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M i n m a x  a n d  M a x m i n  o f  R e p e a t e d  G a m e s  
w i t h  I n c o m p l e t e  I n f o r m a t i o n  

By J.-F. Mertens, Louvain I ), and S. Zamir, Jerusalem 2) 

Abstract: For a class of 2-Person 0-sum repeated games with incomplete information, Aumann/Masch. 
ler 119671 and Stearns [1967] have given a necessary and sufficient condition for the existence 
of v (the value of the infinitely repeated game). Mertens/Zamir [19711 and Mertens [1971/72] 
have given the formula (and thus proved the existence) of lim Vn, the limit of the values of the 

n . - .+  ~ 

games with n repetitions, for a much larger class of games than that treated by Aumann/Maschler 
and Stearns. In this paper we extend the Aumann-Maschler-Stearns results to the larger family 
of games studied by Mertens [ 1971 /721. 

1. Introduct ion 

We consider a two-person zero-sum game in which the payoff  matrix depends on 

the "state of  nature" which is an element of a finite set of  states K. The state of nature 
is chosen by chance according to a given probabil i ty distribution on K. Each player 
gets some partial information as to what is the actual state of  nature chosen. With this 
initial information, the two players start playing the game repeatedly n times or ~, 
many times. Along the play of  the game some information is revealed to each player 
separately. This information is determined in a specified way by the moves of  the 
players which may depend on their information on the state of nature. Thus this infor- 
mation flow may enable a player to learn more about the other player 's  knowledge on 
the state of  nature. We will be interested in a kind of  value for such infinitely repeated 
games. 

To specify the contribution of the present paper in this general framework let us 
first define the model formally. 

The Model 

The games we consider consist of  the following elements: 

K = ~I . . . . .  k}, a finite set. (The set of states of  nature.) 

p = ( p l , . . . ,  pk) ,  a probabil i ty distribution on K. 
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K 1 = {K{ , . . .  , K~} and K II = (K] I . . . . .  Kil}'v two partitions of K. 

A r = (air/) for each r E K, are rn • l payoff matrices. 

H l and Hll(information matrices), two m • l matrices whose entries are letters from 

some alphabet. 

For any n, a positive integer or + o~, the two-person zero-sum game F n (p) is played 
as follows: Nature chooses one index r in K according to p. The maximizer (denoted 
by Pll) is informed in which element of K I the index r falls and the minimizer (deno- 
ted by PlIl) is informed in which element of K II falls r. Then the players start repea- 
ting the following procedure n times: At stage t (t = 1,2 . . . .  )P l  I chooses i t in 
(1 . . . . .  m} and Plll chooses] t in {1 . . . . .  l). The referee then informs Pl I (resp. 
Plll ) of the letter in the (ii t, I t)  box of H i (resp. Hll). If n is finite, Plll pays Pl I the 

n 
amount ( l /n)  2; a r and the value of F (p) is denoted by v n (p). The description 

t =  1 lt,]' t ' n 

of the game is known to both players, and ends at this point. 
In this model K 1 (resp. K I1) is the initial information ofPl  I (resp. Plli ) about the 

state of nature. It will be convenient to think of the elements o f K  1 (resp. K 11) as the 
types ofPl  I (resp. Pill), we denote by T 1 the set of types ofPl l ,  i.e., T 1 = {1 . . . . .  ~}. 
The information matrix H I (resp. H 1I) represents the information received by PI 1 
(resp. Plll) after a play of the game: The (i, ]) element o f H  1 is the information 
"message" that goes to PI I when he plays his i-th row and PIil plays hisf-th column 
(H 11 has a similar meaning). It is very crucial to our proofs that this information is 
determined only by the players' moves and does not depend on the actual state of 
nature. 

Aumann/Maschler  [1967] and Stearns [1967] considered the subset of these games 
which have in addition the following two properties: 

(i) The a-priori information of the players corresponds to what is called "the inde- 
pendent  case" (to be defined later). 

(ii) The information revealed during the play of  the game consists of strategy 
choices of the players. This is referred to as "the standard information case". 

The independent case is the special case in which K can be arranged in a matrix 
such that the elements o f K  I are the rows and those of K 1I are the columns. In addi- 
tion, the probability distribution rr on such K is a product probability on K I X K II 
i.e. the probability of the (r/, p) element of K is D~ qp (7 = 1 . . . . .  /1; p = 1 . . . . .  v) 
where (Pl . . . . .  p , )  and (ql . . . . .  qv) are two probability vectors. In other words, 
this is the case in which the type o fP l  I and the type of Plll are chosen independently 
according to (Pl . . . . .  p , )  and (ql ,  �9 . ,  qv) respectively. It follows that in such a case 
Pll'S conditional probability on the types of PIlI is independent of his own type (and 
similarly for Pill ) . This is the motivation for the name "the independent  ease" given 
to this set of games. 

