
On the Relation between Finitely and Infinitely 
Repeated Games with Incomplete Information 1) 

By SHMU~L ZAMm 2) 

Abstract. For a class of repeated two-person zero-sum games with incomplete reformation it was 
proved by AUMANN and MASCHLER that lim v. exists, v. being the value of the game with n repetitions. 

n ~ o 0  

As for the speed of convergence AUMANN and MASCHLER showed that the error term 6. = I vn - lira v.I 
is bounded from above by c /Vn for some positive constant c. Both results have been generalized by 
M~RTENS and ZAMIR. It is shown in this paper that the above mentioned theorem about the speed of 
convergence is sharp in the sense that there are games in which 3. > c'/V~-for some positive constant c'. 
However there are games for which 6. is of a lower order of magnitude, for instance c'(log n)/n <<_ 3. < 
c (log n)/n or c'/n < 6. < c/n. Sufficient conditions are given here for games to belong to one of these 
categories as well as examples of games from each category. 

Introduction 

Following the introduction by HARSANYI of the concept of games with incom- 
plete information, AUMANlq and MASCHLER and later on MERTENS and ZAMIR 
treated a certain situation in which a two-person zero-sum game is repeated a large 
number of times by the same players. The main feature of such a situation is the 
possibility of each player to collect information, unknown to him but known to 
the other player, by watching the moves of his opponent. Consequently, each 
player must be aware of the fact that by his moves he is revealing information to 
his opponent that may be used against him in a further stage. Optimal strategies 
of the players in such a multistage game must therefore reflect an optimal speed 
of revealing information. In the mathematical model this process of revealing and 
collecting information shows up implicitly through v, the value of the game 
with n repetitions. (For mathematical convenience v, is defined to be "the value 
per stage" i.e. the value of the supergame composed of n stages, divided by n). 
The main result by AUMANN and MASCHLER (as well as in its generalization by 
MER~NS and ZAMm) is that v, converges (as n ~ oo) to some constant v which 
may be called the value of the infinite game. The error term 6, = Iv, - v I (n = 1,2,...) 
gives the speed of convergence of v, to v which is determined implicitly by the 
flow of information throughout the stages of the game, as the two players play 

1) Part of  this paper is based on a chapter of the author 's Ph .D.  thesis done at the Institute of  Mathe- 
matics at the Hebrew University of Jerusalem. 

2) SHM~EL ZAMIR, Department of Mathematics, University of  California, Los Angeles, 405 Hilgard 
Avenue, Los Angeles, California 90024. 
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optimally. Since usually v can be computed with a reasonable effort while v, is 
practically impossible to compute for a very large n, 6, has also a very practical 
importance: To give us the error involved in approximating v, by v. 

It is the purpose of this paper to investigate the error term 6, more closely. 
By AUMANN and MASCIJLER and by MERTENS and ZAMIR it was shown that (for 
the games treated there) 6, _< e/V~for some constant c. Our first task will be to 
show that this is a sharp estimation for the order of magnitude of 6,, by demon- 
strating an example of a game in which 6, >_ c,/[/n- for some positiveconstant c'. 
In such a game v, converges to v at the slowest (order of magnitude) speed 
possible. There are however games in which the convergence is much faster e.g. 
c' (log n)/n <_ 6, < c (log n)/n or even c'/n < 6. < e/n. We shall give two sufficient 
conditions, one for each of the above properties, and we shall also give examples 
of such games. 

Although the works of HARSANYI, AUMANN and MASCHLER, and MERTENS 
and ZAMIR are very relevant and very important background for this research, 
we tried to make this paper self contained. Familiarity with the above mentioned 
references is not a requirement for understanding this paper. 

I am indebted to R. J. AUMANN for many helpful discussions and to M. MASCH- 
LER for his advice about the representation of the material. I would also like to 
thank A. PAZY and T. S. FERGUSON for valuable remarks on the proof of Lemma 3. 

1. The Class of Games 

For the purposes of this paper it will be sufficient for us to look at a subfamily 
of the games considered by MERTENS and ZAMm, namely the subfamily of 9ames 
with lack of information on one side. These are the games treated by AUMANN and 
MASCHLER and can be described as follows: 

Let A 1, ... ,A  k, (k > 2), be ! • M matrices viewed as two-person zero-sum 

For each p in the simplex P = ~ p = ( p l  . . . . .  pk) p ~ > 0 ,  v = l  . . . . .  k, games. 
t .  

