)), also by definition of T,

» determines uniquely e T¥ o i. This establishes a mapping F: ¥+ 8 X [Eﬁl 7.

On the other hand by its definition ¥ can be represented as:
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V=10, 0 og:- - @" O d)ey 1Yo ESVEV

t! (¥,) €T (¥, 1) and conditions a) and b) of formula (2.1)

are satisfied}.
But for certain { the conditions & G )EM (¥ ),a) and b) ¥ & are conditions only on the
sequence (¢ (¥, Dim » which are satisfied by the sequence (zlic)l;l on {¥, 3o
derived from any # & T Thus any point in § X [igl Tl] determines uniquely a
sequence (¥q, ¥1.. - . ) corresponding to some ¥ € V. So we have a mapping
£ S X [151 T~ ¥ which is easily verified to be the inverse of /.

Now note that by Stone-Weierstrass theorem, any continucus function on Y
can be approximated by continuous functions on Yk' This implies that the mappings

{1 ¥ =TI (V) are continuous and hence T7is compact Vi (since ¥ is compact), Also
clearly the projection pq: ¥ = § is continuous. So the mapping pq ECI thys8x

X (igl Ti) is one to one :nd continuous, and therefore it is 2 homeomorphizm since
Y is compact and § X (151 Ti) iz a HausdorfY space.

The following lemuma establishes an important property of the mappings # which
will be needed for the rest of the proof.

Lemma 2.14: ViVy € YV if FE Supp (¢ ), then ¥ (Fy = 1! ().

Proof Let (Z‘f. th,...)and (?f, ?g, .+ + ) be the sequences of marginal distributions
of t¥ (¥) and t ¥ () respectively on Yy, Y, ... ¥ < Supp (¢! () implies that vk the
support of the marpinal distribution of t: E(Y,  )on E(; [T1 (Y))]; contains

(?f seeas ?,"1) But since y € V it follows by using repeatedly properties a) and b)
af (2.1) that the marginal distribution of t;G on :f):(; [TI (¥))], assigns probability 1 to
(r{ . r,i_l). Therefore (?i, ey ?,';_1) = (tf, - ,r};_l) ¥ k and thus

F ) =£ o).

As an immediate consequence of Lemma 2.14, the continuity of ¢/ and of the
projection Y &, we have:

Property 4: Y is an S-based abstract BL-Space.

Froperry 2: T =T (8 X [T "1 (homeomorphically).

.18
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Proaf: We shall prove that ¥ i, T is homeomorphic to It (S X (X, 77)). Each
. IE]
tie TV is an element in I1 (¥}, hence in I1 (§ X (_)i'g.1 Tf)) (by Property 1). But by
]:
Lemma 2.14, (s, 2, ..., )= Supp (r") = 74 = ¢!, Therefore there is natural mapping
FlofTItoM(E X (," 7)) which maps each ¢’ € T* to its marginal on 5 X (jx‘ ™,
=i >

We want to show now that this ! i5 homeomorphism: T being compact and
8% (f)(I T7) being HausdorfT, it is sufficient to ptove that f { i one to one and onto.
o

For this we shall exiibit the inverse mapping of f': Given €1 (§ X (jii 7)) we
want to show the existence of ¥ € ¥ s.t. the marginal of ¢/ () on T! is a unit mass at
t! (»)and on § X (ji‘ T7y1s p. By Property 1) it is enough to define a sequence

. i

(tﬁ. ré, .. .Y of marginal distributions on ¥, Y,....,respectively which will satisfy
conditions a) and b) of (2.1).¥ k and which define an element of II (V) having the
correct marginal distributions. %1

Foreach k = 1,let y, be the marginal distribution of 1 on (8% 12(0 j§s [ (Yl)]j)
(that is the factor space of ¥, whichdoes not involve coordinate i), Let #§ = pq (u) =
the margina! distribution of x on § and define inductively

[ S
f;c EI (Y, Iby: = uy X& ; Lk = 2. 1t follows readily from the
(21,...,txk'1) y

construction that (tﬁc);’: 1 has the required properties, This completes the proof of
Froperty 2.

Definition 2.15: A closed subzet € of ¥ which satisfies
vy ED v i €1, ' (¥)issupported by € 2.2)
will be called beliefs closed (BL-closed) or a beliefs subspace {BL-subspace) of V.

Property 5: The S-based abstract BL-spaces are the BL-closed subspaces of ¥ (by
BL-morphism), under the non-redundancy condition { Definition 2.4).

