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110 S. Zamir 

1. Introduction 

This chapter and the next apply the framework of repeated garnes, developed 
in the previous chapter, to garnes of incomplete information. The aim of this 
combination is to analyze the strategic aspects of information: When and at 
what rate to reveal information? When and how should information be 
concealed? What resources should be aUocated to acquiring information? 
Repeated garnes provide the natural paradigm for dealing with these dynamic 
aspects of information. The repetitions of the garne serve as a signaling 
mechanism which is the channel through which information is transmitted from 
one period to another. 

It may be appropriate at this point to clarify the relation of repeated 
incomplete information garnes to stochastic games, treated in a forthcoming 
volume of this Handbook. Both are dynamic models in which payoffs at each 
stage are determined by the state of nature (and the player's moves). However, 
in stochastic games the state of nature changes in time but is common 
knowledge to all players, while in repeated garnes of  incomplete information the 
state of  nature is fixed but not known to all players. What changes in time is 
each player's knowledge about the other players' past actions, which affects bis 
beliefs about the (fixed) state of nature. But it should be mentioned that it is 
possible to provide a general model which has both stochastic garnes and 
repeated games of incomplete information as special cases [see Mertens, Sorin 
and Zamir (1993, ch. IV), henceforth MSZ]. 

An important feature of the analysis is that when treating any specific game 
orte has to consider a whole family of  garnes, parameterized by the prior 
distribution on the states of nature. This is so because the state of information, 
which is basically part of the initial data of the game, changes during the play 
of the repeated garne. 

Most of the work on repeated games of incomplete information was done for 
two-person, zero-sum games, which is also the scope of this chapter. This is not 
only because it is the simplest and most natural case to start with, but also 
because it captures the main problems and aspects of strategic transmission of 
information, which can therefore be studied "isolated" from the phenomena of 
cooperation, punishments, incentives, etc. Furthermore, the theory of non- 
zero-sum repeated games of incomplete information makes extensive use of the 
notion of punishment, which is based on the minmax value borrowed from the 
zero-sum case. 
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1.1. Illustrative examples 

Before starting our formal representation let us look at a few examples 
illustrating some of the main issues of strategic aspects of information. We start 
with an example, studied very extensively by Aumann and Maschler (1966, 
1967): 

Example 1.1. Imagine two players I (the maximizer) and II (the minimizer) 
playing repeatedly a zero-sum game given by a 2 x 2 payoff matrix. This matrix 
is chosen (once and for all) at the beginning to be either G 1 or G 2 where 

Player I is told which game was chosen but player II is not; he only knows that 
it is either G 1 o r  G 2 with equal probabilities and that player I knows which one 
is it. After the matrix is chosen the players repeatedly do the following: player 
I chooses a row, player II chooses a column (simultaneously). A referee 
announces these moves and records the resulting payoff (according to the 
matrix chosen at the beginning). He does not announce the payoffs (though 
player I of course knows them, knowing the moves and the true matrix). The 
game consists of n such stages and we assume that n is very large. At the end of 
the nth stage player I receives from player II the total payoff recorded by the 
referee divided by n (to get an average payoff per stage in order to be able to 
compare games of different length). 

So player I has the advantage of knowing the real state (the real payoff 
matrix). How should he play in this garne? 

A first possibility is to choose the dominating move in each state: always play 
Top if the garne is G1 and always play Bottom if it is G 2. Assuming that I 
announces this strategy (which we may as weil assume by the minmax 
theorem), it is a completely revealing strategy since player II will find out which 
matrix has been chosen by observing whether player I is playing Top or 
Bottom. Having found this, he will then choose the appropriate column (Right 
in G 1 and Left in G 2) to pay only 0 from then on. Thus, a completely revealing 
strategy yields the informed player an average payoff of almost 0 (that is a total 
payoff of at most 1, at the first stage after which the matrix is revealed, thus an 
average of at most 1/n). 

Another possible strategy for player I is to play completely non-revealing, 
that is, ignoring his private information and playing as if he, just like player II, 
does not know the matrix chosen. This situation is equivalent to repeatedly 
playing the average matrix garne: 
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This game (which may also be called the non-revealing game) has a value 1/4 
and player I can guarantee this value (in the original game) by always playing 
Top and Bottom with equal probabilities (1/2 each) independently of  what the 
true matrix is. 

So, strangely enough, in this specific example the informed player is better 
oft not using his information than using it. As we shall see below, the 
completely non-revealing strategy is in fact the (asymptotically) optimal 
strategy for player I; in very long garnes he cannot guarantee significantly more 
than 1/4 per stage. 

Example 1.2. The second example has the same description as the first one 
except that the two possible matrices are now 

G I = (  - 1  0 00)' G 2 = ( ~  -01)" 

Following the line of discussion of the previous example, if player I uses his 
dominating move at each state, Bottom in G 1 and Top in G 2, he will guarantee 
a payoff of 0 at each stage and again this will be a completely revealing 
strategy. Unlike in the previous example, here this strategy is an optimal 
strategy for the informed player. This is readily seen without even checking 
other strategies: 0 is the highest payoff in both matrices. Just for comparison, 
the completely non-revealing strategy would yield the value of the non- 
revealing game 

0 

which is -1 /4 .  

Example 1.3. Consider again a game with the same description as the 
previous two examples, this time with the two possible matrices given by 

0 4 

Playing the dominant rows (Top in G 1 and Bottom in G 2) is again a completely 
revealing strategy which leads to a long-run average payoff of (almost) 0 (the 
value of each of the matrices is 0). Playing completely non-revealing leads to 
the non-revealing game 
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which has a value 0. So, both completely revealing and completely non- 
revealing strategies yield the informed player an average payoff of 0. Is there 
still another, more clever, way of using the information to guarantee more than 
0? If there is, it must be a strategy which partially reveals the information. In 
fact such a strategy exists. Here is how an average payoff of 1 per stage can be 
guaranteed by the informed player. 

Player I prepares two non-symmetric coins, both with sides (T, B). In coin 
C ~ the corresponding probabilities are (3/4, 1/4) while in coin C a they are 
(1/4, 3/4). Then he plays the following strategy: if the true matrix is G ~, 
k = 1, 2, flip coin C ~. Whichever coin was used, if the outcome is T play Top in 
all stages, if it is B ,  play Bottom in all stages. 

To see what this strategy does, let us assume that even player II knows it. He 
will then, right after the first stage, know whether the outcome of the coin was 
T or B (by observing whether player I played Top or Bottom). He will not 
know which coin was flipped (since he does not know the state k). However, 
he can update his beliefs about the probability of each matrix in view of a given 
outcome of the coin. Using Bayes' formula we find 

P ( G I I T ) = 3 / 4  and P ( G I l B ) = I / 4 .  

Given that player I is playing Top, the payoffs will be either according to the 
line (4, 0, 2) (this with probability 3/4) or according to the line (0, 4, - 2 )  (and 
this with probability 1/4). The expected payoffs given Top are therefore 
(depending on the move of player II) 

(3/4)(4, O, 2) + (1/4)(0, 4, - 2 )  = (3, 1, 1). 

Similarly, given that player I is playing Bottom, the expected payoffs are 

(1/4)(4, 0, - 2 )  + (3/4)(0, 4, 2) = (1, 3, 1). 

We conclude that in any event, and no matter what player II does, the 
conditional expected payoff is at least 1 per stage. Therefore the expected 
average payoff for player I is at least 1. We shall see below that this is the most 
player I can guarantee in this game. So the optimal strategy of the informed 
player in this example is partially to reveal his information. 

Let us have a closer look at this strategy. In what sense is it partially 
revealing? Player I, when being in G 1, will more likely (namely with probability 
3/4) play Top and when being in G a, he will more likely play Bottom. 
Therefore when Top is played it becomes more likely that the matrix is G 1, 
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while when Bot tom is played it becomes more likely that it is G 2. Generally, 
player I is giving player I1 information in the right direction, but it is not 
definite; player II will adjust his beliefs about the true matrix from (1/2,  1/2) 
to either (3/4,  1/4) or (1/4, 3/4) and with probability 3/4 this adjustment will 
be in the right direction, increasing the subjective probability for the true game. 
This idea of changing a player's beliefs by giving him a signal which is partially 
correlated with the true state is undoubtedly the heart of the theory of garnes 
with incomplete information. 

There  is one point we wish to add about the notion of revealing. In all three 
examples we discussed the informed player was revealing information when- 
ever he was using it. However,  in principle, and in fact in the general model 
which will be presented below, these are two distinct concepts. Using informa- 
tion means to play differently in two different informational states; for 
instance, in our first example player I was using his information when he was 
playing Top in G 1 and Bot tom in G 2. Revealing information is changing the 
beliefs of the uninformed player. Clearly, when the move of the informed 
player is observed by the uninformed player - which we shall later call the full  
monitoring case - the two concepts are two expressions of the same thing; the 
only way to play non-revealing is to play the same way, independently of one's 
information, i.e. not to use the information. This was the case in all our 
examples. More generally, the move of the informed player need not be 
observable. The uninformed player receives some signal which is correlated in 
an arbitrary way with the move of the informed player. It may then weil be 
that in order  to play non-revealing, a player has to use his information. 
Similarly, he may be revealing his information by not using it. 1 

2. A general model 

A repeated game of incomplete information consists of the following elements: 
• A finite set I, the set of players. 
• A finite set K, the set of stares of nature. 
• A probability distribution p on K, the prior probability distribution on the 

states of nature. 
• For  each i E I,  a partition K i of K, the initial information of player i. 
• For  each i E I and k @ K, a finite set S~, which is the same for all k in the 

same partition element of K i. This is the set of moves available to player I at 
state k. By taking the Cartesian product II~ S~ we may assume, without loss 
of generality, that the sets of moves S i are state independent.  Let  S = II~ S ~. 

