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SURPLUS-SHARING LOCAL GAMES

IN DYNAMIC EXCHANGE PROCESSES

Henry Tulkens, Shmuel Zamir
Review of Economic Studies, XLVI (2), n8 143, 305–314 (1979).

A well-known property of so-called ‘‘MDP processes’’1 is monotonicity in terms of

the utilities of the agents, due to the sharing among the latter of a ‘‘surplus’’ of numeraire

generated at each point of their trajectories. In this paper, we focus our attention on

the somewhat neglected question of how this sharing takes place, and we propose to use

game–theoretic concepts and methods for answering it. A byproduct of this enquiry is

the formulation of a ‘‘nontâtonnement’’ process that seems to be of independent interest.

1. Introduction�

Call a ‘‘distribution profile’’ (for the surplus) the n-dimensional

vector dN where dNi ^ 0, i ¼ 1, 2, . . . , n and
Pn

i¼1 d
N
i ¼ 1, and denote by

the number QN(x)^ 0 the amount of numeraire surplus generated at

point x of a trajectory of some MDP process.

Champsaur (1976) has demonstrated that for an n-consumer econ-

omy (with or without public goods), every Paretian utility vector individu-

ally rational with respect to some initial allocation can be reached by some

MDP process with a constant distribution profile dN applied to the surplus

at all points along the trajectory. A consequence of this theorem is that

� Thanks are due especially to V. Böhm, C. d’Aspremont, E. Loute, and the editor, as
well as to P. Champsaur, J. Drèze, J. Edmonds, H. Moulin and G. Steenbeckeliers for
helpful discussions. This research was supported in part by the Ford Foundation (Pro-
gram for Research in International Economic Order), and presented at seminars in Paris,
Jerusalem and Louvain, as well as the Helsinki 1976 meeting of the Econometric Society.

1 For introductory surveys and early references, see Malinvaud (1972, Chapter 8) and
Milleron (1972, Section V). The most recent contribution is Champsaur, Drèze and Henry
(1977).



from the consumer’s point of view, the choice of this fixed vector has

relevance only with respect to the limit point of the process: as soon as dN

is agreed upon—and this must occur before the process can start—the

corresponding final outcome is determined. A further consequence is,

however, that no social dynamics are actually taking place during the

realization of the process; the only dynamics involved are that of the

computer programme solving the appropriate differential equations.

In order that some form of social interaction be taken into account

within the dynamics of MDP processes, one may consider that each allo-

cation along a trajectory is a state of the economy that is actually taking

place. In this perspective, the choice of a distribution profile for sharing the

surplus at any allocation should naturally be considered as being deter-

mined by the bargaining power of the individuals and coalitions at that

moment, and not any more by their power at the initial position of the

economy. In other words, it is suggested here that the distribution profile

dN be chosen at each point along the process, according to characteristics of

the social conflict at that point. The ‘‘surplus-sharing local games’’ are

developed below for systematically exploring this idea.

As early as 1971, Drèze and de la Vallée Poussin had put forward

(in Section III of their paper) the idea of associating game-theoretic

considerations with trajectories of their process. The object of their en-

quiry is different from ours, however: dealing with public goods, they

define local games whose purpose is to characterize the behavior of the

agents as far as preference revelation is concerned. These are essentially

noncooperative games, and subsequent writings of Roberts (1979) and

Schoumaker (1979) suggest calling them ‘‘incentives local games’’. By

contrast, our ‘‘surplus-sharing’’ games are cooperative ones (they may

be seen equivalently as games with or without side payments; see §(i) in

Section 3.4 on this point).

On the other hand, the nature of our approach has proved most

fruitful so far for the case of a pure exchange economy with private goods

only: we shall thus consider here a particular type of MDP process

adapted to pure exchange, leaving for a future occasion the extension to

processes with public goods.