Proof: Let C be an S-based abstract BL-subspace. We shall define a mapping y:

C =V by defined for each e €Can ¥ (€) = (8, (g )g=gs- - » (t})g=1) where s €S

and each of the sequences (t;c);, ; 18 a sequence of distributions on (¥, )i =p Tespective
ely, satisfying conditions a), b) (of 2.1) for all X > 1: Remark that any point

(s, (t;c)§=1= . (t,:,’),f=1) which satisfy a) and b) V7 and ¥ X determines uniquely a
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point in ¥, , therefore by defining ¥, (¢) = (s, Iy, Y ) YeECweare
defining a mapping ¥ : C' = ¥, and hence an induced mapping $ .t I1 (C) ~+ I ¥y
We construct these mappings inductively on K: ¥ ¢ € C'let y, (c)=F(c)=S and for
K=1,2,...,define v1i, ré. =Pp,° t:c-1 (¥g.1), where ¥, is the mapping
Pt Q) ~11 (¥, _;) canonically induced by Frag-

Using condition (*) of Definition (2.2), it follows that ¥ ¢ € C the above defined

¥ (g) in fact satisfies the required condition and hence corresponds to a paint in ¥,
Furthermore, since f and ¢/ are continuous, it follows inductively that y r VK are
continuons mappings and hence the defined Y: C =V is continuous. If we denate

» (€)= C < V then it is clear from the cobstruction that € satisfies (2.2) i.e. itis a
BL-subspace of ¥, At this point we have to notice the following proposition whose
proof follows readily from the dsfinitions;

Proposttion 2.16: Any BL-closed subset of Y is an S-based abstract BL-space (with
tespect o the profections of ¥ = 8 X (isltl THon its factor spaces).
Using the terminology of Lemma 2.8 and the remark that follows it, the mapping

¥: €+ C'we constructed is the L -morphism from C'to Y induced by the identity on

S (sinee V clearly satisfies the NR-condition). Using the same notation the ahove
constructed » is clearly invertible, and hence BL ~isom2rphism between H =k ()
(the space of infinite hierarchies generated by €) and €. Therefore if  satisfies the

NR-condition we use Proposition 2.5 to deduce that y»:C=+CisaBL “isomorphist,
This concludes the proof of property 5.

Froperty 6: For any coherent beliefs hicrarchy [Cy, €y, , .. . Cx J there is a BRI
subspace Caf Vst P ()= Cok=0,.., K

Froof: By condition (4) of Definition 2.1, v rl, & ¢ (Cy):

Supp (¢}, X 5:‘ ) & Brojection of Cy- on Cy X (I (C_;)1,.

K
It follows (for instance by Lemma 2.12) that there is an extension of ’jr to a probability
distribution ' on Cp Cpq X[ (Cp.), X ... x [ (Cy.1 )], Take all possible
such extensions for cach ﬂ{r e (C‘K), v i, to define Cp 4y Prove that
Cou...,Cp, Cp,, isa coherent beliefs hierarchy of level X + 1, and proceed
inductively as in the construction of ¥ to construct g limiting C € ¥ which be the
required BL-subspace,

12



14 AU "88  @39:29 CEMTER FATIOMALITY 972 2 6213631

14 1.F. Mertens and 8. Zamir

Property 7: The minimality properties of Yand T.

o If ¥ and T satisfy 1) and 2), then V is an S-based abstract BL-space therefore
by the proof of 5), it can be mapped BL-morphieally onto some BL-mubspace € of
Y. By 1), po (£) = S and inductively (using 1) and D)o, (&)=Y, ¥ k hence
¢ = V. The mapping from Tonto Tis induced aceordingly.

® Assume that ¥ and Featisfies 4) and 5). By 5) since the ¥ we constructed
satisfy the NR-conditions, there is a compact ¢ € V and a BL-morphism ¢ ¥ = c
which induces the identity on §. On the other hand, by 4) V iz an S-based BL-subspace,
it follows from the proof of 5) that there is a BL-morphism W from V to a BL-subspace
of Y which also induces the identity on S, therefore the composed BL-morphisms
W oy ¥ - Y must be the identity and hence ¢ =~ ' and V is BL4somorphic to the
Bl-subspace C of ¥ . The mapping of F onto T is induced in the natural way.

s If ¥ an $-based BL-space which satisfy 6), then since the (¥, ¥Yi,...)}we
defined is a coherent beliefs hierarchy, there is a BL-subspace CofV,st.
Py (E') =Y, Yk thus € is BL-homeomorphic to the projective limit of (Yo, Y1, --
namely Y. By the same argument, ¥ satisfy 3) and V satisfy 6) imply that VisBL.

homeomorphic to a BL-subspace of Y. Since the two AL-morphism induce the identity
on § we obtain the required result.
This concludes the proof of Theorem 2.3,

Remark 2.17: A very common situation of incomplete information is that in which in
addition to incomplete information about § each playsr has some private information
which may depend on the state of nature. For instance if each player know his own
utility function, Can such a situation be incorporated in our model? In other words
can we construct a BL-subspace in which each player knows his private information
and it is a common knowledge that such is the situation? This in fact can be done as
follows: Let 4 : § = H, be the private information function of player ! which assigns

to cach state s'ES the element #; (s of some space H,. We would like to constrzet a

BL-subspace C C ¥, with the property: VIV y € C, the distribution of &; © po under
¢! () is = unit mass at &z, © e (). To do this let €, =5 and

Cy =151, .. ) ISES, L EM Ryt (R (D) i=1,...,n}

(Cq, €)1 ) is trivially a peliefs hierarchy which can therefore be closed to a BL-subspact
by property 6, This BL-subspace will have the required property.

