On a Repeated Game Without a Recursive Structure

By J.-F. Mertens, Louvain¹) and S. Zamir, Jerusalem²)

Abstract: The solution is given here for the infinitely repeated two-person zero-sum games of incomplete information characterized by 2×2 games, with information matrices $\begin{pmatrix} a & b \\ b & b \end{pmatrix}$ for the first game and $\begin{pmatrix} b & b \\ b & a \end{pmatrix}$ for the second game.

1. Introduction

Two main classes of repeated two person zero-sum games with incomplete information are solved up to now:

- Games in which the information matrices matrices may depend on the player but not on the state of nature [Mertens and Zamir, Mertens].
- Games in which the information matrices do not depend on the players, may depend on the state of nature, with the additional assumption that each player recalls all prior moves [Kohlberg and Zamir, Kohlberg].

It seems that without those assumptions one loses the recursive structure that made those cases tractable.

Here an example is solved of a game not fulfilling those assumptions. It was mentioned as an open problem some six years ago [Zamir]:

There are two possible states of nature and accordingly two payoff matrices, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \text{ and } B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}, \text{ the actual payoff matrix (i.e. the actual state of nature) is chosen once and for all by the referee (with probability p for matrix A), and told to neither player. There are in addition two information matrices <math>H^A = = \begin{pmatrix} a & b \\ b & b \end{pmatrix}$ and $H^B = \begin{pmatrix} b & b \\ b & a \end{pmatrix}$, a and b being two different letters. After each stage, if T is the true payoff matrix (A or B), and the players I and II played their pure strategies i and j respectively, the referee transfers t_{ij} from player II's account to player I's and tell both players the letter H^T_{ij} . The players get no statement on their accounts before the end of the game. It is crucial here that the moves i and j are not stated explicitly by the referee. However, each player recalls his own move (i or j) and all his own previous moves in addition to the information statements H^T_{ij} made by the referee up to that stage.

¹) Prof. Jean-François Mertens, Université Catholique de Louvain, Belgium.

²) Prof. Shmuel Zamir, The Hebrew University of Jerusalem, Israel.

Notice that as soon as the letter a is announced by the referee, the true matrix is revealed to both players.

The payoff in the infinitely repeated game is thought of as being $\lim_{n \to \infty} E\left(\frac{1}{n} \sum_{k=1}^{n} t_{i_k j_k}\right)$,

but is not defined due to the possible non existence of the limit. Nevertheless we will show that Min Max (and dually Max Min) of the infinite game exists in a well defined (and rather strong) sense:

Player II has an infinite game strategy that guarantees even in all sufficiently large finite games $E\left(\frac{1}{n}\sum_{k=1}^{n}t_{i_{k}j_{k}}\right) < \text{Min Max} + \epsilon$; conversely, for every infinite game strategy τ of player II, player I has an infinite game strategy σ such that $\liminf_{n \to \infty} E\left(\frac{1}{n}\sum_{k=1}^{n}t_{i_{k}j_{k}}\right) >$

> Min Max $-\epsilon$.

For a proof of this result let us introduce a few conventions: We may obviously substract from the matrices A and B their values v(A) and v(B) respectively, which will substract from all payoffs the constant pv(A) + (1-p)v(B). Hence we may assume without loss of generality that v(A) = v(B) = 0. We may multiply A by p and B by (1-p), and consider the payoff to be the sum of the payoffs that would be obtained if A was the true matrix and if B was the true matrix. We will do this in order to simplify slightly notations. Finally x' will always stand for 1-x. 1. We define the following auxiliary game $\overline{\Gamma}$:

	\widetilde{L}	\widetilde{R}	(β, β')
\widetilde{T}	b ₁₁	$a_{12} + b_{12}$	$\beta b_{11} + \beta' b_{12}$
\widetilde{B}	b_{11} $a_{21} + b_{21}$	<i>a</i> ₂₂	$\beta a_{21} + \beta' a_{22}$
$(1 - \epsilon) T$	<i>b</i> ₁₁	<i>a</i> ₁₂	0
$(1 - \epsilon)B$	b ₂₁	<i>a</i> ₂₂	0
B_1	b ₁₁	<i>a</i> ₁₂	$\beta \left(\beta b_{11}+\beta ^{!}b_{12}\right)$
T_1	b ₂₁	<i>a</i> ₂₂	$\beta'(\beta a_{21} + \beta' a_{22})$

