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On a Repeated Game Without a Recursive Structure

By J.-F. Mertens, Louvain') and S. Zamir, Jerusalem?)

Abstract: The solution is given here for the infinitely repeated two-person zero-sum bgames of in-
complete information characterized by 2 X 2 games, with information matrices Gz b for the first

game and (Il; 2>f0r the second game.

1. Introduction

Two main classes of repeated two person zero-sum games with incomplete informa-
tion are solved up to now:

— Games in which the information matrices matrices may depend on the player but
not on the state of nature [Mertens and Zamir, Mertens].

— Games in which the information matrices do not depend on the players, may depend
on the state of nature, with the additional assumption that each player recalls all
prior moves [Kohlberg and Zamir, Kohlberg].

It seems that without those assumptions one loses the recursive structure that made
those cases tractable.

Here an example is solved of a game not fulfilling those assumptions. It was
mentioned as an open problem some six years ago [Zamir]:

There are two possible states of nature and accordingly two payoff matrices,

= (211 012) =[bn blZ) ix (i
A (021 a3 and B (b21 3% , the actual payoff matrix (i.e. the actual state of

nature) is chosen once and for all by the referee (with probability p for matrix A), and
told to neither player. There are in addition two information matrices H° =

= (g %) and HB = (ll; 2),(1 and b being two different letters. After each stage, if T

is the true payoff matrix (A or B), and the players I and II played their pure strategies
7 and j respectively, the referee transfers tij from player II’s account to player I's and
tell both players the letter H,J; The players get no statement on their accounts before
the end of the game. It is crucial here that the moves i and j are not stated explicitly
by the referee. However, each player recalls his own move (i or ) and all his own
previous moves in addition to the information statements ng made by the referee up
to that stage.
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Notice that as soon as the letter ¢ is announced by the referee, the true matrix is
revealed to both players.

Pl
The payoff in the infinitely repeated game is thought of as being lim £ ( 1 ’k-’ )
=1 k

n—>oo
but is not defined due to the possible non existence of the limit. Nevertheless we
will show that Min Max (and dually Max Min) of the infinite game exists in a well
defined (and rather strong) sense:
Player II has an infinite game strategy that guarantees even in all sufficiently large

finite games £ ( 1 Z 4 i ) < Min Max + ¢; conversely, for every infinite game strategy
=1 &k

7 of player I, player I has an infinite game strategy ¢ such that liminf £ (1 Z i )>
el

Y oo -
> Min Max —e.

For a proof of this result let us introduce a few conventions: We may obviously
substract from the matrices A and B their values v (A) and v (B) respectively, which
will substract from all payoffs the constant pv (A) + (1 — p) v (B). Hence we may
assume without loss of generality that v (A) = v (B) = 0. We may multiply A by p
and B by (1 — p), and consider the payoff to be the sum of the payoffs that would be
obtained if A was the true matrix and if B was the true matrix. We will do this in
order to simplify slightly notations. Finally x" will always stand for 1 —x.

1. We define the following auxiliary game T:

L R (6;8)
F | b, antba b +Bb |
B a3 + by as2 Bayy + f'as,
(1=e)T b a5, 0
(1=€)B bay a2 0
B, by 41, B(Bbyy +Bb1s)
T, i by, @y, B (Beyy +Baz) ]

Here L (resp. R T B) stands for the strategy (of player II) of playing always Left
(resp. Right, Top, Bottom); (1 =€) T (resp. (1— €) B) stands for the strategy of playing
at every stage independently with probability (1 — €) Top (resp. B) and with probability
€ Bottom (resp. 7). (8;3') stands for strategy of playing at each stage and independently
with probability § Left and with probability 8’ Right. Finally T (resp. B, ) stands for
a strategy consisting of playing once T (resp. B) and all other times B (resp. T). The
entries I" can be easily obtained as asymptotic payoffs corresponding to those
strategies, using our previous conventions (and thinking of g as strictly between 0
and 1).