Remark 2.18: 1£ § is finite or countable or a standard Bozrel space, all our results are
purely measure theoretic: indeed the set of probabilities IT on a standard Borel space
5 is again a standard Borel space (with o-field generated by {7 | m ()=}, Bisa



14 AU "88  @39:29 CEMTER FATIOMALITY 972 2 6213631

Formulatian of Bayesian Analysis 15

Borel sct in § and & € R) and this o-field iz the zame as the onc we derive from the
weak™ topology.

To camry also the results on BL-subspaces and on abstract BZ spaces to the measuze
theoretic setup, one has first to rewrite the above proofs for the case where those
concepts would be defined as analytic spaces instead of compact spaces, We are
quite convinced that except for technical complication, this extension of the theory
causes no serious difficulty,

3. Approximation of a BL-Subspace by a Finite BL-Subspace
In this section we prove the following approximation theorem,

Thegrem 3.1: For any closed BL-subspace C of Y and any finite open cover () of Y,
there is a finite BL-subspace C* of ¥ s.¢.
fi), € CU{0E0[0NC* =P}

fii) C*CU{DEQIONC #@).

In other words, Theorem 3.1 states that:

The finite BL-subspaces of ¥ are dense in the set of all L -subspaces of Y, in the
Hausdorff topology on closed subsets on VY,

To prove this theoram we use the following known result (see e.g. Kelley, General
Topology 6.33, p. 199),

Lemma 3.2: Let X be a compact space. For any finite open cover 0 of X there isa
neighborhood  of the diagonalin X X X st ¥ x € X.4 0, € 0 which satisfies:
(x,y)ey =y €0,

Remark 3.3: Clearly V/ in Lemma 3.2 can be taken to be a basic neighborhood of the
dizgonal (for instance one which is generated by a finite open cover of .X).

Lemma 3.4: For any finite open cover () of a2 compact space X there is a finite open
cover Ws... Vx, v,z EX, iffx,y ) are W-close and (v, z) are W close, then (x, 2) are
O-close.

FProof: By Remark 3.3 let |/ be a neighorhood of the diagonal X X X satisfying the
conclusion of Lemma 3.2 and which iz generated by some finite open cover I of X
This (V satisfies the required property.

Notation: We shall denote by Ref (() all such finite open covers (! given by Lemma 3.4.

Leming 3.5: Let K be a compact space. Given a finite open cover 0 of T1{K), then there
is 4 finite set of continuous functions f,, . . ., JyonKsrveEN(X), 3 0, € 0 such
thar |p(r})—po;.)1e;1,w= 1,...,nimpliesp €0,

.14
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Proof: Using Lemma 3.2 for X = I1 (X) let V be a neighborhood of the diagonal in
Il (K) X 11 (K) satisfying the conclusions of the lemma. In view of Remark 3.3, V can
be taken to be a basic open neighborhood of the diagonal, i.e. of the form:

V={(ul Iv(r})—u(ﬁ)lﬁl;f=l,-.-,n},

where f1, . . . ,f, are continuous functions on K. This finite set of functions satisfy
the required properties,

Lemma 3.6: Given a finite open cover O of T1 (K), then there is a finite open cover
U of K with the property that ¥ u €T1{K) 30E€ 0 a.t. if §: K+ K s a measurable
mapping for which ¥ x €K, (x, 8 (x)) EUX Uforsome UE U, then

(e S (W) ETXK O,

Proof: Let fy, .. ., [, be the continuous functions determined by Lemma 3.5 for the
finite cover ¢, Let I be a finite open cover of K §.1.

(x, ) € U X U for some UEUi.mpliesIj;.(x)—fi(y)lﬂl,]‘=1,...,n.

We claim that this finite open cover U is the required one, In fact, let u € [T (K), let
0 € 0 be the open set containing u and satisfying the conclusion of Lernma 3.5 and
take such a measurable mapping ¢, thenvj=1,...,%

eGP = W=l —r Vo) | <pMaxif;e) =7 (v GND

But Vx €K, (¥, ¢ (x)) € UX U forsome US U and henee | /; () —f; (¢ (x)) 151, ¥§
1t follows that | (r‘,)—;p () (f}) |=1forj=1,...,7 which imply by the definltion
fo}that(u,ga(;z))eox 0.

n
Lemma 3.7: Let X' = 151 X; where ¥ i, X, is a compact space. For any finite open

cover ) of X there are finite open cavers V4, ...,V of Xy,... . X, respectively 5.1,

V= &1 V; is an open cover of X which is finer than (),
FL

Broof: Tet 0 ={04,... ,Dn} and let U = {U,, ..., L7} be a rectangular open
cover which is finer than (0. As usual denote by g, the projection X -+ X, and
Vx,E€X letV, =N {; (Ui) |x; €0, (Ui)}‘ Then take the finite covers

I
V= {in |2, €X,}.

