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On a Repeated Game Without a Recursive Structure 

By J.-F. Mertens, Louvain 1 ) and S. Zamir, Jerusalem 2) 

Abstract: The solution is given here for the infinitely repeated two-person zero-sum,games of in- r  complete information characterized by 2 X 2 games, with information matrxces b for the ftrst 
game and(  b ab)for the second game. 

1. Introduction 

Two main classes of  repeated two person zero-sum games with incomplete informa- 
tion are solved up to now: 
- Games in which the information matrices matrices may depend on the player but 

not on the state of nature [Mertens and Zamir, Mertens]. 
- Games in which the information matrices do not depend on the players, may depend 

on the state of  nature, with the additional assumption that each player recalls all 
prior moves [Kohlberg and Zamir, Kohlberg]. 
It seems that without those assumptions one loses the recursive structure that made 

those cases tractable. 
Here an example is solved of  a game not fulfilling those assumptions. It was 

mentioned as an open problem some six years ago [Zamir]: 
There are two possible states of  nature and accordingly two payoff  matrices, 

A =/all\a21 a22/a12 1 and /3 = (bb~ at b~2~), the actual payoff  matrix (i.e. the actual state of  

nature) is chosen once and for all by the referee (with probability p for matrix A), and 
told to neither player. There are in addition two information matrices H A = 

=(ab bb) andHt3=(b ba),aandbbeingtwodifferentletters. Aftereachstage, i fT 

is the true payoff  matrix (A or B), and the players I and II played their pure strategies 
i and/respectively,  the referee transfers ti/from player II 's account to player I's and 
tell both players the letter H ft. The players get no statement on their accounts before 
the end of  the game. It is crucial here that the moves i and]" are not stated explicitly 
by the referee, However, each player recalls his own move (i or])  and all his own 
previous moves in addition to the information statements H T made by the referee up 
to that stage. 

1 ) Prof. Jean-Francois Mertens, Universit~ Catholique de Louvain, Belgium. 
2) Prof. Shmuel Zamir, The Hebrew University of Jerusalem, Israel. 
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Notice that as soon as the letter a is announced by the referee, the true matrix is 
revealed to both players. 

The payoff in the infinitely repeated game is thought of as being lim E ( 1 ~ ') n-.o. \n k=l tikjk ' 
but is not defined due to the possible non existence of the limit. Nevertheless we 
will show that Min Max (and dually Max Min) of the infinite game exists in a well 
defined (and rather strong) sense: 

Player II has an infinite game strategy that guarantees even in all sufficiently large 

finite gamesE t I ~ tik/k I ] < Min Max + e; conversely, for every infinite game strategy 
\n k=l /1 \ 

r of player II, player I has an infinite game strategy o such that liminfE[ • tik/k|>/ 
n ~  knk=l 

> Min Max - e. 
For a proof of this result let us introduce a few conventions: We may obviously 

substract from the matrices A and/3 their values v (A) and v (/3) respectively, which 
will substract from all payoffs the constant pv (A) + (1 - p )  v (/3). Hence we may 
assume without loss of generality that v (A) = v (/3) = 0. We may multiply A by p 
and/3 by (1 - p), and consider the payoff to be the sum of the payoffs that would be 
obtained if A was the true matrix and if/3 was the true matrix. We will do this in 
order to simplify slightly notations. Finally x' will always stand for 1 - x. 
1. We define the following auxiliary game P: 

f 

(1 Ze) T 

(1 -e )B  

B1 

T1 

a21 

bll a12 +b12 /3bll +/3'b12 

4- b21 a:2 ~a21 4- ~'a22 

bll a12 0 

b21 a22 0 

bll a12 /3 (/3bi 1 +/~"bl 2) 

b21 a22 /3'(~a21 4-/3'a22) 