Here \tilde{L} (resp. \tilde{R} , \tilde{T} , \tilde{B}) stands for the strategy (of player II) of playing always Left (resp. Right, Top, Bottom); $(1 - \epsilon) T$ (resp. $(1 - \epsilon) B$) stands for the strategy of playing at every stage independently with probability $(1 - \epsilon)$ Top (resp. B) and with probability ϵ Bottom (resp. T). (β, β') stands for strategy of playing at each stage and independently with probability β Left and with probability β' Right. Finally T_1 (resp. B_1) stands for a strategy consisting of playing once T (resp. B) and all other times B (resp. T). The entries $\overline{\Gamma}$ can be easily obtained as asymptotic payoffs corresponding to those strategies, using our previous conventions (and thinking of β as strictly between 0 and 1). Denote by $\bar{\nu}$ the value of $\bar{\Gamma}$. If we denote by Max Min Γ and Min Max Γ the max Min and Min Max value of our original game in the strong sense that we described we shall prove that Min Max $\Gamma = \bar{\nu}$ and that it may be different from Max Min Γ . To make these statements rigorous we need still two more definitions:

2. Let us define:

$$\widetilde{\nu}_{\infty} = \inf \{ U \mid \exists N \exists \tau \text{ s.t. } \forall n \ge N \forall \sigma_n, \rho_n(\sigma_n, \tau) \le U \}$$
$$\widetilde{\nu}_{\infty} = \sup \{ U \mid \forall \tau \exists \sigma \text{ s.t. } \lim_{n \to \infty} \inf \rho_n(\sigma, \tau) \ge U \}$$

where σ (resp. τ) stands for a strategy of player I (resp. II) in the infinite game while σ_n (resp. τ_n) stands for a strategy of player I (resp. II) in a game consisting of *n* stages only. ρ_n (σ, τ) is the expected average payoff per stage in the first *n* stages, given σ, τ

and p; i.e. $\rho_n(\sigma, \tau) = E_{\sigma,\tau,p}\left(\frac{1}{n}\sum_{k=1}^n t_{i_k j_k}\right)$, where $T = (t_{ij})$ is the true payoff matrix

chosen by the referee at the begining of the game.

Loosely speaking, \bar{v}_{∞} is the lowest value of lim sup ρ_n that player II can guarantee in the infinite game while \tilde{v}_{∞} is the highest value of lim inf ρ_n that cannot be guaranteed by player II. Clearly $\tilde{v}_{\infty} \leq \bar{v}_{\infty}$. In the next section we will prove that $\bar{v} = \bar{v}_{\infty} = \tilde{v}_{\infty}$, which establishes that \bar{v} is Min Max Γ in the above explained sense.

3. Proofs

For a strategy of player I in $\overline{\Gamma}$ let (α, α') be the probability distribution induced on $(1 \simeq \epsilon) T$ and $(1 \simeq \epsilon) B$.

Lemma 1. For any α corresponding to any undominated optimal strategy of Player I in $\overline{\Gamma}$ that uses $(1 - \epsilon) T$ or $(1 - \epsilon) B$ with a positive probability, one of the following holds:

$$\alpha a_{12} \ge 0 \text{ and } \alpha' b_{21} \ge 0 \tag{3.1}$$

$$\alpha b_{11} \ge 0 \text{ and } \alpha' a_{22} \ge 0$$
 (3.2)

Proof. Assume that for some optimal α neither of (3.1) and (3.2) holds, so for instance $\alpha b_{11} < 0$ (the case $\alpha' a_{22} < 0$ is completely symmetric). Since $\alpha b_{11} < 0$ and ν (B) = 0, we have $b_{21} \ge 0$ and thus also $\alpha a_{12} < 0$ (since 3.1) does not hold). Since $\alpha a_{12} < 0$ and ν (A) = 0, we have $a_{22} \ge 0$. But this implies that the strategy $(1 - \epsilon) B$ of player I strictly dominates his strategy $(1 - \epsilon) T$ in $\overline{\Gamma}$, and thus that $\alpha = 0$ which contradicts the assumption $\alpha b_{11} < 0$.