The standard information case (condition (ii)) is formally the case in which 
H I = H II = H where in each box of H we write its coordinates (i, j). 

By passing from the Aumann-Maschler-Stearns model to the more general model 
presented here we thus dropped condition (i) and replaced condition (ii) by a much 
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weaker condition, namely 

(ii)* The players'  information matrices H I and H II are independent of the state of  
nature. 

In other words, the "message" received by the player after a certain play of the 
game is determined by the moves of the players at that play but not by the state of  
nature. (However it can be different to both players). 

For the games satisfying (i) and (ii), A umann/Maschler [1967] and Stearns [1967] 
proved that the Maxmin and the Minmax of the infinitely repeated game are 
Cav Vexu and VexCav u respectively, where u(p) is the value of the one-shot game 

I I1 1I 1 

with a-priori information p in which the players are restricted to use non-revealing 
strategies (cfr. Definition 4) (Cav and Vex are operations of concavification and con- 

I II 

vexification respectively, to be defined later). This result proves therefore a necessary 
and sufficient condition for the existence of value for the infinite game, for the family 
of  games satisfying (i) and (ii), namely Cav Vex u = Vex Cav u. 

On the other handMertens/Zamir [1971] andMertens [1971/72] proved that 
lim v n exists (and in fact found this limit) for the larger family of  games satisfying 

n ----> o o  

(ii)* (i.e. the games considered in this paper). 
A natural question now arises whether it is possible to extend the Aumann-Masch- 

ler-Stearns condition for the existence of voo to the larger class of  games for which 
lim v n is known. This paper gives an affirmative answer to this question. 

Dropping condition (ii)* seems to be a quite difficult project and so far only very 
partial results exist [see e.g. Kohlberg/Zamir [1974] and Mertens/Zamir[1977]]. From 
these results it is already clear that both the condition for the existence of v and the 
asymptotic value lim v n are quite different from the corresponding results for the 
games studied in this'paper. 

We would like to thank the referee for his useful suggestions concerning the presen- 
tation of the paper. 

The result 

Definition 1 : K I (resp. K II) is the o-field generated by K I (resp. Kll).  

Definition 2: A function on the simplex of probabilities p = (pl . . . . .  pk )  is said to be 
concave with respect to I (for short, w.r.t.I) if for each p it has a concave restriction 
to the subset I l l(p) of the simplex, where 

ill (p)__ {(otlp I . . . .  , ~kpk  ) l ~r >~ O, r = 1 , . . . ,  k: ~,arp r =  1 

and (cd . . . . .  c~ k) is KI-measurable}, 

it is said to be convex with respect to II if for every p it has a convex restriction to 
the subset II II (p), where 

i i I l (p)  = {(/3a p~ . . . . .  ~kpk)  i fir ~> O, r = 1 . . . . .  k: z{jrpr = 1 

and (~l . . . . .  /3 k) is KII-measurable}, 

[cf. Mertens/Zamir, 1971, p. 42]. 
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Remark: The set 111 (p) (resp. 11 I1 (p)) is loosely speaking, the set containing p and 
on which p(r  t K 1) (resp. p(r I KII)) is constant. 

Definition 3: For a function f on the simplex, the concavification o f f  with respect 
to I, denoted by Cavf, is the smallest function which majorizesf and which is concave 

I 

w.r.t.I. Similarly, the convexification o f f  w.r,t.II, Vex f is the largest function which 
II 

minorizesf and which is convex w.r.t.II, [cf. Mertens/Zamir, 1971, p. 42]. 

Definition 4: A one stage strategy of P/1 is called non revealing if for each column of 
H II, the probability distribution induced on the letters of that column is independent 
of  the state of nature r ~ K. The set of non revealing one stage strategies of P/I is deno- 
ted by NR 1. Similarly NR I1 is the set of non revealing one stage strategies ofPll l  , i.e., 
strategies such that for each row of H I, the probability distribution induced on the 
letters of that row does not depend on r C K, (NR I and NR II are obviously non empty). 

Definition 5: FNR (l 9) is the one stage game in whichP/I and Plll are restricted to strate- 
gies in NR 1 and NR II respectively. The value of PNR (P) is denoted by u (p) ( it is 
clearly continuous in p). 