Here L (resp. R, T, B) stands for the strategy (of player II) of playing always Left 
(resp. Right, Top, Bottom); (1 ~- e) T (resp. (1-  e)B) stands for the strategy of playing 
at every stage independently with probability (1 -- e) Top (resp. B) and with probability 
e Bottom (resp. T). (/3J) stands for strategy of playing at each stage and independently 
with probability/3 Left and with probability/3' Right. Finally T1 (resp. B 1 ) stands for 
a strategy consisting of playing once T (resp. B) and all other times B (resp. T). The 
entries F can be easily obtained as asymptotic payoffs corresponding to those 
strategies, using our previous conventions (and thinking of/3 as strictly between 0 
and 1). 
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Denote by ~ the value of  P. If  we denote by Max Min P and Min Max P the max 
Min and Min Max value of  our original game in the strong sense that we described we 
shall prove that Min Max P = g and that it may be different from Max Min I ' .  To make 
these statements rigorous we need still two more definitions: 

2. Let us define: 

~o~ = i n f { U  3N37" s.t. V n > ~ N V O n , P n ( 0 n , 7 " ) < , U }  

= sup {U I V 7", q a s.t. lira inf Pn (a, 7")/> U} 
n ...4. e~ 

where o (resp. r) stands for a strategy of player I (resp. II) in the infinite game while 
o n (resp. rn) stands for a strategy of  player I (resp. II) in a game consisting of  n stages 
only. Pn (O, 7") is the expected average payoff  per stage in the first n stages, given or, 7" 

(1  ~ t i jv t  , , .  where T = (tij) is the true payoff  matrix and p; i .e .  Pn (o, r) =Eo,r, p \n k=l 

chosen by the referee at the begining of the game. 
Loosely speaking, ~ is the lowest value of lim sup Pn that player II can guarantee 

in the infinite game while ~ is the highest value of  lim inf Pn that cannot be 
guaranteed by player II. Clearly ~ ~< ~ .  In the next section we will prove that 

= 170 = ~ ,  which establishes that ~7 is Min Max P in the above explained sense. 

3. Proofs 

For a strategy of player I in E let (a, a ' )  be the probability distribution induced on 
(1 ~ e) T and ( 1 ~ e) B. 

Lemma 1. For any a corresponding to any undominated optimal strategy of  Player 
I in P that uses (1 - e) T or (1 - e)B with a positive probability, one of the following 
holds: 

aa12/> 0 and a'b21 ) 0 (3.1) 

abll >~0 and a'a22 ~ 0  (3.2) 

Proof. Assume that for some optimal a neither of (3 .1)  and (3.2) holds, so for instance 
abl I < 0 (the case a'a22 < 0 is completely symmetric). Since abl  i ~ 0 and 
v (B) = 0, we have b21 ) 0 and thus also aa12 < 0 ( since 3.1) does not hold). Since 
aa12 < 0 and v (A) = 0, we have a22/> 0. But this implies that the strategy (1 -~ e) B 
of player I strictly dominates his strategy (1 -~ e) T in E, and thus that a = 0 which 
contradicts the assumption abl ~ < O. 
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Theorem 1. ~ >~ 

Proof. Consider an arbitrary strategy r of player II and an arbitrary e (0 < e < 1). 
r may be considered as a probability measure P on the space a of all sequences of L 
(left) and R (right) with the understanding that as soon as the true matrix is revealed, 
player II switches to his optimal strategy in that matrix. 

Letpl  = P  (/~),P2 = P  (/~),P3 = P ( f 2 \  {/~,/~})= 1 - P l  - P 2 .  Let ~2.0 denote the 
subset of ~2 consisting of sequences with infinitely many L and infinitely many R. Let 
{Li} denote the subset of ~2 with a finite non-zero number of L in the sequence, and 
similarly {R i} is the subset of those sequences with a finite non-zero number ofR.  
We shall refer to these finitely many L or R as the exceptional moves. 

Define N1 by: 
Prob. [player II has not played all his exceptional moves before N 11 {L i} U {Ri}] < e 

andN2 by: 

Prob. {number of L and R in the intervall IN1, N2 [ are both at least 

in e 
I n ( l - e )  I fZ,.} > 1 - e  

with the understanding that whenever the conditioning set has zero probability, the 
corresponding integer takes its least possible value (1 or N1 + 1). 

