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Differences in players' skill are important determinants of relative player success in most 
real games such as poker, chess, basketball, business, and politics. Yet conventional game 

theory has concentrated primarily on games with no skill differences among players. This paper 
uses a simplified version of stud poker to better understand the concept of differential player 
skill in games. Players with very different strategies for playing this game are modeled algo- 
rithmically and pitted against one another in simulation tournaments. 
(Bayesian Game Theory; Game Theory; Poker; Simulation; Strategy) 

1. Introduction 
Skill is the extent to which a player, properly motivated, 
can perform the mandated cognitive and / or physical 
behaviors for success in a specific game. More skillful 
players tend to score better than less skillful players. 
The skills essential to success tend to be game specific; 
success in basketball requires a somewhat different set 
of skills than success in chess, business, or politics. 

Skill differences among players are important to most 
real games' outcomes. Clearly, theories that aspire to 
predict outcomes or to advise players on how to im- 
prove their play-two of the more obviously useful po- 
tential "applications" of a theory of games-require 
some explicit representation of differential player skills. 
The mathematical theory of games as it has evolved 
over nearly a half century since the seminal work of 
John von Neumann and Oskar Morgenstern (1944) has 
not, however, with a few exceptions, explicitly incor- 
porated skill differences among players as an important 
feature of the games studied. Conventional theories of 
games focus on equilibria and other "solution concepts" 
resulting from unboundedly rational players utilizing 
optimal or equilibrium strategies. Differences in game 
structures and in player endowments in information 
and resources have been featured in theories of games. 

The theory of games has been primarily concerned 
with limiting cases in which skill differences among 

players are not important. The theoretical assumption 
about skill, usually implicit, is that all players have in- 
centives to play optimally and that they will figure out 
how to do so, at least in the long run. The cognitive or 
physical difficulties for players in devising and execut- 
ing strategies for playing particular games are essen- 
tially assumed away. 

While there is venerable work on the topic of 
boundedly rational game players (Simon 1957), the 
issue has only recently garnered much interest in 
modern decision theory, game theory, and economics; 
Kalai (1990) reviews a growing body of work on 
bounded rationality, memory, and complexity. Ca- 
merer (1990) explores the basis for a "behavioral 
game theory" in more descriptively adequate as- 
sumptions about player behavior. Binmore (1990) 
provides a sweeping, critical review of game theory 
and concludes that "/an attempt must be made to 
model players' thinking processes explicitly." Bin- 
more echoes Herbert Simon who has been providing 
procedural representations of human reasoning and 
arguing cogently on their behalf for forty years 
(Simon 1955,1959,1976,1983, and 1991). Axelrod and 
Hamilton (1981) and Axelrod (1984) found important 
skill differences among players in a computer-based 
Prisoners' Dilemma tournament. Leifer (1991) ana- 
lyzes chess and the relationship between skill and the 

0025-1909/97/4305/0596$05.00 
Copyright M/ 1997, Institute for Operations Research 

596 MANAGEMENT SCIENCE/Vol. 43, No. 5, May 1997 and the Management Sciences 



LARKEY, KADANE, AUSTIN, AND ZAMIR 
Skill in Games 

social relationships among players. Beasley (1990) ex- 
plores the mathematics of games of varying skill. 

This paper seeks to understand the concept of skill in 
games as an initial step toward building theories of real 
games capable of both predicting outcomes and advis- 
ing play. The analytic core of the paper is a detailed 
analysis of a game of skill, Sum Poker. We posit players 
in the form of alternative strategies for play that differ 
in the information they use and in how they use it. The 
general behaviors mandated for player success in Sum 
Poker-observation, memory, computation, knowledge 
of the random device, misleading opponents about the 
actual strength of your position, and correct interpre- 
tation and forecasts of opponents' behaviors-are com- 
mon to many "real games." The levels of skill and rel- 
ative success of the different strategies are explored in 
computerized experiments. 

2. A Skill Typology of Games 
Game theorists categorize games on several different di- 
mensions. Games are cooperative or noncooperative 
and one-stage or multi-stage; games have payoffs that 
are zero-sum or nonzero-sum and involve 2 to n play- 
ers; the information available to players in a game is 
complete or incomplete and then, symmetric or asym- 
metric. When experts on game playing and gambling 
(Scarne 1980, Jacoby 1963, Thackrey 1971, Morehead 
1967, and Livingston 1971) categorize games, they com- 
pletely ignore the usual game-theoretic dimensions and 
focus on another dimension, skill. The critical aspect of 
games for these experts is the extent to which outcomes 
depend on player skill rather than luck. Their books are 
primarily about acquiring skill. Another significant dif- 
ference between game theorists and game-playing ex- 
perts is in the scope of what constitutes a game. Game 
theorists' restrictively define a game as the full descrip- 
tion of its rules. The game playing experts include in 
their definition of game, always implicit and informal 
in their discussions, many factors beyond the formal 
rules including the decisions on which games to play 
and information on the past performance of opponents. 
The experts' notion is roughly equivalent to the game 
theorists' notion of a repeated game or supergame but 
with an ill-defined beginning and horizon. 

There are three types of games in terms of skill: (1) In 
Pure Chance games such as lotteries, Keno, Matching 

Pennies, War, and Show Down Poker players compete 
against a random device that cannot be influenced; the 
probability of a particular player winning is simply a 
function of the game's random device. Other games 
such as Roulette, Craps, and Chuk-a-Luck are essen- 
tially Pure Chance games but often have wagering rules 
appended that introduce elements of skill; more skillful 
players can lose their money at slower rates; (2) Skill- 
Chance games such as Poker, Backgammon, Rubber 
Bridge, and Gin Rummy have both a random device- 
cards or dice-and significant elements of skill (see Ka- 
dane (1986) on electronic draw poker); (3) Pure Skill 
games such as Tic-Tac-Toe, Go Moku, Checkers, and 
Chess have no external chance elements. The probabil- 
ity of a particular player winning is essentially a func- 
tion of that player's skill relative to the other players. 

