
Zero-Sum Sequential Games with Incomplete Information 

By JEAN-PIERRE PONSSARD 1) a n d  SHMUEL ZAMIR 2) 

A b s t r a c t  : Repeated zero-sum two-person games of incomplete information on one side are considered. 
If the one-shot game is played sequentially, the informed player moving first, it is proved that the 
value of the n-shot game is constant in n and is equal to the concavification of the game in which 
the informed player disregards his extra information. This is a strengthening of AUMANN and MASCnLER'S 
results for simultaneous games. Optimal strategies for both players are constructed explicitly. 

Introduction 

Consider two players, say player I and player II who are playing repeatedly 
the same zero-sum two-person game. The two players are in an asymmetric 
position due to the fact that one of them, say player I, knows the payoff matrix 
of the game while the other is uncertain about it. More precisely, he knows only 
the probability distribution according to which "chance" has chosen this matrix. 
Games of this type were studied by AUMANN and MASCHLER (AM). Their main 
result can be described as follows: Let v,(p) be the (minimax) value per play of 
the game with n plays, as a function of the apriori probability distribution p. 
Then vn(p) converges to Cav u(p), the concavification of u(p), where u(p) is the 
value of the game in which player I disregards completely his extra information 
about the game. Cav u(p) is also the value of the game with infinitely many plays. 

Intuitively the operation of concavification reflects in this context a behavior 
which is very typical to these games namely a partial revealing of information. 
It turns out that the best thing for player I to do is generally to reveal only part 
of his information to player II. This portion of the information is to be released 
during the n plays of the game. Another question is therefore what is the optimal 
rate of releasing information. This optimal rate determines the speed of convergence 
vn(p) ~ Cav u(p) and it was studied by AM and by ZAMIR. 

AM's result is for zero-sum two-person games in which the two players move 
simultaneously. This includes of course games in which the moves are made 
sequentially: Player I moves first, player 1I is informed of player I's move and 
then makes his own move. (Such a game can be looked at as a simultaneous 
game after redefining the pure strategies of player II.) 
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For sequential games AM's result can be strengthened considerably namely: 
v,(p) = Cavu(p) for all n, and hence also v~(p) = Cavu(p). There is therefore 
no question about the speed of convergence. This result reflects the disadvantage 
of player I in the sequential game compared to the simultaneous game in which 
v,(p) >_ Cavu(p). In sequential games, the player who is first to move has a clear 
disadvantage. These results were obtained by PONSSARD using convex analysis. 
In this paper we present a slightly different proof which has the advantage of 
leading to a simpler construction for the optimal strategies. 

These optimal strategies are constructed for both players in the n-shot game, 
a task which is difficult in the general AM case where one could have only as- 
symptotic optimal strategies. The optimal strategy for player I involves some 
lotteries the probability distribution of which depends on the actual game chosen 
by chance. The optimal strategy of player II is obtained by solving certain ordinary 
matrix games determined by the supporting hyperplane to the function Cavu(p). 
The calculation of the value and the optimal strategies are demonstrated by an 
example. 

An interesting thing about the optimal strategies, which is worth some attention, 
is the fact that player I has usually to use a randomized strategy although for 
him the game is of perfect information. When he is called to make his move 
his information sets are all singletones. The incomplete information of player II, 
not about player I's move but about the chance move, makes the sequential 
game very much like the simultaneous game as far as the information structure 
is concerned. We may also interpret this fact in terms of bluffing; that is: When- 
ever player I is in a weak situation, with some probability he will play as if he 
were in a strong situation and vice versa. Actually, games with incomplete in- 
formation have closed connections with poker games. The interested reader is 
referred to the original work of PONSSARD. 

1. The Model 

Let A 1 ... A r be m x n matrices viewed as payoff matrices of two-person zero- 
sum games in which the two players are player I and player II and the sets of 
pure strategies are I = { 1 . . . .  , m} and J = { 1 . . . .  , n } respectively. Let K = { 1 . . . .  , r} 
and denote by ai~, i s I ,  j e J, the elements of A k, k ~ K.  Let P be the simplex: 

P={p=(pl...pr)[pk~OVk~K and Z = l } .  
keK 

For each p a P let Yl (p) be the two-person zero-sum game played as follows: 

Step 0. A chance move chooses an element k a K according to the probability 
vector p. Player I is informed which k was chosen but player II is not. 