1For examples, see MSZ (1993, ch. V, section 3.b). 
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• For each k ~ K, a payoff function G~: S--+ R(  That is Gk(s) is the vector of 
payoffs to the players when they play moves s and the state is k. 

• For each i E I, a finite alphabet A i, the set of signals to player i. Let A =IIgA i 
and s¢ = A(A) be the set of probability distributions on A. 

• A transition probability Q from K x S to d ,  the signaling probability 
distribution [we use the notation Qk(s) for the image of (k, s)]. 

On the basis of these elements the repeated garne (or supergame) is played in 
stages as follows. At  stage 0 a chance move chooses an element k E K 
according to the probability distribution p. Each player i is informed of the 
element of K i containing the chosen k. Then at each stage m (m = 1, 2 , . . . ) ,  

g E S i, a vector of signals a E A is chosen according to each player i chooses s m 
the probability distribution Qk(s) and a g is communicated to player i. This is 
the signal to player i at stage m. 

Notice that, as mentioned in the Introduction, the state k is chosen at stage 0 
and remains fixed for the rest of the game. This is in contrast to stochastic 
games (to be discussed in a forthcoming volume of this Handbook) in which 
the state may change along the play. Also note that the payoff gm at stage m is 
not explicitly announced to the players. In general, on the basis of the signals 
he receives, a player will be able to deduce only partial information about his 
payoffs. 

2.1. Classification 

Games of incomplete information are usually classified according to the nature 
of the three important elements of the model, namely players and payoffs, 
prior information, and signaling structure. 

(1) Players and payoffs. Here we have the usual categories of two-person 
and n-person games. Within the two-person games one has the zero-sum games 
treated in this chapter and the non-zero-sum games treated in Chapter 6 of this 
Handbook.  

(2) Prior information. Within two-person garnes the main classification is 
games with incomplete information on one side, versus incomplete information 
on two sides. In the first class are games in which one player knows the stare 
chosen at stage 0 (i.e. his prior information partition consists of the singletons 
in K) while the other player gets no direct information at all about it (i.e. his 
prior information partition consists of one element { K}). More general prior 
information may sometimes be reduced to this case, for example if one of the 
player's partition is a refinement of the other's partition, and the signaling 
distribution Q, as a function of k, is measurable with respect to the coarser 
partition. 

(3) Signaling structure. The simplest and most manageable signaling struc- 
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ture is that of full monitoring. This is the case in which the moves at each stage 
are the only observed signals by all players, that is A i = S for all i, and for all k 
and all s, Qk(s) is a probability with mass 1 at (s . . . .  , s). The next level of 
generality is that of state independent signals. This is the case in which Qk(s) is 
constant in k, and consequently the signals do not reveal any direct information 
about the state but only about the moves. Hence the only way for a player to 
get information about k is by deducing it from other players' moves, about 
which he learns something through the signals he receives. There is no 
established classification beyond that, although two other special classes will be 
treated separately: the case in which the signals are the same for all players and 
include full monitoring (and possibly more information), and the case in which 
the signal either fully reveals the state to all players or is totally non- 
informative. 

3. Incomple te  information on one side 

In this section we consider repeated two-person, zero-sum games in which only 
one player knows the actual state of nature. These garnes were first studied by 
Aumann,  Maschler and Stearns, who proved the main results. Later contribu- 
tions are due to Kohlberg, Mertens and Zamir. 

Since in this chapter we consider only two-person, zero-sum garnes it is 
convenient to slightly modify out notation for this case by referring to the two 
players as player 1 (the maximizer) and player II (the minimizer). Their sets of 
pure actions (or moves) are S and T, respectively, and their corresponding 
mixed moves are X = A(S) and Y = •(T). The payoff matrix (to I) at state 
k E K is denoted by G g with elements Gs~. The notation for general signaling 
will be introduced later. 

3.1. General properties 

We shall consider the games Fn(p), Fa(p) and Foo(p) which are defined with 
the appropriate valuation of the payoffs sequence (gm)~=l = (Gk(Sm))m=l " 
Before defining and analyzing these we shall first establish some general 
properties common to a large family of garnes with incomplete information on 
one side. 

The garnes considered in this section will all be zero-sum, two person garnes 
of the following form: chance chooses an element k from the set K of states 
(games) according to some p E A(K). Player I is informed which k was chosen 
but player II is not. Players I and II then, simultaneously, choose o -g E X and 
~-E ~,  respectively, and finally Gk(cr k, ~-) is paid to player I by player II. The 
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sets X and 3- are convex sets of strategies, and the payoff functions G~(cr ~, r) 
are bilinear and uniformly bounded on X x ~-. We may think of k as the type 
of player I which is some private information known only to hirn and could 
attain various values in K. This is thus a garne of incomplete information on one 
side, on the side of player II. 

Even though the strategies in X and ~-will usually be strategies in some 
repeated garne (finite or infinite), it is useful at this point to consider the above 
described game as a one-shot garne in strategic form in which the strategies are 
o - ~ X  ~ and ~'~ 9-, respectively, and the payoff function is GP(o-,r)  = 
E~ p~G~(o -~, ~'). Denote  this game by F(p) .  

Theorem 3.1. The functions ~ ( p )  = inf, sup~ GP(o -, 7) and w_(p) = 
sup~inf, GP(o ", ~) are concave. 

Proof. The argument is the same for both functions. We will show it for 
~ ( p ) .  Let  p = (Pe)eEÆ be finitely many points in A(K), and let a = («e)c~e be 
a point in A(E) such that Eee e aep c = p. We claim that ~ ( p ) t >  Ee~ e aeff:(pc). 
TO see this, consider the following two-stage game: chance chooses e E E 
according to the probability distribution a,  then k @ K is chosen according to 
Pc, the players then choose o -k E X and ~- E 3-, respectively, and the payoff is 
Gk(cr k, «~, V;~ .~: ~:: ':_:~: -:'~ » 7:~ '>.:-~~, ~ '»~~'~h vf w~~cb olayer I is informed of 

o~:y,.,~i~ ::; (.?:~::.: : a:«? ::::? .~:-~,;~,: . : ~ : e  ii  :~:~~:.« or r.~.ay a«~ !~e informed of the 

~ : , ; ,  '! ?a/:»~" i'~ .:~ i~ä ,:~:~~~! ä~': h ¢  o~~~:.~c/;,c~ e :~:,«: ~ituation following the 
first lottery i~ ~~]~:~i»a;:::a; :r~» ;'(y, ). Tnas, the inf~sup~ for the garne in which 
player II is informed of the outcome of the first stage is £ee£ O~eff2(Pe)" This 
garne is more favorable to Il  than the garne in which he is not informed of the 
value of e, which is equivalent to /~(~e OlePe)  ~- F(p) .  Therefore  we have: 

ff2(p) >! E °Zeff~(Pe). [] 
e E E  

Remark.  Although this theorem is formulated for games with incomplete 
information on one side it has an important consequence for garnes with 
incomplete information on both sides. This is because we did not assume 
anything about the strategy set of player II. In a situation of incomplete 
information on both sides, when a pair of types, one for each player, is chosen 
at random and each player is informed of his type only, we can still think of 
player II as being "uninformed"  (of the type of I) but with strategies consisting 
of choosing an action after observing a chance move (the chance move 
choosing his type). When doing this, we can use Theorem 3.1 to obtain the 
concavity of ~ ( p )  and w(p)  in garnes with incomplete information on both 
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sides, when p (the joint probability distribution on the pairs of types) is 
restricted to the subset of the simplex where player I's conditional probability 
on the state k, given his own type, is fixed. 

The concavity of w(p)  can also be proved constructively by means of the 
following useful proposition, which we shall refer to as the splitting procedure. 

Proposition 3.2. Let p and (Pe)eeE be finitely many points in A(K),  and let 
ol : (Ole)eE E be a point in A(E)  such that ~ e E E  OlePe : P" Then there are vectors 
( Ixk)~cK in A(E)  such that the probability distribution P on K x E obtained by 
the composition o f  p and (Ixk)~er (that is k E K is chosen according to p and 
then e E E is chosen according to tx k) satisfies 

P(" I e) = pe and P(e) ~--- Ole œ for all e E E . 