On a Repeated Game Without a Recursive Structure 175

Denote by 7 the value of T. If we denote by Max Min I and Min Max I" the max
Min and Min Max value of our original game in the strong sense that we described we
shall prove that Min Max I" = ¥ and that it may be different from Max Min I'. To make
these statements rigorous we need still two more definitions:

2. Let us define:

5, =inf {U|3N 37 st. Va=NVa,,p, (0, 7)<U}
v =sup {U|VY 730 st. lim infp, (0,7)> U}
n-—>oo

where o (resp. 7) stands for a strategy of player I (resp. II) in the infinite game while
o, (resp. 7,,) stands for a strategy of player I (resp. II) in a game consisting of 7 stages
only. p,, (0, 7) is the expected average payoff per stage in the first n stages, given 0, 7
1 % t . ), where T = (¢,,) is the true payoff matrix
NE=1 "Wk 4

chosen by the referee at the begining of the game.

Loosely speaking, 7, is the lowest value of lim sup p,, that player Il can guarantee
in the infinite game while V_ is the highest value of lim inf p,, that cannot be
guaranteed by player II. Clearly v <7 _. In the next section we will prove that
v=7_ =v_, which establishes that 7 is Min Max I in the above explained sense.

and p;ie.p, (0,7) =E0 p (

3. Proofs

For a strategy of player I'in T let (o, &) be the probability distribution induced on
(1=e)Tand (1 =¢)B.

Lemina I. For any a corresponding to any undominated optimal strategy of Player
Lin I that uses (1 — €) T or (1 — €) B with a positive probability, one of the following
holds:

agy, =0 and o'by, =0 3.1DH

aby; >0 and a'ayy =0 (3.2)

Proof. Assume that for some optimal « neither of (3.1) and (3.2) holds, so for instance
abyy <O (the case &'ay, <0 is completely symmetric). Since aby, <0 and

v (B) = 0, we have b,; = 0 and thus also az;, <0 ( since 3.1) does not hold). Since
aay, <0and v (A) = 0, we have a5, > 0. But this implies that the strategy (1= ¢) B
of player I strictly dominates his strategy (1= ¢) T in T, and thus that & = 0 which
contradicts the assumption ab;; <0.
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Theorem 1. ;m 27V

Proof. Consider an arbitrary strategy 7 of player Il and an arbitrary € (0 < e <1).

T may be considered as a probability measure P on the space £ of all sequences of L
(left) and R (right) with the understanding that as soon as the true matrix is revealed,
player II switches to his optimal strategy in that matrix.

Letp, =P (L), p, =P (R),ps =P(Q\{L,R})=1—p, —p,.Let Q_ denote the
subset of 2 consisting of sequences with infinitely many L and infinitely many R. Let
{L;} denote the subset of { with a finite non-zero number of L in the sequence, and
similarly {R;} is the subset of those sequences with a finite non-zero number of R.
We shall refer to these finitely many L or R as the exceptional moves.

Define N, by:

Prob. [player II has not played all his exceptional moves before NV, | {Li} v {Rl.}] <e
and N, by:
Prob. {number of L and R in the intervall V,, N, [ are both at least

Ine
1——-———-—n(1_€) |12, 1>1—¢
with the understanding that whenever the conditioning set has zero probability, the
corresponding integer takes its least possible value (1 or N, + 1).

It follows from the definitions that even if player I plays (1 = €)B in
Wi, N, [, matrix A (if it is the true matrix) will be revealed with probability greater
than 1 — 2 €, given _, and also that:

Prob. [Both L and R appear before N, | Q\ ({L}U (R >1—¢

Let (3, 92,093, 9'q3, 44, q5) be an undominated optimal strategy of player I in
.Forany k >N,, let g, be the following strategy of player I:

with probability ¢, , play Z‘
with probability g, , play B
with probability g3, choose H with probability a and S with probability o and play:
— if (3.1) holds: if H : B up to N; and (1 = €) T after NV, .
if §: Tup toN, and (1 = €) B after N, .
— if (3.2) holfs: if #: T up to N, and (1 — ¢) T after V.
if S : B up toN, and (1 — €) B afterN,.
e with probability g4, play a strategy B, , with the time of playing B chosen independ-
ently of all other choices and uniformly in [1, £].
e with probability g5, play a strategy T, , with the time of playing T chosen independ-
ently of all other choices and uniformly in [1, k].
We have forall n >k,

