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CORE 

In a repeated zero-sum two-person game with incomplete information on both sides, the 
asymptotic value is defined as v = lim_oo v", where vn is the value of the game with n 
repetitions. It is shown here that v may be a transcendental number even for games in which 
all parameters defining the game are rational. This is in contrast to the situation in stochastic 
games where by the result of Bewley-Kohlberg [2] v is algebraic. This indicates a fundamental 
difference between stochastic games and repeated games with incomplete information. 

1. Introduction. Stochastic games are repeated games in which the payoff func- 
tions at each repetition may change according to the state in which the game is found. 
The current state of the game is known to all players and the transition probabilities 
between states from one repetition to the next one are determined by the moves of the 
players at that repetition (in a way known to all players). 

Repeated games with incomplete information are also games in which the payoff 
functions depend on the state of nature which may be one of a given set of states. 
However, unlike in stochastic games, the state of nature, and hence the payoff function 
is unknown to the players but it is the same for all repetitions of the game. It is chosen 
at the very beginning of the game according to a prescribed probability distribution, 
and from that point on no transition to another state of nature takes place. The main 
issue in these games is the fact that each player is uncertain about the real state of 
nature, about which he has only partial information. This information is revised after 
each repetition as each player observes (directly or indirectly) the behaviour of the 
other players, that may reveal some of their knowledge about the real state of nature. 

For repeated zero-sum two-person games vn denotes the value of the game consisting 
of n repetitions in which the payoff function is defined as the average payoff per 
repetition. The asymptotic value of the game is defined as v = limn-oo vn, if this limit 
exists. The existence of v for stochastic games with a finite number of states was 
proved in [2]. The existence of v for various classes of repeated games with incomplete 
information was proved in [1], [3] and [4]. 

A special feature of the Bewley-Kohlberg proof [2] is that it is algebraic. In 
particular if the parameters of the game (i.e., payoffs and probabilities) are all rational 
numbers, then v is a vector all of whose coordinates are algebraic numbers. Here we 
show that this is not true for repeated games with incomplete information- 
constructing an actual example of a rational game with transcendental asymptotic 
value. 

We are grateful to one of the referees for detecting an error in Figure 4. 

2. The game. Consider the four 3 x 4 payoff matrices {Akl}, k = 1,2, 1 = 1,2, 
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where: 
3 _ 1 _ 1 _ _i 3 _I _ 
2 2 2 2 2 2 2 2 

A o 0 0 0 A 2=- - - 1 - - 

-1 --1 --1 --1 0 0 0 0 

-- 1 - 1 3 - - - 1 - 1 3 
2 2 2 2 2 

A2'I I -1 - I0 0 0 0 
0 0 0 0 -1 - -1 -1 

For each (p,q), 0 < p < 1, 0 < q < 1 and for each positive integer n, consider the 
2-person 0-sum game rn(p,q) defined as follows: At the beginning of the game, a 
chance move chooses a payoff matrix according to the probability distribution: 
Pr(A l) = pq', Pr(A 12) = pq, Pr(A 21) = p'q', Pr(A 22) = p'q (where throughout this pa- 
per we denote p' = I - p, q' = 1 - q). If the game A kl is chosen then player I (i.e., the 
maximizer and the row chooser) is informed what is the value of k and player II is 
informed what is the value of 1. Then the following procedure is repeated n times: 
At stage t (t = 1,2, ... n), player I chooses it E {1,2,3} and player II chooses j, E 

{1,2,3, 4}, then the pair (i, jt) is announced. After the nth stage player II pays player I 
(l /n) a,a,t where A kl= (al) is the payoff matrix chosen by chance at the 
beginning of the game. Denote by v (p, q) the value of P,,(p, q). 

A function f defined on the unit square S = (p, q)10 < p < 1,0 q < 1) is said to 
be concave in p if for any 0 < q < 1, f(p,q) is a concave function on 0 < p < 1. 
Similarly is defined the notion of convex function in q. For any f defined on S the 
concavification of f (in p) is denoted by Cave f and is defined as the lowest function 
(pointwise) qp which is concave in p and satisfies p(p, q) > f(p, q)V(p, q) E S. Similarly 
Vexq f denotes the convexification of f (in q) which is the highest function 4 which is 
convex (in q) and satisfies 4'(p, q) < f(p, q), V(p, q) E S. 