Step l r  Player I (knowing k) chooses i a I. Player II is told which i was chosen. 
Step ln. Player II (knowing i but not k) chooses j ~ J. 
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After step ln, player II pays player I ~j. The game/'1 (p) will be referred to as 
one-shot sequential game. Later we will discuss the n-shot game F,(p)  in which 
the play consisting of steps 1j and 1 u is repeated n times and the payoff is made 
after each play according to the matrix A k chosen by chance at stage O. However 
we assume that the payoffs are not announced before the end of the n plays. We 

1 " 
also redefine the payoff to be the average payoff per stage p, = -h- ~_ h , . , , ,_  where 

h,. is the payoff for the m-th play. This is a mere normalization which enables 
us to compare the values of F,(p) for different values of n. 

Clearly F, (p) has a value according to the classical minimax theorem. Denote 
this value by v, (p). 

2. The Main Theorem 

The main result of the paper'is concerning the value vl (p) of the one-shot game 
FI(p). To state this result let us define for each p ~ P : A ( p )  = ~ p k A  k. Let aiJ(p), 

k~K 

i ~ I, j ~ J, be the elements of A (p). One easily realizes that A (p) is the payoff 
matrix for a modified one-shot game, A t (P), in which none of the players is 
informed about the choice of chance k, (or equivalently, the informed player, 
player I, disregards his extra information). The value of d 1 (P) is readily found 
to be: u(p) = max rain aij(p ). 

i~I j eJ  

Let Cavu(p) be the concavification of u(p), i.e. the smallest concave function 
f(p) on P which satisfies f (p)  > u(p) V p ~ P. 

Theorem 1 : 

v x (P) = Cav u (p). 
P 

For the proof of this theorem we first prove: 

Lemma 2,1: 

v 1 (P) is a concave function on P. 

Proof." 
By KUHN'S theorem, since F. (p ) i s  a game or perfect recall, we may think of 

the strategies of the players as behavioral strategies. The sets of behavioral strategies 
in F 1 (p) are X for player I and Yfor player II defined by: 

x {x (x l ,  . . . .  . . . . .  ,Xr. . . . .  , x ,  . . . . .  x , . ) l E x • =  1 V k E K ; x f > _ O V i V k }  

r = {y = (yl 1. . ~ ~I;y~ > . . . . . .  y . . . . .  ,yT . . . .  , )ly yj=lvi _ 0 v i v j }  
jG,t 

In words the strategy x for player I is to play the mixed strategy (x] , . . .  ,x k) if 
the chance choice is k. The strategy y for player II is to play the mixed strategy 
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(y] .. . .  ,y/) if player I annonces choice i. The expected payoff as x and y are used 
is H(p,x,y)given by: 

k i k H(p,x,y) = Z Z Z PkXi yja~j. (2.1) 
k i j 

By the minimax theorem: 

Vl (p) = min max H(p,x,y) = rain max Z pk • X k Z y~a~j 
y x y x k i j 

= rain ~ pk(max ~ y~ak3) 
y k i j 

and this is a concave function being the minimum of linear functions in p. 

Proof of Theorem 1 : 
Since the only difference between the games F 1 (p) and A1 (p) is that the set of 

strategies for player I in A 1 (P) is a subset ofX (namely X ~ = { x e X ] x~ = x~' u i, k, k'}), 
one has the following relation between the values: 

Hence by Lemma (2.1): vl (p) >- u(p). 
v x (p) _> Cavu(p). (2.2) 

To prove the opposite inequality, for any x s X and y ~ Y let: 

~ k. , ypkxk/Yci if xi # O. 
Yci = -- pkxi,pk = ~arbitrary if 2i = 0 ' Vi, k (2.3) 

It follows directly from (2.3) that p~ e P whenever 2~ # 0 and 

E(p') = ~ 21p i = p. (2.4) 
i 

Combining (2.1) and (2.3) we get 

H(p,x,y) Z Z - i i k = E XiPkykaq = E E 2iy}aiJ(Pi) - 
i j k i j 

Hence by the minimax theorem: 

vl (p) = max min H(p,x,y) = max ~ & min aii(p i) 
x y x i j 

_< max ~ 2i max min a,~d(p i) = max ~, xiu(pi). 
x i v j x 

But by (2.4)~ xlu(P i) < Cavu(p). Hence v I (p) _< Cavu(p). 
i p p 

3. Optimal Strategies 

In this section we give explicit detailed description of optimal strategies for 
both players. As is often the case in such games the optimal strategies are essentially 
different for the two players. This is very much expected in view of the asymmetric 
roles of the two players. 