® 06 &

1/n<N,/m<N,/m<k/n; ljne<k/n 1/k<e. (3.3)

Letf, = (1/n) * (number of L up to time n).
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Let M = max [m_a_x a.. — mi_n ai].; max bij — m@n bij]’
L7 L] L] L
and let O () stand for any quantity x such that | x | <Me
similarly O (1/k) stands for any y such that | y [ < M/k, etc.
‘Denote by p,, (0, 7) the average payoff per stage resulting from strategies g, and 7,
we have that p,, (0, 7) is the expectation of:

g1 [p1 (byy 0 (1/m) +py (@12 + b1a) T 05 (Fban +1,0,,) + 0N, /n) + 0 (e)]
+ 3 [P1 (@y +b21) D2 @ +0(1/n)) + s (fray, +Fiay, T0O2/m)+0(e))]
+ g5 [py {aby; +a'by; + 0V /n)+20(€) + (0(1/ne) if (3.2) holds)} +

D2 {oay, +alayy, + 0V, /n)+20(e)+ (0(1/ne) if (3.2) holds)} +

P(Q_)(40(e)+ 0NV, /n) +

if (3.1) holds:
P({L}) (casz +30(e) +0O N1 /m) +p ({R}) (@by1 +30(e) +0WVy/n))

if (3.2) holds:
P ({Li}) (¢ay; +30(e)+ OV, /n) +0(1/ne)) +P ({Ri}) (abyy

+30(e) + 0NV, /n) +0(1/ne)
+ g4 [py (B11 +0(1/m) + py (@12 + 0 (k/n)) +ps {fy (F,b1y +1,b12) +0(1/k)
+ 0 () + 0 (k/n)}]

+ qs [p1 (b1 +0(k/n)) +p, (a22+ 0(1/n)) + p3 {rf;c (fnazl +f,',’122) +0(1/k)

+0(e) + 0 (k/n)}]
Using relations (3.3) and Lemma 1 we get that for all n > k:
p, (0, VZEH K 1,7, w))— 4 Me—0 (k/n),
where
B 111H i by 252 + by b1y by, ] ’_Pl ]
gz | |21 + b2 a2 a1 %) 2]
aq3 by a2 0 0 fnp3
Hk,nrw)= , ,
aqs by a2 0 0 fnp3
- .
as | b1y a2 Jeb,, fkblz
q b a a a
I S-L_ 21 22 Jr a1 f;czz_‘
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Denote E (H (k, n, 7, w)) by ¢ (fk’ fn). The function ¢ : L X L _ >R is weakly
continuous and affine in each variable separately on L, endowed with the weak topo-
logyo (L., Ly).

Let C = closed convex hull of {fl [i>N,}inL_ — o (L, L), and consider
ponCXC:Wehave ¢ (f, =7V feC indeedforfy =f, =f Hk,n 7,0)=7
holds for each value of w since (g1, g,, 0g3, ®'q3, 44, s ) is an optimal strategy of

player I in T. In addition C is compact and convex for ¢ (L., L,) and ¢ is affine and
continuous in each variable separately on C. It follows that ¢ has a saddle point, hence:

g&C sit. VfEC:¢(g,f)>ijgfsup ¢(u,f)>i;1fqb(f,f)>17
u

Now g is also in the closure of the convex hull of {fl |i>N,}when L__ is endowed
with the Mackey topology 7 (L., L) — due to the convexity of the set — (thisis a
well known result that follows from the Hahn-Banach theorem). Since on bounded sets
of L, the Mackey topology 7 (L., L) coincides with the topology of convergence in

1
probability, it follows that there exist A; (1 <i </, =0, 2 N = 1)
i=1

and kl. (1<i<], ki >N,) such that:
1
P .21 )\l.fk_—g|>e)<e.
= H

Letnow o,  be the strategy of player I consisting of choosing at the start of the game
a number i (1 <i </) with probability };, snd thereafter using his strategy o . Let
alsoK,, = max {k; | 1 <i<} then we have: !

p, (0, ,T)Z0(@ f,)— 6Me—0(Ky/n)foralln>K,, .
Thus: V 7, strategy of player II, ¥V e,0 <e<1,3 o, strategy of player I, such that:

lim infpn (oe,r, T)>;£<fj ¢ (g, /) —6Me =7 — 6Me.