Theorem 1. $\tilde{v}_{m} \geq \bar{v}$

Proof. Consider an arbitrary strategy τ of player II and an arbitrary ϵ ($0 < \epsilon < 1$). τ may be considered as a probability measure P on the space Ω of all sequences of L (left) and R (right) with the understanding that as soon as the true matrix is revealed, player II switches to his optimal strategy in that matrix.

Let $p_1 = P(\widetilde{L}), p_2 = P(\widetilde{R}), p_3 = P(\Omega \setminus \{\widetilde{L}, \widetilde{R}\}) = 1 - p_1 - p_2$. Let Ω_{∞} denote the subset of Ω consisting of sequences with infinitely many L and infinitely many R. Let $\{L_i\}$ denote the subset of Ω with a finite non-zero number of L in the sequence, and similarly $\{R_i\}$ is the subset of those sequences with a finite non-zero number of R. We shall refer to these finitely many L or R as the exceptional moves.

- Define N_1 by:
- Prob. [player II has not played all his exceptional moves before $N_1 | \{L_i\} \cup \{R_i\}] < \epsilon$ and N_2 by:

Prob. {number of L and R in the intervall W_1 , N_2 [are both at least

$$\frac{\ln \epsilon}{\ln (1-\epsilon)} \mid \Omega_{\infty} \rbrace > 1-\epsilon$$

with the understanding that whenever the conditioning set has zero probability, the corresponding integer takes its least possible value (1 or $N_1 + 1$).

It follows from the definitions that even if player I plays $(1 - \epsilon)B$ in $[N_1, N_2[$, matrix A (if it is the true matrix) will be revealed with probability greater than $1 - 2\epsilon$, given Ω_{∞} , and also that:

Prob. [Both L and R appear before $N_2 \mid \Omega \setminus (\{\widetilde{L}\} \cup \{\widetilde{R}\})] > 1 - \epsilon$

Let $(q_1, q_2, \alpha q_3, \alpha' q_3, q_4, q_5)$ be an undominated optimal strategy of player I in $\vec{\Gamma}$. For any $k > N_2$, let σ_k be the following strategy of player I:

- with probability q_1 , play \widetilde{T}
- with probability q_2 , play \tilde{B}

if S

- with probability q_3 , choose H with probability α and S with probability α' and play:
- if (3.1) holds: if $H: \widetilde{B}$ up to N_1 and $(1 \epsilon) T$ after N_1 .

$$fS: T$$
 up to N_1 and $(1-\epsilon)B$ after N_1

- if (3.2) holfs: if $H: \widetilde{T}$ up to N_1 and $(1 - \epsilon)T$ after N_1 .

$$S: B \text{ up to } N_1 \text{ and } (1-\epsilon) B \text{ after } N_1.$$

- with probability q_4 , play a strategy B_1 , with the time of playing B chosen independently of all other choices and uniformly in [1, k].
- with probability q_5 , play a strategy T_1 , with the time of playing T chosen independently of all other choices and uniformly in [1, k].

We have for all n > k,

$$1/n \leq N_1/n \leq N_2/n \leq k/n; \ 1/n \epsilon \leq k/n, \ 1/k \leq \epsilon.$$
(3.3)

Let $f_n = (1/n) \cdot (\text{number of } L \text{ up to time } n)$.