The optimal strategy for player I is actually the strategy described by AUMANN 
and MASCHLER and by MERTENS-Z~Mm in a slightly different context. It is based 
on the following observations: 
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Lemma 3.1 : 
Letp, p~, .,. ,p' be r + 1 points in P such that p = ~ )~kp k, 2k > 0 ~ 2k = 1, then 

k k 

there are r lotteries with the same set of possible outcomes (O1 ... Or) with the 
following property: If k is chosen according to p and then the k-th lottery is 
performed then: 

(a) The total probability of outcome 0,. is ,~, v = 1 . . . .  , r. 
(b) The conditional probability distribution on the chosen r given the outcome 

O visp~, v = 1, . . . , r .  

The proof of this lemma which is straight forward is given in MERT~S-ZAMm 
(Lemma 2 p. 46). 

Lemma 3.2 : 
If player I announces his strategy a and then does a move i after hearing k, 

let p(a,i) be the conditional distribution on K given o- and i. Then the value of 
the game will not change if we modify the rules to let the payoffbe made according 
to a payoff matrix newly chosen according to p(a,i). 

This was proved in MERTENS-ZAMIR (Theorem 3.1, p. 45). 

Now for any p e P  let v l ( p ) =  Cavu(p)=  ~ 2vu(p~), where p r e P ,  2~> O, 
p v = l  

2~ = 1, ~ 2vp ~ = p. Let L 1 . . . .  ,L r be the lotteries defined by lemma 3.1 for 

{2~,p~}. The strategy for player I can now be described as follows: 
After hearing k chosen by chance perform the lottery Lk if the outcome is 

O~, play optimally in the game A 1 (P~). 
To see that this strategy is optimal we notice that the conditional probability 

distribution on K given the strategy and given O~ is pL By Lemma 3.2 we may 
assume that the payoff matrix is newly chosen according to pL Hence by playing 
optimally in A 1 (P~) player I guarantees u(pV). Since the total probability of O~ 
is 2~, player I guarantees at least ~ 2~u(p ~) = Cavu(p). 

v 

For the optimal strategy of player I I  consider p ~  (p~, . . . ,p])~ P and let 
a lp  1 + ... + arp ~ = z be a supporting hyperplane to Cavu(p) at p~ i.e. 

L a~pk >- Cavu(p) Vp ~ P 
k 

akP~ = Cavu(p)lp=pO 
k 

(3.1) 

For each i e I consider the 2-person zero-sum game Gi defined by the r x n 
matrix (ai~ - as), k = 1 . . . . .  r,j = 1 . . . . .  n. 

Lemma 3.3 : 
V i ~ I the value of Gi is _< 0. 
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P r o o f . "  

For any p ~ P, if player I plays i independently of k, his payoff in F I (p) will 
k But this is evidently not more than the value of F1 (p) which is be min ~ Pk %" 

J 

Car u (p). 
Hence: 

V i s I  V p ~ P  3 j ~ J  s.t. ~Pkai~ <_ Cavu(p) <_ cqpa + ... + ekPk, 
o r :  k 

E pk(a,  - _< 0.  
k 

Interpreting p as a mixed strategy in Gi this means that the value of G~ is _< 0 for 
all i e I. 

Corollary (3.4) : 
For each i t  I there is a mixed strategy yi = (y~ . . . . .  y~) such that ~ atiyik ~ <_ o: k 

for all k ~ K. J 

Proof." 
Such a strategy is any optimal strategy for player II in G~ since it guarantees: 

g k ~ K : ~  i k Yj(aij -- ~k) <-- 0 which is ~ akiy) < ~Z k.  