N-—>roo
This completes the proof of Theorem 1.
Lemma 2. Player I has an optimal strategy in I using only a single value of 8.

Proof. A priori player II’s optimal strategy in T" consists of a probability vector
(P1, P2, p3) together with a probability measure u on [0, 1] to choose f. We want to
show that player II has an optimal strategy in which u’s support is a single point in
0,11

L 1)Ifb,, 2 b;, and a,, > a,; the result follows from the convexity in 8 of the
payoff function.
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L 2) Otherwise we have either b,; < b,, ora,, <a,,, by symmetry we may assume
that a,, <a,;. Since v (A) = 0 it follows that a,, < 0.

L 2.1) If in addition b;, < b,, the payoff function is concave in § and thus u is
dominated by the probability on {0, 1} that has the same mean. So without loss of
generality we may assume that in this case u (]0, 1[) = 0. We get thus for Fa6x4
matrix with L, R, 8 = 1 and 8 = 0 as pure strategies for player II. The other strategies
are eliminated by domination. In addition v (B) = 0 implies b;; <0, and thus we
conclude that rows By, and T, are dominated by (1 —¢€) 7 and (1 — €) B respectively.
Ifeither b,y <0ora,, <0, one of the rows 3= 1 or 8 =0 is dominated by L or R respective-
ly and the result follows. If either @;; < 0 or by, <0, say a,; <0 then first B is domi-
nated by (1 — €) B and then § = 0 is dominated by 8 = 1; the result follows again.

Thus we may assume that Min (2,4, 2,1, b;4, byy) >0, it follows then from
v (A)=v(B)=0that b;; <0,a,, <0.

bi1 b1z b1 aq2
LetR = . C=
dzy 4xp by ap
r=Val (R), ¢ =Val(C)

L 2.1.1) If r < 0 and if we denote by (3,8') the relative weights of the columns
g =1and =0, then there exists an optimal § for which 8b,, + 8'b,, <0 and
Bay, + Bay; <0 (if ¢ <0, the required § is the relative weight of the last two columns
in the equalizing strategy of player II, if ¢ > O the value of the game is 0 and an opti-
mal strategy of player Il is (0, 0, 8, 8") where § is optimal in R and hence satisfies the
required inequalities). It follows that if in that optimal strategy, player II would replace
the columns 8 =1 and § = O by i.id. (8, -B), rows B, and T, would still be dominated
by (1~ €) T and (1 — €) B respectively and hence player Il has in this case an optimal
strategy using a single f.

L 2.1.2) If r > 0, the optimal mixture of the columns § = 1 and § = 0 is (8, §'), 8
being optimal in R and hence fby; + §'5,, >0 and fa,; + Ba,, > 0. It follows again
that replacing the last two columns by i.i.d. (8,4"), rows B, and T, remain dominated,
this time by T and B respectively, providing again a single § optimal strategy for
player I1.

L 2.2) We are thus left with the case:

Ay <aaq, @37 S0, by <byy, b1y <O

Consider player II's optimal strategy in the game " without the rows B; and T ; it

obviously implies § = 0. For this 8, B, is dominated by (I —¢) T and T, by (1 =€) B

and thus this single § strategy is also optimal in [".This completes the proof of Lemma 2.
Notice that the > strategies § = 1 and § = 0 in I should be interpreted as playing i.i.d.

(1 —e€,¢€)and (e, T— €) respectively. Thus in the single 8 optimal strategy for player I1
established in Lemma 2 we may assume 0 < < 1.
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Theorem 2. 7, <.

Proof. We will show that whenever player II plays in I' one of his strategies 7 in T,
consisting of a mixture of L, R and one (8,78") — with 0 <8 < 1 — any pure strategy
of player I yields in I', a payoff dominated up to terms 0 (1/n) by a convex combina-
tion of rows of I. Since by Lemma 2 player II can guarantee # — up to € — by such
mixtures 7 against rows of T, the result will then follow.