Let
$$M = \max [\max_{i,j} a_{ij} - \min_{i,j} a_{ij}; \max_{i,j} b_{ij} - \min_{i,j} b_{ij}],$$

and let $0 (\epsilon)$ stand for any quantity x such that $|x| \le M\epsilon$
similarly $0 (1/k)$ stands for any y such that $|y| \le M/k$, etc.
Denote by $\rho_n (\sigma_k, \tau)$ the average payoff per stage resulting from strategies σ_k and τ ,
we have that $\rho_n (\sigma_k, \tau)$ is the expectation of:

$$\begin{array}{l} q_{1} \left[p_{1} \left(b_{11} + 0 \left(1/n \right) \right) + p_{2} \left(a_{12} + b_{12} \right) + p_{3} \left(f_{n} b_{11} + f_{n}' b_{12} \right) + 0 \left(N_{2}/n \right) + 0 \left(\epsilon \right) \right] \\ + q_{2} \left[p_{1} \left(a_{21} + b_{21} \right) + p_{2} \left(a_{22} + 0 \left(1/n \right) \right) + p_{3} \left(f_{n} a_{21} + f_{n}' a_{22} + 0 \left(N_{2}/n \right) + 0 \left(\epsilon \right) \right) \right] \\ + q_{3} \left[p_{1} \left\{ ab_{11} + \alpha' b_{21} + 0 \left(N_{1}/n \right) + 2 \left(\epsilon \right) + \left(0 \left(1/n\epsilon \right) \text{ if } \left(3.2 \right) \text{ holds} \right) \right\} + \\ p_{2} \left\{ aa_{12} + \alpha' a_{22} + 0 \left(N_{1}/n \right) + 2 \left(\epsilon \right) + \left(0 \left(1/n\epsilon \right) \text{ if } \left(3.2 \right) \text{ holds} \right) \right\} + \\ P \left(\Omega_{\infty} \right) \left(4 \left(\epsilon \right) + 0 \left(N_{2}/n \right) \right) + \\ \left\{ \begin{array}{l} \text{if } (3.1) \text{ holds:} \\ P \left(\left\{ L_{i} \right\} \right) \left(aa_{12} + 3 \left(\epsilon \right) + 0 \left(N_{1}/n \right) \right) + p \left(\left\{ R_{i} \right\} \right) \left(\alpha' b_{21} + 3 \left(\epsilon \right) + 0 \left(N_{1}/n \right) \right) \\ \text{if } (3.2) \text{ holds:} \\ P \left(\left\{ L_{i} \right\} \right) \left(\alpha' a_{22} + 3 \left(\epsilon \right) + 0 \left(N_{1}/n \right) + 0 \left(1/n\epsilon \right) \right) + P \left(\left\{ R_{i} \right\} \right) \left(ab_{11} \\ & \quad + 3 \left(\epsilon \right) + 0 \left(N_{1}/n \right) + 0 \left(1/n\epsilon \right) \right) \\ + q_{4} \left[p_{1} \left(b_{11} + 0 \left(1/n \right) \right) + p_{2} \left(a_{12} + 0 \left(k/n \right) \right) + p_{3} \left\{ f_{k} \left(f_{n} b_{11} + f_{n}' b_{12} \right) + 0 \left(1/k \right) \\ & \quad + 0 \left(\epsilon \right) + 0 \left(k/n \right) \right\} \right] \\ + q_{5} \left[p_{1} \left(b_{21} + 0 \left(k/n \right) \right) + p_{2} \left(a_{22} + 0 \left(1/n \right) \right) + p_{3} \left\{ f_{k}' \left(f_{n} a_{21} + f_{n}' a_{22} \right) + 0 \left(1/k \right) \\ & \quad + 0 \left(\epsilon \right) + 0 \left(k/n \right) \right\} \right] \end{array} \right] \end{aligned}$$

Using relations (3.3) and Lemma 1 we get that for all n > k:

$$\rho_n(\sigma_k,\tau) \ge E(H(k, n, \tau, \omega)) - 4M\epsilon - 0(k/n),$$

where

$$H(k, n, \tau, \omega) = \begin{bmatrix} q_1 \\ q_2 \\ \alpha q_3 \\ \alpha' q_3 \\ q_4 \\ q_5 \end{bmatrix} \begin{bmatrix} b_{11} & a_{12} + b_{12} & b_{11} & b_{12} \\ a_{21} + b_{21} & a_{22} & a_{21} & a_{22} \\ b_{11} & a_{12} & 0 & 0 \\ b_{21} & a_{22} & 0 & 0 \\ b_{11} & a_{12} & f_k b_{11} & f_k b_{12} \\ b_{21} & a_{22} & f_k' a_{21} & f_k' a_{22} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ f_n p_3 \\ f_n' p_3 \end{bmatrix}$$

Denote $E(H(k, n, \tau, \omega))$ by $\phi(f_k, f_n)$. The function $\phi: L_{\infty} \times L_{\infty} \to R$ is weakly continuous and affine in each variable separately on L_{∞} endowed with the weak topology $\sigma(L_{\infty}, L_1)$.