~ p * =  1 t and for each positive integer n, consider the game F, (p) played as 
I t  J 

follows: Chance chooses one of the k games {A *} assigning to A ~ the probability p*. 
Player I is then informed of chance's choice but player II is not. The game chosen 
by chance is then played n times; after each play both players are informed of 
the move made by the other player but not of the payoff. (Player I can, of course, 
deduce the payoff from the strategy choices made by himself and the other player, 
since he knows which game is actually being played.) The payoff in F, (p) is defined 
to be the sum of the payoffs in the n individual plays of the game chosen by chance, 
divided by n. Both players of course know the rules of F,(p) as described above. 
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We shall describe the specifications of such a game schematically by: 

p3 

�9 , h 3 

p f  

Let  v.(p) denote the (minimax) value of F,(p). (v.(p) surely exists for all p ~ P 
since F,(p) itself is a zero-sum two-person game. Furthermore, since the payoffs 
in F,(p) are linear in p, v.(p) is continuous on P.) Let A (p) denote the two-person 

k 
zero-sum game whose matrix is ~ p~A v, and let u(p) be its value�9 The game A(p) 

1 
is actually the original game with the modification that player I also is not in- 
formed which A v was chosen by chance�9 Or equivalently A (p) is the original 
game in which player I behaves as if he did not know the choice of chance and 
therefore the strategy he uses is independent of his 'type', v. As far as the question 
or revealing information is concerned a strategy of player I in A (p) represents 
an extreme behavior in which he disregards the additional information he has 
(and therefore conceals it from player II). Let u*(p) be the concavification of u (p), 
i.e. u* is the smallest concave function on P such that u*(p) > u(p) for all p ~ P. 

Theorem I. (AUMANN-MASCHLER) 
(i) For all pEP,  lira v,(p) exists and is equal to u*(p). 

n ~ o o  

(ii) 6, = Iv,(p) - u*(p)l <_ c(P)/l/~,, where c(p) is a constant dependent on p. 
(This follows, of course, from the more general results of MERTENS and ZAMIR; 
(i) is a special case of Theorem 2.1 while (ii) is a special case of Theorem 4.5). 

It wilt be very convenient to use throughout this paper the following terminology 
and notation which is slightly different from the usual one. 

Definition 
Let {a,} and {b.) be two sequences of nonnegative real numbers. They will be 

said to be of the same order of ma#nitude if there are cl > 0, Ce > 0 such that 
CEb . ~ a, < clb, for n = 1 ,2 , . . . .  We shall denote this by a, : 0*(b,), (or 
b. = 0*(a.)). (Compare to a, = 0(b,) which means: a,/b, is bounded.) 

The relation between 6n(P) and 1/]/~ has the following probabilistic inter- 
pretation: Let us specialize to the case k = 2, l = 2 and u*(p) = u(p); a similar 
discussion applies in general. Since lim v.(p) = u*(p) = u(p), in the limit as n ~ 
player I can not obtain more than u(p) which is what he can guarantee by disre- 
garding his additional information and playing identically in both games. Never- 
theless player I can generally obtain more than u(p) in F,(p) for any finite n. In 
order to do this he has to play differently in the two possible games. In other 
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words he has to deviate from an extreme non-revealing strategy. How much can 
he deviate and how much can he gain by this deviation? Let (s, 1 - s) be player I's 
optimal mixed strategy in A (p) (i.e. I plays his first pure strategy with probability 
s and his second pure strategy with probability 1 - s(0 < s < 1)). By its defini- 
tion, when this strategy is played repeatedly in the n stages of F,(p) player I 
guarantees u(p). If player I in fact does this, the actual choice of pure strategy 
made by him can be regarded as a Bernoulli trial with probabilities s, 1 - s. 
The proportion of times that the first pure strategy is played in n such trials distri- 
butes approximately normally around the mean s with a standard deviation of 
the order of 1/V~. Therefore if player I wishes to "cheat" player II by making 
use of the additional information (i.e. playing different mixed strategies in the 
two possible games) without enabling him to detect it, he may do this in such 
a way that this proportion will fall within the limits of few standard deviations 
i.e. c/Vnfrom s. Any deviation of higher order will be detected and used by player 
II to hold the payoff to a number smaller than u(p). Clearly a deviation of order 
not higher than 1/I/n-from the optimal strategy (s, 1 - s) will make a deviation 
in the payoff in F,(p) which is also of order not higher than 1/]/~. 

The existence of games with 6, = 0* (1 /~ ) ,  which is the main result of this 
paper, implies that there are games in which player I can exhaust the whole 
probabilistic deviation mentioned above. In other games he may be able to exhaust 

only a small part of it such as 0 " ( ~  ---n) or 0" (nl--). 

2. A Recursion Formula 

We start with a useful formula giving v, + 1 (P) in terms of v, (p). Let S = {a = 
(st, ..., s,) I s~ > 0, i = 1 , . . . , l ,  S]si = 1} and T =  {z = (tl . . . . .  t,,)l tj _> 0,j  = 
1, ..., m; STtj = 1} be the sets of mixed strategies of player I and II respectively 
in {A~}. Denote by S* the k-th cartesian power of ~. i.e. S* = S k = S x ... x S. 

Finally let e, for i = 1 . . . . .  m, be the i-th unit column in T. 

Lemma I. 
For every p e P and for n = 1,2 , . . . .  

v,+ 1 (P) = max min p a A ej + n g~v, (Pl 
n a*eI*Ll<_j<~mv=l  i = l  

(1) 
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where: a* = (a 1 ....  ,ak), 0"~ e s  V = 1 , . . . ,k  
k { a = (sl  . . . .  ,s-z) = v ~ p ~ 0 -  v and for each i such that s i r  0: (2) 

, 1 k~. ~ p~s'~ 
Pi = tPl . . . . .  P I : , P i  = = v =  i . . . . .  k ,  i = 1 . . . .  , l .  