Notation: We shall denote by RP(0, X3, ..., X,) the set of all such product covers
refining (), provided by Lemma 3.7,
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Having done these preparations we proceed now to prove the main result of this
section, Theorem 3.1.

By Thecrem 1.3 we wrife Y = X T, where T° =8and fori=1,...,n
= 4t (Y) is the type set of player i

Consider A = {(J?}, the mcreasmg net of all finite open covers of ¥ with the partial
order: 0% = 0P iff 0® refines 0*. When no confusion may result we will denote the
eletnents of A by o, f, . . ., instead 0%, 07, ... Accordingly we will write & = 8
instead of 0® = 05.

Let C be a closed BL-subspace of Y. va€Alet (Co,..., 0, )ERP(0°,

T9, ..., TMand Yilet PF = (P .. ,P,i) be a measurable partition of T 5.t
Pe P‘=-— 30€0, PG 0. Such (n + l)tuple of partitions P=(P®, ..., P*) will be
Jiner than the open cover .

¥ii=0,1,...,mVjJj=1,...,m,let ¢ be any fixed point in P{ N p* (C) if
this intersection is non empty and any point ij" otherwise, ¥ilet X% = {ri’} and let
X= ifc X"

Define the mapping ¢q: ¥ = Y by

wo (#%, ...t =(",...,. ")

where Vi3j: t’EPj and 2% = t;.

Clearly po (Y} =X C V. Remark also that 7t depends only on t"', therefore @,

defines also uniquely mappings 7! - T* which will all be denoted by g to avoid
additional notation. . )
Fori =1 and for each r* €X', define the following probability distribution

P:i on X by .P:!. (x) = ¢ (gg* (x)). Remark that P‘:i (rf."’l, U X :fii =zl
H

If we denote Vi by P! the mapping -P-P;,- from X to IT (X), then by our defini.
tion (X, P',...,P")is some S-based abstract BL-space and o is also
(i', PY,...,P")where X = ¢, (C). By Proposition 3.5, it is homeomorphic to some
(finite) BL- subspace of ¥ which we will denote by E'“. Since (X, P',...,P")is
datermined solely by w,, we have a mapping L,UW : X = ¥ such that:

€, =¥, D=, °¢)©).

Proposition 3,8: C‘ converges to C[in the Hausdorff topolagy on closed subsets of
¥l

FProof: Considering the mapping ¢, = ¥ " gy O E‘B, note that @, is not determined

16
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uniquely by a but also by the special choice of the finite measurable partitions
?°,..., P" and by the special choice of the points {t;}. So let ¢_ be the set of all
such mappings v, ie.,

= {¢ | There is a partition P= (P, ..., P") finer than aand
a choice of {t;' } that yield ¢}

It is sufficient to prove that ¢ converges uniformly to the identity mapping on
C.ie.

vaS AdfEAsuchthat VoS, ¥VxEC v (x)is 0%<lose tox.
B

For the next argument we recall the definition of ¥ as the (projective) limit of Y, and
write a generie pointin ¥ asy = (8, £y, . .., B - - JwheresESand V &,

te =W tp), ¢! €T (Y,_;) vi. We shall refer to £, as the 4-th coordinate of

¥ (s being the Ocoordinate) and ¥ & = 0 define:

A, ={a€A|v0E0% 0is defined in terms of the first k coordinates).

Since any cover (0* js refined by some cover D% involving only a finite number of
coordinates, it is sufficient to prove that:

(*) va&g Ak,a BEA; V'y?ﬁ,Vanqb_r, vx ey (x)is 0%-close to x.

We shall prove (*) by induction on &:
For k = 0 the statement is obvious from our definitions, taking § = . Assums that
(*)is true for k and let us prove it fork + 1: Leta € ApspandVizl let V,bea

finite open cover of Tfﬂ_ ; and let /o be a finite open cover of Yk such that
Vo X _St(l V, is finer than 0°.
i=
vi,let U, € Ref (V,) and Vi3 1,let l; be a finite open cover of ¥, such that for

any measurable Wshift ¥ of ¥ (i.e., ¥ ¥ € Y, O, ¢ () EW X W for some WE W)
md vl eTi, § (¢F)is V ;close to # (see Lemma 4.2). Let 4 be any common ref-
- - — | ——
inement of (Vo, Wy, ..., W, )andlet V = Vo x £§1 v;.
Finally, if we denote by pyj _ the & A satisfying (*) for Vo € A, (by induction
hypothesis), the required § which corresponds to the givena € .4\,“,1 is
f = max (ﬁv 7). Let us prove that this § in fact satisfies the propeﬂy stated in (%),
Forx € Y}, , it will be convenient to use the notation ¢ (x) for p F ).
Lety>=fandletpS¢ , x EC, we have to show that v (x) is 0%close to x,
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By definition of 87 we have that ¢ (x) is -close to x, thercfore there remains
to show that ¥ , t¥ (p (x)) is Vclose to # (x).