Let $C = \text{closed convex hull of } \{f_i \mid i > N_2\}$ in $L_{\infty} - \sigma$ (L_{∞}, L_1) , and consider ϕ on $C \times C$: We have $\phi(f, f) \ge \overline{v} \forall f \in C$, indeed for $f_k = f_n = f$, $H(k, n, \tau, \omega) \ge \overline{v}$ holds for each value of ω since $(q_1, q_2, \alpha q_3, \alpha' q_3, q_4, q_5)$ is an optimal strategy of player I in $\overline{\Gamma}$. In addition C is compact and convex for $\sigma(L_{\infty}, L_1)$ and ϕ is affine and continuous in each variable separately on C. It follows that ϕ has a saddle point, hence:

$$\exists g \in C \text{ s.t. } \forall f \in C : \phi(g, f) \ge \inf_{f} \sup_{u} \phi(u, f) \ge \inf_{f} \phi(f, f) \ge \bar{v}$$

Now g is also in the closure of the convex hull of $\{f_i \mid i > N_2\}$ when L_{∞} is endowed with the Mackey topology $\tau(L_{\infty}, L_1)$ – due to the convexity of the set – (this is a well known result that follows from the Hahn-Banach theorem). Since on bounded sets of L_{∞} the Mackey topology $\tau(L_{\infty}, L_1)$ coincides with the topology of convergence in probability, it follows that there exist λ_i $(1 \le i \le l, \lambda_i \ge 0, \sum_{i=1}^l \lambda_i = 1)$ and k_i $(1 \le i \le l, k_i > N_2)$ such that:

$$P\left(\left|\sum_{i=1}^{l}\lambda_{i}f_{k_{i}}-g\right|\geq\epsilon\right)<\epsilon.$$

Let now $\sigma_{\epsilon,\tau}$ be the strategy of player I consisting of choosing at the start of the game a number i $(1 \le i \le l)$ with probability λ_i , and thereafter using his strategy σ_{k_i} . Let also $K_M = \max \{k_i \mid 1 \le i \le l\}$ then we have:

$$\rho_n (\sigma_{\epsilon,\tau},\tau) \ge \phi (g, f_n) - 6M\epsilon - 0 (K_M/n) \text{ for all } n > K_M$$

Thus: $\forall \tau$, strategy of player II, $\forall \epsilon, 0 < \epsilon < 1, \exists \sigma_{\epsilon,\tau}$, strategy of player I, such that:

$$\lim_{n \to \infty} \inf \rho_n (\sigma_{\epsilon,\tau}, \tau) \ge \inf_{f \in C} \phi(g, f) - 6M\epsilon \ge \bar{\nu} - 6M\epsilon.$$

This completes the proof of Theorem 1.

Lemma 2. Player II has an optimal strategy in $\overline{\Gamma}$ using only a single value of β .

Proof. A priori player II's optimal strategy in $\overline{\Gamma}$ consists of a probability vector (p_1, p_2, p_3) together with a probability measure μ on [0, 1] to choose β . We want to show that player II has an optimal strategy in which μ 's support is a single point in [0, 1].

L 1) If $b_{11} \ge b_{12}$ and $a_{22} \ge a_{21}$ the result follows from the convexity in β of the payoff function.

L 2) Otherwise we have either $b_{11} < b_{12}$ or $a_{22} < a_{21}$, by symmetry we may assume that $a_{22} < a_{21}$. Since $\nu(A) = 0$ it follows that $a_{22} \leq 0$.