2.1. The Skill Concept 
Players face three critical actions with respect to games 
of all kinds. First, they can usually choose the games in 
which they will participate; there are usually many 
more games available than a player has the resources, 
time, and money, to play. Second, given a decision to 
play, players must plan a strategy for play. Third, given 
the decision to play and a strategy, players must execute 
their planned strategy. 

Each of these three actions entails a different type of 
skill: (a) Strategic Skill is the ability to decide what 
games to play. The boundedly rational player selects 
games in which his skills (i.e., those associated with 
choosing and executing strategies during a game) rela- 
tive to other players' skills yield positive expected util- 
ity, including utility from both the process of playing 
games and expected payoffs. The more accurate the 
judgments about relative levels of game skill, the greater 
the strategic skill. Strategic skill is roughly analogous to 
skill in the play of a supergame; (b) Planning Skill is the 
ability to formulate strategies relative to specific oppo- 
sition in a specific game. Formulating strategies is 
largely the cognitive activity of creating a planned 
course of action for conduct in the game. Two key com- 
ponents of planning skill are self and opposition assess- 
ment; (c) Execution Skill is the ability to execute a 
planned strategy. It may be much easier to conceive a 
strategy that entails remembering all of the cards played 
and a detailed record of opponents' past behaviors to 
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be used in predicting their future behaviors than it is to 
accomplish these feats of memory (and subsequent 
analysis) in "real time" with no external memory aids. 

In games with a random device (e.g., cice, cards, eco- 
nomic climate, etc.) these three skills only partially de- 
termine levels of success in a particular game. The rel- 
ative importance of each action and of the random de- 
vice in determining outcomes depends on the details of 
the game. These skills interact in their effects. Choosing 
a game in which you are overmatched and, regardless 
of how well you strategize and play, you will probably 
lose. Choose a game where you are undermatched, can 
make victory likely, if not certain. Assessing your skills 
relative to prospective opponents in choosing games to 
play usually involves some planning skills; you must 
imagine your strategy and predict both the opponent's 
strategy and the likely outcomes to do the assessment. 
Many games are played with little or no conscious plan- 
ning; the strategy is implicit and adaptive in the play. 

2.2. Representing Skill 
There are two fundamentally different ways of repre- 
senting the skill of a particular individual with respect 
to a particular game. Process representations describe 
players by their method of play. For poker, the method 
of play includes the informational and decisional 
procedures-what is noticed and remembered and the 
set of rules used to choose an action at each juncture 
in the game. For example, two players might be iden- 
tical in all process respects except one remembers all 
of the cards that have been played while the other for- 
gets about half of them. Performance representations 
characterize players by outcomes. For example, in a 
regular weekly six-hand poker game one player is 
$10,000 behind and another player is $10,000 ahead 
over the last year. In real situations there is usually 
some information on both types of representation. Pro- 
cess representations tend to be more useful in advising 
play, while performance representations are more use- 
ful in predicting game outcomes. 

Both types of skill representation have problems as 
theoretical tools for the study and play of games. Pro- 
cess representations are positive theories of player be- 
havior that can, in principle, provide normative infor- 
mation about playing by comparing more- and less- 
successful players utilizing different methods. Coherent, 

valid, normative theories of playing methods that lead to 
success, much less optima, in most real games rarely exist 
because: (1) the methods of great players are hard to de- 
scribe and emulate; (2) the strategy space for real games 
tends to be too large and complex to describe; and (3) 
optimal play can only be defined conditional on the char- 
acteristics of opponents. Extant theories of play tend to 
be neither necessary nor sufficient to success. A poker 
player who forgets about half of the cards that have been 
played should be less successful over time than an other- 
wise comparable player who remembers them all. But as 
the analysis of simulated games below shows, faulty 
memory can be indistinguishable from bluffing, and 
players with this flaw may defeat a nonbluffing player 
who remembers everything. 

Players with the higher frequency of successful out- 
comes in an adequate sample of play are, ceteris pari- 
bus, more skillful. Unfortunately, ceteris non paribus in 
virtually all real games and performance representa- 
tions are rarely straightforward. One pandemic prob- 
lem is that play outcomes only have meaning relative 
to the competition. For example, losing a game of chess 
in 20 moves to Gary Kasparov is surely a much more 
impressive performance accomplishment than winning 
a game in 20 moves over an eight-year-old who has just 
learned what constitutes a legal move for each piece. 
But how much more? To construct a proper perfor- 
mance record for a player requires adjustment for the 
strength of the competition, but there is no demonstra- 
bly correct method of adjustment because there is no 
ultimate source of correct skill rankings that can be used 
to assess the adjustment method.' Sampling also be- 
comes an issue because most real games are skill-chance 
games and observed outcomes confound skill and 
chance. In principle, skill and chance can be separated 
statistically with an appropriate set of experiments, viz., 
identical, independent repetitions. In practice, the ex- 
periments arising in the course of play of real games are 
far from ideal and pose significant challenges to infer- 
ential learning. 

l See Larkey (1991) for adjustments to compare professional golfers; 
Caulkins et al. (1993) for adjustments for comparing airlines' on-time 
performance; and Larkey and Caulkins (1992) for adjustments to 
grade point averages. 
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3. Sum Poker 
Sum poker, a simplified form of stud poker, preserves 
the essential elements of poker-memory, bluffing, and 
observing the play of others. The simplifications, fewer 
cards and a less complicated ranking of hands, are in- 
significant departures from real poker. Sum poker has 
the following sequence of play: (1) everyone antes the 
amount of the minimum bet; (2) two cards are dealt to 
each player, one down and one up; (3) a round of bet- 
ting ensues; (4) another card is dealt up; (5) another 
round of betting follows; and (6) hands are scored by 
the sum of the three cards; face cards count ten, aces 
one, and all other cards receive face value. The highest 
sum wins. 