It follows from the definitions that even if player I plays (1 -- e) B in 
IN1, N2 [, matrix A (if it is the true matrix) will be revealed with probability greater 
tharl 1 -- 2 e, given f2o. , and also that: 

Prob. [BothL andR appear bef0reN2 [ ~ \ ({L} U {R})] > 1 - e 

Let (ql, q2, o~q3, cx'q3, q4, qs) be an undominated optimal strategy of player I in 
lY. For any k >N2,  let o k be the following strategy of player I: 

�9 with probability ql ,  play 
�9 with probability q2, play B 
�9 with probability q3, choose H with probability a and S with probability tx' and play: 
- if(3.1) holds: i fH  :B up toN1 and (1 -- e) T afterNl.  

ffS : Tup toN1 and (1 -~ e)B afterN 1 . 
- if (3.2) holfs: i fH : T up to NI and (1--- e) T after NI.  

ifS :B up toN1 and (1 - e ) B  afterN1. 
�9 with probability q4, play a strategy B~, with the time of playing B chosen independ- 

ently of all other choices and uniformly in [1, k]. 
�9 with probability qs, play a strategy T~, with the time of playing T chosen independ- 

ently of all other choices and uniformly in [ 1, k]. 
We have for all n > k, 

1In <<.N~/n <<.N2/n <~ k/n; line <<. k/n, 1/k <<. e. (3.3) 

L e t f  n = (l/n) �9 (number of L up to time n). 
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Let M = max [max a i ] -  min max - rain bi]], ~,] i,] ai]; i,] by i,/ 

and let 0 (e) stand for any quantity x such that [ x ] ~< Me 
similarly 0 (I/k) stands for anyy such that l Y [ ~< M/k, etc. 
"Denote by Pn (ok, r) the average payoff per stage resulting from strategies o k and T, 
we have that Pn (ok, r) is the expectation of: 

ql [Pl (b,, + 0 (l/n)) + p :  (al: + b l : )  +Pa O~nbll "}-J~nb12) -j'- 0 (N:/n) + 0 (e)] 

+ q: [Pl (a21 + b : l )  +P2 (as: + 0 (l/n)) +Pa (fnasl +f'na22 + 0 (Ns/n) + 0 (e))] 
+ qa [Pl {ab,1 + ot'b2a + 0 (N1/n) + 20  (e) + (0 (line) if (3.2) holds)} + 

Ps (aal= + a'as~ + 0 (N1/n) + 20 (e) + (0 (1/ne) if (3.2) holds)} + 

P(g2 ) ( 4 0 ( e ) + 0 ( U s / n ) ) +  

if (3.1) holds: 

P ( (Li} ) (aa12 + 3 0  (e) + 0 (Na/n)) + p '({Ri}) (a'b=l + 30  (e) + O (N1/n)) 

if (3.2) holds: 

P ({Li}) (a'as2 + 30  (e) + 0 (N1/n) + 0 (1/ne)) +P  ({Ri}) (abll 

+ 30  (e) + 0 (N1/n) + 0 (1/ne)) 

+ q4 [Pl (bll + 0 (i/n)) +Ps (als + 0 (k/n)) +Pa (fk (fn b ' '  +fn bls)  + 0 (l/k) 

+ 0 (e) + 0 (k/n)}] 

+ qs [Pl (b21 + 0 (k/n)) +P2 (azs+ 0 (l/n)) +P3 Oak (fnas, +fna22) + 0 (l/k) 

+ 0 (e) + 0 (k/n)}] 

Using relations (3.3) and Lemma 1 we get that for all n > k: 

on (% '  r) > E (H (k, n, r, ~) )  - 4 Me -- 0 (k/n), 

where 

H(k,  n, r , , ~ )  = 

ql q r bll al~ + b12 bll b12 

q2 ] la21 + b21 a22 a21 a2s 

7 3 / /  bll a12 0 0 

a q a [ /  b21 a22 0 0 

q 4 / "  [ b11 als fkb11 fkbl2 

-pl ] 

fiP3_l 
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Denote E (H (k, n, r, co)) by r (fk' fn)" The function ~ :  L X L .  ~ R  is weakly 

continuous and affine in each variable separately on L. .  endowed with the weak topo- 
logy o (L.., Lz).  