For any pair of strategies a and r in F (p) and for any positive integer n we denote 
n 

O n (o, r) = E ((1/n) t= ~1 artt'It)" where E is the expectation with respect to the proba- 

bility measure induced by o, r and p. 
The result of this paper can be now stated as 

Theorem 

(a) For any strategy r o f  Plll in I~ (p) and any e > 0 there is No and a strategy 

o o fP l  I such that n > N o  implies Pn (cr, r) > (Vex Cav u) (p) - e; 
II I 

b) There exists a strategy r o f  Plll SUCh that for each e > O there is N such that 

O n (o, r) < (Vex Cav u) (p) + e for all n > N and for any strategy o o f  Pl I. 
II I 

Remark: The content of the theorem is that Vex Car u is the Minmax of F o 
1I I 

although we did not define the payoff for this game. Dually, Cav Vex is Maxmin. 
1 II 

In the independent and standard information case i.e. under conditions (i) and (ii), 
Aumann/Maschler [1967] proved part b) of our theorem and Stearns [1967] proved 
part a). To see the relation between two models, recall that the independent case is the 
case in which K I = (1 . . . . .  ~}, K 1I = {1 . . . . .  u}, K -- K l • K lI and the probability 
distribution rr on K is a product probability: ~r = p • q i.e. r rp  = P,~qo' 
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77 E K l, p E K ll, p = (Pl . . . . .  pu) and q = (ql ,  � 9  qv) are probability distribu- 
tions on K I and K II respectively (here we identify naturally an element r / o f K  ! with 
the subset (r~) • K II of K, so that K I is a partition of K as it should be, similarly for 
KII . )  It follows from the definition of HI(n)  and Fill(n) that l l I (p  X q) = {p' • q I P '  
is any probability distribution on K I } and [III(/9 X q) ---- (/9 X q' t q '  is any probability 
distribution on KI I ) .  Consequently, the operation of  concavification w.r.t.I, is actually 
the operation of concavifying for each fixed q on the simplex of probability distribu- 
tions p, and similarly for convexification. These are the operations Car and Vex used 

p q 
by Aumann/Maschler and Stearns. To see what is u - (the value of  the one stage game 
with non revealing strategies) in the Aumann-Maschler -Stearns '  case, observe that a 
general one-stage game strategy of P/I is of  the form s = (s x . . . . .  s u) where for each 
~7 E K I, s ~ is a probability distribution on the set of  r owsM = {1 . . . .  , m)  (this is the 
mixed strategy which is used by Pl I if he is of  type ~/). Now in the standard informa- 
tion case (condition (ii)) definition 4 says that s is non revealing if for e a c h / t h e  proba- 
bility distribution on {(i, ]')} induced by s is independent of  the state of  nature, in par- 
ticular independent of  Pli's type r/. In other words the probability distribution on the 
rows M has to be independent ofPll'S type i.e. s ~ = s 2 = . . .  = s u. Similarly a non 
revealing strategy of Plll is playing the same mixed strategy on the columns 
L = { 1 , . . . ,  I} independently of  his type. This means that the one-stage game with non 
revealing strategies is equivalent to the matrix game whose payoff  matrix is 
A(p, q) = ~ pnqoAnO und u is thus the value of this game. This was precisely the de- 

no 
finition of u given by Aumann/Maschler and Stearns. 

We turn now to the proof  of the Theorem. 
The proof of  part b) is rather short and can be found at the end of the paper. 

Outline of  the proof o f  part a] 
Given Plli 's  strategy, Pl I can compute at every stage t a posterior probability 

Pt (r) on the true state of  nature. 
Pl I will begin playing non revealing for some large number of  t imesN,  to exhaust a 

maximum of information f romPl i i ,  i.e., such as to make 2; E(PN(r ) - - p ( r ) )  2 as large 
r 

as possible. Therefore, whatever Pl I plays after stage N, it will be as ifPlii was playing 
essentially non revealing after stage N. 

Therefore, if we denote by PN the conditional probability distribution just before 

the N + 1 -th stage, Pli can guarantee u (pN) from stage N + 1 on by playing in each 

stage his optimal strategy in FNR (PN)" Now we derive i~ N from PN (the conditional 
probability distribution on K just after the N-th stage) by a procedure 'which we call 
"splitting". This is a very central element in the players' strategies and can be des- 
cribed as follows: Pl I performs a lottery to choose an element e from a fixed set T I. 
The probability distribution on T I may depend on Pl I's type. Therefore hearing only 
the outcome e (but not knowing according to which probability distribution it was 
chosen) one changes the prior probability distribution PN (on K) to some posterior 
probability distribution/~N" It is readily seen that PN E III (pN) and that E (/~N) = P N" 
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If after this lottery Pl I plays to guarantee u (/~N)' he guarantees with this procedure 

Eu ~N)i  The maximum of this expression on the distribution of/~N satisfying 

PN E II (pN) and E (/3N) = PN, is exactly (Cav u) (pN). So PI I can guarantee 
I 

(Cav u) (pN) from stage N + 1 on provided he can choose the type dependent 
I 

lotteries so as to give the right probability distribution on/5 N which yields this maxi- 
mum. It will be shown (Lemma 3) that in fact such lotteries can be found, hence Pl I 
can guarantee (Cav u) (pN) from stage N + 1 on. 