Since y = > |/ we know that if ¢ = w% Oy, then gy (%) is {/ <lose to x. Thus
viie T g, @D is vi-close to ¢!. Extend ¢ (defined on ) tow: ¥ =Y by defining
@ (¥) =x for x & C. We have then that ¢ (x) is Uy-close tox ¥x & V and hence
vizl,viier, ttogis  close to # (see definition of W,). Thus v ! €7 (O,
tand o ™! are two probability distributions on € and on E‘m tespectively which
are U <lose. In particular for ¢ = :j" 2540, tf o=l = P:, is V-close to rj’ . Therefore
VXEC ¢ (po XY Oy = P:‘(m - is a probability distribution on ¢, which is
¥ close to ¢! (o (x)) which is on the other hand V,-close to # (x) (on C; since

wo (¥)is V-close tox v x €C),

Sin¢e by definition of 5&, P,
t (wg (x))

clude that ¥ (¢ (x))is V,<lose to t! {x), completing the proof of Theorem 3.1.

= #' (p (x)) and since ¥ ; € Ref (V,) we con-

4, Consistency

Summing up the structure developed so far: We started from a compact set S of
possible gates and we constructed from it the universal 8L -2pace ¥ generated by §. This
may be thought of as the space of “states of the world" in the sense that each point
¥ € Y defines completely all levels of beliefs and mutual beliefs for all the players. At
each state » € V, player { certainly knows his own (subjective) ‘probabi.lity {distri-
bution £ () on ¥. We shall also denote this distribution by £,

Nothing was said so far a5 to what iy the actual state of the world? According to
what procedure is it determined? What are the relations, if any, between the beliefs
of the different players? Following Harsanyi we ask: Are there situations in which the
subjective beliefs of the players, namaly P_;; » ar¢ equal to the conditional probabilities,

given each player’s private information, derived from some “prior™ probability dis-
tribution 2 on ¥ ? Can one characterize those points in ¥ for which this is in fact the
case? In this section, we answer these questions and in the next section we discuss
their pame theoretical relevance.

Let ¥ be a ¢losed BL-subspace of V.,

Definition 4.1: A probability distribution P € IT (¥) is said to be consistent if:

P=J}pj,dp Vii=1,...,n, @.1)

.12
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The following proposition proves that this definition in fact captures the intuitive
meaning of consistency we have in mind, namely: If P is consistent then for each
player {, his subjective probability P; equals the conditional P-probability given his

type. In other words, P may be regarded as a prior distribution on V having the P;

as posteriors. Formally, with the appropriate measurability structure on ¥ and on
(Y, letT (¢%) be the sub o-field of measurable sets in II (¥) generated by the projec-
tion ¢!, then

Proposition 4.2: If P € 11 (Y) is consistent, then!
P; (4) =P (4 | T(t")) vy Vi, ¥ A-borel subset of Y. (4.2
Proof: To see the idea more clearly we shall first prove the proposition for the simple

case in which ¥ is finite and then provide a proof for the general case which asks for
more careful measurability considerations.

FProof for finite Y- .
The projections ¢/: ¥ - T1 (¥) define for each i a partition T* of any subsety C ¥
into subsets of various types of player /, namely

T o) = FeY|PE=PY=0"Y" (¢ O

With this notation, the statement of Lemma 2,14 can be rewritten a3

Vi,V yEeYy,supp )T (). (4.3)
When Y is finite, (4.2) becomes

P;(A)=p(A|Tf(y)) vyEY,vACY. (4.4)
Actually we want to prove this whenever it has any meaning, namely whenever
P (T (¥)) > 0. (This will be satisfied if y € Supp (P).) Now we write (4.1) as

PAY= Z P}@)P@) vACY
ey

So

PANT )= 2 PLANT ¢)FE).
y=Y
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But by (4.3), Supp (Pk) C T* (7) hence
0 FET ()
PLANnT () FeT O).
Also, again by (4.3), P} (4 N T' () = P (4), so
PAUNT ) =P, ()P (T 0),

which is

PLAanT )=

FLy=PAIT &),
what has to be proved.

Proofin the general case:
Notice first that by the regularity of the measures P and 15"‘r and the continuity of

Y -bP__f, equation (4.1) extends from the continuous funct:.ons on ¥ to all upper-

sernicontinuous functions on ¥, and therefore, first by a monotone class argument to
al bounded functions, and finally from those to all bounded universally measurable
funetions f on ¥, by bracketing f between two borel functions f & f < Fwith the same
integral w.r.t.P.

Remark also that this argument implias that P' applied to a Baire (resp, Borel. resp.

universally measurable) function yields a similar funcuon

Thus, letting F (t") stand for any of those o-fields on T = #* (¥) we know that P;,
is a transition probability from T/ to Y, and there remains to show that, for any
measurable set 4 in ¥, P‘ (4) is the conditional expectation of 1' (the indicator func-
tion of A) given F (2%, i e that for any B € F (1)

[P, AP G)=[ 1, dF ().