Proof. In fact, if ph = 0,/z k can be chosen arbitrarily in A(E). If ph > 0, /z k is 
given by/x~(e) = aeP~e/p k. [] 

Let player I use the above described lottery and then guarantee W(pe) (Up to 
e). In this way he guarantees ~"e °ZeW-W-(pe), even if player II were informed of 
the outcome of the lottery. So __w(p) is certainly not smaller than that. 
Consequently the function w(p) is concave. 

The idea of splitting is the following. Recall that the informed player, I, 
knows the state k while the uninformed player, II, knows only the probability 
distribution p according to which it was chosen. Player I can design a state 
dependent lottery so that if player II observes only the outcome e of the 
lottery, his conditional distribution (i.e. his new "beliefs") on the states will be 
Pe" Let us illustrate this using Example 1.3. At p = (1/2, 1/2) player I wants to 
"split" the beliefs of II to become Pl = (3/4, 1/4) or P2 = (1/4, 3/4) (note that 
p = l / 2 p l + 1 / 2 p 2 .  ) He does this by the state dependent lottery on 
{T, B}7 ]&l = (3/4, 1/4) and/z 2 = (1/4, 3/4). 

Another general property worth mentioning is the Lipschitz property of all 
functions of interest (such as the value functions of the discounted garne, the 
finitely repeated garne, etc.), in particular ~3(p). This follows from the uniform 
boundedness of the payoffs, and hence is valid for all repeated games discussed 
in this chapter. 

Theorem 3.3. The function ff,(p) is Lipschitz with constant C (the bound on 
the absolute value o f  the payoffs). 

Proof. Indeed, the payoff functions of two games F (p l )  and F(p2) differ by 
at most C]lPl-p2111. [] 

Let us turn now to the special structure of the repeated game. Given the 
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basic data (K, p, (Gk)kCK, A,  B, Q) (here A and B are the signal sets of I and 
II, respectively), any play of the garne yields a payoff sequence (gm)m=a = 
(Gk(Smtm))~=l. On the basis of various valuations of the payoff sequence, we 
shall consider the following garnes (as usual, E denotes expectation with 
respect to the probability induced by p, Q, and the strategies). 

The n-stage game, F~(p), is the garne in which the payoff is 
Yn = E(~ù) = E((1/n) En= a gin)" Its value is denoted by vA(p). 

The h-discounted garne, FA(p) (for ~ E (0, 1]), is the garne in which the 
payoff " = m -  a lS E(2m= a h(1 - A) gin)" Its value is denoted by vA(p). 

The values vù(p) and v;~(p) clearly exist and are Lipschitz by Theorem 3.3. 
As in the previous section, the infinite garne F=(p) is the game in which the 

payoff is some limit of gn such as lim sup, lim inf of, more generally, any 
Banach limit ~ .  It turns out that the results in this chapter are independent of 
the particular limit function chosen as a payoff. The definition of the value for 
F=(p) is based on a notion of guaranteeing. 

Definition 3.4. (i) Player I can guarantee a if 

Ve > 0, Bo-, BAr,, such that ~n(o-, z) i> a - «, Vz, Vn >/N~ . 

(ii) Player II can defend a if 

Ve > 0, Vo-, 3z, 3N, such that ~n(o-, z) ~< a + e, Vn t> N .  

v_(p) is the maxmin of ~=(p) if it can be guaranteed by player I and can be 
defended by player II. In this case a strategy o- associated with _v(p) is called 
é-optimal. The minmax fr(p) and e-optimal strategies for player I1 are defined 
in a dual way. A strategy is optimal if it is e-optimal for all e. 

The garne E~(p) has a value v~(p) iff v_(p) = 6(p) = v~(p). It follows readily 
from these definitions that: 

Proposition 3.5. I f  F=(p) has a value v=(p), then both limn_~=vn(p) and 
lima_~0v~(p) exist and they are both equal to v~o(p). An  e-optimal strategy in 
E=(p) is an e-optimal strategy in all En(p) with sufficiently large n and in all 
F~(p) with sufficiently small h. 

By the same argument used in Theorem 3.1 or by using the splitting 
procedure of Proposition 3.2 we have: 

Proposition 3.6. In any version of  the repeated garne (Fn(p) , F~(p) or F=(p)), 
if  player I can guarantee f (p )  then he can also guarantee Cav f (p ) .  

Here Cav f is the (pointwise) smallest concave function g on A(K) satisfying 
g(p) >~f(p), Vp E a(K). We now have: 
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Theorem 3.7. vn(p) and va(p) converge uniformly (as n--->o~ and h---~0, 
respectively) to the same limit which can be defended by player II in I2(p) .  

Proof.  Let % be an c-optimal strategy of player II in Fn(p) with • = 1/n and 
let vni(p ) converge to lim infn_~~ On(P). NOW let player II play rnl for ni+ 1 times 
(i = 1 , 2 . . . ) - t h u s  for n~.ni+ 1 per iods -be fo re  increasing i by 1. By this 
strategy player II guarantees lim infn_~~ v~(p). Since player II certainly cannot 
guarantee less than lim supn__,~ vn(p) , it follows that on(p) converges (uniform- 
ly by Theorem 3.3). 

As for the convergence of va, since clearly player II cannot guarantee less 
than limsupa_,0 vA(p) , the above described strategy of player II proves that 

lim sup va(p) <~ lim v n( p) . 
a----~ 0 n--~ 

To complete the proof we shall prove that limn_~= vn(p) <~ lim infa__,0 vA(p) by 
showing that limn~ ~ v , (p)  <~ va(p) for any • > 0. In fact, given A > 0 let ~'a be 
an optimal strategy of player II in the h-discounted game and consider the 
following strategy (for player II): start playing 7~ and at each stage restart ~a 
with probability ,~ and with probability (1 - ,~) continue playing the previously 
started z a. With this strategy, for any é > O, we have E(~ . )  ~< v a + • for all n 
sufficiently large (compared with l /h) .  It follows that limn__,=vù(p)~< 
vA(p). [] 

Remark. If we interpret the discounted garne as a repeated game with a 
probability A of stopping after each stage, then the convergence of v A can be 
generalized as follows. Let a = { a n } ~= a be a probability distribution, with finite 
expectation, of T - the stopping time of the g a m e -  and let va(p) be the value 
of this repeated game. If {at}~=l is a sequence of such distributions with mean 
going to infinity, then limz__,= va,(p ) = Cav u(p). 

3.2. Full monitoring 

The first model we consider is that of incomplete information on one side and 
with full monitoring. This is the case when the moves of the players at each 
stage are observed by both of them and hence they serve as the (only) device 
for transmitting information about the state of nature. The repeated garne with 
the data (K, p, S, T, (G~)gE«) is denoted by F(p) and is played as follows. 

At  stage 0 a chance move chooses k E K with probability distribution 
p @ A(K), i.e. ph is the probability of k. The result is told to player I, the row 
chooser, but not to the column chooser, player II who knows only the initial 
probability distribution p. 
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At stage m = 1, 2 , . . ,  player I chooses s m ~ S and II chooses, simulta- 
neously and independently, t m E T and then (sm, tm) is announced (i.e. it 
becomes eommon knowledge). 

Actually F(p) is not a completely defined garne since the payoff is not yet 
specified. This will be done later; according to the specific form of the payoff, 
we will be speaking of Fù(p) (the n-stage game), F~(p) (the diseounted garne) 
or F=(p) (the infinitely repeated garne). 

The main feature of these games is that the informed player's moves will 
typieally depend on (among other things) bis information (i.e. on the value of 
k). Sinee these moves are observed by the uninformed player, they serve as a 
channel which can transfer information about the state k. This must be taken 
into account by player I when choosing his strategy. In Example 1.1., for 
instance, playing the move s = 1 if k = 1 and s = 2 if k = 2 is a dominant 
strategy as far as the single-stage payoff is concerned. However, such behavior 
will reveal the value of k to player II and by that enable him to reduce the 
payoffs to 0 in all subsequent stages. This is of course very disadvantageous in 
the long run and player I would be better oft even by simply ignoring his 
information. In fact, playing the mixed move (1/2, 1/2) at each stage in- 
dependently of the value of k guarantees an expected payoff of at least 1/4 per 
stage. We shall see that this is indeed the best he can do in the long run. 

3.2.1. Posterior probabilities and nonrevealing strategies 

For n = 1 , 2 , . . ,  l e t  Hin I =  [S × T] n-1 be the set of possible histories for 
player II at stage n (that is, an element h n E H f f  is a sequence 
( S l ,  tx ,  S2,  t2;  • • • , Sn-1, tn 1) of the moves of the two players in the first n - 1 
stages of the garne). Similarly, H~  denotes the set of all infinite histories (i.e. 
plays) in the garne. The set of all histories is H n = Un>l Hin I. Let 9gin I be the 
er-algebra on H ~  generated by the cylinders above H~II and let Y(~ = V n > l  ~nII" 

A pure strategy for player I in the supergame F(p) is o-= (o-1, er2 . . . .  ), 
where for each n, o-ù is a mapping from K x y(ii to S. Mixed strategies are, as 
usual, probability distributions over pure strategies. However, since F(p) is a 
garne of perfect recall, we may (by Aumann's  generalization of Kuhn's 
Theorem; see Aumann (1964)) equivalently consider only behavior strategies 
that are sequences of mappings from K x ffLaIn I to X or equivalently f rom ffL°In I to 
X I(. Similarly, a behavior strategy of player II is a sequence of mappings from 
~~i (since he does not know the value of k) to Y. Unless otherwise specified 
the word "strategy" will stand for behavior strategy. A strategy of player I is 
denoted by o- and one of player II by ~-. 