1 

Finally, since P11 played non revealing up to stage N, we have PN (r I K I1) = 
= p(r L /(I!), and thus E(Cav u) (PN)) (Vex Cav u) (p). 

1 II I 

In Section 2 we give a sequence of lemmas and definitions that will be used in the 
proof of the theorem which will be given in Section 3. 

2. Preparations for the proof 

Lemma 1: Let P be a positive measure on the product o f  two measurable spaces 
( X, X) * ( Y, V) that has a density with respect to the product of  it's marginals. 
Then E II e(dy Ix) -- P(dy) II = g II P(dx I Y) - e(dx) IL. 

Proof: By Fubini's theorem, both sides are equal to H P(dx, dy) --P(dx) X P(dy) [I. 

Remark: This quantity is therefore a natural measure of independence between X 
and Y. 

Lemma 2: For any (Bochner-) integrable random variable X with values in a Banach 
space B, and any y @ B 

E I IX--E(X)II  ~ 2 E  i l X - y  II 

[cf. Mertens, p. 220]. 

Proof: EII X - E ( X )  I1 <~E II X - y  II + [I E(X) - -y  l[ ~< 2 E [! X - -y  ]j by the triangle 
inequality and Jensen's inequality (using convexity of the norm). 
The following was proved in Mertens/Zamir [ 1971, Lemma 2]: 

Lemma 3: For each p there exists a Kl-measurable transition probability P(e I r) from 

K to T I such that if p e (r) =p (r L e), Pe = (Pe (1) . . . . .  Pe (k)), then u (Pe) = (Cav u) (pe) 
and Eu (pc) = (Cav u) (p). ! 

1 

Lemma 4." Let Po be a transition probability from a probability space ((9, ~, P) to a 
measurable space (~2, A ), o f  which a finite collection H of  elements of  A is given; 
then 
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! 

inf EIIP o - P o  I11 ~ C  ~ E l e o ( a ) - E ( e o ( a ) ) l  
P'o E NR aEH 

for some constant C depending only on the cardinality o f  the partition generated by H. 

t t Po ENR meansP o (a) is constant in O for any a EH. 

The application of Lemma 4 to our context is the following: The set | is the set K 
of states of nature, the space f2 is the set of rows (or columns)M = {1 . . . .  , m}. A 
transition probabilityP| is thus a one-stage strategy (ofPl  I for instance). The left hand 
side of the above inequality is therefore a certain distance of the strategy P| from the 
set of non revealing strategies. On the other hand the set H stands in this context for 
the letters in the information matrix of the other player. A one-stage strategy Po  say 
ofPl  I induces a probability distribution (given the column] chosen) on the letters of 
H II which depends usually on the state of nature, unless Po is non revealing. The right 
hand side of the inequality above is a measure for how far is this probability on H II 
from being independent of r. 

Summing up: Lemma 4 relates the distance of a one-stage strategy from the set of 
non revealing strategies (in the space of probability measures) to the extent to which 
the induced probability on the letters of H II depend on the state of nature r. 

Proof: This is Lemma 3 of Mertens [1971/72]. 

Lemma 5: The game I" n (p) has essentially the same normal form (Le., except for 
duplication o f  pure strategies) whether or not we assume for one or both o f  the players 
that he recalls, in addition to his initial information and his sequence o f  letters, his 
own past pure strategy choices. 

Proof: This is Theorem 1 of Mertens [1971/72]. 

Remark: By virtue of this lemma, we will assume henceforth that no letter appears in 
two different rows o f H  I or in two different columns of H II. This modification will 
not change NR I, NRII, I,NR (p) or u(p). However it will enable us to identify letters 
with subsets of the pure strategy spaces ofPl  I and e l l l  - since any letter is now a 
product set of such a subset for PI! and of such a subset for Pill. 