Coming back to our game, it belongs to the class of games treated in [4] from where 
we have the following result: 

The asymptotic value v(p, q) = lim_oo v(p, q) exists for each (p, q) E S and is equal 
to the unique solution of the pair of functional equations: 

(i) v = Vexq max(u, v) 
(ii) v = Cave min(u, v), 

where the function u is the value of (ordinary) matrix game 

A(p,q) =pq'A + pqA12 + p'q'A21 + p'qA22. 

As usual, in the above statement max(u, v) and min(u,v) denote the pointwise 
maximum and minimum respectively of the functions u and v. 

REMARK. Note that u(p, q) is the value of the game in which neither player is told 
anything about the choice of chance A kl. Or, equivalently, the game in which the 
players are not allowed to use the information they have about the "real state of 
nature" A kl. 

For the game under consideration we have 

2pq'- 2pq- 2p'q'- 2p'q- 2 

A(p, q) = 
-pq - p'q' -_pq _ p q' _pq _ p,q -pq - p'q' 
-pq', _- p'q -pq' _- p'q -pq' - p'q' -pq, _- p'q 

Note that A(p, q) is invariant under replacing p by p' as well as under replacing q by 
q'. This implies that the value u of A is a symmetric function both about p = and 
q= 2' 
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2pq-p- q / 2pq' - 
-p-q' 

o 1/2 1 q 

FIGURE 1 

It is easily computed that the function u is given as follows (see Figure 1): 

2pq- for p+ q> I.O< p <,O < q <, 

u(p,q)= 2pq-p-q for p+q < ,0 < p<,0< q <, 

u(p,q) = u(p'q) = u(p, q') = u(p'q'). 

To compute v = lim,,oo v we have now to solve the equations (i) and (ii). The 
technique for solving these equations is not quite a trivial matter and the interested 
reader can find it in the Appendix. The result is the function given in Figure 2. 

Figure 2 is to be read as follows: The black thick lines are the locus of points (p, q) 
on which v(p, q) = u(p,q). This locus consists of the segments p = 0, p = 1, the curve 

p = 1/2[11 - ln(2 - 4q)] on i < q < I and its symmetries. At any point (p,q) the value 

v(p, q) is obtained by linear interpolation between the points of v = u, either in the p 
direction or in the q direction, as indicated by the arrows. The values in the various 
regions, computed according to the above mentioned convention, are also indicated in 
Figure 2. (For the regions on which v is not specified, it is obtained by the symmetry 
v(p,q) = v(p',q) = v(p,q') = v(p',q').) 

p 

1/2 -q ( -q' 

4pq - p - q 
+ p(! -2q)ln(I -2q) 

0 1/4 1/2 3/4 I q 

FIGURE 2 
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Note that although the computation of v is not straightforward, once it is given, it is 
not too difficult to verify that it satisfies equations (i) and (ii) and, since these 
equations have a unique solution (see [4]), one has a relatively easy verification that 
this is in fact the asymptotic value. 

We have thus obtained the desired result; for instance, at p = 4, q = 8, we have 
v = - I -n 2/16, and atp = p , q =, we have v = - ? - 1/8e, both transcendental 
numbers. 

3. Remarks. (1) The example given here is of the "simplest" type of game possible. 
For incomplete information on one side (i.e., p = 0 or q = 0) one has by [1] that 
lim,,o v~ = Cavp u (or lim_,o v, = Vexq u). The operations Cav and Vex can be done 
algebraically and u is a rational function in p (or q), since it is the value of a matrix 
game whose entries are linear forms in p (or q). Hence in this case the asymptotic value 
is necessarily an algebraic function. 

Among the games with incomplete information on both sides our example falls both 
in what is known as the "independent case" and in the "standard information case" 
(see [4]). Mathematically, these two subcases are significantly simpler than the general 
case treated in [3]. 

(2) The Minmax and the Maxmin of the infinite games of the type treated here (see 
[1] and [5]) are, respectively, Vexq Cavp u and Cavp Vexq u. As explained in the 
previous remark, these are always algebraic functions. In particular, it follows that if 
the infinite game has a value-i.e., if Vex Cavu = Cav Vex u = vo-then vo is an 
algebraic function. Since in such a case we have also voo = lim,,o v, it follows that the 
phenomenon we have pointed out does not hold for this type of games when the 
infinite game has a value. 

(3) In a wider class of repeated games with incomplete information, Sorin [7] has 
obtained games in which even the Minmax and the Maxmin values of the infinite 
game can be transcendental functions. 