During a betting round, a player may, depending on 
position, open, raise, call, fold, or check. To open means 
to initiate the betting round with a positive bet. To raise 
means to bet an amount above a pending bet from an- 
other player; other players are obliged to either match 
the bet or concede the hand. To call means to bet exactly 
the amount of a pending bet from another player (or 
players in the case of a raise), thereby staying in the 
hand. To fold is to concede the hand to the opponent. 
To check-remaining in the hand without betting or 
folding-is an option only when there is no prior bet in 
the round. 

The opening bettor in each round is chosen at ran- 
dom. No more than three raises are allowed in a betting 
round. There is a maximum and minimum betting 
amount, $5 and $10 respectively, unless otherwise in- 
dicated. The game is played repeatedly, in some cases 
tens of thousands of hands, until only one player re- 
mains who is not ruined, viz., out of money. 

3.1. Players 
In our game simulations, we posit and test 12 different 
strategies for playing Sum Poker. The 12 players briefly 
described2 are: 

1. Simple [SI is a baseline strategy that plays ran- 
domly without regard to any of the possibly relevant 
information about the deck, own hand, or opponents' 

2 The appendix provides a fuller technical description of the conditions 
and actions constituting each strategy. The PASCAL code is available 
from the authors. 

cards and behavior. Beyond knowing the legal moves 
in the game, this player arguably has no skill. 

2. AvgHand [AH] compares cards with an average 
hand [13.08 in the first round (two cards) and 19.62 in 
the second round (three cards)] and bets accordingly. 
Where AvgHand's cards are much better than average, 
she bets very aggressively. AvgHand completely ig- 
nores opponents' cards. 

3, 4, and 5. Loose, Middle, and Tight [L, M, TI are 
three closely related strategies. They make different as- 
sumptions about the opponent's down card. Loose is 
very aggressive and always assumes that the oppo- 
nent's down card is a 1. Middle assumes a 5. Tight as- 
sumes a 10. The strategies then consist of rules condi- 
tioned on a comparison of own and opponent's hands 
given the assumption. 

6. BluffsLots [BLI bluffs a lot. Any time that 
BluffsLots' up cards are greater than the opponents' up 
cards or a simple calculation of probable advantage is 
in his favor, he raises the maximum amount. BluffsLots 
uses information about the deck, about cards played, 
about his own hand, and about his opponents' hands. 

7. CalcMuch [CM] is a nonbluffing strategy that 
does not learn about the opponent and uses a relatively 
simple set of calculations. The strategy uses knowledge 
of what cards have been played to compute the proba- 
bility of winning in the cards against a specific oppo- 
nent. There is no consideration of money. 

8. PlayerCalc [PC] is a learning version of Calc- 
Much. The strategy observes and remembers for each 
opponent for each possible difference in up cards what 
the lowest value of a down card has been that the op- 
ponent has ever been willing to bet on. There is no bluff- 
ing and no consideration of money. PlayerCalc reverts 
to CalcMuch when an opponent's bluffing successfully 
counters its learning mechanism. 

9. MixedCalc [MCI is a complex strategy that plays as 
CalcMuch with probability 0.94 and as Simple with 
probability 0.06. 

10. PlayerCalcB [PCB] is a complex strategy which 
plays as PlayerCalc with probability 0.94 and as Simple 
with probability 0.06. 

11. ExpVal [EVI computes expected values and 
plays accordingly. The probability portion of the expec- 
tation is the same as PlayerCalc. The value portion is 
based upon the difference between an estimate of what 
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the final pot will be if neither player folds and an esti- 
mated cost of staying in the hand. There is no bluffing. 

12. ExpValB [EVB] is a bluffing version of ExpVal. 
It plays as ExpVal with probability 0.94 and as Simple 
with probability 0.06. 

3.2. Process Representation of Strategies 
Table 1 shows process characteristics of the strategies 
on several dimensions. The knowledge dimension is 
the amount of information in the game environment 
that the strategy can use. Computation summarizes the 
computational ability required to execute the most com- 
plex rules in the rule set. Algorithm length is measured 
lines of code as a rough proxy for the size of rule sets. 
Conservatism refers to how certain of victory a strategy 
must be to bet. Learning and Bluffing simply indicate 
whether those abilities are built into the strategy inten- 
tionally. 

The strategy space for playing Sum Poker is huge. We 
cannot know analytically that our twelve strategies in- 
clude the strategy that will perform best on average 
against all other possible strategies or best against any 
particular strategy. The strategies used in the simula- 

tions were not, however, posited randomly, but syste- 
matically cover: (1) the potential information available 
to play (from no information to full-including all 
past-information about the deck, current cards, and 
opponents); (2) the potential modes of computation 
(from none to computations well beyond human capac- 
ities); (3) the risk propensity (from very aggressive to 
very cautious); and (4) the extent of attempts to conceal 
patterns of play from opponents. The purpose of these 
strategies is to explore the concept of skill in games, not 
to simulate the behavior of actual subjects playing sum 
poker. 

3.3. Performance Representation of Strategies 
Each strategy was matched against each of the others in 
a simulated tournament. A game in a tournament con- 
sisted of the hands sufficient for one player to ruin the 
opponent. Each pair of players was simulated in 100 
games. 