The right-hand side is equal to P (4 M B) zo that this equatmn will follow from 4.1 —
applied to the measurable set 4 N & — if we show that 7, Py ()] =P‘ (4 NA). This

follows readily from the fact that t! is constant on the support of P;.-v 50 that this full
support is either in B or disjoint from B. This concludes the proof of Proposition 4.2.

Clearly the first question to be asked is: Does a consistent distribution exist for
every BL-subspace? The following axample answers this question negatively.

Example 4.3 Consider a situation of two players each of which has two types. The
EL-subspace ¥ has thus four points corresponding to the four possible couples of

.28
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types:

11 12
Y=
21 22

At each point of ¥ (an entry of the matrix), the first coordinate denotes the type of
player 1 and the second is that of player 2. Similaly we denote the subjective
probabilities of the players hy:

- 1=pm g 4z
for player I and for player 2,i.e.

P2 1—p, l—q; l1~—gq;

player 1’s probability distribution on the types of player 2is (p,, 1 ~ p,)is he is of
first type and (p;, 1 — p; ) if he is of second type. Similarly for player 2.

Q44 %z
We write 4 general element of [T (Y) as P = oy =0, Zoy = .
Qi Q3
For P to be consistent it has to satisfy:
Q11 by 1y q: o 1—ps q1
—_— e d—= h —_—= . = .
@ l—p an ag  1—gy ' P1 N l:h:f'f(p1 )
also:
oy _1—gq gy 1 —py Qip g 1—ps
R henee 22 = T2 _ L2 ZP2 _ ey g 1 —py).
T 72 o T M, T 1 —qs Pa FA~a2,1~pa)
So unless L —24 . 41 9 Ll=p . which is generally not the case, there is

P l—gq, 1=q3 pa
no consistent distribution on ¥,
We proceed to show that given a BL -subspase ¥ (or equivalently an abstract BL-
space, see (5) of Theorem 2.9), there is a natural way to identify what we shall call
Jinite consistent subset of Y.

Assume that, in view of our approximation results, we consider a finite BL-subspace
Y. For each state of the world y € ¥ and for each player i define

€} 1 = Supp (7)),

and inductively

-

Chae1 ®Ch eVl U USupp b, k=1,2,...
' ' ysc‘;,k 7
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We have C‘;,l c C‘;_Z-C + v+ and since ¥ is finite, a limiting set will be reached which
we shall denote by C'_;,. This is according to player i’s beliefs, the minimal BL-subspace
containing the real state of the world and it satisfies: 2 € C‘_:, = C‘; c C‘;, . Of course,
C'; may not be really a BL-subspace; it may even fail to contain y. However we have;

Propasition 4.4: If y € Bupp (P), for some consistent P with finite support, then:
C‘;, = CJ’; for alli and j. Denoting this set by C'y theny € Cy {and hence C'y is In fact
the minimal BL-Subspece containing y)..

Praaf: First observe that

¥ € 8upp () =+ € Supp (P}) < Supp () V1. (45)

In fact, by Proposition 4.2,£, (") =P (v i T' () > Osince P (») > 0, proving that
¥ € Supp (P;). The second inclusion in (4.5) is also obtained by the same equality:

P; @>0=PEIT ()>0=>P(z)>0~z & Supp (P).
By (4.5), if we let C;,o = {y}, then c;, o= Lé' '_ ‘,-’ Supp I_’,Ps’;.). Obviously it
R YEC, & ,
follows by induction that C;f. i 18 the same for all r," and hence 5o is C'_,',., proving the

proposition.
Note that in the sitvation described in the Proposition, €, is a cominon knowledge,

i.e. it ¢an he computed by each player and by an outside observer only from
knowing the set ¥

The following proposition shows that not only that for each ¥ in the support of
some consistent distribution, C'y 13 uniquely determined and is a common knowledge,

but that there is 2 unigquely determinad probability distribution on C'y which is also a
cormumon knowledge.

Praposition 4.5: For any consistent P of finite support and for any y and I, either
P(C;} =0,or P+ | c_f,) is uniquely determined by Y.

Proof: By the consistency of P it follows from Proposition 4.2 that

PG _EO)

() _P; Pt ~0. (4.6)

P(z)>0 and y € Supp (F}) =

Proceed now by induction on k: Assume that either P(P) =0y JF & C‘; x Or

% = 0is uniquely defined by ¥ v ¥,z € C;, & By (4.6) we then have that the

22



14 AU "B88  B9:323 CEMTER FATIOMALITY 972 2 6213631 F.23

a4 I.F. Mertens and 5. Zamir

same statement is true also for CJ’;‘ #-+1- Since the statement is trivially true for Cy it
is true for C‘; .

Note that if P (C';) = 0 for some consisteat P then also P’ (C;,) = 0 for any other
consistent distribution &,

Definition 4.6: A BL-subspace € on which there exists a consistent distribution P
with Supp P = C, will be called a consistent BL-subspace or shortly a C-subspace. Any
¥ € € will be talled a consistent state of the world (otherwise it is said to be in-
consistent).