In Section 2, the economy and the process are defined. Surplus-

sharing local games are introduced in Section 3: their imputations are

shown to induce game-theoretical selections of profiles dN(x), at each

point x of some MDP trajectory, and solution concepts such as the

core, the Shapley value and the nucleolus are proposed. In Section 4, we

verify that processes determined by these solution concepts, i.e. with

variable dN(x), have a uniquely determined solution and converge to a

Pareto-efficient allocation. Section 5, finally, is devoted to interpretative

considerations.
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2. The economy and the process

Consider a pure exchange economy e ¼ {(xi, ui(xi), vi) j i 2 N},

where N is the set of agents (indexed i ¼ 1, . . . , n; n ¼ jNj), xi � RH
þ

denotes i’s consumption set (of which xi is a typical element), and RH
þ is

the H-dimensional commodity space, commodities being indexed by

h ¼ 1, . . . , H; ui(xi) is the utility function of agent i, defined on xi, and

vi 2 RH
þ his initial endowment of commodities.

An allocation is a vector x ¼ (x1, . . . , xi, . . . , xn) 2 RnH
þ such that

xi 2 xi, 8i 2 N. An allocation is feasible if
P

i2N xih ¼
P

i2N vih for every

h. Let X denote the set of feasible allocations. An allocation x is efficient if

it is feasible and there exists no alternative allocation x0 2 X for which

ui(x
0
i)^ ui(xi), 8i 2 N with strict inequality for at least one i. Finally a

feasible allocation x is individually rational with respect to some other

allocation y 2 X if it is such that ui(xi)^ ui(yi), 8i 2 N.

Assumption 1. 8i 2 N, xi ¼ RH
þ .

Assumption 2. 8i 2 N, vi is in the interior of xi.

Assumption 3. 8i 2 N, ui(xi) is strictly quasi-concave, twice continuously

differentiable, and such that

ui1( ¼def @ui=@xi1) > 0 8xi 2 xi,

where for xi on the boundary of rH
þ we take for ui1 the one-sided

derivative.

Assumption 4. 8i 2 N, {xijxi 2 RH
þ and ui(xi)^ ui(vi)} \ @RH

þ ¼ Ø.

These assumptions are stronger than those usually made in this field

(especially Assumption 4, which says that for each i, the indifference

surface though vi does not touch the coordinate hyperplanes xih ¼ 0).

However, for testing the local games concept of Section 3, they offer the

advantage of yielding a system of differential equations with classical

properties. It is quite possible that similar results hold under weaker

assumptions.

To define the process, let t 2 [0,þ1) be a time variable and

x(t) 2 RnH
þ an allocation at some time t^ 0.

Define

pih[xi(t)] ¼ @ui=@xih
@ui=@xi1

����
xi(t)

8i 2 N

h ¼ 2, . . . , H
t 2 [0,þ1),
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the marginal rate of substitution of agent i between commodities h and 1,

evaluated at point xi(t). (We write only pih when no confusion can arise as

to this point and when the time argument is immaterial.) Define also

�ppN
h ¼ (1=n)

X
i2N

pih h ¼ 2, . . . , H: . . . (2:1)

As usual, a dot over a time-dependent variable will denote the

operator d/dt.

For the above economy, a particular2 version of the exchange

planning process of Malinvaud (1972, Chapter 8) consists of the following

system of differential equations:

Process M:

_xxih ¼ a(pih � �ppN
h ) 8i 2 N; h ¼ 2, . . . , H,

_xxi1 ¼ �Ph6¼1 pih _xxih þ dNi a
P

h6¼1

P
j2N (pjh � �ppN

h )
2 8i 2 N,

�
. . . (2:2)
. . . (2:3)

where dNi ^ 0 8i 2 N,
P

i2N dNi ¼ 1, 0 < a < þ1, and t 2 [0,þ1).

Using vector notation, the system is of the form _xx ¼ f (x; dN), with

dN ¼ (dN1 , . . . , d
N
i , . . . , d

N
n ):

Since in (2.2–2.3) for every i each variable pih, h ¼ 2, . . . , H is a

function of xi 2 xi, the function f ( � ; dN) is defined on the product set

x ¼ Pi2Nxi ¼ RnH
þ , due to Assumption 1.