Definition 6: [cf. Mertens, Lemma 2] 

__F n (p) is the n-times repeated game obtained by putting 

1. A r =(  A__rA_) ,whereA_ i s them•  lmatrixwithconstantentryA, 

A = max Iair, j I 
i,f,r 

2. H_ I = ( S l  ), where S is the m N l matrix with constant entry a~ where a~ is a 
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letter not appearing in H I . (.:i) 
3. _/2/11 = , where I is a m • l matrix all the letters of which are different among 

themselves and from the letters in H l!, 

4. and by further restricting Pl I to play each of his additional pure strategies (i.e., 
those numbered from m + 1 to 2m) which probability ~/rn. 

We will use letters ~ (with subscripts) for the elements of_//1 and letters ~ (with 
subscripts) for the elements of-Hll. 

Remark that, as noticed after Lemma 5, the letters and c~ and/5 can all be identi- 
fied with rectangles in the product set L • M = (1 . . . .  , l) • ( 1 . . .  m, m + 1 . . . . .  2m}. 

Lemma 6: Every strategy o f  Pl I in P-n (P) is dominated by a strategy o f  Pl I in F n (p) 
[cf. Mertens, Lemma 2]. 

Denote by ~fl (resp. ~I I )  the field on L • _M generated by _H I (resp. _HII), and 
remark that, by Definition 6, ~(I _C ~C II. 

Let ~ = K X [L • _M • TJ] ~. The t-th factor space L, _M and T I will be denoted by 
L t,M_ t and T~ respectively. Let g~! be the field on ~2 generated by K lI and the fields ~C II on 
the fisrt t - 1 factor spaces L • _M. gt  is the field generated by the first (t -- 1) factor 
spacesT I and by the fields H I on the first (t -- 1) factor spacesL • _M. ~t is gene- 
rated by gt and T ! t" 

4, v • denotes the a-field generated by the a-fields A and/3. Also let 

l= I - I=atvK l , - l I=atvK lI. ~t ~t V /( , ~ t  ~t 

K will be the field generated by the first factor space, K. 
Denote by @t the field generated by / (  and the first (t - 1) factor spaces 

L X M • T I, and by Gt the field generated by G t and T 1 
- -  t "  

By virtue of Lemma 5, we may asshme that Plll uses a behavioral strategy, i.e., 
at every stage t he uses a transition probability T t from (~,  ~ItI ) to the t-th factor 
space L. 

The only strategies for Pl! we will consider will be of the following type: at each 
I ~t.measurabl e stage t, use first a transition probability from (~2, ~It) to Tt, then a 

function from ~2 to NR l, which selects a point in _M t . 
Given such a pair of strategies a and ~" for both players, and the probability distri- 

bution p = (pl . . . . .  pk)  on /( of the initial choice of nature, the probability Pa,r on 
(gZ, @ )  is completely defined by the following requirements: 

1 ~]-measurable, and is given by a) The conditional distribution on T t given G t is 
Pli's strategy (thus: T] and G t are conditionally independent given ~]). 

b) L t and _M t are conditionally independent given Gt" 
c) The conditional distribution on L t given Gt is ~IrI-measurable, and is given by P/li'S 

strategy (thus: L t and Gt are conditionally independent given ~ItI ). 

d) The conditional distribution on_M t given Gt is ~lt-measurable, and is given by P! I's 

strategy (thus: _M t and Gt are conditionally independent given ~It). 
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e) For any letter/3 E H II, considered as a subset of Mt, the occurence of fl and 

Gt are conditionally independent given ~t (i.e., the conditional probability of/3 

given G t is ~t-measurable). 

We will write P t ( r )  for e ( r  I ~ t  ) and Pt (r) for e ( r  I ~ t  ). 

We now prove a basic property of  this probability space [Lemma 6 o f  M e r t e n s ] ,  

with a proof which is somewhat simpler and probably more convincing than the ori- 
ginal one. 

II ~II L e m m a  7: ~t+l  a n d  l( are  c o n d i t i o n a l l y  i n d e p e n d e n t  g i v e n  g t  " 

C o r o l l a r y  8:  Pt+ 1 (r [ K II) = P ( r  I a l  . . . a t, e l  . . .  e t ,  p )  = P ( r  I ~! �9 �9 ~ t '  e l . . .  e t ,  p )  = 

= e ( r  I / 3 1 . . . / 3 t .  1, e l . . .  e t ,  19) = e ( r  [ a l . . .  a t .  I ,  e l . . .  e t ,  p) = Pt (r l"/(II). 
Here 19 stands for an element of K II and e i, i = 1 , . . . ,  t are elements of T I. 

P r o o f  o f  Coro l la ry  8: 

- The first and last equalities are definitions. 
- The equality of the third and the next to last term is equivalent to Lemma 7. 