A combination of Proposition 4.4 and 4.5 yields:

Corollary 4.7: A state y is consistent if it is in the support of same consistent distri-
bution P. If y is a consistent state of the world, then the C-subspace containing it is
C =t Vi, and the consisrent distribution on C is uniquely determined (by C) and is
a comman knowledge.

In view of Corollary 4.7, it makes sense to think of a consistent distribution as a
prior distriburion, not only beeause it is so, mathematically speaking, but also because
it may be assumed to be known by the players as it is usually assumed in the Bayesian
approach.

The question of consistency of the state of the world can now be presented as the
problem of testing the following hypothesis:

H_: "The actual state of the world y is consistent.™

By corollary 4.7, if H, is true, then each player / will reach the same set C; = (Cand
the same consistent dfstribution on it, P (* | C), hence: def

If player { finds no consistent P on the C‘; he computed, he may refect H, with no
possible ervor being committed,

What if player i finds a consistent P defined o his C},? Should he accept H_? Clearly

guch a C'; with the consistent P on it is 2 C-subspace (by definition}. The only question
is whether it contains the real state of the world . If ¥ € Supp (P;) then by definition
of C‘; infacty = C‘; and hence H is true. .

In other words a player / that finds a consistent C';, and accepts /f, commits an error
only if y & Supp (P;), i.e. only if he assigns probability O (in the finite case) to the real
state of the world. So, in particular his subjective probability of commiting an error is
0. So we have:

The hypothesis i, is testable by each plaver with U-subfective probability of error.
If H, is accepted, then the corresponding C-subspace and the consistent probability

distribution is computable by each player.
Especially if we make the rather weak assumption that each player assigns positive
subjective probability to any neighborhood of the real state of the world (i.e.
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Y &< Supp (PJ‘:, ¥ i), then we have:

Theorem 4.8: Whether the real state af the world is in a C-subspace or not is a commeon
knowledge, It It is, then the C-subspace containing it and the consistent distribution on
it {the priors) are also commeon knowledge,

Remark: Tt should be emphasized that the consistent prior distribution if there is any,
is a common knowledge derived oaly from the beliefs of ¢ach player on others beliefs
and not from a “new” type of beliefs on the mechanism selecting the state of the
world.

The case y & Supp P_;, daseribes a highly “inconsistent™ belief in any reasonable
meaning of this word, If players are so much mistaken in their beliefs so as to
consider “impossible™ (i.e. hasprobability Q) the real state of the world, then
{objectively) wrong conclusions are quite expected as the following examples show.

11 12
Example 4.9 There are two players each of which has two types, thus ¥ = [ ] .
21 22

The subjective probabilities of each player on the types of the others are given by:

Player 2 Flayer 2
type 1 type 2

A _
s 0
2
5 b
Flayer 1, type 1(1,0) [ 11 12
Flayer 2, type 2 (2/3, 1/3) | 21 22 |

If the actual state of the world is y = 12, then Supp (PJ{) = {11},
Supp (P;) = {22}. Both players will find the C-set {11, 21, 22} with the (only)

consistent probability distribution (1/2, 1/3, 1/6). So by accepting A, the players
will be commiting (type II) error.
Note that for the state ¥ = 12, in fact ¥ & Supp P; fori=1, 2, as it should be since

both players committed an error (altheugh each player believes with probability 1
that he is right in accepting it). Note however that inspite of its being inconsistent,
the state ¥ = 12 led both players to the same consistent subset € = {11, 21, 22}. The
next exampie shows that even this is not guaranteed in an inconsistent state,

24
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Example 4.10: Consider the previous example with different subjective probabilities,
namely:

[1,0] |11 12

0,1 | 21 22

if y = 12, player 1 will find the consistent set C= {11} with P(11 | 12) = 1, while
player 2 will find € = {22} with P (22 | 12) = 1.

Example 4.11; Y consists of 20 states with 4 types of player 1 and 5 types of player
2. Using the same notetion as in the previous example ¥ is given by

3
0 3 o )
z 0
P’ 1 2 0 0 0
3
1 1 1
0 a 2 7 3
' Iy 1 2 real state ol
Py 0 o 3 ) 3 world
— s = Cl'
(1, 0 ,0 ,0,0) It 12 ¥EY 14 15
B o __/ ¥y
2
2, 2,0 0o o0 21 22 23 24 25 /Cy
(o,o,o,-};,%) 31 32 33 4 35
(0,0,0,4,32) 4l 42 43 44 45

If the actual state of nature is ¥ = 13, player 1 will find C! = {21, 22, 12} with
the congistent probability distrbution P = (1/6, 1/3, 1/2) hence he will reach the
“wrong” conclusion of accepting . Player 2 will find C'; = {33, 34,43, 44, 45}

with no consistent P on it, He will therefore correctly reject /. Note that
» EP; ¥ EP;. Unlike in previous examples player 2 reached a correct negative
conclusion although ¥ EEP;, , but this iz just a matter of accident.
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Example 4,12 Consider the following AL -subspace with 16 states and 4 types for
each player.