Si 

Proof .  

The part concerning the first stage in any strategy of player I in F,+ 1 (P) is an 
element 0-* = (o-1,..., o -k) of N* and it says to play 0-~ if chance chooses A ~, 
v = 1, . . . ,  k. With a strategy starting this way player I's expected payoff for the 

k 

first stage will be at least min ~ p~0-~AVej. Making use of the minimax theorem 
l<j<_m v = I  

we can assume that player II knows the strategy chosen by player I in F~+ ~ (p). 
In particular we assume that player II knows 0-*. After the first stage as he is informed 
which pure strategy i was chosen by player I, player II calculates the probability 
vector p~ = (p~,..., p~) where p~ is his new conditional probability for the event 
"chance has chosen A:',  given i, o-* and p. Clearly p~ is given by (2) and the prob- 
ability of obtaining p~ is the total probability that player I chooses i which is ~. 

After the first stage, therefore, the situation is equivalent to the following: Chance 
has chosen one of the games {A ~} according to the probability distribution p~. 
Player I is informed which game was chosen and player II is not. The game chosen 
by chance has to be played n times. In other words, after the first stage, the players 
will face one of the games F~ (p~) ... F~ (p~) (with probabilities w g~ respectively, 
and hence Pi has to be defined only for i s.t. s i r  0). By playing optimally in F, (p~) 
(i = I , . . . ,  l), player I guarantees an expected payoff of n v, (p~) for the coming n 
stages. Thus, by maximizing with respect to 0-* we have: 

v~+l(p) > ~ m a x  min p~0-~A~ej + n i ~iv,(pi)  �9 (3) 
- -  /'~ ~- ~ a * e X * k l _ < j _ < m v = l  

~iq:O 

On the other hand, knowing a*, player II can guarantee 

v v v 1 min p a A e j  -Jr- n ~ si v~(pi 
n Jr- ] l _< j_<mv=l  i = 1  

~ # 0  

and since by the minimax theorem we can assume that he knows ~*, we get also 
the opposite inequality of (3) and hence the lemma is proved. 

N o t a t i o n .  

Since throughout this paper we will use summations of the form ~" ~7i q0i where 
i = l  

~ e 0  
l 

~0i is usually not defined when w = 0 we will write this in short as ~ i~0 i  and 
keep in mind that the summation is only over i such that ~ r 0. i= 1 
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3. A Game with 5.  = 0* (1/l//n) 

A 1 n J  
Consider the game: ~ ,  where: 

P ~ A  2 

:) 2) 
(We will often use in this paper the notat ion p' for 1 -p).  A(p) is the game: 

(-3p3p +_ 2P'2p, -pp +- 2p'~_ 2p,janditsvalueisu(p) = 0 f o r 0  _< p _ 1. So by Theorem 1: 

v(p)  = u * ( p )  = u (p )  = 0 

/'1 (p) is the game: 
LL / 3p + 2p' 

LR t 3p - 2p' 
RL -3p  + 2p' 
RR -3p  2p' 

for 0 _ p _ l .  

- p  - 2p'~ 
- p  + 2 p ' |  

p 2p'] 
p + 2p'/ 

(LL is the strategy of player I: L in A 1 and L in A2; LR, RL and RR are inter- 
preted similarly). The value of this game is easily computed to be: 

{ ;  O < p < � 8 9  man (p,p') 
v , ( p )  ' � 8 9  1 = " 

Theorem 2. 
In the above described game: 

v~(p)>pp'/]//n; 0 < p <  1 for n =  1,2 . . . . .  (4) 

Proof. 
In the special case under consideration ~ = {(s,s') 10 < s G 1}, Z* = ~ x ~ = 

((s,s'),(t, t') ] 0 < s < 1 ; 0 < t < 1 }. It is more convenient to use L and R for the 
pure strategies of player I and hence we shall write PL and PR instead of Pl and P2. 
So we can rewrite (2) for our game as: 

t (g,g') = (ps + p't,ps' + p't') (5) 
ps ps' 

= _ ; p R  - = - -  
P L  S if' 

Let us now prove (4) by induction on n: For  n = 1, va (p) = min (p,p') >__ pp' in 
accordance with (4). Assume that  (4) is true for n and let us prove it for n + 1. 
For  p = 0 or p' = 0 clearly v,+ 1 (P) = 0 in accordance with (4) so assume pp' r 0. 

By the recursion formula (1) and by (5) we have 

1 
v,+l(p) = ~ max {rain [p(3s - 3s') + p'(2t - 2t ');p(-s + s') 

n + 1 o_<s_<l 
o~,_~1 (6) 

+ p' ( -2t  + 2t')] + n(SV~(pL) + w 
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Let us restrict s and t by the relation 

p ( s - s ' ) = p ' ( t ' - t )  which is t =  1 p ( s - s ' )  (7) 
2 2p' 

Then: 

min [p(3s - 3s') + p'(2t  - 2 t ' ) ; p ( - s  + s') + p ' ( - 2 t  + 2t')] = p(s - s'). (8) 

By (5) and (7) we have 

g = s' = �89 = 2 p s ; p R  = 2ps ' .  (9) 

From (6) we get by (8) and (9) 

1 {  2 (v"(2ps) } v,+l(p) > max - -  p(s - s') + + v,(2ps')) 
o<_s<_a n + 1 

o<_�89 
and using the induction hypothesis we have: 

v,+t(p) > max - -  p(s - s') + 2ps)(2ps) '  + (2ps')(2ps') ')  
O_<s_<l n "~- 1 

1 p - ~ a  < 1 (10) 0_< 5--  2p' 

As a result of simple maximization in (10) we get the following values for s: 

Case a. 