Table 2 summarizes the results of the tournament. 
The number in each cell tells the number of times in 100 
games that the player at the left beat the player at the 
top. The Total column contains a simple sum of the 

Table 1 Characteristics of Strategies 

Algorithm 
Knowledge Computation Length Conservatism Learning Bluffing 

Simple [S] 0 0 0.43 2 No No 
AvgHand [AH] 1 1 0.61 2 No No 
Loose [L] 2 2 0.79 1 No No 
Middle [M] 2 2 0.96 2 No No 
Tight [T] 2 2 0.96 3 No No 
BluffsLots [BL] 3 3 0.87 1 No Yes 
CalcMuch [CM] 3 3 1.54 2 No No 
MixedCalc [MC] 3 3 1.96 2 No Yes 
PlayerCalc [PC] 4 3 2.46 2 Yes No 
PlayerCalcB [PCB] 4 3 2.89 2 Yes Yes 
ExpVal [EV] 4 4 3.57 2 Yes No 
ExpValB [EVB] 4 4 4 2 Yes Yes 

Knowledge Computation Conservatism 

0 = knows nothing 0 = none 
1 = knows own cards 1 = counting and comparing 1 = aggressive 
2 = knows others' cards 2 = adding and subtracting 2 = moderate 
3 = knows distribution of cards in deck 3 = multiplying and dividing 3 = conservative 
4 = knows history of play 4 = beyond human abilities 
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Table 2 Tournament Results 

PCB PC MC CM EV M EVB AH T BL L S Total $'s 

PCB 81 48 79 92 91 96 99 99 98 99 100 982 432K 
PC 19 61 93 90 100 87 100 100 100 100 100 950 400K 
MC 52 39 38 96 92 93 97 100 96 98 100 901 351K 
CM 21 7 62 82 100 86 100 100 99 100 100 857 307K 
EV 8 10 4 18 34 60 38 100 93 97 100 562 12K 
M 9 0 8 0 66 73 58 9 90 98 100 511 -39K 
EVB 4 13 7 14 40 27 \ 36 98 83 88 100 510 -40K 
AH 1 0 3 0 62 42 64 20 88 98 100 478 -72K 
T 1 0 0 0 0 91 2 80 5 100 100 379 -171K 
BL 2 0 4 1 7 10 17 12 95 74 99 321 -229K 
L 1 0 2 0 3 2 12 2 0 26 97 145 -405K 
S 0 0 0 0 0 0 0 0 0 1 3 4 -546K 

number of games won by each player during the tour- 
nament and the net winnings is the amount won or lost 
by the strategy during the tournament. 

Relating the process and performance representations 
would be simpler if performance relationships between 
strategies were transitive. That is, if player A is better 
than B, and B is better than C, then A should be better 
than C. Only where performance relationships are tran- 
sitive can there be a single measure of skill that is pre- 
dictive of outcomes when any two strategies are 
matched. 

A strict, predictive rank ordering of players by per- 
formance is not possible. Tight beats Middle 91 of 100 
times. Middle is 90 percent victorious against Bluffs- 
Lots. Yet BluffsLots wins against Tight 95 percent of 
the time. Tight, AvgHand, and BluffsLots form another 
intransitive trio. The intransitivities are not surprising. 
There is no theoretical reason to expect the rule sets qua 
players to interact in ways that yield overall summary 
performance measures. It is a commonly observed phe- 
nomenon in real games that players and teams "match 
up differently."3 

Intransitivities are neither numerous nor do they span 
huge differences in total victories or net winnings. 
While strategies using similar processes (i.e., number 
and type of rules, etc.) may perform intransitively, add- 
ing a significant degree of capability, assuming it is used 

'See Gardner (1974) for a discussion of the implications of intransi- 
tivities in a variety of real games. 

appropriately, can make a strategy strictly better than 
another. For example, giving CalcMuch the ability to 
calculate a probability of winning makes it much better 
than any of the strategies that do not have this ability. 
Only learning versions of CalcMuch-ProbCalc and 
ProbCalcB-beat CalcMuch. 

3.4. Execution Skill-Processes, Capabilities, and 
Performance 

There is an imperfect relationship between performance 
measured as total or net winnings and the internal char- 
acteristics-knowledge, computation, algorithm length, 
learning ability, bluffing ability-our proxy for capa- 
bilities in playing Sum Poker. Simple, the least capable 
strategy is the worst performer and PlayerCalcB, one of 
the most capable, is the strongest performer. A strat- 
egy's ability to use information, compute, and adapt to 
a greater variety of specific situations seem to place a 
ceiling on how good a player can be. Increasing a strat- 
egy's capabilities does not, however, guarantee im- 
proved performance. For example, the most "capable" 
strategies in terms of process, ExpVal and ExpValB, 
are not particularly strong performers. Conversely, 
CalcMuch, a nonlearning, nonbluffing strategy with a 
relatively short algorithm, plays very well. 

3.5. Planning Skill-Conservative vs. Aggressive 
Choices 

One important dimension of a strategy is conservatism- 
how aggressively will a strategy bet in particular game 
situations? An important determinant of conservatism is 
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how optimistic or pessimistic a player is about the value 
of an opponent's hole card. The most conservative strat- 
egy, Tight, assumes the worst: the opponent has a ten 
down. The least conservative (most aggressive) strategy, 
Loose, assumes the best: the opponent has a one down. 
The other strategies, including Middle, which assumes 
that the opponent has a five in the hole, fall between Tight 
and Loose. More conservative strategies are, ceteris pari- 
bus, less likely to bet in particular game situations; they 
bluff less and require more pronounced advantages in the 
cards before raising or initiating betting. 

In the Table 2 results, Tight beats Middle which beats 
Loose. This suggests that, ceteris paribus, conservative 
strategies may be superior performers because they risk 
less on each play of the game. Closer scrutiny, however, 
yields a qualification. Table 3 shows that Tight's per- 
formance falls off dramatically as the maximum bet in 
the game decreases relative to the minimum bet. The 
decrease in maximum bet lowers the amount Tight 
wins when it wins, without changing the amount of the 
ante (minimum bet). In effect, the ante becomes more 
expensive relative to prospective winnings. The supe- 
riority of conservative actions depends on their cost- 
lessness relative to prospective winnings. 