Any strategies er and z of players I and II, respectively, and p E ZI(K) induce 
a joint probability distribution on states and his tor ies-  formally, a probability 
distribution on the measurable space (K x H~ ,  2K® Y(~). This will be our 
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basic probability space and we will simply write P or E for probability or 
expectation when no confusion can arise. 

Let  pl  -- p and for n/> 2 define 

k P(kl ~i,) Vk~K 

These random variables on y(i~ have a clear interpretation: pù is player II's 
posterior probability distribution on K at stage n given the history of moves up 
to that stage. These posterior probabilities turn out to be the natural state 
variable of the garne and therefore play a central role in our analysis. 

/~II,~co martingale, being a Observe first that the sequence (Pù)2=I is a w~ù Jn=~ 
sequence of conditional probabilities with respect to an increasing sequence of 
o--algebras, i.e. 

E(pù+~[Y(~ù~)=pn V n : l , 2 , . . .  

In particular, E(p~)  = p  Vn. Furthermore,  since this martingale is uniformly 
bounded,  we have the following bound on its L~ variation (derived directly 
from the martingale property and the Cauchy-Schwartz inequality): 

Proposition 3.8. 

1 ~ EHpm+I- 
n m = l  

pmll ~ Z  ~pk(1 _pk) 
k H 

Note  that 2 k ~/pk(1 -- p~) ~< V # K  - 1 since the left-hand side is maximized 
for pk _- 1 / ( # K )  for all k. Intuitively, Proposition 3.8 means that in "most  of 
the stages" Pm +1 cannot be very different from Pm" 

The explicit expression of Pm is obtained inductively by Bayes' formula: 
given a strategy o- of player I, for any stage n and any history h~ C H~n I, let 
o-(hù) k = (xù)«~ K denote the vector of mixed moves of player I at that stage. 

k That  is, he uses the mixed move x~ = (Xn(S))se s E X = A(S) in the garne GQ 
k k Given pù(hù)=pù, let Yn = ~'k~gPnXn be the (conditional) average mixed 

move of player I at stage n. The (conditional) probability distribution of Pn+l 
can now be written as follows: Vs E S such that 2 ù ( s ) > 0  and Vk ~ K, 

k k 
k II  pù+l(s) = P(kl ~n , Sù = S) -- p"Xn(S) (5.1) 

L(S) 

It follows that if x~ = 2 n whenever p~ > 0, then Pn+l = Ph, that is: 
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Proposition 3.9. Given any player H' s history hn, the posterior probabilities do 
not change at stage n i f  player I's mixed move at that stage is independent o f  k 
over all values o f  k for which p~ > O. 

In such a case we shall say that player I plays non-revealing at stage n and, 
motivated by that, we define the corresponding set 

N R = { x ~ X K I x k = x  k' Vk, k ' E K } .  

We see here, because of the full monitoring assumption, that not revealing 
the information is equivalent to not using the information. But then the 
outcome of the initial chance move (choosing k) is not needed during the 
garne. This lottery can also be made at the end, just to compute the payoff. 

Definition 3.10. For p E A(K) the non-revealing game at p, denoted by D(p) ,  
is the (one-stage) two-person, zero-sum garne with payoff matrix 

D(p)  = x~~ p~Gk " 
k G K  

Let  u(p) denote the value of D(p).  Clearly, u is a continuous function on 
k A(K) (it is, furthermore, Lipschitz with constant C = maxk,s« I Gs, I). 

So if player I uses NR moves at all stages, the posterior probabilities remain 
constant. Hence the (conditional) payoff at each stage can be computed from 
D(p) .  In particular, by playing an optimal strategy in D(p) player I can 
guarantee an expected payoff of u(p) at each stage. Thus we have: 

Proposition 3.11. Player I can guarantee u(p) in Fù(p), in Fa(p), and in 
F=(p) by playing i.i.d, an optimal strategy in D(p).  

Combined with Proposition 3.6 this yields: 

Corollary 3.12. The previous proposition holds if we replace u(p) by 
Cav u(p). 

ù , .  k {Jlven a strategy ~r of player I, let o- n = (xn)ge K be "the strategy at state n"  
[see MSZ (1993, ch. IV, section 1.6)]. Its average (over K) is the random 

k k variable ~n = E(o- n I Y(InX) = Ek pùo'~. Note that ~~ E NR. 
A crucial element in the theory is the following intuitive property. If the o-~ 

are dose  (i.e. all near dn) , Pn+l will be close to Ph. In fact a much more precise 
relation is valid; namely, if the distance between two points in a simplex [A(S) 
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or A(K)] is defined as the L 1 norm of their difference, then the expectations of 
these two distances are equal. Formally, 

Proposition 3.13. For any strategies ~r and • of the two players 

E([I«n - ~nll I ä~In I) = E ( I [ P n + I -  P~[[ [ ~I~~) • 

This is directly verified using expression (5.1) for P,+I in terms of on. 
Next we observe that the distance between payoffs is bounded by the 

distance between the corresponding strategies. In fact, given o- and ~- let 
Pn(Or, "r) = E(g~ [ ff/~InI), and  define fr(n) to be the same as the strategy o-except 
for stage n where õ-n(n) = dn, we then have: 

Proposition 3.14. For any ~r and T, 

[p.(o r, r) - p.(õ'(n), T)[ <~ CE(II«. - anltl x'. ') .  

ProoL In fact, since p, is the same under o- and under ~(n),  we have (for any 
o2 in H~):  

I p~(o-, z) - p,(~(n), ~-) I (¢o) ~< C ~ pn~(~o)ll O'n ~ - «nil 
k 

= C E ( I I ~ ~  - ~nlll~C'.')(o,) [] 

3.2.2. The limit values lim on(p) and voo(p) 

The  main consequence of the bound derived so rar is: 

Proposition 3.15. For all p E A(K) and all n, 

C 
on(p) ~ Cav u(p) + ~ ~ ~/p~(1 _ p h ) .  

Proof. Making use of the minmax theorem, it is sufticient to prove that for 
any strategy o- of player I in Fn(p), there exists a strategy z of player II such 
that 

C 
E « , ( g ù )  ~< Cav u(p) + ~ E ~/p~(1 - p k ) .  

k 

Given o- let z be the following strategy of player II: at stage m; m = 
1 . . . . .  n, compute p,, and play a mixed move Œm which is optimal in D(pm). 

By Proposition 3.14 and Proposition 3.13, for m = 1 . . . .  , n: 
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pro(er, "r) ~ pm(ö'(m), "t') + CE(Hpm+l --PraHl ~ 2 )  " 

NOW 

- k 

k 

with K m ~ NR and z m optimal in D(pm). Hence 

o~(a(m), ~) ~ u(p~) <~ Cav u(p~) , 

which yields 

pm(O r, T) ~ Cav U(pm)q- CE([Ipm+ 1 -p~ l l  I x ~ )  • 

I I  Averaging on m = 1 , . . . ,  n and over all possible histories o~ E H n we obtain 
[using E(Cav u(p,,(oo)) <~ Cav u(p) by Jensen's inequality]: 

E«#(~,)<~Cavu(p)+C ~ E[[p,n+I-Pm[[. 
H m - 1  

The claimed inequality now follows from Proposition 3.8. [] 

Combining Proposition 3.15 with Corollary 3.12 we obtain [Aumann and 
Maschler (1967)]: 

Theorem 3.16. For all p E A(K), limn~ ~ vn(p) exists and equals Cav u(p). 
Furthermore, the speed of convergence is bounded by 

C 0<~ vù(p) - Cav u(p) <~ ~ E ~/pk(1 _pk ) .  
rt 

The strategy in Proposition 3.15 yields also: 

Corollary 3.17. lima~ 0 va(p) exists and equals Cav u(p) and the speed of 
convergence satisfies 

O<~vA(p)_Cavu(p)~«~2_~h  ~ Vpk(l_ pk).  

This follows using 

~ h ( l_A,m- l~ , ,  k k ~/ A 
) LIIPm+,-P,ù[I~< ~ ~/Pk(1-P~), 

m = l  
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which is a consequence of the Cauchy-Schwartz inequality and Proposition 
3.8. 

Combining now Corollary 3.12, Theorem 3.16 and Theorem 3.7 establishes 
the existence of the value of the infinite garne F~(p) [Aumann, Maschler and 
Stearns (1968)]: 

Theorem 3.18. For all p E A(K) the value v=(p) of F~(p) exists and equals 
Cav u(p) .  