'For (1/4 l/~) -< p _< 1 - (1/4 l/n) we take So = �89 + (1/8 p [/~) (which will be 
in the domain of maximization) and we easily get by (10): 

1 
v . + t ( p )  > ~ 

n + l  

1 

n + l  

1 

n + l  

- - { p p ' ] / ~  + (1/4 l / ~ ) -  (1/16 ]/~)} 

{pp ' ] /~  + (1/8 Vn) 

and since 4pp'  < 1 we get finally 

v, +1 (1)) >>- ' pp' (]/n + (1/2 ]/~)) > pp'/]//n + 1 
n + l  - ' " 

Case b. 

0 < p < (1/4]/~). In this case we take So = 1 and then by (10): 

v " + l ( P ) > l  l - - ' n + l  P + J ~ - - ' 2 p ( 1 2 p ) }  

_ 1 { p p ' ] / ~  + p ( l  - p ] /~ )}  
n + l  

1 
> - ~ { P p ' ] / n +  p.�88 > pp '~ /n  + 1 

n + l  - " 
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Case c. 
i - (1/4 V ~) < p _< 1. The result in this case follows either from case b by 

symmetry arguments (the functions u (p) and v. (p) satisfy u (p) = u (p'), v, (p) = vn(p')) 
1 p' 

or directly by choosing So = - - .  Hence the theorem is proved. 
2 2p 

Corollary. 
By combining Theorems 1 and 2 we have that the error term fin(P) of the game 

under consideration satisfies pp,/V-ff < 6,(p) <- c/~'n for some constant c, and 
hence 6, = 0*(1/Vn). In other words 0(1/1/~) is in the general case the least 
upper bound for the order of magnitude of 6,. 

4. A Sufficient Condition for 6. = 0 (l~ n ) 

After the example in the last section establishing the existence of games with 
error term equal to 0* (1/V-n), we turn in this section to games with a much smaller 

/ t  \ 

error term namely 6n= 0 ( - ~ ) .  
\ /  

For any Fn(p); n = 1,2,... we will denote lim vn(p) by v(p). (Hence by Theorem 1 
n ~ o o  

v (p) = u* (p).) For the statement and the proof of the next theorem it is convenient 
to consider v(p) as a function of k -  1 variables, say pl . . . .  ,pk-1 (putting 

k- 1 8P 1 \ 
pk = 1 -- ~ if). For any p ~ P we denote by v' (p) the gradient i I of v at the 

\ 

point p and by v"(p) the (k - 1) x (k - 1) matrix of second derivatives \ ep i ep~], 

1 _< i _< k - 1, 1 _<j _< k - 1, evaluated at p. For any vector q we denote by ~ 
its transposition and by Ilqll its Euclidean norm in the corresponding Euclidean 
space. (Usually this will be E k and occasionally E k- 1. No confusion may arise 
since it will be always clear to which space q belongs and hence what norm is 

meant by [[qll.) 
Theorem 3. 

If : �9 is a game with incomplete information with value v(p) such that 

v'(p) and v"(p) exist for all p e P and there exist a constant t / >  0 such that 

uv"(p)fi<_ - - t l f o r a l l p e P a n d a l l u e E k - l ,  Nul, = 1, then 6n = O(-~- -n) .  
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For the proof of this theorem we need the following two lemmas: 

Lemma 2. 

Let 

(G~, . . . ,  ~k) e 2:* 

be a game with incomplete information. For  any a * =  

k 1 

rain Z f  cVA~ej < u(p) + c Z sil[P - p, ll 
l _< j_<mv=l  i=1  

where si and Pi are given by (2), and c is a constant. 

Proof. 
Denote A v -- (ai~), a = max {ayj l 1 < i < l, 1 <_ j < m, 1 < v <_ k} and c = ak; 

then: 

min ~ pV~A~ej = min pV6A~ej + ~ p~(r - 6)A~ej 
l<_j<_mv=l l<_j<_mLv =I  v=l  

_< rain 8 p~A ~ e j + a Z p ' Z [ s ; - s i ] .  
l<_j<_m \ v = l  / v ~ l  i=1  

k 

Now recall that ~ p~ A ~ is the payoff matrix of the game A (p), 6 is a strategy 
v = l  

of player I in this game. Therefore the first term is not more than the value u (p). 
Hence 

k k l 

min ~ f r <_ u(p) + a ~, p~ ~ [s~ - g~l" (I1) 
l _< j_<mv=l  v = l  i=1  

Using (2) we obtain: 

k ~ ~ P vS~ pV 
rain ~ p ~ o  "~A ~ e j _ < u ( p ) + a  ~ ~ - -  

l<_j<_ra v = l  i=1  v = l  

l k 

= u(p) + a ~ s i  ~ [P~' - PV[ 
i=1  v = l  

l 

<_ u(p) + ak  F,  ,llp, - pll. 
i=1  

This concludes the proof. 