Comparison of the relative conservatism (Table 1) of all 
nonleaming strategies with their performance (Table 2) re- 
veals that the strategies that perform best overall- 
CalcMuch, Middle and AvgHand-are moderate. Con- 
servative is not always better, even with the cost qualifi- 
cation. The desired degree of aggressiveness of particular 
actions depends on the particular context. A more skilled 
player should leamn about both the game and the opponent. 

3.6. Learning 
Learning can occur in several ways. One type of learn- 
ing adjusts a strategy's parameters. For example, a strat- 
egy may keep a conservatism index on each opponent. 

Table 3 Tight's Sensitivity to Maxbet/minbet Ratio 

T M L T M L T M L 

T - 91 99 - 70 100 - 5 100 
M 9 - 96 30 - 98 95 - 100 
L 1 4 - 0 2 - 0 0 - 

max/min 10/5 8/5 6/5 

When the opponent acts on a particular hand, the learn- 
ing player observes the aggressiveness of the act and 
updates the parameter for this opponent in the appro- 
priate direction. A second type of learning involves 
choosing among already known rules. For example, as 
a strategy learns about a particular opponent, it may 
change the proportions with which the elementary 
strategies in a complex strategy are played. A third type 
of learning involves the creation of new rules or the 
elaboration or elimination of old rules. This is the most 
difficult sort of learning to simulate or incorporate into 
models because it requires a model that somehow "un- 
derstands" the game's domain and contains mecha- 
nisms for generating new strategies. We briefly examine 
only the first two types of learning. In the first type of 
learning, parameters within rules are adjusted to im- 
prove performance. PlayerCalc, for example, keeps his- 
torical data on its opponents and uses it to adjust rule 
parameters. PlayerCalc observes things like "whenever 
player #77 has bet in the past, he has had at least a ten- 
point advantage over what he sees in my up cards." 
This information is then used to refine winning proba- 
bility estimates and improve performance. However, 
players like PlayerCalc, who watch the play of the op- 
ponent and try to draw conclusions about the value of 
the opponent's down card are vulnerable to bluffing in 
a way that, for example, CalcMuch is not. 

Should a player play against players or play only 
against cards? There are advantages both ways. Clearly, 
playing against players makes PlayerCalc a formidable 
strategy against consistent players. PlayerCalc can spot 
consistency and use it to advantage. However, 
PlayerCalc, because it plays against players, can be mis- 
directed. Table 4 restates the tournament results be- 
tween PlayerCalc and MixedCalc. MixedCalc is the 
same strategy as CalcMuch, except that MixedCalc 
plays the random strategy Simple about 6 times in 
every 100. This small amount of bluffing confuses 
PlayerCalc to the point where it plays no better than 
CalcMuch against MixedCalc. 

There is a cost to bluffing.4 The "confused" Player- 
Calc still beats MixedCalc, although not as badly as it 

4By "bluffing" we here mean something different than in the context 
of the strategy BluffsLots. Bluffing here means adding randomness to 
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Table 4 The Effects of Bluffing 

PC CM MC 

PC - 93 61 
CM 7 - 62 
MC 39 38 - 

beats CalcMuch. MixedCalc loses to CalcMuch because 
they are the same strategy except that MixedCalc plays 
as a much less-skilled strategy 6 percent of the time. 

Game theorists have long puzzled on how much bluff- 
ing is a good (optimal) amount. Clearly a strategy that 
takes only random actions in order not to reveal any 
information to the opponent will not be a good strategy. 
Simple's poor performance is a good illustration. Just 
as clearly, a strategy that never bluffs will be beaten by 
a learning strategy capable of recognizing and exploit- 
ing patterns in play. The question of the optimal amount 
of bluffing has meaning only in a specific game against 
specific opposition. 

Strategies like CalcMuch that play only against cards 
cannot be bluffed because they ignore opponents' ac- 
tions. In competition where there is inept bluffing that 
might be discovered and exploited, ignoring opponents 
is costly. However, in competitions where there is ef- 
fective bluffing, the level of the best play-against-cards 
strategy may be very close to the best that can be 
achieved. If there is so much noise that inference be- 
comes infeasible given realistic constraints on player ca- 
pabilities, then playing only against cards may be an 
excellent strategy. The overall strength of PlayerCalcB, 
the bluffing version of PlayerCalc, supports this conten- 
tion. PlayerCalcB bluffs while observing the opponent's 
play to decide whether or not to play against cards or 
the opponent. If the opponent is bluffing effectively, 
PlayerCalcB reverts to playing against cards. Note that 
when PlayerCalcB is bluffed, it reverts to a bluffing ver- 

a player's behavior to thwart other players' learning schemes. 
BluffsLots, in contrast, behaves consistently in a way that has been 
characterized as bluffing (e.g., betting aggressively when up cards are 
strong) by poker players. However, because BluffsLots plays consis- 
tently, thus conveying a pattern of play to opponents with learning 
ability, it is a "naive" bluffer. 

sion of CalcMuch-it becomes MixedCalc. As nearly 
equivalent strategies, PlayerCalcB and MixedCalc play 
each other somewhat evenly in the tournament. 

The second type of learning, choosing a strategy from 
among known rules, can be represented (and studied) 
by creating complex strategies that play each of their 
simple strategies with some probability adjusted on ex- 
perience in play. A complex strategy, Tight-Middle- 
BluffsLots (TMB), can beat each of the three simple 
strategies comprising it individually. The TMB strategy 
begins by playing each of the three simple strategies 
with equal probability, then it adjusts the probabilities 
to reflect success in play. For example, if the opponent 
is Middle, then Tight (usually) becomes the predomi- 
nant simple strategy played by TMB. Creating a mech- 
anism which allows the simulated TMB strategy to con- 
verge to the appropriate simple strategy (e.g., Tight 
against the opponent Middle) is nontrivial. Conver- 
gence difficulties are relevant to real game outcomes. 
For example, if TMB plays against Middle and is "un- 
lucky" in its first several instances of playing Tight 
against the opponent (if Middle has particularly good 
cards on those occasions, for instance), then TMB may 
adjust probabilities so that it rarely plays as Tight. Thus, 
it may learn to play Tight against Middle too slowly to 
avoid ruin. 