- The conditioning o-fields in the second and in the fourth term are intermediate 
between those in the third and the next to last term. 

P r o o f  o f  L e m m a  7: Proceeds by induction on t. Recall that the letters a may be 
considered as forming a partition of the letters/3. We assume r E p E K II. By induction 
hypothesis we have (cf. Corollary 8): 

P ( r  ] ~1. �9 . /3t, e l . . .  e t ,  p )  = P ( r  l a l  . �9 . a t ,  e l . . .  e t ,  p ) ;  

this holds obviously also for t = 0. On the other hand we have by (a): 

P ( e t +  1 i /31. . �9 /3 t, ex . . �9 e t ,  r)  = P ( e t +  1 [ a l  . . �9 a t ,  e l . . .  e t ,  r). 

These two relations imply: 

P ( e t +  l ,  r [131 . . .  (3 t ,  e l . . .  e t ,  p) = P ( e t +  1 , r [ a l  . . �9 a t ,  e l . . .  e t ,  p) (*) 

and thus P(r  l/31. �9 �9 t ,  e l .  �9 �9 et+ 1 , p )  = P ( r  I a l  . . �9 a t ,  e l . . .  et+ 1 , p), which is the 
~II (cf. Corollary 9), or, in other conditional independence of g~l+ 1 and / (  given ~t+ 1 

words, 

P(~I.  - .  ~t [ O q . . .  at ,  e l . . .  et+ 1, r)  = P(~I.  �9 . fit l a l .  , .  a t ,  e l . . .  et+ 1 , p) (**) 

By (b) (c) and (e) we have that 

P(/3t+ 1 i Gt+l ) = P ( ]  E ~t+l [t31" " " ~ t '  p ) e ( i  @ ~t+l [ a l . . .  a t, e l . . .  et+l) ,  
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and thus 

e(flt+l I Gt+I)=PO3t+I I ~ l . .  .~t, e , .  . . e t + l , P )  , 

afort iori  

P(3t+l 131.. �9 3t, e l . . .  et+ 1, r) =P(3t+ 1 [ 3 1 . . .  3 t, e l . . .  et+ 1 , p). 

Together with formula (**), this implies 

P(31 . .  �9 [ r ' " ~ e l . . .  et+ 1 , r) = P ( 3 1 . .  �9 ~t+l I o q . . .  at ,  e l . .  �9 et+ 1 ,p)  

which is the conditional independence of Fat+ 211 and/ (  given ~t+l"~II 

II and ( K \/ ~ t )  are conditionally independent  given g t  v K II. Corollary 9." g t  

Proof: This is formula (*). 

Definition 7: For any strategy o of P/I, for any time t, and for any e E T I, denote by 
~ e the strategy (i.e., set of transition probabilities) o fP l  I that coincides with o ex- 
cept that at time t, P (e  t = e j Gt) = I. 

L e m m a  10: For any strategies o o f  Pl I and r o f  Plli , for  any t ime t and e E T I, the 
conditional distributions g iven~ l t induced by P and P on G = coincide on 
(e t = e). ~rt'e'r 

Proof: We have to show that, for any n ~> t, the following probability is the same 
whether P stands for P or P (we assume r C/9 C KI): 

o,'r Ot, e,7 

P(r, e l ,  il ,  1 1 , . . . ,  et_ 1, it_ 1, ]t-l' et' it' It . . . . .  en' in' In' en+ l [p; 

e l ,  ax, e2, c~2, . �9 ~ , e t_ 1 , at. 1 ; et). 

Using inductively a) and b), c), d), this statement can be reduced to the case where 
n = t -  1,i.e. to: 

P(r; el,  ii ,  Jl, e l , . . . ,  et. 1, zt. 1, ]t-l '  et ] O; e l ,  al , e2 , a2, . . . , et. 1 , o~t. 1, et)  

which equals 

P(r; ea, il, Jl . . . . .  e tA '  it-l '  it-1 i p;.el , ~1 . . . . .  et_ 1 , at_ l, e t) 

which, by a), equals 

P(r," el,  i l , ] l  . . . . .  et_l, it_l,ft_l [p" e l ,  oq . . . . .  et.1, ~t_l). 
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The result now follows from the fact that Pa,r and Pat , e,rCoincide on G t. 

Lemma 11: E(IPt+l ( r ) -  ~t(r)11 ~t) =i~t (r) n~ a~//l [Pqt Ca  [ ~t' r ) - -  

- - P q t E a l ~ ' t )  l 

Proof: cf. Mertens [1971/72, p. 224, formula (3)]. 

Definition 8: Let ~o stand for a typical point in ~t '  and denotePqt = j  I co, r) by 
e" (~) fj). 