Lemma 3. 
Let v(p) be a function defined on P, v"(p) exists and satisfies the condition of 

l 

Theorem 3. For  any p e P  and every convex combination ~q~Pt = P, 
i=1  

l l 
v(p) - ~ (Piv(pi) > ~ ~ qh]lP - pi[[2. (12) 

i=1  ~rv i=1 
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Proof. 
For  the purpose of this p roof  only, for any p = (pl, . . .  ,pk)~_ p we denote by/~ 

the vector (p l , . . . ,  pk-1)e  E k- 1. It is easily verified that  if p and q are in P, then 

- 01l >- lip - ql] 2. 
For  any p,, i = 1, . . . ,  l let ui = ~ -/~i)/[[/~ -  ,11. (Since q), > 0, /~ - / 3 ,  # 0.) 

By Taylor 's  theorem we have: 

v (p i )  v ( p )  + (~i ~ ) v ' ( p )  + �89 ^ " = - - p )  v (~,)O)i - p )  

where ~i = Pi + cq(p - Pi) for some cq; 0 _< ~i < 1. Hence:  

v(P,) = v(P) + (~i - ~)r + }llt~ - ~,ll2ui'/'(~i)~',. 

Since I1 ,11 = 1 we get: 

v (p i )  < v ( p )  + (~i - ~ ) v ' ( p )  - - ~ I I P  - P,I[ z .  

Now (12) is obtained by multiplying the last equat ion by ~oi and summing on i, 
(recalling that  Z] ~p, = 1 and r ]  q~,(,t3i - iO) = 0). 

Proof of Theorem 3. 
" 1 

Since it is well known that  r=~lr  = 0 (log n), the theorem will follow from the 
inequality: 

vdp) < v(p) + G ,  p e P  for n = 1 ,2 , . . .  (13) 
7/ 

n - 1 ~  

where kn = ~ - - ,  n = 2,3,  ... kl and ~ being constants. 
r = l  r 

We prove (13) by induct ion on n: Choose  kl large enough to make (13) true for 

( n = 1. Let  ~ = Max kl ,  --2--n-n ! where c is the constant  determined by Lemma  2. 

By (1) and Lemma 2, we have: 

v,+l(p) _< ~ m a x  u(p) + cY',~i[lp - pill + giv,(pl) �9 
rl q -  1 a*e,~* i=  1 

Assuming now that (13) is true for n and using the fact that u(p) < v(p) we obtain:  

- n + l m a x  v ( p ) + c 2 g i l l  p pi l l+ si v(pi)+ 
a e l * (  i = 1  - "= 

- -  __ S i V ( p i )  max ( n + l ) v ( p ) + k . + c ~ g i l l p  P~ll - n v(P) - i  
t/ q-  1 a * e ~ * t  i = l  ' 

and by Lemma 3: 

v . + l ( p )  <_ v (p )  + - -  + ~ m a x  c ~ i l l p  - P,[I - n ~ ~ i l l p  - p i l l  2 - 
n + l  n + l ,,r k i=l 2k i=t  

(14) 
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l 

Let x = Z ~,llp = pdl, then, by (14), we find directly: 
i=1 

k, 1 
v . + l ( p )  _< v(p) + ~ + 

n + l  n + l  

k. 1 

n + l  n + l  2~1 n 

+ = v(p)  + - -  
n + l  

This completes the proof of (13) and hence the proof of Theorem 3. 

k c  2 1 

f l . . . \  
5 .  G a m e s  w i t h  64 ( p )  = 0* ~ - ~ )  

As an example of a game satisfying the condition of Theorem 3 we consider 

the following game (which was discussed by AU~ANN and MASCHLER): ~ ' '~A1 
p' ~ A  2 

L 1 A2 where A 1 = and = The game A (p) is and there- 
R 0 R 0 " ' 

fore: u(p) - pp'; 0 < p < 1. Since this is already a concave function we have by 
Theorem 1: v(p) = u*(p) = u(p) = pp'; 0 < p < 1. For k = 2, as v(p) is written 
as a function of a variable p, the condition of Theorem 3 is simply v" (p) < - tl < O~ 

This condition is clearly satisfied in our example since v"(p) = - 2 ,  and hence 
we have by Theorem 3: 

v,,(p) = pp'  + 6,,(p) for 0 _ < p < l ,  n =. l , 2 , . . . ,  
where 

We shall now show that 6,(p)is in fact of the order of ( l~  and not smaller 
than that. \ ,~ / 

Theorem 4. 
In the above example 6 , (p )=  0* ( 2 - ~ n ) .  

To prove the theorem it is sufficient to prove the following proposition: 

Proposition. 

In the above example 

v , ( p ) > p p ' +  PP' ( B , -  A , ) ,  for 0 _ < p < l ,  n = 1 , 2 , . . . ,  (15) 
n 
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where 

f 
Ai = B1 = 0 

1 "-1 1 

A, = --ff'k~l k2 

I "~1(1 
B" = T k = l \  k ; n = 2 , 3 , . . . .  