Given Assumptions 1–4, existence and uniqueness of a solution

x[t; dN , x(0)], as well as convergence to an efficient allocation which is

individually rational with respect to x(0), are properties that can be

inferred from the literature cited earlier; they also derive directly from

the arguments made in Section 4 below.

Remark 2.1. Without loss of generality, we shall assume throughout that

the speed of adjustment parameter a is equal to 1 in processM.Henceforth,

we shall thus ignore it, except for the observations made in Section 3.4.

3. Surplus-sharing local games

3.1 The need for cooperation in carrying out the process

Consider any allocation x 2 X , and a process M defined at that

point. For each agent i, the speed of utility changes entailed at x by the

process is of the form

2 In Malinvaud’s text, �ppN
h is taken to be a weighted average. Some of the results below

on local games will make clear the special interest of the simple average used here.
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_uui ¼ ui1(xi)d
N
i Q

N(x)^ 0 . . . (3:1)

where QN(x) is defined by

QN(x) ¼
X
h6¼1

X
j2N

(pjh � �ppN
h )

2: . . . (3:2)

It was suggested by Malinvaud that the last expression be inter-

preted as a ‘‘social surplus’’ accruing to the agents from the reallocation

specified at point x. This surplus is measured in units of commodity 1 per

unit of time; according to equation (2.3) its distribution among the

members of N is determined by the distribution profile dN.
With this interpretation in mind, the question naturally arises

whether all agents i 2 N will agree to carry out this exchange. One may

think of at least two categories of reasons for explaining why some agents

would refuse to trade: (i) they may object to the use of process M itself as a

means for commodity reallocation (e.g. they would not reveal their coef-

ficients pih); or (ii) while accepting that the process be used, they may

object to the distribution profile dN , which is seen by (3.1) to be the key

factor in determining each agent’s utility increase. In this paper, we

propose to concentrate on this second kind of objection; we therefore

assume, from this point on, that all agents agree on the use of process M.

For any subset (or ‘‘coalition’’) S of agents, S � N, objecting to a

given distribution profile can be rationalized in various ways: for instance,

dN may be seen by some agents as ‘‘inequitable’’; or, some agents may feel

that they could do better on their own. In both cases, there is an under-

lying reference to the fact that alternatives are open to them, as well as to

the possible outcomes of such alternatives. Given our assumption of

general agreement on the use of process M, such alternatives seem to be

naturally described, for each S, by the notion of a process restricted to a

coalition S. In such a process, the coalition S follows exactly the procedure

described above, assuming only that S replaces N as the set of traders.

Formally, the coalition S proceeds according to the system:

Process MS:

_xxSih ¼ (pih � �ppS
h ) 8i 2 S; h ¼ 2, . . . , H,

_xxi1 ¼ �Ph 6¼1 pih _xx
S
ih þ dSi

P
h6¼1

P
j2S (pjh � �ppS

h )
2 8i 2 S:

)
. . . (3:3)
. . . (3:4)

where

�ppS
h ¼ (1=s)

X
j2S

pjh; h ¼ 2, . . . , H; s ¼ jSj;

dSi ^ 0 8i 2 S and
X
i2S

dSi ¼ 1:
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Such a process can be defined for any non-empty coalition S � N

and any starting allocation x 2 X . Just as in process M, there is in any

process MS a social surplus QS being generated, defined as

QS(x) ¼
X
h6¼1

X
j2S

(pjh � �ppS
h )

2, . . . (3:5)

and shared among the members of S according to some distribution

profile dS ¼ (dS1 , . . . , d
S
s ).

Both QS(x) and dS summarize the outcome of the alternatives

considered by S at x. Hence, the problem of finding at x a profile dN(x)
that raises no objection in this sense may be seen as one of sharing the

surplus QN(x) in such a way that for all agents i 2 N, and for all subsets

S � N, the alternatives represented by the surpluses QS(x) and profiles dS

be adequately taken into account. This points directly to a formulation in

terms of n-person cooperative games.