3.2.3. Recursive formula for vù(p) 

The convergence of vù(p) is actually a monotone convergence. This foUows 
from the following recursive formula for vù(p). Recall that x = (xk)~EI~E 
[A(S)] K is a one-stage strategy of player I (i.e. he plays the mixed move x k in 
game G~), then we have 

1 ~ } va+l(p) = ~ max m i n ~  k k.-~k p X t_,, + n ~ ZsVù(p~) , 
x t t k s C S  

where 2 = E h pkxk and for each s in S for which 2 s > 0, Ps is the probability on 
~ - G k denotes the t-th column of the matrix G k. K given by p~ =p x s/xs, and .,  

By this recursive formula it can be proved inductively, using the concavity of 
Va(p), that: 

Proposition 3.19. For all p E P, the sequence vn(p) is monotonically de- 
creasing. 

The above recursive formula and the monotonicity are valid much more 
generally than in the full monitoring case under consideration. They hold (with 
the appropriate notation) in any signalling structure in which the signal 
received by player I includes the signal received by player II. However ,  when 
this condition is not satisfied, vn(p) may not be monotone.  In fact, Lehrer  
(1987) has exhibited an example of a game with incomplete information on one 
side in which V 1 ~ 0 2 < V 3 . 

_ _ 

3.2.4. Approachability strategy 

Corollary 3.12 provides an explicit simple optimal strategy for player I in F=(p) 
which is played as follows. Express p as a convex combination p = Eee e Otep e of 
points (Pe)e~E in A(E) such that Cavu(p)=~ecEOteU(pe) .  Perform the 
appropriate lottery described in Proposition 3.2 to choose e E E, and then play 
i.i.d, at each stage an optimal strategy of the non-revealing game D(pe) (with 
the chosen e.) 
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On the other hand, the optimal strategy for player II provided by Theorem 
3.7 is far from easy to compute. We now describe a simple optimal strategy for 
player II, making use of Blackwell's approachability theory for vector payoff 
garnes. 

At  any stage (n + 1), given the history hn+ ~ = (sl, t l , . . . ,  sn, th), player II 
n k can compute ~~ = ~ 2ù,= 1 Gsmtm , which is what his average payoff would be up 

to that stage if the state was k. Since the prior distribution on the states is p,  his 
expected average payoff is ( p ,  ~n ) = Eke K pk~~. We shall show that player II 
can play in such a way that, with probability one, the quantity ( p ,  ~ù } will be 
arbitrarily close to Cav u(p) ,  for n sufficiently large. 

Having focused our attention on the vector of averages ~~ -k = (g,,)k~K, it is 
natural to consider the garne with vector payoffs in the Euclidean space R K. So 
when moves (s, t) are played, the resulting vector payoff is G~, E R K. 

Consider the garne F=(p). Let u(p)  be its NR-value function, and let 
l = (lk)kEK be the vector of intercepts of a supporting hyperplane to Cav u at p 
(see Figure 1); that is, 

C a v u ( p ) = ( I , p ) = ~ l k p  k and u ( q ) « . ( l , q )  for all q i n  a ( K ) .  
k 

If player II can play so that the average vector payoff gn will approach 2 the 
"corner set" C = {x ~ R K I x ~< l}, it will mean that VE/> 0, { p,  gn ) ~< { l, p ) + 
« -  Cav u ( p ) +  e, both in expectation and with probability one, for n suffi- 
ciently large. This is precisely the optimal strategy we are looking for. 

L 2 

I 

I 
I 
P 

Figure 1 

2That is, for any strategy of player I, the distance d(~~, C) tends to 0 with probability 1. See 
Blackwell (1956). 
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For any mixed move y E Y of player II let Q(y) = Co{Z t G,,y t Is E S}, 
where Co A denotes the convex hull of A. (This is the set in which lies the 
expected vector payoff when y is played.) A sufficient condition for the 
approachability of C by player II [Blackwell (1956)] is that for any g ~ '  C, he 
has a mixed move y such that if c is the closest point to g in C, then the 
hyperplane H orthogonal to [cg] through c separates g from Q(y) (see Figure 
2). 

1 
~ /  I ~  g I 

I 
I 

Figure 2 

To verify this condition in our case let q ~ A(K) be the unit vector in the 
direction (g  - c) and let H = {x E EK] ( q, x)  = ( q, c)}. Note that since C is a 
corner set, q ~> 0 and therefore (q,  c) /> (q,  c ' )  for all points c' in C, in 
particular ( q, c) /> ( q, l) .  Since c E C, we also have c ~< l, which implies 
( q, c) ~< ( q, l) ; hence l ~ H and C lay in the half space defined by H, which 
can be written as / /1  = {x E RK I (q,  x)  ~< (q,  l)}. Now, by playing optimally 
in the non-revealing game D(q),  player II guarantees 

qko-G~y<~u(q) Vo-~A(S). 
k ~ K  

This means that for any mixed strategy cr of player I, the vector payoff 
x = (o-Gky)kEK satisfies ( q , x )  <~ u(q)<~ (q, l), i.e. x ~ H 1 ,  establishing the 
approachability of C. 

The optimal strategy of player II in F=(p) can now be summarized as 
follows: 

(1) Choose l E NK such that (p ,  x) = (p ,  l) is the supporting hyperplane to 
the graph of Cav u at p. 

(2) Define the corner set C = {x E R ~: I x ~< l}, and at each stage n compute 
the average vector payoff gn up to that stage. 

(3) At  stage (n + 1), n = 1, 2 , . . . ,  if ~n E C, play arbitrarily. If ~~ ~ 'C ,  let 
c ~  C be the closest point to ~, in C, compute q = (~ù - c)/][~, n - cll G a ( K )  
and play an optimal mixed move in D(q). 
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3.2.5. The examples revisited 

Let us look again at the examples we discussed in the Introduction in view of 
the general results. 

In Example 1.1, D(p) is the matrix garne: 

0p 
p(10 ~ ) + ( 1 - p ) ( ~  0 1 ) : ( P  1 - ) '  

and its value is u(p)= p ( 1 -  p). Since this is a concave function, Cav u(p)= 
u(p) = p ( 1 -  p) and we have (see Figure 3) 

ILrn ~ vn(p) = [im° va(p) = v=(p) = p(1 - p ) .  

Example I. I  : 

Example 1,2: 

Example I. 3: 

I 

o 

o 

I 

± 
2 I p 

~ . . . 2 ,  p 

o 
p 

u(p)  

Figure 3 

o~ 
o i ± 

2 

0~ \ 
I $ 

Cav u(p) p 

In particular, for p = 1/2 this limit is 1/4. So asymptotically the value is that of 
the garne in which no player is informed about the value of k. In other words, 
the informed player has an advantage only in games of finite length. This 
advantage may be measured by vn(p)-v~(p) .  By Theorem 3.16 this is 
bounded by 

2 p~ /~  - p )  1 
vn(p) - p ( 1  -p)<~ v'-g ~< ~ "  

It turns out that for this specific garne this bound can be improved and the 
actual speed of convergence is [see Zamir (1971-72)] 

o(lnn) 
v n ( P ) - P ( 1 - P ) =  \ n / "  
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In Example 1.2, 

»~~~=~(-~ ~)+~~-~~(~ _~)=(ö ~ _~1°_~~), 

S. Zamir 

and its value is u ( p ) = - p ( 1 - p ) .  Since this is a convex function and its 
concavification is the constant function 0, Cav u(p)= 0 Vp E [0, 1] and we 
have (see Figure 3) 

lifn vù ( p ) = linòo vA(p) = v= ( p ) = O. 

For p = 1/2 (as we had in out example), the value is 0. 

In Example 1.3, 

(40 ~~t t°o 4 -~~) C 4-4ù 4ù-~~ D ( p ) = p  4 0 - + ( l - p )  4 = 4p 4 - 4 / ,  2 - 4 p ] '  

and its value is (see Figure 3) 

t 
4 p ,  0 ~ p ~ l / 4 ,  
2 - 4 p ,  1/4«-p<~1/2 ,  

u (p )=  4 p - 2 ,  1/2<~p<~3/4, 
[ 4 - 4 p ,  3 / 4 ~ < p ~ 1 .  

Therefore 

lim vn(p) = [im ° va(p) = va(p) = Cav u(p) , 

where Cav u(p) is (see Figure 3) 

f 4 p ,  0 ~ p ~ 1 / 4 ,  
Cav u(p)  = / 1 ,  1 / 4 < ~ p ~ 3 / 4 ,  

4 - 4 p ,  3 / 4 < ~ p ~ 1 .  

For p = 1/2 (as we had in our example), the value is 1. 

Remark.  To all results so far there are of course corresponding dual results 
for the case in which the informed player is player II (while player | is 
uninformed). In particular the dual to Theorem 3.18 is: 

Theorem 3.20. In the garne in which player H is informed and player ! is not, 
for all p ~ A(k) the value va(p) of  F~(p) exists and equals Vex u(p).  