4k 2 r=l 

(16) 

n - i  1 n - i  I k - i  l 
Since k~--  ~ - = ,  and k~'--~-r ~ ' r = l  =J are bounded  and it is also well known that  

n--1 1 
k=~l- ~- = 0* (log n), it follows that  B, = 0* (log n) and therefore pp'n (B,  - A , )  = 

wh ch,ves theorem si. e we a, 
k "  } \ "  / 

P r o o f  o f  the proposit ion.  

F1 (P) is the game: L R 
R L  

R R  p ' /  

and its value vl(p) = min(p,p') ,  0 < p < 1. 

So for n = 1, vl  (19) > pp'  in accordance to (15). We proceed by induction on n. 
Assume (15) is true for n. Since for pp'  = 0 (15) is trivially true for n + 1 we 
assume p # I and p # 0, then by Lemma  1 (using the same notat ions as in 
Section 3) 

1 
V,+l(p) = ~ max { m i n ( p s , p ' t ' )  + n(gv,(pL) + g'v,(pR))} �9 (17) 

n + 1 0_<s_<t 
O<t_<l 

Restricting the maximizat ion domain  by the additional condit ion p s = p' t' we 
get by (5): 

p, g, p s  = s' = , = P ,  PL = - -  and PR , p' 

and so by (17): 

- -  max ps  + n p ' v .  + pv . ( s '  . 
n-{- J O<_ssl 

ps/p" ~ 1 

Using the induction hypothesis  we obtain:  

- -  max p s  + np' 1 - 1 + - 
n + 1 o < s < _ a  
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By simplifying the expression" 

v.+ l (p) > 1 ( max ~o ( s ) -  A.)  
n + 1 ~o<s<t 

\pG'~- 1 
where: 

r = p(1 + 2(n + B.))s - -~7(n + B.)s 2 . 

(is) 

(19) 

/ 
The parabola ~o(s) has a maximum at So = p' (1 + 

q~(so) = p p ' ( ( n  + 1) + B. + 
% 

We shall show now that: 

1 
B.+ 1 < B. + 

4(n + B.) 

In fact since 0 _< B. < 1 we have 
n 

1 ) and: 
2(n + B.) 

4(n + B. " 

n + B .  - 4 n k = l  ' k  4k 2 ,=,  

= 4 (B. + 1 - B,,) > 1 4n k=l 

which proves (21), (20) and (21) imply 

q~(so) >_'pp'(n + 1 + B.+I) .  

Consider now the two cases: 

(20) 

(21) 

(22) 

Case a. 

s o _ < l a n d  p so 
p' 

in (18) and therefore by (18) and (22): 

v.+x(p) _> ~ 1  (q~(so) - A.) >_ pp' 
n + l  n + l  

t 

> PP' + n - ~ l  (B.+a - A .+I ) .  

This completes the induction step for this case. 

_< I which means that s o is in the domain of the maximization 

( n +  I + B . + I - A . )  

Case b. 

So > I or pso 
p' > 1 (i.e. So is out of the domain of the maximization in (18)). 
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We claim that in this case: 

In fact: 

> 1 ~ p ' ( l  + SO \ 

1 pp' < (23) 
2(n + Bn) 

i ~ 1 1 
> l = ~ p <  =>pp'< 

2(n + B . ) ;  1 + 2(n + B.) 2(n + B~) 

pSo ( 1 ) 1), 1 1 
1 ) , . > l ~ p  1 + 2 (n+Bn)  >1=*, < 1 + 2 ( n + B . )  =~ p p' < 2 ( n + B . ) "  

We notice that go(p') = p1)'(n + 1 + Bn). Applying (23) we obtain: 

( . 
go(p')= pp' n +  t + Bn + 4 ( n + B , )  4 ( n + B . )  

PP' > gO(So) 1 1 
= gO(So) 4(n + B.) - 8(n + Bn) 2 ~ gO(s~ - 8n 2"" 

Inserting this in (18) gives: 

v.+l(p) > 1 1 ( g o ( S o ) ( A  + -ff~nZ)) n +-"--'~ (gO (p')  - -  An) -> ~ - n 
- -  n + l  

n + 1 (gO(so) An+t) >~ pp' + (Bn+t An+~). 

This completes the proof of the proposition and hence also the proof of Theorem 4. 
Note that the proof of the proposition suggests a constructive way to calculate 

a strategy for player I in/'.rio) that guarantees him an error term of the highest 
order of magnitude possible. (Namely, calculate so, consider the two cases etc.) 
We may call such a strategy "essentially optimal". 

6 .  G a m e s  w i t h  6 .  = 0 *  ( l / n )  

In this section we introduce a family of games for which 6n = 0* (l/n). For 
such games the sum of the total payoff to player I beyond v(p), in all the stages 
of the game, is bounded. 