Let C = closed convex hull of  (f/ I i > N2 } in L - o ( L ,  L~), and consider 

on C X C : We have 4~ (f,, f )  >1 ~ V f E C, indeed for fk = fn = f,, H (k, n, r, ~o)/> 
holds for each value of w since (q~, q2, o~q3, c?q3, q4, qs)  is an optimal strategy of 
player I in P. In addition C is compact and convex for o (L =, L 1 ) arid ~ is affine and 
continuous in each variable separately on C. It follows that ~ has a saddle point, hence: 

3 g E C  s.t. VfCC:r u r 1 6 2  

Now g is also in the closure of  the convex hull of  (f /I  i > N 2  } when L~  is endowed 
with the Mackey topology r (L ~, L 1 ) - due to the convexity of the set - (this is a 
well known result that follows from the Hahn-Banach theorem). Since on bounded sets 
o f L ~  the Mackey topology r (L ~, L~) coincides with the topology of convergence in 

I 
probability, it follows that there exist X i (1 ~<i ~</, X i >/O, I; X i = 1) 

i=1 
and k i (1 <~ i <~ l, k i > N 2 )  such that: 

l 
e(I xifki-gl>  )< " 

Let now o e,r be the strategy of player I consisting of choosing at the start of  the game 
a number i (1 ~< i ~</) with probability Xi, znd thereafter using his strategy Oki. Let 
also K M = max (k i I 1 <~ i <~ l} then we have: 

O n (Oe,r, r) >/~ (g, fn)  -- 6Me - 0 (KM/n) for all n > K M . 

Thus: V r, strategy of player II, V e, 0 < e < 1, 30e , r ,  strategy of player I, such that: 

lim inf Pn (ge,r' r) >1 inf ~ (g, f) -- 6Me I> ~ -- 6Me. 
n ~  f~C 

This completes the proof  of  Theorem 1. 

Lemma 2. Player II has an optimal strategy in 1~ using only a single value of/L 

Proof. A priori player II 's optimal strategy in F consists of a probability vector 
(Pz, P2, P3) together with a probability measure/2 on [0, 1] to choose/3. We want to 
show that player II has an optimal strategy in which tCs support is a single point in 
[0, 11. 

L 1) If b~ 1 >~ b12 and a22 >~ a21 the result follows from the convexity in/3 of  the 
payoff  function. 
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L 2) Otherwise we have either b ~  < b~ 2 or a22 < a21, by symmetry we may assume 
that a22 < a : x .  Since v (A) = 0 it follows that a22 < 0. 

L 2.1) If in addition b~ t <~ bx2 the payoff  function is concave in 13 and thus # is 
dominated by the probability on {0, 1 } that has the same mean. So without loss of  
generality w e m a y  assume that in this case/~ (]0, 1D = 0. We get thus for 1~ a 6 • 4 
matrix with L, R, 13 = 1 and 13 = 0 as pure strategies for player II. The other strategies 
are eliminated by domination. In addition v (/3) = 0 implies b~l ~<O, and thus we 
conclude that rowsBl ,  and T1 are dominated by (I  - e) T and (1 -- e) B respectively. 
I f  either b 21 ~< 0 or a12 < 0, one of the rows/3 = 1 or/3 = 0 is dominated by L orR respective- 
ly and the result follows. I f  either a:l ~< 0 or b12 <~ 0, say a21 < 0 then first B is domi- 
nated by (1 - e )B and then ~3 = 0 is dominated by 13 = 1 ; the result follows again. 
Thus we may assume that Min (a12, a21, bl;~, b21) > 0, it follows then from 
v (A) = v ( 3 )  = 0 that b l i  < 0, a~.; < 0 .  