The random device in skill-chance games greatly 
complicates learning about one's opponent. Learning 
strategies must reflect sampling, among other things, to 
be effective. There is a tradeoff between responsiveness 
and sensitivity to noise. Fast-learning strategies tend to 
over-react to spurious data in the form of insufficient 
samples while slow-learning strategies under-react. 
When data come from an opponent who may well be 
sending inaccurate signals in the presence of the ran- 
dom device, learning is often very difficult. Another 
sampling issue is, "How much history is relevant to 
learning when playing against a skillful opponent? A 
skillful opponent is likely to make adjustments as you 
do, so history that seemed relevant when you were 
playing differently may no longer be relevant. Imagine 
a PlayerCalc-MixedCalc-CalcMuch (PMC) playing 
against PlayerCalc. If the convergence mechanism 
works correctly, PMC will play predominantly as 
MixedCalc at first against a PlayerCalc opponent. 
When PlayerCalc is bluffed to the point where it has 
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reverted to playing as CalcMuch, then PMC will switch 
to playing predominantly PlayerCalc, which should 
soundly defeat the bluffed PlayerCalc. Interestingly, 
what this means is that PlayerCalc wduld be better 
against PMC if it could randomly forget its experiences 
a small percentage of the time. I 

The obstacles to learning are often overwhelming in 
many real games with human players. In a game with 
a stochastic component and a task of any complexity, 
the number of independent variables that might be 
tracked quickly exceeds human capacity, even if ade- 
quate induction methods are assumed. A shrewd 
playing-against-cards strategy may, as we saw above in 
modestly complex, two-person Sum Poker, be among 
the best possible strategies. 

3.7. Execution Skill-Reliability 
Unreliable execution of rules or actions recommended 
by rules should impair performance. The simulation 
tournament confirmed this with an interesting twist. 
Unintentional inconsistencies in play, highly likely with 
human players, are as important as planned inconsis- 
tencies in making the opponent's inferences in the game 
environment more difficult. Figure 1 shows that intro- 
ducing a small probability that CalcMuch will miscal- 
culate its probability of winning actually improves its 
performance against PlayerCalc. The reason is clear 
upon reflection-errors are externally identical to 
bluffs. The scenario summarized in Figure 1 (where the 
vertical axis is the success rate of the error prone CM, 
and the horizontal axis is the rate of errors) is very sim- 
ilar to the scenario in Table 4 where MixedCalc im- 
proves against PlayerCalc by bluffing. In both cases, 
bluffing/ errors with any frequency hurt the strategy 
against errorless and bluff-proof CalcMuch. 

There is an optimal level of inconsistency in a strategy 
that depends on the learning mechanism of the oppo- 
nent. Error rates that are too high begin to work against 
CalcMuch when it plays PlayerCalc. For example, if a 
10 percent error rate is introduced into CalcMuch, the 
effects of the bluffing are overwhelmed by the force of 
the mistakes and error-prone CalcMuch becomes worse 
than flawless CalcMuch against PlayerCalc.5 

5There is a growing literature on learning models in game theory 
(Roth and Erev 1995, Mailath et al. 1992) that discusses related issues. 

Figure 1 Mistakes and Bluffing 
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3.8. Strategic Skill 
Strategies thus far have been required to play in every 
game in the tournament. For many games and situa- 
tions modeled as games (e.g., business competitions) 
this is unrealistic. What happens if strategies have the 
option of not playing against certain opponents? 

Table 5 shows the outcome of a pairwise three-player 
contest in which players could choose, at any time after 
10 games were played, not to play the remaining games 
against the opponent. For purposes of the simulation, 
all three strategies were given the same strategic skill 
criterion, namely, that they would refuse to play if their 
percentage of games won dipped below 10 percent. 

Compare the winning percentage column (Pct.) to the 
net winnings column ($). Although PlayerCalc had the 
highest winning percentage, CalcMuch made the most 
money. This is because ExpVal is willing to play against 
CalcMuch, but not against PlayerCalc. PlayerCalc is, in 
a sense, too good, so good that it cannot find as many 
games in which to play. A version of PlayerCalc that 
knew that other strategies would quit if it won more 
than 90 percent of the time would benefit from arrang- 
ing to win exactly 90-E percent of the time. This aspect 
of strategic skill, inducing other players, through decep- 
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Table 5 Strategic Skill Toumament 

PC CM EV Pct. $'s 

PC 10 10 0.95 9.5K 
CM 0 77 0.7 22K 
EV 1 23 0.22 -31.5K 

tion or appeal to ego, to enter games where their game 
skills are inadequate deserves future study as "the art 
of the hustle." 

3.9. Human Skill and Rational Strategies 
None of the twelve strategies analyzed is a perfectly 
rational strategy for playing sum poker by maximizing 
expected value. While finding a best response strategy 
to a particular strategy known to be used by the oppo- 
nent is conceivable, there is no reason to suppose that 
such a strategy is robust against mistaking the oppo- 
nent's strategy. As Borel (1924, Trans. 1953, p. 115) put 
it: "The player who does not observe the psychology of 
his partner and does not modify his manner of playing 
must necessarily lose against an adversary whose mind 
is sufficiently flexible to vary his play while taking ac- 
count of the adversary . . . There is no doubt that if the 
player follows strictly all the rules of an excellent trea- 
tise, and if his adversary knows it, that adversary can 
win by appropriately modifying his manner of play." 

A Bayesian scheme would require a model of the op- 
ponent to generate likelihoods. The complexity of the 
strategies imaginable in this game makes this task quite 
difficult. As play proceeds and data about the opponent 
are gathered, various hypotheses concerning the "type" 
of the opponent might emerge from the data. Notice, 
however, that this calls on the bettor to have a means 
of generating as well as evaluating hypotheses on the 
basis of gathered data. In gathering data, the bettor 
might also need to have a plan for making his own de- 
cisions in the tree in such a way as to cause the opponent 
to make choices that convey information, Thus, the view 
of Kadane and Larkey (1982) is difficult to implement 
here. 