3.2 Local games: definition, imputations and distribution profiles

Definition 3.1. For every allocation x 2 X , the characteristic function

y( � ; x) defined by y(S; x) ¼ QS(x)S7N, defines a ‘‘surplus-sharing local

game’’. Notice that y( � ; x) is 0-normalized, i.e. y({i}; x) ¼ 0 8i 2 N.

Let y(x) 2 Rn
þ denote an imputation for the game y( � ; x), i.e. an

n-vector such that
P

i2N yi(x) ¼ QN(x) and yi(x)^ 0 8i 2 N. Let also

Y (x) � Rn
þ be the set of imputations for y( � ; x).

It is easy to see that the selection of an imputation in Y(x) amounts

to selecting a distribution profile dN(x) for the surplus QN(x). Indeed,

given y(x), one may define dNi (x)8i 2 N as

dNi (x) ¼
yi(x)P
i2N yi(x)

¼ yi(x)

QN(x)
^ 0, . . . (3:6)

and clearly
P

i2N dNi (x) ¼ 1. In other words, there is at any x 2 X , a natural

one-to-one mapping between the set of imputations Y(x) and the set of

distribution profiles for the surplus QN(x). Thus, the game-theoretic ap-

proach to the problem of choosing at any x a satisfactory distribution

profile dN(x)—or a set of such profiles—essentially consists of selecting a

point—or a set of points—in the set of imputations of the side payment

local game defined at x, that is, selecting a solution concept for this game.

3.3 Solution concepts for the local games y( � ; x)

Among the many conceivable reasons why a coalition S might

object to a given distribution profile dN(x)—that is, to an imputation

y(x)—a most intuitive one is the consideration of what this coalition
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could achieve on its own. In the general theory of n-person games, this idea

has for a long time been referred to by the notion of ‘‘blocking’’; in the

side payment case, it may also be expressed (and be given a scalar

measure) by the notion of ‘‘excess of a coalition with respect to an

imputation’’. Formally, for any y 2 Y and S7N, such excess is defined by

e(S,y) ¼ y(S)�
X
i2S

yi,

with e(S,y) > 0 meaning that S can improve upon (or ‘‘block’’) the imput-

ation y, while e(S,y)% 0 implies that S cannot. From the excess notion, one

is led to the definition of two well known solution concepts, viz. the core3

due to Gillies (1959) and the nucleolus,4 due to Schmeidler (1969).

Alternatively, an explicit set of axioms can be stated, which a

solution should satisfy to be considered as acceptable: the Shapley

value,5 due to Shapley (1953), is such a solution concept, which is essen-

tially cooperative in nature; the axioms from which it is derived are

sometimes interpreted as reflecting some notion of equity in the sharing

of y(N) among the n players.

As is established by the just quoted authors, the nucleolus always

exists, and the Shapley value is always well defined for all side payment

games; moreover, both are unique-point solution concepts. The core, on

the other hand, may be empty; when it is not, it may consist of more than

one imputation.

Consequently, both the nucleolus and the Shapley value can be used

as solution concepts for the local games y( � ; x). As far as the core is

concerned, its non-emptiness for these games is established by the follow-

ing result.

Theorem 3.2. For every local game y( � ;x), the imputation m(x) 2 Y (x)

defined by

mi(x) ¼
X
h6¼1

(pih � �ppN
h )

2 8i 2 N

belongs to the core.

3 For a definition, see the proof of Theorem 3.2 below.
4 The nucleolus may be defined as follows: given an imputation y, let u(y) be a vector in

R2n�1
þ , whose components are the 2n � 1 excesses {e(S; y)}, S � N, S 6¼ Ø, arranged

in non-decreasing order; consider then any pair of imputations, say x and y: u(x) is
said to be larger than u(y) in the lexicographic order [notation: u(x) >L u(y)] if
9i 2 {1, 2, . . . , 2n � 1} such that ui(x) > ui(y) and uj(x) ¼ uj(y) 8j < i; the nucleolus of a
side payment game is the set of imputations v 2 Y such that the vector u(v) is minimal in
the lexicographic order on R2n�1