Here Vex u(p) is the maximal convex function pointwise majorized by u(p).  
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3.3. The general case 

The main results so rar, specifically the existence of lim vù and of v=, extend to 
the general case without full monitoring, so we no longer assume that the 
moves are announced after each stage but rather that some individual message 
is transmitted to each of the players. This model was also treated by Aumann,  
Maschler and Stearns (1968), who proved the main result about the existence 
and the formula of v~(p). The generalization of the strategy for the un- 
informed player, using Blackwell approachability, is due to Kohlberg (1975a). 
Although the analysis follows the lines developed for the case of full monitor- 
ing, the mathematical details require several new ideas. These will be only 
outlined in this section [for the detailed proofs see, for example, MSZ (1993, 
Ch. V). 

Recalling the general model, we add a signaling structure - two finite sets of 
signals A and B and transition probability Q from K x S x T to A(A) x A(B). 
We denote by Qf, the probability distribution at (k, s, t). The repeated garne is 
played as in the previous model with the following modification. At  each stage 
n, n I> 1, instead of announcing the moves (sn, tn) , the signal a n is announced 
to player I and b n is announced to player II, where (an, bh) is chosen according 
to the distribution Q~ It turns out that the value of q}=(p) does not depend 

S n t  n • 

on the signaling structure to the informed player, so by abuse of notation we 
denote the marginal of Q on B also by Qk 

S n t  n * 

The generalization of the notion of non-revealing utilizes the property that 
when a non-revealing strategy is played by player I at a certain stage, the 
conditional probability on K does not change at that stage. This is equivalent 
to: 

Definition 3.21. x E X K is said to be non-revealing at p G A(K) il, for each 
move t E T of player II, the distribution of b (induced by t and x ~) in the kth 
state is the same for all k for which ph > 0. 

We denote by NR(p)  the set of non-revealing strategies in ~ ( p ) .  For 
p E A(K) let K(p)  C K denote the support of p. Then 

NR(p)  = (x E XK I x~Q k = xX'Q k' V(k, k') @ K(p)  x K(p)} 

Note that NR(p)C__ N R ( p )  whenever K(p)  D K(I~ ). Therefore NR(p)  is a 
"step set-valued function" on A(K) with possible discontinuities at the intersec- 
tions of two (or more) facets. NR(p)  may be empty for some p ~ A(K); 
however, if p is an extreme point of A(K), then N R ( p ) = X  K. This is 
in tu i t ive-  an extreme point of A(K) corresponds to a situation of complete 
information, where k is known to both players and hence every strategy of I is 
non-revealing since there is nothing to reveal. 
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The non-revealing garne (NR-garne), denoted by D(p) ,  is the (one-stage) 
two-person, zero-sum game in which player I's strategy set is NR(p), player 
II's strategy set is A(T) and for x = (Xk)gEr ~ NR(p) and y C A(T) the payoff 
is Ek~ r pkxkG~y. 

We denote by u(p) the value of D(p) and refer to it as the NR-value. If 
NR(p) = ~ [hence D(p) is undefined] we define u(p) = -00. Since u(p) is finite 
at least on the extreme points, it follows that Cav u(p) is weU defined [and 
Lipschitz on zI(K) with constant C]. 

Theorem 3.18 can now be proved for the general signaling case with this 
Cav u(p). The proof that player I can guarantee v(p) in F=(p) is the same as 
in the full monitoring case, that is, by applying an appropriate "splitting" 
followed by a non-revealing strategy. The major difficulty is in generalizing the 
optimal strategy of the uninformed player. The problem is that the above 
described optimal strategy for player II is based on the statistics ~ù = ( 1 /  

n n k n) Em= 1 gn" This is the vector whose kth coordinate is ( l / n )  Ere= 1 Gsmtm which 
is observable by player II in the fuU monitoring case since he observes the 
moves (Sm, t m). In the general case ~ù is not observable by player II. Another 
optimal strategy is to be provided which is based only on the history hù = 
( b i , . . . ,  bh) available to player II at each stage. 

For any signal b E B, and any move t ~ T at any stage n, let p~ be the 
proportion of stages, up to stage n, in which b was received by player II 
following a move t, out of all stages in which move t was played, i.e. 

~b # ( m [ m ~ n ,  bm=b, tm =t) 

tb The vector Pn = (Ph)t~T,bEB, which is observable by player II after each stage 
n, is the basis for his strategy. There is also a vector payoff ~n which plays the 
role of the non-observable gn. We do not define it formally here; it is, roughly 
speaking, the worst vector payoff which is compatible (up to a small deviation 
6) with the observed vectors Pl,-  • •,  Ph. To this vector payoff one applies 
Blackwell's approachability theory. The definition of ~ù and the strategy of 
player II are such that [for the details see Kohlberg (1975a, 1975b) or MSZ 
(1993, eh. V)]: 
oThe  ~-payoff, i.e. (p ,  ~) ,  will be as close as we wish to Cav u(p). 
• The actual unobserved payoff will not exceed the observed ~:-payoff by more 

than an arbitrarily small e. 
• Player II plays each mixed move in a large block of stages so that, using (an 

appropriate version of) the strong law of large numbers, both the signals 
distribution and the (unobserved) payoffs are close to their means. 
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4. Incomplete information on two sides 

The case of incomplete information on two sides is that in which each of the 
two players initially has only partial information about the state of nature, 
represented by a general partition of K. We denote these partitions by K I and 
Kno (The case in which one of the partitions is {{1}, { 2 } , . .  , {#K}} is the 
case of incomplete information on one side treated in the previous section.) By 
common terminology, the elements of K ~ and K n are called the types of 
players I and II, respectively. The initial probability p can then be thought of 
as a joint prior probability distribution on the pairs of types. 

A special case is that in which the types of the two players are independent, 
i.e. there exist two probability vectors qi and qH on the elements of K I and K II, 
respectively, such that 

p(Kjt A K~ l) = I II I K I ii Œ KII  qjq~ VKjE  and K l 

No general results are available for the whole class of these games. Most of 
this section is devoted to the special case in which Qk is independent of k. This 
will be called the case of state independent signaling. That is, the information 
gained at each stage does not depend on the state of nature and it is 
determined completely by the players' moves at that stage. We omit the index 
k and denote the signaling mechanism by one transition probability from S x T 
t o A x B .  

4.1, Minmax and maxmin 

Let ~~~ and ~~II be the o--fields generated by K I and K II, respectively. A 
one-stage strategy x = (xk)kEK of player I in X K is non-revealing if it is y{i 
measurable and Es~ s xk(s)Qs«(b) is independent of k for all t in T and b in B. 
In words, for each column of Q, the marginal probability distribution on B 
induced on the letters of that column is independent of the stare of nature k. 
The set of non-revealing one-stage strategies of player I is denoted by NR I. The 
set of non-revealing one-stage strategies of player II is defined in a dual way 
and is denoted by NR II. These sets are obviously non-empty; they contain, for 
instance, the strategies constant on K. Denote by D(p) the one-stage game in 
which players I and II are restricted to strategies in NR I and NR n, respectively. 
Let  u(p) be the value of D(p).  

Remarks. (i) The above definition of non-revealing strategy differs formally 
from Definition 3.21 in that there we required the induced distribution on B 
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(resp. on A) to be constant in k only on K(p) ,  while here we require it over all 
of K. However ,  it is easily seen that in this case the two definitions lead to the 
same u(p). Since all results are formulated in terms of u(p), we prefer to use 
here the above introduced definitions which have the advantage of making NR I 
and NR n independent of p. 

(ii) Note that u(p) is continuous in p on the simplex tl(K) of prior 
probabilities. 

We need now to generalize the notion of concavity and convexity: 
A function on t l(K) is said to be concave with respect to I (abbreviated w.r.t. 

I) if for every p = (pk)keK it has a concave restriction on the subset /7~(p) 
defined by 

/7~(p) = {(«kp~)keKI« k t>0 Vk ,~]  «kp~ = 1 and (a~)~eK 

is Y(~-measurable}. 

Interpretation: Given the prior probability distribution p on K and given any 
one stage strategy of player I (which is hence Y•I-measurable), the conditional 
probability distribution on K given the move of player I is an element of 
H~(p). In other words, when updating the distribution on K in view of 
observations on player I's moves only (knowing his strategy), the range of the 
posterior distribution is H~(p). 

A function on t l(K) is said to be convex with respect to II (abbreviated w.r.t. 
II) if for every p = (P~)k~K it has a convex restriction on the subset IIII(p) 
defined by 

/ / i i ( p ) = (  k k flk flklpk flk (f l  P )kEKI I>0 Vk,~". = I  and ( )kE« 
k 

is Y/n-measurable}. 

Note  that for any p in A(K) both III(p) and /7H(p)  are convex and compact 
subsets of t l (K) containing p, which justify the above definitions of concavity 
w.r.t. I and convexity w.r.t. II. 

In the independent case it is more convenient to work not with p in 
/7 = t l (K) but rather with the product probability ( q I  qI I )  E At X tlII, where A I 
and A H are the simplices of probability distributions on the types of player I 
(i.e. the elements o f  K I) and of player II, respectively. In this ease, 

li~(q~, qn) = { q i )  × A,I a n d  / i n ( q , ,  q i I )  _- A I × ( q t I }  . 
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Thus,  concavity w.r.t. I means simply concavity in the first variable qi (for any 
value of q~t), and similarly for convexity w.r.t. II. 