4. Appendix-The computation of v(p, q). Before starting our computation of v, we 
remark again that we can find v and prove that it is the required solution without 
proving all arguments that lead to the solution. It suffices to check that the suggested v 
satisfies equations (i) and (ii), since these have a unique solution. 

Let us now proceed to solve the equations: 
(i) v = Vexq max(u, v), 
(ii) v = Cave min(u, v). 

PROPOSITION 1. Cavp Vexq u < v < Vexq Cavp u. 

PROOF. Note that both operators Cavp and Vexq are monotonic nondecreasing 
(i.e., f > g = Cav f > Cav g and Vex f > Vex g). Thus by (i) we have: v > Vexq u. But 
by (ii) v is concave in p, hence v > Cavp Vexqu. The other inequality follows in a 
similar way. 

As we mentioned before Cav Vex u and Vex Cav u have a special significance; these 
are respectively the Maxmin and the Minmax of the infinite game. 

We first compute those bounds. The computation is rather straightforward and the 
results are given in Figure 3 and Figure 4. 

Since for q < I and q > I we found that Vex Cav u = Cav Vex u, it follows from 
Proposition 1 that v(p, q) = - q for q < I (and symmetrically for q' < 4). For the same 
reason, we have: v = Vex Cav u = Cav Vex u = u on the lines p = 0 and p = 1. I 

We need now the following proposition: 

PROPOSITION 2. (a) On the regions on which u < v, v is linear in the p direction. 
(b) On the regions on which u > v, v is linear in the q direction. 
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0 1/4 1/2 3/4 1 q 3/8 1/2 5/8 1 q 

FIGURE 3 FIGURE 4 

This proposition is quite apparent from the equations determining v. Formally it is a 
consequence of Lemma 6 in [4]. 

In view of Proposition 2, since both u and v are continuous, to compute v it suffices 
to determine the locus of points (p, q) on which v(p, q) = u(p, q). The rest will be then 
determined by linear interpolations in the proper directions. 

We now try to identify regions on the square according to whether v > u, v < u or 
v = u: 

-On the lines p = 0 and p = I and at the points (p = , q = ?) and (p = , q = 3), 
we have v = u. 

-On {(p,q)lp = -4 < q <3}, u > VexCavu. Hence, by Proposition 1, u > v on 
that region. 

-On {(p,q)lq = I,0 < p < u < CavVexu. Hence, by Proposition 1, u < v on 
that region. By the continuity of u and v we must have u > v also on a neighborhood 
of the set for which q > . 

-Thus, there should be a line of u = v which starts at (p, q) = (?, ?) and goes down 
rightwards (and, of course, there are the four symmetries of this line). 

The general situation up to now seems to be as described in Figure 5. 
Letting the line of v = u in Figure 5 be p = f(q) (in the first quarter; p < ?, q < ?) 

p 

1/2- ~u>v 
P =- f(q)"/ 

a line of u = v R , 

u < v 

0 1/4 1/2 3/4 1 q 

FIGURE 5 
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and assuming that there is no such additional line below it except p = 0, we can now 
write the function v below and above the line p = f(q): 

-Below p = f(q) (the region R in Figure 5), u < v, and thus v is obtained by linear 
interpolation in the p direction between p = 0 and p = f(q). Carrying out this interpola- 
tion yields: 

v(p,q)=2pq-q- 2f(q) + (q on R. (1) 

-Above the line p = f(q) (the region D in Figure 5), u > v, and thus v is obtained 
by linear interpolation in the q direction between p = f(q) and p = f(q'). But by 
symmetry f(q') = f(q). Also by symmetry of u, we have that on the region D, v(p, q) is 
constant in q. More explicitly, 

v(p,q) = u(p, f-'(p)) onD. (2) 

It remains now to find the function f. To do this we need the following: 

PROPOSITION 3. At any point (p,q) at which v(p,q) = u(p,q), v is differentiable if u 

itself is differentiable provided that the line through (p, q) on which v = u is not parallel 
to one of the axes. 

A proof of this last proposition can be found in [6]. In particular this proposition 
implies that av/aq is continuous across the line p = f(q). By (1) and (2) this condition 
yields the differential equation: 

(1-2q)f'+4f2=0. (3) 

With the boundary condition f(?) = ?, the solution is f(q) = 1/2[1 - ln(2 - 4q)]. 
Note that limq 1/2 f(q) = 0. The function v is now readily computed and verified to 
satisfy (i) and (ii). 
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