By c) and Corollary 9, j r  is KIl-measurable in r. 

Lemma 12: 

k (r)/~1 -~ r m inf ~ Pt I fr (6o) (]) -- (w) (1) I <<- ~ CE (~ 
"~ENRII r=l r 

Pt+l (r) --Pt(r)II ~t) 

where C is a constant that depends only on the cardinality o f  the partition o f  L genera- 
ted by the letters a o f  H I. 

Proof: Follows from Lemmas 4 and 11. 

Definiton 9: 

a) N R I  is the set of strategies of P/I such that, for every t, and for every e E T I, 
e(e  t = e) ~ CO, 1 ~. 

b) Given a strategy 7- of Plli and e > 0, define Oo E NR  I a n d N b y  

k N-1 k ~1 
Eoo,r ~, ~. (Pt+l (r ) - -Pt (r ) )2> Sup E ~ (P t+ l ( r ) - -P t ( r ) )2 - -e .  

r= 1 t= 1 a~_NRI O,rr=l t 

Lemma 13: For any strategy a in NR I ,  that coincides with ao up to stage N, 
(i.e., on GN) and for any n >~ N, we have 

k 
EY~ 

r = l  
[P(r l ~n ) - -P(r  l ~N) l ~ ~ .  

Proof: Follows immediately from H61der's inequality and the definitions ofNR I ,  o0 
and N. 

Lemma 14." Consider any strategy a o f  Pli, that coincides with ao up to stage N, and 
such that, for all r, for all e ~ T I, and for t 4: N, P (e t = e) E (0, 1 ). Then, for a n y  

n >~N 

L'(z I ~.  (r) - ~N (r) I) <~ 2 ~ x / -~ .  
r 



212 J.-F. Mertens, and S. Zamir 

Proof: By Lemma 1, applied conditionally to ~N' we have 

E(Z  IP(r [ ~n)- -P(r  I ~N) II ~N ) 
r 

= E�9 P(r [ ~N)liP(" [ ~N' r) -- }2�9 P(r[ ~N)P(" i ~N' r)finn" 

By Lemma 2, applied conditionally to ~N' we get therefore 

E(Y.r l~n (r) --PN (r) II ~N ) <<- 2 Zr fiN(r) II P(" I ~N' r) -- ~P(rr I aN)P("  I ~N' r) ]}gN" 

By Lemma 10, we have that 

X(r, co, e) ~f II Po,r (" ]~N' r) -- E r P(r t a N) Po,T (" ] ~N' r) II~ 

: }]PaN, e , r  (" I ~N '  r) - Zr P ~  l ~ N ) P a N , e ,  r (" [ ~N '  r) ,Jig n 

(where co stands for a typical point of '~N, and e for a point in TI ) .  

Let now Y'�9 PaN, e, r (r [ ~N) X (r, w, e) = Y(e, w). Then 

E(E J fin (r) -- f N(r) II a N) • 2 ~, ~ P(r, e I oo) X (r, co, e) <~ 
�9 e r 

It 
<~ 2 Z P(r l ~ ) max X (r, co, e) <~ 2 2 P(r i co) Z X (r, co, e) = 2 ~ Y (e, co). 

r e r e e=l 

But by Lemma's 1 and 13, Y(e, co) has expectation ~< kVrk-e - for every e, and thus 

E[E l~n(r)--~N(r ) l] ~< 2/a k~c/k-~. 

3. Proof of the Theorem 

For any given strategy r of Plll and e > 0 define o0 and N as in b) of Definition 9 
and consider the strategy o o fP l  I defined as follows: 

( i )  Play Oo up to stageN. 
(ii) Use the transition probability described in Lemma 3, with p = PN' to choose 

e N . 

(iii) From stage N on play at every stage independently an optimal strategy in 
rNR 

For t ~>N denote b y H  t the conditional expected payoff at stage t given ~t" For 
the given r and the above described a we have: 
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H t=E(arir/tl~t)=E[E(o__A_r ~t vK)  l~t]=E[o_A_E(rl~t V K) I~  t] 

= E (_a_A ~ [ ~t), by Definition 8. 

Let co be a typical point in ~ t ,  then o = ar (co) is KI-measurable in r and 
= fr(co) is KlI-measurable in r, and so: 

k 
Ht (co) = r ?  1 Pt (r) _o r (co) A_ r fr  (6o) with Pt (r) = p (r [ co) 

from which: 

k k 
Ht(co)>rE=l~N(r)a_r(co)Ar fr (co)- -A r=lE [fN(r)--f t(r)I .  