If the pure strategy of player I is T or B then it is already a row of T'. Take any other
pure strategy that begins say with T (for strategies starting with B the discussion is
completely dual). Let w, = 1if T occurs at time 7 in the strategy and w; =0

n

otherwise. Let f =-1- Z w and Wy be the first zero in the sequence {wi}. Let
=1

y = t/n; we have 1/n Sysf,<(n- 1)/n

Let D =8by, +0'by;, G=pay +Bay,,

X="lwy +wy (1 —Bw)+...+w, (1—pwi)...(1—pw, )]

E
y=1
n

[wi +wy (1 =Bwi)+.. . +w, (1=Fw))...(1—Fw, )] -
Inf 4,
We have ;8" " <X <[, "™ and
nf'

y+(f,—y)B " <Y<y +(f, —»)B, neglecting terms 0 (1/n).
The strategy of player I obtains, up to 0 (!/n); agamstL f by + f b,y ; against
R: ybi, +f aya +fn a,, and against ({3”;) GX +DY. Ma]onzmg this last term
according to the sign of G and D we obtain (writing f for f, );

against ‘ L s R

a payoff < . Ibu1 + fbsy { ybyy +fay, +f'au

against (8.8 with:

G=20.D=>0 {G<0AD>O G=20.D0<0 G<0.D<0

a payoff < | Gf 6" +D(Bf+6'y) lG/' B +DBf+B V)| Gf 'ﬁ'"*"+D(y+(ﬁy)B"fl ) |G, +DU’+(f:V)ﬁ"f )

Since all terms are convex in 3, we may replace y by its extreme values 1/n and f.
Neglecting terms 0 (1/n) one gets thus:

(8" with:
L R G20.D>0 |[G<0.D20 {G=0.D<0 {G<0.D<0
y=lin| Bu+fbay | fan+fan Gre+op | Gremrom | org+omY |Gremiom
y=f | fou+fby | Rantbo)fay | GFE™4Df | Gre™+Df | Gre™eDr | GFE™ DS
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78" and f'8"™ are convex. When their coefficients are negative let us majorize them
by zero. All functions get then linear or convex in f, so we may replace f by its extreme
values 1/n and (1 — 1/n). Neglecting terms O (1/n) one obtains:

(8.°8") with:
L R G>0.D>0§G<O,D>O G=0.D<0 |G<L0.D<K0
y=1/nf=1-1/n | by ay Dg Dg 0 0
_y;}=1/n by ayy GB Gg' 0
y=f=1—1/n by | aptbhy D D D D
1 _

We conclude that player Is strategy is dominated by the mixture of three similar strate-
gieswith(y = 1/n, f=1—1/n), (y =f=1/n) and (y =f = 1 — 1/n), the weights being
f—, f and y respectively. But this mixture is dominated by the convex combination
with the same weights of the following rows of I':

case |[G>0,D>0 |G<0,D>01G>0,D<0|G<0,D<0

weights

F=y B, B, (1=eT | (1=eT
f T, (1= ¢€)B T, (1.=¢)B
y T T T T

This completes the proof of Theorem 2.

4. Conclusions

)
(ii)

(iii)

(iv)
)

Player II has an “e-MinMax” strategy of the type: With probability p; play
always L, with probability p, play always R and with probability 1 —p, —p,
play always i.i.d. with probability 8, L and with probability £, R.

This strategy also guarantees that in any finite sufficiently long game the payoff
is less than 7 + €.

Dual results hold for player L.
Analysis of the game T and its’ dual I shows that the only cases where there is
no value (i.e. 7 >v) are: {¢ vr<0anday >0andeithera;; A b, >0o0r
ay3 (@21 —@22) + b2y a2 <0}
and its symmetries obtained by either permuting the games

(a; < b'j" where 1' = 2 and 2' = 1) or permuting the players (@< —

byo— b].l.) or both.

@,
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An example of a game without value is the following:

Optimal strategies in T are: For player I;(1/4, 1/4, 1/4, 1/4, 0, 0) and for player II;
(1/4, 1/4,1/2 (1/271/2)) giving ¥ = — 1/2. Optimal strategies in I" are: For player I:
(1/6,1/6,2/3 (1/21/2)) and for player I1; (1/6, 1/6, 0, 0, 1/3, 1/3) giving v =~ 2/3.
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