L 2.1) If in addition $b_{11} \le b_{12}$ the payoff function is concave in β and thus μ is dominated by the probability on $\{0, 1\}$ that has the same mean. So without loss of generality we may assume that in this case $\mu(]0, 1[) = 0$. We get thus for $\overline{\Gamma}$ a 6×4 matrix with \widetilde{L} , \widetilde{R} , $\beta = 1$ and $\beta = 0$ as pure strategies for player II. The other strategies are eliminated by domination. In addition $\nu(B) = 0$ implies $b_{11} \le 0$, and thus we conclude that rows B_1 , and T_1 are dominated by $(1 - \epsilon) T$ and $(1 - \epsilon) B$ respectively. If either $b_{21} \le 0$ or $a_{12} \le 0$, one of the rows $\beta = 1$ or $\beta = 0$ is dominated by \widetilde{L} or \widetilde{R} respectively and the result follows. If either $a_{21} \le 0$ or $b_{12} \le 0$, say $a_{21} \le 0$ then first \widetilde{B} is dominated by $(1 - \epsilon) B$ and then $\beta = 0$ is dominated by $\beta = 1$; the result follows again. Thus we may assume that Min $(a_{12}, a_{21}, b_{12}, b_{21}) > 0$, it follows then from $\nu(A) = \nu(B) = 0$ that $b_{11} < 0, a_{22} < 0$.

Let
$$R = \begin{pmatrix} b_{11} & b_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $C = \begin{pmatrix} b_{11} & a_{12} \\ b_{21} & a_{22} \end{pmatrix}$
 $r = \text{Val}(R)$, $c = \text{Val}(C)$

L 2.1.1) If $r \leq 0$ and if we denote by (β,β') the relative weights of the columns $\beta = 1$ and $\beta = 0$, then there exists an optimal β for which $\beta b_{11} + \beta' b_{12} \leq 0$ and $\beta a_{21} + \beta' a_{22} \leq 0$ (if c < 0, the required β is the relative weight of the last two columns in the equalizing strategy of player II, if $c \geq 0$ the value of the game is 0 and an optimal strategy of player II is $(0, 0, \beta, \beta')$ where β is optimal in R and hence satisfies the required inequalities). It follows that if in that optimal strategy, player II would replace the columns $\beta = 1$ and $\beta = 0$ by i.i.d. (β, β) , rows B_1 and T_1 would still be dominated by $(1-\epsilon)T$ and $(1-\epsilon)B$ respectively and hence player II has in this case an optimal strategy using a single β .

L 2.1.2) If r > 0, the optimal mixture of the columns $\beta = 1$ and $\beta = 0$ is $(\beta, \beta'), \beta$ being optimal in R and hence $\beta b_{11} + \beta' b_{12} > 0$ and $\beta a_{21} + \beta' a_{22} > 0$. It follows again that replacing the last two columns by i.i.d. (β, β') , rows B_1 and T_1 remain dominated, this time by \tilde{T} and \tilde{B} respectively, providing again a single β optimal strategy for player II.

L 2.2) We are thus left with the case:

$$a_{22} < a_{21}, a_{22} \leq 0, b_{12} < b_{11}, b_{12} \leq 0.$$

Consider player II's optimal strategy in the game $\overline{\Gamma}$ without the rows B_1 and T_1 ; it obviously implies $\beta = 0$. For this β , B_1 is dominated by $(1 - \epsilon) T$ and T_1 by $(1 - \epsilon) B$ and thus this single β strategy is also optimal in $\overline{\Gamma}$. This completes the proof of Lemma 2.

Notice that the strategies $\beta = 1$ and $\beta = 0$ in $\overline{\Gamma}$ should be interpreted as playing i.i.d. $(1 - \epsilon, \epsilon)$ and $(\epsilon, \tilde{1} - \epsilon)$ respectively. Thus in the single β optimal strategy for player II established in Lemma 2 we may assume $0 < \beta < 1$.

Theorem 2. $\bar{v}_{\perp} \leq \bar{v}$.