Given any function g on zI(K), the concavification of g w.r.t. I (denoted by 
Cav~ g) is the (pointwise) minimal function which is concave w.r.t. I and is 
greater  than or equal to g on ZI(K). Similarly, the convexification of g w.r.t. II 
(denoted by Vex H g) is the (pointwise) minimal function which is convex w.r.t. 
II and is less than or equal to g on zI(K). 

Remark.  Note that in the special case of incomplete information on one side 
(K I = {{1}, { 2 } , . . ,  {#K}} and K II= {K}), Cav I g is the usual Cav g and 

Vexii g is g. 

Theorem 4.1. The minmax of  F~(p) exists and is given by 

Ü(p) =Vexii Cav I u ( p ) .  

Similarly, Cav I Vexii u(p) is the maxmin of  F~(p). 

Proof.  The heuristic arguments of the proof are as follows. 3 Proving that the 
minmax of F~(p) is Vexii Cav I u(p) consists of two parts. 

Part (i): Player II can guarantee Vex H Cav~ u(p). If player II ignores his 
I I  - I I K I k 

private informat ion  (1.e. K ~) and If for each K E K let q = EkcK~ p and 
take as payoffs A K = (1/q K ) Ek~~~ pkGk (keeping the same distribution on 
signals), we obtain a game F (q )  with incomplete information on one side, with 
K ~ as the set of states of nature, with initial probability distribution q on it, and 
player I informed. In this garne, denoting the value of the non-revealing garne 
by w(q) ,  player II can guarantee Cav w(q).  Now by our construction w(q) -- 
u (p )  and Cav w(q) = Cav~ u(p) .  Finally, by the dual of Proposition 3.6, player 
II can also guarantee the Vexii of this function, namely Vexii Cav I u(p) (by 
applying the appropriate splitting procedure established in Proposition 3.2). 

Part (ii): Player I can defend Vexii Cav I u(p). Any pair of strategies o- and z 
of the two players induces a martingale of posterior probability distributions 
{Pn}~=~, converging with probability one and hence having .a bounded total 
variation: E«,~[Ek~ K Z~_ 1 (p~ k 2 - -Ph - l )  ]" Given any strategy r of player II, 
define % as a non-revealing strategy of player I inducing a martingale with 
N-stage variation e-close to the supremum, over all his non-revealing 

3The first proóf of this result, for a less general model (namely "the independent case"), is due 
to Aumann, Maschler and Stearns (1968), who also gave the first example of such a game in which 
Cav Vex u(p) ¢ Vex Cav u(p) and hence has no value. 
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strategies, of the total variation. Denoting by NR~ the set of all non-revealing 
strategies of player I, this means that % and N are defined by 

IN 1 m k 2 E«o,~ E E (P~ pù_x) 
k ~ K  n=l 

> sup E~, [  ~2 ~~ (pnk--pk_l)2] - 
o - @ N R  I L k ~ K  = 

E . 

By playing this % against r up to stage N, player I "exhausts" almost all the 
variation of the martingale, i.e. player II will be playing "practically non- 
revealing" from that stage on. Thus, the situation is almost that of incomplete 
information on one side in which player I is informed and he can then 
guarantee Cav~ U(PN) (where PN is the posterior probability at stage N). 
Finally, since up to stage N player I is playing non-revealing, we have 
pN E IIn(p) and E ( p N ) = p  implying that the expected average payoff to 
player I is at least E(Cav t U(PN) ) >t Vex n Cav I u(p). [] 

It should be noted that the formal proof of the above outlined arguments is 
quite intricate and non-trivial mainly because in a general signaling structure 
"exhausting" the information from the other player's strategy usually involves 
revealing the player's own information. Another general difficulty in all proofs 
involving the posterior probabilities pm of a certain player is that they have to 
be assumed computable by the other player as well, which is usually not the 
case when there is general signaling. The way to overcome these difficulties is 
the following. Assume that we want to prove that player I can guarantee a 
certain payoff level. We perturb the garne to make it slightly, more dis- 
advantageous to hirn. This perturbation consists of not giving player I his signal 
according to Q unless he buys it for an amount C. Furthermore, he is restricted 
to use this option of buying information exactly with probability 6 > 0 while 
with probability (1 - 6) he gets no information whatsoever. Whenever he does 
receive non-trivial information, his signal is completely known to player II. 
This implies that y(n D Y£I m and hence pro, the posterior distribution of player 
I, is also computable by player II. If, despite the disadvantageous modi- 
fications, player I can guarantee a certain amount (for sufficiently small 6 ) then 
he can also certainly guarantee it in the original garne. 

A corollary of Theorem 4.1 is that the infinite garne F=(p) has a value if and 
only if 

Cav I Vexii u ( p )  =Vexi i  Cav I u ( p ) .  

An example of a game without a value is the following game with independent 
types and full monitoring in which there are two types of each player with the 
payoff matrices given by 
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«1--(°°° °1) «--(~0 ~~~0) - 1  1 1 - ' 0 0 ' 

0 0 0 ' - 1  - 1  " 

That is, the set of states is K = {11, 12, 21, 22} and the partitions of initial 
information are K I =  {11, 12}{21, 22} and K n =  {11, 21}{12,22}. If, for in- 
stance, the initial probability distributions on types are q~= q n =  (1/2, 1/2), 
then 4 v__=(1/2, 1/2) = Cav IVex n u(1/2, 1/2) = - 1 / 4  and 6~(1/2, 1/2) = 
Vex n Cav I u(1/2, 1/2) = 0. 

4.2. The asymptotic value limn__,= vn(p) 

The non-existence of a value for infinite games with incomplete information on 
both sides is a very important feature of these garnes which, among other 
things, exemplifies the difference between repeated games with incomplete 
information and stochastic games, in which the value always exists. Given this 
result, the next natural question is that of the existence of the asymptotic value 
limn_,~ v(p). Here the result is positive [Mertens and Zamir (1971-72)]: 

Theorem 4.2. v(p) = limù__,= vn(p) exists for all p ~ A(K) and is the unique 
solution to the following set of functional equations: 

(1) f(p) =Vex H max{u(p) ,  f (p)} ;  
(2) f(p) = Cav I min{u(p) ,  f (p)} .  

Proof. To outline the main arguments let v_(p) and 6(p) be, respectively, the 
lim inf and lim sup of {vn}2= 1. Both functions are Lipschitz, v_ is concave w.r.t. 
I and O is convex w.r.t. II. For any strategy of player II consider the following 
response strategy of player I (actually a sequence of strategies one for each 
finite garne): play optimally in D(pm) at stage m as long as U(Pm) >~v__(pm). As 
soon as U(pm)< o_(pm) play optimally in the remaining subgame (Pro is the 
posterior probability distribution on K at stage m). This strategy guarantees 
player I an expected average payoff arbitrarily close to the maximum of u(p)  
and v_(p), for n large enough, proving that: 

(1') _v(p) ~> Vexii max{u(p) ,  _v(p)}, 

and similarly: 

(2') t~p)  ~< Cav I min{u(p) ,  fr(p)}. 

4For the detailed computations see Mertens and Zamir (1971-72). 
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Actually, this argument shows that if player I can guarantee f(p) in Fn(p) 
for large enough n, he can also guarantee Vexii max{u(p) ,  f (p)} .  

Now, since •(p) is convex w.r.t. II, it follows from (2') that 

(2") 6(p) <~ VexIi Cav I min{u(p) ,  Õ(p)}. 

Next, when a player plays an optimal strategy in D(pm) at stage m, his 
expected payoff at that stage differs from U(pm) by at most a constant times 
]Pm+l --Pm]" Combining this with Proposition 3.8 one shows that any function 
f (p)  satisfying f (p)  <~ Vexii Cav I min{u(p) ,  f (p)}  must satisfy 

2~ ~/pk(1 _ph) 
( f(p)  -- vn(p)) + <~ R , (5.2) 

n 

for some constant R. In particular, letting n---~~, this implies f(p)<~v. It 
follows now from (2") that 6(p)«.v_(p) and hence vn(p) converge to, say, 
v(p) with the speed of convergence of 1/x/-B. The limit is the smallest solution 
to 

f(p) >i Cav I Vex H max{u(p) ,  f ( p ) } ,  

and the largest solution to 

f ( p )  ~< Vexi~ Cav I min{u(p),  f (p)}  . 

It is then the only simultaneous solution to both. Finally, since v(p) is both 
concave w.r.t. I and convex w.r.t. II, it must also satisfy (1) and (2), and is the 
only solution to this system. [] 

The above outline can be made a precise proof for the case of full 
monitoring. For the general signaling case, one has to use a sequence of 
6-perturbations of the game. This provides the same results as rar as the 
functional equations are concerned but with different bound on the speed of 
convergence for vn(p), namely [see MSZ (1993)] 

Ivn(p) - v(p)l < d [Z~~~ ~/p~(1 - pk)12J3 

for some constant C which depends only on the game. 