þ .
5 The Shapley value is the imputation defined by the function

fi(v) ¼ Ss�N ((s� 1)!(n� s)!=n!)[v(S)� v(Sn{i})], 8i 2 N:
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Proof. In terms of excesses, the core is defined as the set of imputations

y 2 Y such that for every coalition S7N, e(S,y)% 0. In the case of local

games y( � ; x), excesses with respect to the imputationm(x) are of the form:

e(S, m(x)) ¼ QS(x)�
X
i2S

mi(x)

¼
X
h6¼1

X
i2S

(pih � �ppS
h )

2 �
X
i2S

(pih � �ppN
h )

2

" #
8S 7 N:

That this expression is non-positive follows from the fact that each

sum
P

i2S (pih � �ppS
h )

2 within the square brackets is the second moment of

the {pih}i2S with respect to their arithmetic mean �ppS
h . Now, it is well

known that in general, among all second moments, the minimal is the

one taken with respect to the simple arithmetic mean. Therefore,P
i2S (pih � �ppN

h )
2 cannot be smaller than

P
i2S (pih � �ppS

h )
2: k

Besides the imputation m(x), the nucleolus—denoted by n(x)—is

another selection in the core of any local game y( � ;x): indeed, according
to Schmeidler’s 1969 Theorem 4, the nucleolus always belongs to the core

of a game, when the core is non-empty. The Shapley value, on the other

hand, does not have this property.

3.4 Other aspects of the local games y( � ; x)

(i) The local games considered so far belong to the class of side

payment games; however, they could also be formulated as non-side pay-

ment games, defined by

VS(x) ¼ { _uuS 2 RS
þj9dS for which ui1d

S
i Q

S(x)^ _uuSi 8i 2 S}, 8S 7 N:

VS(x) is thus the set of all vectors of speeds of utility increases

achievable by coalition S. However, this formulation is basically equiva-

lent to the side payment one, due to the obvious one-to-one correspond-

ence between the set Y(x) of imputations of the side payment game, and

the Pareto surface of the non-side payment game: to y(x) 2 Y (x), there

corresponds the point

_uuN ¼ [u11y1(x), . . . , ui1yi(x), . . . , un1yn(x)],

which is clearly on the Pareto surface of VN(x). In fact, the non-side

payment local games mentioned here are a special case of Billera’s 1970 p-
hyperplane games.

(ii) From the argument used in the proof of Theorem 3.2, it appears

that the games y( � ;x) are in fact the sum of H---1 games whose character-

istic function, defined by
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yh(S) ¼
X
i2S

(pih � �ppS
h )

2,

is simply the variance, multiplied by s, of the collection of numbers

{pih}i2S. From the properties of the variance, it can easily be derived

that these games are superadditive, monotonic, and balanced in the sense

of Shapley (1967).

(iii) If the assumption that the speed of adjustment a ¼ 1 for every

process MS were relaxed, and replaced by that of an arbitrary collection of

positive coefficients A ¼ {aS}S�N , the characteristic function of the local

games would read y(S; x, A) ¼ aSQS(x) 8S � N. In this more general

setting, it can be shown that the above results on the core imputationm (and

on balancedness) still hold, provided that the collection A be such that

aN ^ max
S � N

{aS}:

On the other hand, if the collection A is such that aS ¼ rs 8S 7 N,

where 0 < r < þ1 and s ¼ jSj, the local games y( � ; x, A) appear to be

convex in the sense of Shapley (1971); in this case the Shapley value also

belongs to the core of the game. However, it is not easy to provide a

convincing economic interpretation of adjustment speeds which vary with

the size of each coalition, at least in a continuous time context. An

attempt in that direction, and proofs of the preceding propositions can

be found in Tulkens and Zamir (1976, pp. 27–33).

4. Strategically stable processes

Given the exchange process of Section 2, and the solution concepts

exhibited in Section 3 for the local games, we are now in a position to

combine the two. We want to describe processes whose trajectories are

determined by these solution concepts.