Theorem 5. 
1) 1 .,41 

Let ~ : ~ A k  be a repeated game with incomplete information in which 

v(1)) - u(p) >_ e > 0 for every p in P which is not an extreme point, then: 
k 

(pV(1 _ pV))a/2 
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k 

Z l/p~( 1 - p') 
v, (p) _< v(p) + v = 1 ; p e P ,  (24) 

n 

for n = 1 ,2 , . . .  where  e is a constant.  

The theorem follows easily f rom the following two lemmas:  

Lemma 4. 

For  any p e P which is not  an extreme point  of P and for any o-* = (al . . . .  , o-k) ~ ~* 
we have 

k k l 

Min ~, p~a~AVej < u(p) + a ~ p~(1 - p~) Z [s~ - s~*[ 
1 <_j<_m v =  1 v =  1 i =  1 

where 
k pp 

s~* = ~ --_pV s f ;  v =  1 ... k "  i =  1 . . . . .  l (25) 
p=l 1 ~ ~ 

p~:v 

and a = max  {lal)] l 1 <_ i <_ l, 1 <_ j <_ m, 1 <_ v <_ k} (s~* is well defined since p 
is not  an extreme point  of P). 

Proof 
By (11) in the p roo f  of  L e m m a  2: 

k k l 

min  ZPVaVA~ej <- u(p) + a Z PV Z Is~ - si] 
l _ < j < m v = l  v = l  i = 1  

k ~ sr p~=lpPsf 
= u(p) + a _~f"  __~ 1 =  .= - 

k i (1 ~1 
- pV)s~  p s,  = u ( p )  + a = .= %~ 

k 1 

= u(p) + a Z p~(1 - p~) Z l s r  - sr*[. 
v = l  i = 1  

Lemma 5. 
For  any p ~ P and  a* = (a a . . . . .  o -k) s X* the following inequali ty holds:  

Y,g, Vpr(1 - pr) <- V p - ; - d -  p') 1 - - 7  y~rsr - sr, i 2 
i = 1  o i = 1  

for v = 1 . . . . .  k, where g~ and Pi are defined by (2) and s~* is defined by (25). 

(26) 

Proof 
If  p is an extreme point  of P, inequali ty (26) is clearly true; if this is not  the 

case, we recall our  no ta t ion  that  all summat ions  over  i are only over  those i's 
for which gl ~ 0, so that  by (2) we obtain:  
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gi P]/~ el) g p si 1 -  p~s[x] = ~  ~P~Sr(Si P~ - = E ,  ~ ~ i ' I  , = ,  - 4 )  

i = 1  i = 1  Si 

= F s~ - p" sr = F s'i Y', p"sf  
i = l  p i = 1  p~v 

' Vp P----L-~ , 
= Z ~r(~ - p~) Y p~ s~ = Vp~(1 - p~) ZVYi~ ~* 

i = l  p~:v  I - -  i = l  

i = 1  2 

N o w  I V Y - -  1 / ~ [  > I:',s. - s.*,YI. This is trivial if sr = st* = 0 otherwise:  
- 2 

I ~ -  ~/UI = Lsr- sr*l > Isr- sr*l 
] /~  + ]f~, 2 

1 l 

Hence  noticing that  ~ s[ = y '  s~* = 1 we obtain  finally: 
i = l  i = 1  

g,]//p[(l - p}') < Vp~(1 - p~) 1 - --~-2 Is}' - sr*[ 2 . 
i = 1  ~  

Proof of Theorem 5. 
1 

If p is an extreme point  of P then, and only then, ~ p ' ( 1  - p~) = 0 and (24) 
i = 1  

k 

is trivially true for any ~. Assume f rom now on that  ~2 f ( l  - p~) r 0. Choose  
v- -1  

2c 2 
> 0 such that  (24) holds for n = 1, and such that  c~ >_ - -  where c is the con- 

e 

stant determined by L e m m a  2. Fo r  such an ~ we now prove  (24) by induct ion 
on n. Fo r  n = 1 it is true by  definition of c~. Assume it is true for n and let us prove  

it for n + 1. By L e m m a  1 und L e m m a  4 we have:  

m a x  u ( p ) + a Y ' f ( 1 - f ) ~ l s ~ - s ~ *  I + n  giv.(Pi) �9 
l'l -'~ ~ a*eZ* I v = l  i = 1  

Applying the induct ion hypothesis  we have:  

1 J" k l 
Un+ 1 (P )  m a x  )u(p)  + a ~ p~(1 - p~) Z [s~ - s~*] + nv(p) < 

n -~- ] a*aZ* (. v = l  i = 1  

+ ~ E e, ZVpr (1  - pr) �9 
i = 1  v = l  

(27) 
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Let x ~ = max Is7 - s~* I then by Lemma 5: 
l<_i<l 