/ Le tR  = , C = 

\ a21 a=/ b~l a22 / 

r = Val (R), c = VaI (C) 

L 2.! .1) I f r  ~< 0 and if we denote by (13,3') the relative weights of  the columns 
/3 = 1 and 13 = 0, then there exists an optimal 13 for which 13bll + 13'b12 ~< 0 and 
3a21 + ~3'a22 ~ 0 ( i fc  < 0, the required/3 is the relative weight of  the last two columns 
in the equalizing strategy of player II, if c >~ 0 the vatue of  the game is 0 and an opti- 
mal strategy of player II is (0, 0, 3,/3') where 3 is optimal in R and hence satisfies the 
required inequalities). It follows that if in that optimal strategy, player II would replace 
the c~umns  3 = 1 and/3 = 0 by i.i.d. (/3,13), rows B 1 and T1 would still be dominated 
by (1-- e) T and (1 Z e)B respectively and hence player II has in this case an optimal 
strategy using a single/3. 

L 2.1.2) I f r  > 0, the optimal mixture of  the columns 3 = 1 and 3 = 0 is (13,13'), 13 
being optimal in R and hence ~3"b1 1 "+ 13tb12 ) 0 and 3a21 4" 3'a22 > 0. It follows again 
that replacing the last two columns by i.i.d. (13,~'), rows B~ and T1 remain dominated, 
this time by T and/~ respectively, providing again a single 13 optimal strategy for 
player II. 

L 2.2) We are thus left with the case: 

a22 <a21, a 2 2 < 0 ,  b12 <311,  b12~<0. 

Consider player II 's optimal strategy in the game F wi thout the  rowsB1 and T~ ; it 
obviously implies 13 = 0. For this 3, B 1 is dominated by (1 - e) T and T1 by (i ~- e) B 
and thus this single 13 strategy is also optimal in F.This completes the proof  of Lemma 2. 

Notice that the strategies 13 = 1 and/3 = 0 in P should be interpreted as playing i.i.d. 
(1 - e, e) and (e, 1 -- e) respectively. Thus in the single 3 optimal strategy for player II 
established in Lemma 2 we may assume 0 </3 < 1. 
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Theorem 2. ~ <. ~. 

Proof. We will show that whenever player II plays in I" one of  his strategies r in F, 
consisting of a mixture of L,, R and one (/3,-/3') - with 0 < 13 < 1 - any pure strategy 
of player I yields in I" n a payoff dominated up to terms 0 ( l /n)  by a convex combina- 
tion of rows of F. Since by Lemma 2 player II can guarantee ~ - up to e - by such 
mixtures 7" against rows of  F, the result w~ll then follow. 

If the pure strategy of player I is T or B then it is already a row of  F. Take any other 
pure strategy that begins say with T (for strategies starting with B the discussion is 
completely dual). Let co i = 1 if T occurs at time i in the strategy and co i = 0 

otherwise. Let fn = 1 ~ c~ and ~t+ 1 be the first zero in the sequence (COl). Let 
n i=1 

y = t/n; we have 1/n <.y <~fn <~ (n - 1)/rL 

Let D =/3blx +/3'b12, G=13a2x +/3'a22, 

X 1 , , n [c~, + 6o2 (1 - /3col)  + . . .  + co n (1 - - /3co l ) . . .  ( 1 . 3 ~ n . 1 )  ] 

r = n  [o~x + co2 (1 -/3'co',) + . . .  + co n (1 - - / 3 o ~ , ) . . .  (1--f lWn.1)]  �9 

We have ~/3 'nfn <. X <~/3,ny and 

Y + (fn --Y)/3n/n ~< Y ~<Y + Oen --Y)/3, neglecting terms 0 ( l /n) .  