Specifically, we suggest the following modification of process M:

at each point x(t) on the trajectory, the profile dN(t) is selected accord-

ing to some solution concept of the local game y( � ; x(t)) at that point.
Given the three concepts discussed above, namely the nucleolus n(x),
the Shapley value f(x), and the imputation m(x) which is in the core,

we can define three processes: process M� n, process M� f, and process

M� m. The first of these is defined by the following differential equa-

tions:

_xxih ¼ pih � �ppN
h , 8i 2 N, h ¼ 2, . . . , H,

_xxi1 ¼ �P
h 6¼1

pih _xxih þ dni (x)Q
N(x), 8i 2 N,

9=
; . . . (4:1)

. . . (4:2)
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where dn(x) ¼ (dn1(x), . . . , d
n
i (x), . . . , d

n
n(x)) is derived from the imputation

n(x) of the local game y( � ; x) through the mapping (3.6), and QN(x) is

defined as in (3.2).

The processes M� f and M� m are defined by a system of equa-

tions similar to (4.1–4.2), the only difference being that dn(x) is replaced
by df(x) [respectively dm(x)], derived through the mapping (3.6) from the

Shapley value [respectively from the imputation m(x)] of the game y( � ; x).
These three processes are well defined, since dn(x), df(x), and dm(x)

are uniquely determined for each x. Their solutions, if they exist, may be

called ‘‘strategically stable’’, in the game-theoretic sense of the corre-

sponding distribution profile.

Existence and uniqueness of solutions for these new processes fol-

low from known theorems on systems of differential equations (see e.g.

Nemytskii and Stepanov (1960), or Champsaur, Drèze and Henry (1977)):

indeed, given Assumptions 1–4, the right-hand sides of (4.1–4.2) can be

shown6 to be Lipschitzian for all three processes (that the Lipschitz

property holds in particular for dn(x) derives from the piecewise linearity

of the nucleolus, viewed as a function v(u( � ; x)) of the characteristic

function of the game, as shown by Charnes and Kortanek (1969) and

Kohlberg (1971).

We can claim in addition that for each of these processes, the

solution converges, as it does for the original process M, to a unique

efficient allocation. To show this, one may either introduce a Lyapunov

function such as
P

i2N ui(xi(t)), and apply Theorem 6.1 of Champsaur,

Drèze and Henry (1977), or demonstrate directly the following rather easy

steps7: (i) that the solution remains in a compact set, whence it has at least

one accumulation point; (ii) that every accumulation point is an efficient

allocation; (iii) that if the limit point of this process is an efficient alloca-

tion, it is unique.

5. Interpretative concluding remarks

5.1 Local vs. global approaches

In contrast with the ‘‘global’’ games usually associated with an

economy, the local games presented in this paper are characterized by

the myopic nature of their imputations. Indeed, they shift the attention

from the utility levels of the agents at the point where the MDP process

stops, to the rate at which these utilities increase at any one moment of

6 This is done in Tulkens and Zamir (1976, Lemma 4.1 and Appendix 1).
7 These steps are developed in Tulkens and Zamir (1976, Lemmas 4.2 and 4.5, and

Theorem 4.6).
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time, before the limit point is reached. This implies that as regards the

limit point itself, no particular game theoretical property (other than

Pareto efficiency and individual rationality with respect to the initial

point) is to be expected from the solution of our strategically stable

processes: for instance, the solution of processes such as M – v or M – m,
whose trajectory is determined by imputations in the core of the local

games, does not, in general, converge to an allocation in the core of the

economy.8

The interest of the local approach is to be found, instead, in the

same reason why iterative processes of the MDP type have been conceived

of, namely the ignorance by the agents of where an efficient allocation is

located. Given this circumstance, myopic behavior finds a justification if,

following some maximin rule of decision making under uncertainty, the

agents always take the view that the next step may be the last.9

5.2 Choosing between solution concepts

As three ‘‘strategically stable’’ exchange processes have been exhib-

ited, one may wonder whether one of them is, in some sense, ‘‘better’’ than

the others. The answer to this question can only be a general one; indeed,

each of the solution concepts n, f, or m for the local games corresponds to

a different characterization of the role of coalititions in the social process

under consideration, viz.: minimizing the strongest objection in the case of

the nucleolus, averaging out the contribution of each player to the various

coalitions he can join in the case of the Shapley value, and impossibility of

blocking in the case of core imputations. The fact that v and f are

different imputations in general, and that f may not belong to the core,

shows that the corresponding criteria are to some extent incompatible.