J J 
The behavioral strategy y = (yl . . . .  ,ym), where y~ is the mixed strategy deter- 

mined byCorollary (3.4), is an optimal strategy for player II in Fl(p~ To see 
that let x ~ X then: 

~" _o x k  a k  . i k i H(p~  Z Z ~ t ' k  i i iY i= Z P ~ , Z x ~ Z a i j y ~  
k i j k i j 

< Z P~ Z xk C~k = Z P; ~k = Cav u (p)]~ = , . .  
k i k 

4. The n-Shot Game 

We turn now to the n-shot game F.(p) in which the game chosen by chance 
is played repeatedly n times by the same players. Recall that the payoff in F.(p) 
is defined as the average payoff per stage, hence we expect v.(p) to be of the same 
order of magnitude. However a much stronger statement can be made: 

Theorem 2: 
v,(p) = vl(p ) for n = 2,3 . . . . . .  (4.1) 

Proof." 
An optimal strategy for player I in F~ (p) described in the previous section 

with the understanding that the lottery Lk is made only once in the beginning 
and if the outcome is O, player I plays in all stages optimally in A ~ (p~). By exactly 
the same arguments that we had for/ '1 (p) we get that this strategies guarantee 
Cavu(p) per play and hence v,(p) > Cavu(p). Similarly if player II plays in each 
stage the optimal strategy for F~(p) he guarantees Cavu(p) per play and hence 
v, (p) _< Cav u (p). 
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The relation of our results to those of AUMANN and MASCHLER about simultane- 
ous games now becomes clear. Since any sequential game can be written as 
a simultaneous game by redefining the sets of strategies we have by AUMANN 
and MASCHLER: 

lira v.(p) = Cavu(p). (4.2) 
n ~ o ~  

However we see that for sequential repeated games (4.2) can be replaced by 
a much stronger statement, namely v , (p)= Cavu(p). We remark that if we 
define the infinite stage game F~(p) as it was defined in AM we have readily 
that the optimal strategies that we described for F,(p) are also optimal in F~ (p) 
and hence F~(p) = Cav ufp), a fact that also follows from AM results. 

5. An Example 

In our example r = m = n = 2, 

Solution: 
Let p' denote 1 - p for 0 <_ p <_ 1. In F,(p) the probability distribution according 

to which A k is chosen is (p,p'). Clearly, the scalar p(0 < p < 1) can replace the 
vector (p,p') as a variable of F,(p), AI(P), u(p) and v(p). 
A 1 (P) corresponds to the matrix 

Hence: 

( / 5 
-~-p + p - 2p + 10p' 

\ 12p 4p' ] ,  0 _ < p _ l .  

u,p  ax{min( p+p 10p) min } ,55  
The function u(p) and its concavification v(p) are shown in Fig. 1. The only values 
of p for which v (p) = u (p) are 0, �88 ~ and 1. 

Let us demonstrate the computation of optimal strategies say for 0 < p < �88 
For these values of p: 

v(p) = (1 - 4p)u(0) + 4pu(1/4). 

Hence p1 = 0, p2 = �88 21 = 1 - 4p, 2 z = 4p, the corresponding lotteries of 

Lemma (3.1) for player i are: L1 = (0,1), L2 = ( 1 3p ~ )  p, , . If the outcome 

is Oa he plays optimally in A1 (0) which is (1,0), if the outcome is Oz he plays 
optimally in A1 (�88 which is (0, I). 
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Fig. 1 

For player II we need the supporting hyperplane to v(p) which is 9p + p' = z. 
From this we construct G1 and G2 for finding optimal mixed strategies for player II: 

GI = = , optimal strategy for II is (1,0). 
9 10 0 

S imi la r ly :G2=(  3 - 9 )  ( 3  1 )  - 1 3 '~ strategy for II is --g,--g . 

By similar computations for �88 < p < ~ and ~ _< p < 1 we get finally the optimal 
strategies listed in the following tables: 

Optimal strategies for player I 

p L 1 L 2 strategy if strategy if 
(prob O1) (prob O1) O1 Oz 

1 0 1 - --3P (1,0) (0,1) O-<P-< 7 p, 

1 2 2 - 3 p  6 - 9 p  (0 ,1 )  (1 ,0 )  
T <- P < ~ - 5p 5p' 

2 2p, 
- f  <_ p <_ I 1 (1,0) (0,1) 

P 
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Optimal strategy for player II 
yl y2 

mixed st. if mixed st. if 
i = 1  i = 2  

1 
O<_p<_- T 

1 2 
-T<_p<_T 
2 

- - < p < l  
3 -- -- 

45' 45 10'  10 
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