The strategies ExpVal and ExpValB are extremely 
rough approximations. They do not involve an explicit 
model of the opponent. They use a very simple histor- 
ical summary based on the smallest down card on 

which the opponent has ever bet and an historical esti- 
mate of the pot. Given these limitations, it is not too 
surprising that those strategies do not do very well. 

Obviously, human players do not perform such elab- 
orate data gathering and computation when they play 
poker. Nevertheless, some manage to be very good 
players, at least relative to their competition. It is be- 
yond the scope here to study the play of human subjects 
and we will not speculate on what strategies humans 
might discover and how they might perform against the 
computer strategies. 

4. Conclusion 
The primary purpose of this exploratory paper is to un- 
derstand the concept of skill in games as an initial step 
toward building theories of real games capable of both 
predicting outcomes and advising play. The paper ex- 
plores aspects of the concept of skill in games with a 
moderately complex game, Sum Poker, for which strat- 
egies were created in the form of computer programs. 
The strategies are exercised in tournaments to examine 
the concepts of skill in games and skill differences 
among strategies in some detail. The mode of analysis 
has had much more in common with cognitive science 
and artificial intelligence than with mathematical game 
theory. 

The two major premises of this work are: (1) skill and 
skill differences among players are important features 
of real games; and (2) theories of real games that aspire 
to predict outcomes or to aid in play must represent skill 
and skill differences among players explicitly. Both 
premises seem obviously true. It is difficult to think of 
any "real game" in which there are not important, per- 
sistent skill differences among players. It is difficult to 
imagine how one could predict outcomes or aid play 
without representing player skill. Representing player 
skill, even for a relatively simple game such as Sum 
Poker, is a messy task. Process representations of skill, 
describing players in terms of their method of play, re- 
quire both a thorough understanding of the game and 
a detailed procedural description of the strategies em- 
ployed. Performance representations of skill, character- 
izing players in terms of game outcomes in a history of 
play, require a thorough understanding of game con- 
texts, random devices, and player behaviors as deter- 
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minants of success. When players' skills are repre- 
sented, the resulting "game" is not obviously amenable 
to the usual modes of game theoretic analyses. How can 
skill concepts be incorporated in game tl4eory? 

4.1. Skill and Game Theory 
The analysis of skill is a natural complement to the 
methodology offered by game theory. Combining these 
nominally disparate approaches is challenging but 
promises much more useful theories of real games. 

An adequate representation necessitates, at mini- 
mum, modeling the possibility that the players are un- 
certain about each other's skill level and about the strat- 
egies the other is more likely to use. This naturally calls 
for the theory of games of incomplete information: each 
player is of a certain type which is, in this case, a strat- 
egy or a mixture of strategies. Each player knows his 
own type but has only some subjective beliefs on the 
type of his opponent-the now widely used model of 
incomplete information games proposed by Harsanyi 
(1967-1968). Recalling that the situation consists of 
multistage interactions, the even more appropriate 
setup is that of repeated games of incomplete informa- 
tion [see Aumann and Maschler (1995); Mertens (1987); 
Mertens, Sorin, and Zamir (1995); and many others]. 
Such a game provides a useful paradigm to model and 
study mutual beliefs about types and the evolution of 
these beliefs as the game proceeds. The updating of be- 
liefs takes place in view of new information gathered 
mainly by observing the moves of the opponent. In such 
models one can speak of the optimal rate of releasing 
information about your type and the optimal rate of 
gathering information about your opponent's type; 
such information is usually costly, and the tradeoff is 
between immediate cost and future benefit. 

Analyses of player skill such as for the game of Sum 
Poker may provide a manageable set of types (or strat- 
egies) for any specific game. The types can then be in- 
corporated into game theoretic models to study their 
interactions in a given environment. For instance, if one 
can derive a relatively small set of skill and behavior 
types in a specific business activity, it might be very 
interesting and relevant to study various game theoretic 
models involving the interaction of those types. Such a 
combination of approaches may well lead to useful pre- 
dictions and recommended behaviors. 

4.2. Extensions 
In addition to the development and use of player types 
in more traditional game theoretic models, there are 
many possible extensions of this work to more fully un- 
derstand the concept of skill in games. One direction is 
to explore the Sum Poker domain more thoroughly. It 
will be interesting to have human subjects play against 
other human subjects and against the various computer 
strategies. The strategies utilized in this paper were not 
taken directly from playing experience, but were ini- 
tially deduced and then adapted through preliminary 
experiments. Human subjects may find different and, 
perhaps, better strategies for playing Sum Poker. Also, 
for finding better strategies, it may be useful to run a 
tournament along the lines of Axlerod's work on itera- 
tive prisoner's dilemma. 

We have explored only a handful of strategies in a 
limited number of competitive situations. Simple exten- 
sions to the existing framework include exploring 3- to 
n-player versions of Sum Poker and varying such fac- 
tors as seating order and other tournament conditions. 

There is a large amount of work ahead in understand- 
ing what skill is and how it can be represented in many 
different types of games. First, there is a large number 
of real games, including politics and business, where 
differential player skill is important but where skill is 
neither understood nor explicitly represented in models 
of these games. Some real games such as Chess, Go, 
tennis, golf, and bowling explicitly measure skill and 
acknowledge differences among players; in a few games 
such as golf there is elaborate "handicapping" to create 
fair contests among unequally skilled players. These 
games utilizing handicaps are particularly interesting 
for study because of the explicit performance measures 
of differential player skill. 