The strategy of player I obtains, up to 0 O/n);  against L:fn b~  + fn b21 ;against 
: ybl2 + fna12 + fr n a22 and against (/31"f) : GX + DY. Majofizing this last term 

according to the sign of  G and D we obtain (writingfforfn); 

against L /~ 

apayoff--.< fbn  +f 'b21 yb12 + fa12 + f'a2~ 

against 

a payoff ~< 

(t3,-~') with: 

G>~O,D>~O G < 0 .  D~>0 G>~O,D<O G<O,D<O __ 

Gf'3'nY +D(3f+f y) Gf3'nf+o(3f+3) ') Gf'f'nY +D(y+(f-y)f f )  ]Gf'f nf+D()'+(f-y)3nf ) 

Since all terms are convex in y ,  we may replace y by its extreme values 1/n and f. 
Neglecting terms 0 ( l /n)  one gets thus: 

t 
G~>0, D~>0 

(~,'f) with: 

y=l/n fbu +fb21 fa12+fa:2 Gf'3'+DI73 

y=f ffot~ +f'b21 f(a12+b12)+f'a22 Gf'~'nf+Df Gf3'nf+Df [ Gffnf+Df Gf'3'nf+Df 

G<O.D>~O G~>0, D < 0  G<O,D<O 

Gf3'nf+ D.~3 Gf'3'+Dff f' Gf3'nf+Df~ f 
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jq~nf' and f'(3 'nf are convex. When their coefficients are negative let us majorize them 
by zero. All functions get then linear or convex in f ,  so we may replace f b y  its extreme 
values 1/n and (1 - 1/n). Neglecting terms 0 (l /n) one obtains: 

bll  a12 

bzl a22 
i 

bu a12 +b12 

y=l/n,f=l-1/n 

y=f=l/n 

y=f=l--l/n 

(5,-Y) with: 

I t 
G>~O.D>~O)G<O,D>~O G~>0. D < 0  G < 0 ,  D < 0  

D~ / D~ 0 0 

G~3 0 Gfi' 0 

D D D D 

We conclude that player I's strategy is dominated by the mixture of three similar strate- 
gies with (y = 1/n, f =  1 -- 1/n), (y = f =  1/n) and (y = f =  1 - 1/n), the weights being 
f - -y ,  f '  and y respectively. But this mixture is dominated by the convex combination 
with the same weights of the following rows of P: 

t . -y  

f 
! 

Y 

G >~ O, D >~ O 

91 
I 

T1 

G < 0 ,  D~>0 

B1 

(1 e)B 

f 

G ~ > 0 , D < 0  

(1 e) T 

r l  

G < 0 , D < 0  

(lZe) r 

(1 

f 

This completes the proof of Theorem 2. 

4. Conclusions 

(i) ~ = ~ = g = M i n M a x I '  

(ii) Player II has an "e-MinMax" strategy of the type: With probability P l play 
always L, with probability P2 play always R and with probability 1 - P I  - P 2  
play always i.i.d, with probability/3, L and with probability B', R. 

(iii) This strategy also guarantees that in any finite sufficiently long game the payoff 
is less than g + e. 

(iv) Dual results hold for player I. 
(v) Analysis of the game P and its' dual F shows that the only cases where there is 

no value (i.e. ~ > v_) are: {c v r < 0 and a21 > 0 and either a12 A blz > 0 or 
al ~ (a21 - a22)  + b2~ a22 < 0 )  
and its symmetries obtained by either permuting the games 

(ai] ~ bi t '  where 1' = 2 and 2' = 1) or permuting the players (ai! ~ -- al.i, 

bi] <+ -- b/i ) or both. 
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An example of a game without value is the following: 

A =  , B =  
2 -  - 1  

Optimal strategies in P are: For  player I; (1/4, 1/4, 1/4, 1/4, 0, O) and for player II; 

(1/4, 1/4, 1 /2  (1/2,1/2))  giving ~ = - 1/2. Optimal strategies in P are: For  player I: 
(1/6, 1/6, 2/3. (1/2,1/2))  and for player I I ; (1 /6 ,  1/6, 0, O, 1/3, 1/3) giving v = --  2/3. 
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