The necessary choice between them can only be based on assumptions

pertaining to the collective behavior of members of coalitions, assump-

tions that neither economic analysis, nor game theory seem to be currently

able to provide.

5.3 A price interpretation of process M� m

A closer look at the structure of commodity exchanges under the

process M� m leads, finally, to a further interpretation, that goes in a

different direction. With every feasible allocation x, suppose that there

is associated a strictly positive price vector p(x) 2 RH
þ , normalized by

8 This point has been checked by means of several numerical examples that can be
found in Appendix 2 of Tulkens and Zamir (1976).

9 We owe this point to the editor.
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assuming p1( � ) ¼ 1. Given any such vector (with the argument x deleted

unless it is necessary), the budget constraint of every consumer i, solved

for xi1, reads

xi1 ¼ vi1 þ
X
h 6¼1

ph(vih � xih): . . . (5:1)

Introducing this expression in the utility function ui(xi1, . . . , xiH)
and differentiating yields

dui ¼ ui1[
X
h 6¼ 1

(pih � ph)dxih]: . . . (5:2)

Assume now that each consumer i, when he holds the bundle xi, and

faces the price system p, seeks the local reallocation of his budget that

maximizes his utility change dui. It is well known that the vector with this

property is the gradient vector, which in the case of (5.2) is proportional

to the one defined by

dxih ¼ (pih � ph), h ¼ 2, . . . , H: . . . (5:3)

For the numeraire, one immediately derives from (5.1) that

dxi1 ¼ �
X
h 6¼1

phdxih

¼ �
X
h 6¼1

ph(pih � ph):
. . . (5:4)

Now, if at every feasible allocation x(t) the price system p(x(t)) is

chosen such that

ph(x(t)) ¼ �ppN
h (x(t)), h ¼ 2, . . . , H,

the behavioral assumption just made implies that the consumers make

local transactions specified by

_xxih ¼ (pih � �ppN
h ), h ¼ 2, . . . , H; i 2 N,

_xxi1 ¼ �Ph6¼1 �pp
N
h (pih � �ppN

h ), i 2 N:

)
. . . (5:5)

. . . (5:6)

But (5.5) is identical to (4.1), and (5.6) is easily seen to be equivalent

to (4.2) with

dmi (x) ¼ mi(x)=Q
N(x)

for each i. These spontaneous transactions are exactly those determined

by the process M� m.
Implicit in this process, there is thus a continuous price adjustment

mechanism, which is reminiscent of the ‘‘Edgeworth barter process’’

formulated in discrete time by Uzawa (1962, Sections 2 and 3): indeed,
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in this author’s terminology, a ‘‘transaction rule’’ is specified by (5.5) and

(5.6), and a ‘‘price adjustment function’’ is given at each x(t) by

_pph ¼ _�pp�ppN
h ¼ 1

n

X
i2N

_ppih,

¼ 1

n

X
i2N

XH
k¼1

@pih

@xik
_xxik,

¼ 1

n

X
i2N

XH
k¼1

(pihk � pihpi1k) _xxik, h ¼ 2, . . . , H,

where

pihk ¼def

@2ui

@xih@xik
� @ui

@xi1

� ��1

h, k ¼ 1, 2, . . . , H: . . . (5:7)

Contrary to the Walrasian rule of excess demands (which are iden-

tically zero in this model), and more in a Marshallian spirit, this price

adjustment rule depends exclusively upon preference characteritics of the

agents.
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