Second, there is a large number of contrived games 
that have been thoroughly studied by game theorists 
without reference to explicit skill differences. There is a 
large amount of potentially useful theoretical work in 
adding skill to these more traditional, well-studied 
games and in understanding how the introduction of 
skill differences among players changes the analysis. 

Appendix: Technical Descriptions of Sum Poker Players 
This appendix describes the 12 players used in this study in terms of 
their condition-action rules. Rules are numbered in order of prece- 
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dence. Nine of the strategies are simple; Players 9, 10, and 12, 
MixedCalc, PlayerCalcB, and ExpValB, are complex strategies. In or- 
der to investigate certain specific issues, the paper uses simple com- 
binations of the basic strategies to make more complex strategies. 

The following shorthand notation will be used in describing rules: 

CARDTOT = the deciding player's card total; 

UPTOT = the deciding player's up card total; 

DOWN = the deciding player's down card; 

OPUPTOT = the opponent's up card total; and 

CARDVALi = face value of cardi. 

Player 1: Simple 
Flip a coin once at beginning of hand. 

(1) If heads, then raise (or call after three raises); 
(2) otherwise fold (or check if that is an option). 

Player 2: AvgHand 
(1) If CARDTOT > 1.2 x an average hand, then raise; 
(2) If 1.2 x an average hand 2 CARDTOT 2 an av- 

erage hand, then call; 
(3) otherwise fold (or check if that is an option). 

An average hand is 13.08 in the first round (two cards) 
and 19.62 in the second round (three cards). 

Players 3, 4, & 5: Loose, Middle, and Tight6 
Compute opponent's hand total by assuming the down 
card is a 1, 5, or 10 for Loose, Middle, and Tight, re- 
spectively: (1) if CARDTOT > opponent's total, then 
raise; (2) if CARDTOT = opponent's total, then call; (3) 
otherwise fold (or check if that is an option). 

Player 6: BluffsLots 
Compute: C = (UPTOT - OPUPTOT) + (DOWN 
- AvgLiveCard - 1) where 

AvgLiveCard = ( (CARDVALi 
deck 

X I[card still in deck])) # cards still in deck. 

(1) if UPTOT 2 OPUPTOT then raise; 

6 Players 4 through 10 check to see if they are "iced out" at the begin- 
ning of the second betting round (after the last card is dealt). A player 
is iced out when any opponent's up cards sum to more than the 
player's hand total. The player in question then recognizes that he 
cannot win and folds at the first opportunity. 

(2) if C > 0 then raise; 
(3) otherwise fold (or check if that is an option). 

I[card still in deck] is an indicator function equal to 0 if the 
card is showing in the hand, 1 if it is still in the deck. 

Player 7: CalcMuch 
Compute: Tiecard = CARDTOT - OPUPTOT. 

Compute: # of winning cards still in deck 
= Ideck/ [card still in deck, CARDVALi<Tiecard]; 

Compute: Pr(win) = # winning cards still in deck/# 
cards still in deck;7 

(1) If Pr(win) > 0.75 then raise; 
(2) If 0.75 - prob(win) - 0.5 then call; 
(3) Otherwise fold (or check if that is an option). 

Player 8: PlayerCalc 
Recall from historical data the lowest value of down 
card that the opponent has ever been willing to bet on 
given the current differences in up cards-call this 
LOWDOWN. LOWDOWN is set = 11 until the oppo- 
nent bets; then it takes on the historical value. 

Compute: Tiecard = CARDTOT - OPUPPTOT. 
Compute: # winning cards still in deck= IdeckI 

[card still in deck,card<Tiecard,card>LOWDOWN] 

Compute: # Tiecards still in deck = Ideck'[card still 

in deck,card =Tiecard,card > LOWDOWN] - 

Compute: Pr(win) = # winning cards still in deck/# 
cards still in deck. 

Compute: Pr(tie) = # Tiecards still in deck/# cards 
still in deck. 

Compute: Pr(loss) = 1 - Pr(win) - Pr(tie). 
(1) If prob(win) > 0.75, then raise; 
(2) If 0.75 - prob(win) - 0.5, then call; 
(3) Otherwise fold (or check if that is an option). 

Player 9: MixedCalc 
This player plays as CalcMuch with probability 0.94 
and as Simple with probability 0.06. 

Player 10: PlayerCalcB 
This player plays as PlayerCalc with probability 0.94 
and as Simple with probability 0.06. 

7CalcMuch only approximates winning probability in first round, by 
assuming that the first round is the last round and computing winning 
probability accordingly. Unlike the more exact first round probability, 
this approximation could conceivably be calculated by a human 
player. 
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Player 11: ExpVal 
Recall from historical data the average amount the op- 
ponent can be expected to contribute to pot for the re- 
mainder of the hand given the current difference in up 
cards-call this MATCH AMT. Compute Final Pot = 2 
x MATCH AMT if neither player folds. 

Compute Cost of Staying = max{MATCH AMT 
- amount already contributed, 01. 

Recall from historical data the lowest value of 
down card that the opponent has ever been willing 
to bet on given the current differences in up cards- 
call this LOWDOWN. LOWDOWN is set = 11 until 
the opponent bets; then it takes on the historical 
value. 

Compute TieCard, # winning cards still in deck, # of 
tie cards still in deck, Pr(win), Pr(tie), Pr(loss), exactly 
as in PlayerCalc strategy. 

Compute: 

EV = [Pr(win) 

x (FinalPot + amount already contributed)] 

+ [Pr(tie) x ((0.5 x FinalPot) 

+ amount already contributed)] 

- [Pr(loss) x Cost of Staying]. 

Define AvgUp as 6.5 in first betting round, 13.0 in 
second. 

1) If EV > 0 and UPTOT > AvgUp, then raise; 
2) If EV > 0 and UPTOT 2 AvgUp, then bet; 
3) Otherwise fold (or pass if that is an option). 

Player 12: ExpValB 
This player plays as ExpVal with probability 0.94 and 
as Simple with probability 0.06. 
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