Proof. We will show that whenever player II plays in Γ one of his strategies τ in $\overline{\Gamma}$, consisting of a mixture of \widetilde{L} , \widetilde{R} and one $(\beta, \widetilde{\beta}')$ — with $0 < \beta < 1$ — any pure strategy of player I yields in Γ_n a payoff dominated up to terms 0(1/n) by a convex combination of rows of $\overline{\Gamma}$. Since by Lemma 2 player II can guarantee $\overline{\nu}$ — up to ϵ — by such mixtures τ against rows of $\overline{\Gamma}$, the result will then follow.

If the pure strategy of player I is \tilde{T} or \tilde{B} then it is already a row of $\bar{\Gamma}$. Take any other pure strategy that begins say with T (for strategies starting with B the discussion is completely dual). Let $\omega_i = 1$ if T occurs at time i in the strategy and $\omega_i = 0$

otherwise. Let $f_n = \frac{1}{n} \sum_{i=1}^{n} \omega_i$, and ω_{t+1} be the first zero in the sequence $\{\omega_i\}$. Let y = t/n; we have $1/n \le y \le f_n \le (n-1)/n$.

Let $D = \beta b_{11} + \beta' b_{12}$, $G = \beta a_{21} + \beta' a_{22}$,

$$X = \frac{1}{n} \left[\omega_1' + \omega_2' \left(1 - \beta \omega_1 \right) + \ldots + \omega_n' \left(1 - \beta \omega_1 \right) \ldots \left(1 - \beta \omega_{n-1} \right) \right]$$
$$Y = \frac{1}{n} \left[\omega_1 + \omega_2 \left(1 - \beta' \omega_1' \right) + \ldots + \omega_n \left(1 - \beta' \omega_1' \right) \ldots \left(1 - \beta' \omega_{n-1}' \right) \right]$$

We have $f'_n {\beta'}^{nf_n} \le X \le f'_n {\beta'}^{ny}$ and $y + (f_n - y) {\beta'}^{nf'_n} \le Y \le y + (f_n - y) \beta$, neglecting terms 0 (1/n).

The strategy of player I obtains, up to 0(1/n); against $\tilde{L}: f_n b_{11} + f'_n b_{21}$; against $\tilde{R}: yb_{12} + f_n a_{12} + f'_n a_{22}$ and against $(\beta, \beta'): GX + DY$. Majorizing this last term according to the sign of G and D we obtain (writing f for f_n);

against	\widetilde{L}	Ĩ	
a payoff≤	$fb_{11} + f'b_{21}$	$yb_{12} + fa_{12} + f'a_{22}$	

against	(β, β') with:						
	$G \ge 0, D \ge 0$	$G < 0, D \ge 0$	$G \ge 0, D < 0$	G < 0, D < 0			
a payoff ≤	$Gf'\beta'^{ny}+D(\beta f+\beta' y)$	$Gf'\beta'^{nf}+D(\beta f+\beta' v)$	$Gf'\beta'^{ny}+D(y+(f-y)\beta'^{nf'})$	$Gf'\beta' {}^{nf} + D(y + (f - y)\beta^{nf'})$			

Since all terms are convex in y, we may replace y by its extreme values 1/n and f. Neglecting terms 0(1/n) one gets thus:

			$(\widehat{oldsymbol{eta}}')$ with:			
	Ĩ	Ĩ	$G \ge 0, D \ge 0$	$G < 0, D \ge 0$	$G \ge 0, D < 0$	G < 0, D < 0
y=1/n	$fb_{11} + f'b_{21}$	$fa_{12} + f'a_{22}$	$Gf'\beta'+Df\beta$	$Gf'\beta'^{nf}+Df\beta$	$Gf'\beta'+Df\beta^{nf'}$	$Gf'\beta'^{nf}+Df\beta^{nf'}$
y=f	$fb_{11} + f'b_{21}$	$f(a_{12}+b_{12})+f'a_{22}$	$Gf'\beta'^{nf}+Df$	$Gf'\beta'^{nf}+Df$	$Gf'\beta'^{nf}+Df$	$Gf'\beta'^{nf}+Df$

 $f\beta^{nf'}$ and $f'\beta'^{nf}$ are convex. When their coefficients are negative let us majorize them by zero. All functions get then linear or convex in f, so we may replace f by its extreme values 1/n and (1 - 1/n). Neglecting terms 0 (1/n) one obtains:

			$(\beta, \tilde{\beta}')$ with:			
	Ĩ	Ĩ	$G \ge 0, D \ge 0$	$G < 0, D \ge 0$	$G \ge 0, D < 0$	G < 0, D < 0
y=1/n, f=1-1/n	b 11	a ₁₂	Dβ	Dβ	0	0
y=f=1/n	b 21	a22	Gβ	0	Gβ΄	0
y=f=1-1/n	b 11	$a_{12}+b_{12}$	D	D	D	D

We conclude that player I's strategy is dominated by the mixture of three similar strategies with (y = 1/n, f = 1 - 1/n), (y = f = 1/n) and (y = f = 1 - 1/n), the weights being f - y, f' and y respectively. But this mixture is dominated by the convex combination with the same weights of the following rows of $\overline{\Gamma}$:

case	$G \ge 0, D \ge 0$	$G < 0, D \ge 0$	$G \ge 0, D < 0$	G < 0, D < 0
weights				
f - y	<i>B</i> ₁	<i>B</i> ₁	$(1 - \epsilon)T$	$(1 - \epsilon) T$
f'	<i>T</i> ₁	$(1 - \epsilon)B$	<i>T</i> ₁	$(1, \tilde{-}\epsilon)B$
у	Ť	Ĩ	\widetilde{T}	\widetilde{T}

This completes the proof of Theorem 2.

4. Conclusions

- (i) $\bar{\nu}_{m} = \tilde{\nu}_{m} = \bar{\nu} = \text{Min Max } \Gamma$
- (ii) Player II has an " ϵ -MinMax" strategy of the type: With probability p_1 play always L, with probability p_2 play always R and with probability $1 p_1 p_2$ play always i.i.d. with probability β , L and with probability β' , R.
- (iii) This strategy also guarantees that in any finite sufficiently long game the payoff is less than $\bar{\nu} + \epsilon$.
- (iv) Dual results hold for player I.
- (v) Analysis of the game Γ and its' dual Γ shows that the only cases where there is no value (i.e. v > v) are: {c ∨ r < 0 and a₂₁ > 0 and either a₁₂ ∧ b₁₂ > 0 or a₁₂ (a₂₁ a₂₂) + b₂₁ a₂₂ < 0} and its symmetries obtained by either permuting the games

 $(a_{ij} \leftrightarrow b_{i'j'} \text{ where } 1' = 2 \text{ and } 2' = 1)$ or permuting the players $(a_{ij} \leftrightarrow -\alpha_{ji}, b_{ij'} \leftrightarrow -b_{ji})$ or both.

An example of a game without value is the following:

$$A = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix}$$

Optimal strategies in $\overline{\Gamma}$ are: For player I; (1/4, 1/4, 1/4, 1/4, 0, 0) and for player II; (1/4, 1/4, 1/2, (1/2, 1/2)) giving $\overline{\nu} = -1/2$. Optimal strategies in $\underline{\Gamma}$ are: For player I: (1/6, 1/6, 2/3. (1/2, 1/2)) and for player II; (1/6, 1/6, 0, 0, 1/3, 1/3) giving $\nu = -2/3$.

References

Kohlberg, E.: Repeated Games with Absorbing States, Annals of Statistics 2, 1974, 724-738.

- Kohlberg, E., and S. Zamir: Repeated Games of Incomplete Information: The Symmetric Case, Annals of Statistics. 2 (5), 1974, 1040-1041.
- Mertens, J.F.: The Value of Two-Person Zero-Sum Repeated Games, The Extensive Case. International Journal of Game Theory 1 (4), 1971/72, 217-227.
- Mertens, J.F., and S. Zamir: The Value of Two-Person Zero-Sum Repeated Games with Lack of Information on Both Sides. International Journal of Game Theory 1, 1971, 39-64.
- Zamir, S.: Repeated Games with Incomplete Information, Ph.D. Thesis, Department of Mathematics, The Hebrew University, Jerusalem, Isreal 1970.

Received October, 1974 (revised version February, 1977)