~, 1/pY0 - pr) --- l / ~ 1  - p~) I - ~ - 2 1 4  - s~*] ~ 
i = 1  ~  

l 

on the other hand a E Is~ - sr*i < a k x  ~ = cxL So by (27): 
i = 1  

v.+~(p) < v(p) + 1 { k max u(p) - v(p) + c ~ p~(1 - p~)x ~ 
n -I- ] r v= 1 (1)}  

+ ~ l /p~(1 - F )  1 - T ( ~ )  ~ 
v = l  

which is 

Now 

v.+~(p) _< v(p) + 

k 

V = I  

n + l  
+ { u ( p ) - v ( p ) +  ~*~s*max ~= ~ ( c p ~ ( 1 - p ~ ) x  ~ 

8 

max cp~(1 - pV)xV - --~- ]//pV(1 - p~)(x~) z 

_< m a x  e p ~ ( 1  - pVlxv  - T 1 / p ~ ( 1  - p , ) (x , . )2  
V = 1 X v 

= pV(1 - -  pV))3/2 . 
v = l  t~ 

v(p) - u(p) > E we have So by definition of c~ and by k - -  

E @(1 - p~))3/~ 
v = l  

u ( p ) - v ( p ) + m a x  ~=1 

2C2 
< ~ ( p V ( 1  _ p ~ ) ) 3 / 2  _ ( v ( p )  - -  u ( p ) )  

v = l  

k 

<- ~ F, (F(1 - F))  3/2 - (v(p) - u(p)) <_ o.  
v = l  

k 

Hence by (28) we have finally v.+t(p) _< v(p) + ~=l 
n + l  pletes the proof of the theorem. 

which com- 
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Example 1. 
Consider the game: 

(-o _~ 
( - ( 1 0 +  p) 0 ) and its value is u (p )=  2 pp' A (p) is the game - (1  + p') 3 3 

Hence by Theorem 1: v(p) = u* (p) = - ~  for 0 ___ p _< 1. Now for this special 
case as k = 2 we have: 

u (p) - u (p) v (p) - u (p) 1 1 
k 2(pp') 3/2 6(pp') 1/2 3 

Z (pv(1 - p~))3/2 
"0=1 

Hence, by Theorem 5, v , (p)< ___2 + ~ p ~  f o r 0 < p _ < l a n d n = l , 2 , . . . .  
3 n 

Proposition. 
2 ~.(p) >_ - - y  + f(P) for 0 < p < 1 and n - 1,2,... where 

n 

f(P)= �89 1. 

First it is easily verified that vl (p) = 2 + f(p). Assume that the inequality is 
true for n and let ((s, s') ; (t, t')) be an optimal strategy for player I in F1 (p). Using 
this strategy in the first stage of F,+ 1 (P) player I guarantees (by the recursion 

1 
formula (1)): ~ { v t ( p ) +  n(gv,(pL)+ g'v,(pR))} which is by the induction 

n + l  
hypothesis at least: 

1 / ' v t ( p ) _ n . 2 '  2 f(p) 
n + l  ~ -3-) = - - f  + ~ n + l  

We conclude that in the game under consideration ~, = 0* (-}). 

Example 2. 
Consider the game: 

In this case A (p)is the game ( - 0  

t! ~ 
(o 
0 ]  and its value is 

- p  / 
u(p) = -pp'. Hence, 
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byTheoreml . v (p )=u , (p )=OforO <p < l ; v ( p ) - u ( p )  = ~ 1  >--1  and 
2(pp') 3/2 2 p ] ~  4 

~ P ~ .  In again, by Theorem 5, we deduce v,(p) = v(p) + 3,(p), where 3,(p) _< 
n 

this case ~ = 0 (and therefore ~,(p) = 0 for 0 < p _< 1, n = 1,2 . . . .  ). This easily 
follows from the fact that Vx (p) = 0. 

7. Discussion 

The main result of this paper is given by Theorem 2 which proves the existence 
of games with error term of the.order of 1 / ~ ,  the highest order possible according 
to MERTENS and ZAMIR and AUMANN and MASCHLER. 

We denote by Pi (i = 1 . . . . .  n) the conditional probability assigned by player II, 
at the end of stage i, to the event "chance has chosen A x,,. It was shown both by 
MERTENS and ZAMIR and by AUMANN and MASCHLER that given the strategy of 

player I, {Pi} is a Martingale and v,(p) _ < v(p) + C---E Pi+ 1 - -  Pi , where c 
n i 

is a constant and E denotes the expectation. By this inequality we deduce the 
following corollary of Theorem 2: 

Corollary. 
There exists a constant c > 0 such that for any n, n = 1,2, . . . ,  and for any Pl, 

0 < px < 1, there exists a Martingale {Pi}; 0 < Pi < 1; i = 1, . . . ,n  such that: 

This is an interesting result in itself, since it is well known that for any bounded 

Martingale {pi}; E Pi+l - Pi = 0( . 
i 

A second important result in the present paper is the inductive construction 
of "essentially optimal" strategies for player I in F,(p) suggested in the proofs of 
Theorems 2 and 4. Though by some simple arguments it is possible to find the 
error terms of some games, which do not satisfy the conditions of Theorems 3 
and 5, there does not exist a general method of determining the error term of any 
given game. We conclude this paper by an example of a game whose error term 
cannot be found by the theorems stated in this paper, and in fact we do not know 
its error term: 

Consider the game 
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For this game, 

u(p)  = _ 
� 8 9  

and hence by Theorem 1: 

v (p )  = u * ( p )  = ~ .  

We can show that 6.(p) < k VPP'~/n, and our conjecture is that 6.(p) = 0*(l/n). 
n 
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