If ~r (w) is in NR II then: 

k 
H t (co)/> (1 -- 6) r~=lPN (r) a r (6o) A r ~r(co) 

k l 
--(1 --6)A S, f t(r) E I~(co)q) -~(co)q)  1 - A  

r=l /'=1 

k 
I P N  (r) - -  P t ( r )  I - -  8 A .  

r=l 

Since or(co) is optimal in PNR (fiN) we get: 

~,  (co) >~ uOw) - A 

By Lemma 12 

k l 
2~ Pt (r) ]~ ] fr(co) (].) _. -~r(co) (]) I -- 

r=l ]=1 
k 

-- A E [ fiN (r) - f t  (r) [ -- 2 6 A. 
r=l 

Ht(co)>fu(fiN ) ACm k k - - - - r ~ l  E ( 1 5  Pt+l (r)--ft(r)ll ~t)--A E I ,~tv(r) -  
= u  

- ~ t  ( r )  I - 2 ~ A .  

Remark that E(u (fiN) I gN) = (Cav u) (PN) ~> (Vex Cav u) (PN)' therefore it follows 
I II I 

from Jensen's inequality [cf. Mertens, the argument at the end of page 224] that: 

E(u (fiN)) >~ (Vex Cav u) (p). 
II I 

Thus we get for the expectation of lit, using Lemma 14: 
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E ( H  t (co)) ~> (Vex Cav u) (p) - - -  
I I  I 

A C m  k 
2; E [Pt+l (r) --  Pt (r) [ --  2A l2 ~ f k e -  --  6 r=l 

- -  2A6. 

Summing on t from N to N + n, and using 

k 1 n+N j k - - 1  
"2 --  Z g t p t + l ( r ) - - P t ( r ) l < .  , r  

r= l n t=N n 

(by Holder's inequality), we get: 

A 2 A N  ACre  1 
~- (Vex Cav u) (p) - 2 A 5 - 2 A ~ ~ x/~  PN+n (0, 7") ~ n + N  6 n 

Finally, for each ~we may choose No big enough, e and 6 small enough as to have 

p n (o, r) > (Vex Cav u) (p) -- ~'whenever n ;>No. 
I1 I 

This finishes the proof of Part (a). 
The p r o o f  o f  the  second part of the theorem is directly inspis from that given by. 

Aumann/Maschler  [1967]. We show it is even true in the game P~o (def. dual of  def. 6). 
First, notice that the Aumann/Maschler result holds also if we allow the entries of 

the information matrices H I and H II to be not just letters from a finite alphabet H 
but rather distributions on H. Observe now that the set N R  II is a polyhedral convex 
set which is therefore the convex hull of a finite set of extreme non revealing strate- 
gies. Let r = (r 1 . . . . .  r k) be such an extreme point o f N R  II. For each r E K  let us 
add to the payoff matrix ~ r  an additional column which is the convex combination 
of the columns {1 . . . . .  l} according to the mixed strategy r r. Let us add to/71 a 
corresponding additional column whose i-th element is the probability distribution 
on the letters o f /7 I  induced by r when Pl I is playing the i-th row, (since z E N R  II, 
this distribution is independent of r.) Similarly, in/7II  a column of/30 is added. 
Now, adding this column clearly has not changed the game, (since the additional 
column is a strategy that was available to Plii in the original game too). How- 
ever, the non revealing strategy r is now represented as a constant strategy (in- 
dependent of  r.) Thus adding in this way one column for each extreme point 
of N R  II we do not change to the game but represent all strategies in N R  II as 
constant strategies. In other words ifPlli restricts himself to strategies in NR II, we 
may as well assume that he plays independently of r (namely mixtures of  the added 
columns only.) 

Thus ifP/li restricts himself to strategies in N R  II and if for each p ~ TIwe let 

qO = y~ p r ; A o  = 1 _  2 p r A r  we obtain a game of incomplete information on one 
rEp qp r~p 

side (P/If) with T I as the set of states of nature and q as the probability distribution on 
it. By Aumann/Maschler  [1968], the value of this game is Cav v, where v(q) is the value 

q 
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of the game in which Pl I plays non revealing. 
Now by our construction v (q  ) = u (t9) and Cav = Cav, so we know by Aumann/ 

q I 

Maschler [1968] that Plli can guarantee (Car u) (p). Therefore by Lemma 3 (or rather 
I 

its dual for P/II) he can guarantee (Vex Cav u) (p) using that lottery before the first 
l I  I 

stage, and from then on guaranteeing (Cav u) (p), where p is the posterior on K given 
I 

the outcome of that lottery. 

This completes the proof of the theorem. 
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