g o 4] o
-
2 ‘
P £ o Q
5 0
1 1 1
o 3 2 3
1 1 2
P; o 3 2 3
r 1 r‘-"u _]
1 12 13, 14
(1, 6,0, 0) 'k""-——-—realestateufworld
12 o oy 21 22 23 24 ,1
(3:3:9. 1 c
3] 32 3 34
(0,0.3,%) ?
41 42 ol C;
43 4
(0,0, 3 » 4 ] :
7 —

If the state is y = 13, then y is inconsistent and we expect player 1 to come to this
conclusion. In fact, player 1 will computs C‘ = {11,21,22, 32, 33, 34, 42, 43, 44}

but no consistent distribution on it. (The venﬁcauon of this is rather simple via
Proposition 4.2: For any consistent P we must have P (11) = O since F§; (11) =0
but also F (11) > 0 sinca P15 (11) = 0.} So player 1 will in fact conclude that he iz in
an inconsistent state. On the other hand player 2 will compute C‘” = {33, 34, 43, 44}
with the consistent distribution P = (1/4, 1/6, 1/4, 1/3) on it.

5. Nash Equilibria

Up to now we constructed and discussed the universal AL-space and its BL -supspaces
in a game situation with incomplete information. We proceed now to define a game
based on ¥ (or on any abstract BL-space ¥). For this we have obviously to add few
ingredients:

— ¥ i, player i has an action set 4° (without loss of generality this ma%z be assumed
to be independent of player iz type. One can achieve thiz by taking as 4’ the product
of the type dependent action sets over all his types).

— Vi, ¥y €V, there is a utility function u;,:

u;,:j:( Al =R,

==}
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We define first a vector-payoff game in which:
® The players set isJ = {1,2,...,n}
® The strategy set §° of player i is the set of mappings

o' ¥ - A7 which is T -measurable.

¢ The payoff to player { resulting from an n-tuple of strategios
o= {a",...,a")is tha vector payoff:

;= (uti)riETi
(i.e. a payoff for each type ri) where:
4 (0)=1 @ (o Gt §).

Note thatu ;is Ti.measurable as it should be. Although this is not a game in the
¢

usual sense, the concept of Nask-Equilibrium (N.E.) can be defined in the usual way,
namely: o= (g*,..., 0" s NE.fvi vHET, u,(@=u, (0 F)vies,
3 ¢

where (o | &) = (t, ..., o, &, 6L, . L, 0™

Remark 5.1: When Y is a finite BL-subgpace, the above defined game is an #-person
game in which the payoff for player i is a vector with number of coordinates equal
to the number of types of playet i (namely | TE 1), It is easily seen that as far as N.E.
are concerned this game is equivalent to what is called by Harsanyi ““Selten game
G**" [see Harsanyi, 1967, 1968, Section 15, p. 496]. This is an Grdinar‘!
ITY X | T2 | X ...% | T | person game in which each “player” #/€ T* selects a
strategy and then selects his (7 — 1) partners, one from each T7, j # i according to his
subjective probability distribution,

Remark 5.2: When Y is finite we can defing an ordinary game in strategic form which

is the same as the one we defined above but instead of vector payoffs we define the

payoffs for playeri to be &, = iE v gu ,where V HeTiy ;13 a strictly positive
deTt £ F ¥

constant. Clearly, independently of the constants Tz" we choose, this game has the sam

N.E. points as our vector payoff game (and hence as the corresponding Selten game}
In particular if we take ¥ i, v ; to satisfy EE . "rrf =1 we get & game equivalent

' reT
to that sugpested by Aumann and Maschler for the inconsistent case [Aumann/Maschle
p- 341). As far as N.E. points are concerncd their game is independent of the paramete
4;- Also all these games have the same N.E. points as that suggested by Selten.
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For a consistent subset £ one has the following theorem, due to Harsanyi, that
allows us, in looking for N.E. to replace the strategic form game by a certain extensive
form game:

Theorem 5.3 (Hamsanyi): Let C be ¢ consistent subset of V. Let P be the consistent
disiribution on C, Then the straregic form vector payoff game defined by C has the
&pme N.E. points as the following game in extensive Jorm:

— A chance move chooses y & C according to P then each player is informed af P__f,.

— Vi player i then chooses s' € A and receives a payaff u; (s,...,s%),

Froof: It follows readily from the definition of the games, the definition of N.E. and
the fact that Supp (P) =,

Rernark: Harsanyi calls this extensive form game “a game in standard form™.

Remaric 5.4: By analyzing the situation defined by C via the extensive form game,
unlike Harsanyi, we do not claim that the players should in any way believe in P a3
4 prior probability distribution on C. The intraduction of P is just a matter of mathe-
matical econvenience. It serves to find the ariginal N.E. points naturally defined by €
via subjective probabilities.

Furthermore, by Corollary 4.7, since the “priors” are common knowledge, the
above described game in extensive form is also a common knowledpe which gives

even morg justification for using it in analyzing the situation of incomplete information.
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