(5.3) 

4.3. Existence and uniqueness of the solution of the functional equations 

The pair of dual equations (1) and (2) that determine v(p) are of interest and 
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can be analyzed without reference to garne theoretic context and techniques. 
This was in fact done [see Mertens and Zamir (1977b), Sorin (1984b)] and the 
results can be summarized as follows: 

Denote  by ~(A) the space of all continuous functions on the simplex za, and 
by U the subset of c~(A) consisting of those functions that are "u-functions": 
values of D(p) ,  for some two-person, zero-sum game with incomplete informa- 
tion F(p)  with full monitoring. Denote by ~ the mapping from U to ~(A) 
defined by q~(u) = v = lim v n [using Theorem 4.2, this mapping is well defined 
since lim v n is the same for all garnes F(p)  having the same u-function]. Let 
q~(Z~) be endowed with the topology of uniform convergence. 

Proposition 4.3. (a) U is a vector lattice 5 and a vector algebra 6 which contains 
all the affine functions. 

(b) U is dense in C~(A). 

Proposition 4.4. The mapping q~: U---~ C~( A ) has a unique continuous extension 
q~: ~(  A)---~ C~( A). This extension is monotone and Lipschitz with constant 1 [or 
non-expansive, i.e. l i d ( f ) -  ~(g)ll ~ I I f -g l l ) ]  

Theorem 4.5. Consider the following functional inequalities and equations in 
which u, f and g denote arbitrary functions on the simplex A: 

(a) f / >  Cav I Vexrl max{u, f} ; 
(/3) f<~Vex U Cav I min{u, f}  ; 
(a ' )  g =Vexii max{u, g} ; 
(/3') g = Cav Imin{u,  g}.  

There exists a monotone non-expansive mapping ~ : C( A ) ~  C( A ) such that, for 
any u E ~(A): 

(i) ~o(u) is the smaUest f satisfying (a) and the largest f satisfying (/3), and 
thus in particular it is the only solution f of the system (a)-( /3) .  

(ii) p(u) is also the only solution g of  the system ( a ' ) - ( / 3 ' ) .  

Theorem 4.6 [An approximation procedure for ~o(u)]. Define v_ o = - %  Vo = 
+ %  and for n = l , 2 , . ,  let v_ù+ l = C a v t V e x  nmax{u,_vn} and V~+x= 
Vex n Cavimin{u , iT}. Then {_v~}~= x is monotonically increasing, {v~}~=l is 
monotonically decreasing and both sequences converge uniformly to q)(u). 

Note that v a (resp. vl) is the maxmin (resp. minmax) of F~(p) if u(p)  is the 
value of D(p) .  

5That is, an ordered vector space V such that the maximum and the minimum of two elements of 
V exist (in V). 

6That is, the product of two elements of U is in U. 
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4.4. The speed of  convergence of  vn(p) 

As mentioned in previous sections, the proofs for the convergence of vn(p) 
yield as a byproduct a bound for the speed of convergence: 1/x/-g for the full 
monitoring case [inequality (5.2)] and 1/~/-gn for the general signaling case 
[inequality (5.3)]. It turns out that these bounds are the best possible. In fact, 
games with these orders of speed of convergence can be found in the special 
case of incomplete information on one side. 

Example 4.7. Consider the following game in which k = {1, 2}, player I is 
informed of the value of k, with full monitoring and payoff matrices: 

- 3  ' - 2  2 ' 

and the prior probability distribution on K is p, 1 - p ) .  

For this garne it is easily verified that v~(p )~0 .  More precisely, we have 
[see Zamir (1971-72)] 

p(1 - p) <~ vn( p ) <~ ~/p(1 - p )  (5.4) 
x/B x/B ' 

for all n and for all p ~ [0, 1]. 
Remaining in the framework of the previous example we change the payoffs 

and signals to obtain: 

Example 4.8. Let K = {1,2}. The payoff matrices G 1 and G 2 and the 
signaling matrices Q1 and Q2 (to player lI) are given by 

and 

2 3 -11) , G 2 = ( ~  - 2  -22) 

~1~~ (a c~) 
b c " 

Here the signals (to player II) are deterministic (e.g. if top and middle are 
played the signal is c, etc.). Observe that deleting the left strategy of player II 
and changing the signaling matrices to provide full monitoring we obtain the 
game in Example 4.7. It is easily verified that the differences between the 
examples do not affect the value and in the garne of this example we still have 
va(p)-~0. However, in the present example player II is not informed of the 
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last move of his opponent unless he chooses his left strategy which is strictly 
dominated in terms of payoffs. In other words, player II has to pay 8 units 
whenever he wants to observe his opponent's move. Since observing the moves 
of the informed player is his only way to collect information about the state k, 
it is not surprising that his learning process will be slower and more costly than 
in Example 4.7. This yields a slower rate of convergence of vn to v=, [see Zamir 
(1973a)] 

p(1 - p)  « V ~  - P) 

for some positive constant a, for all n and for all p E [0, 1]. 
The speed of convergence of v~(p) can also be of lower order, such as 

(In n) /n ,  1/n. There are some partial results for classification of games 
according to those speeds [see Zamir (1971-72, 1973a)]. 

The special role o f  the normal distribution 

One of the interesting, and still quite puzzling results in the study of the speed 
of convergence of vn(p) is the appearance of the normal distribution. Consider 
again the garne in Example 4.7. It follows from inequality (5.4) that for any 
0 < p  < 1, ~/-~vù(p) is bounded between p(1 - p )  and ~/p(1 - p ) .  A natural 
question is then: Does this sequence converge? If it does, the limit is the 
eoefficient of the leading term (i.e. 1/x/-g) in the expansion of vù(p)  - v=(p) in 
fractional powers of n [recall that v=(p)=-0]. The sequence does turn out to 
converge and the limit is the well-known standard normal distribution function: 

Theorem 4.9. For all p E [0, 1], 

lim x/-g vn(p)  = 4)(P) , 

where 

1 e_(1/2)x ~ 6 ( p )  = 

Xp 

1 f e (1/2)X2dx=p . and 

In words: the limit o f  x/g vn(p)  is the standard normal density function 
evaluated at its p-quantile. 

The proof is rather technical [see Mertens and Zamir (1976b)] and does not 
give the intuition behind the result. It is based on a general result about the 
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variation of martingales in [0, 1] [Mertens and Zamir (1977a)]. Let ~fn= 
P 

{Xm}~= ~ denote an n-martingale bounded in [0, 1] with E ( X ~ ) = p ,  and let 
V(~p)  denote its L 1 variation, i.e. 

n - 1  

V(~Up) : ~ E(IXm+ 1 - Xm[ ) . 
m = l  

Then we have 

Theorem 4.10. (The L 1 variation of a bounded martingale). 

[ 1 ; ) ]  
lim sup ~ V(~ = ~b(p). 

It turns out that this is not an isolated incident for this specific example but 
rather part of a general phenomenon. Consider a game with incomplete 
information on one side and two states of nature, each with a 2 × 2 payoff 
matrix. If the error term is of the order of 1 / ~ ,  then x / -g[vn(p) -v~(p) ]  
tends (as n ~ ~) to an appropriately scaled normal density function [Mertens 
and Zamir (1990)]. This result was recently further generalized by De Meyer 
(1989) to any (finite) number of states of nature and any (finite) number of 
strategies for each player. 

5. Incomplete information on two sides: The symmetric case 

In the general situation of incomplete information on two sides, the case of 
state independent signaling treated in the previous section is the case with the 
most complete analysis. In this section we consider a special case in which 
signaling may be state dependent but it is symmetric in the sense that at each 
stage both players get the same signal. 

Formally, we are given a finite collection of S x T payoff matrices {G~}k~K 
with initial probability p in H = A(K), and the players have no initial informa- 
tion about the true state k except the prior distribution p. We denote by A the 
finite set of signals and by A k the signaling matrix for state k. Given k and a 
pair of moves (s, t), a signal a is announced to both players according to a 
given probability distribution Ask , on A. Assuming perfect recall means in this 
framework that for all k and k' in K, s ~ s'  o r t  ~ t' implies that As~ and Ask,'t, 
have disjoint support. 

Denoting the above described infinite game by F~(p) the result is: 

Theorem 5.1. F~(p) has a value. 
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Proof. To see the idea of the proof consider first the special case in which the 
signals are deterministic - the support of As~t consists of a single element of A 
(which will also be denoted by k Ast ). Define the set of non-revealing moves: 

NR = {(«, t) E S x T [ A s ~  = Ast, ' V k ,  k' E K} .  

That is, a non-revealing move is one which gives no additional information 
about the state k and hence after a non-revealing move, the players face the 
same (infinite) garne as the one they faced before that move. Whenever a move 
(s, t) ~ N R  is played and a certain signal a is announced, a non-empty subset of 
K is eliminated from the set of possible states, namely all states k for which 
Ask , ¢ a. The resulting situation is a game having the same data as the original 
one but with K replaced by a proper subset of itself, and the prior probability 
distribution on this smaller set is the normalization of its marginal according to 
p. Now if we prove our theorem by induction on # K ,  then by the induction 
hypothesis the game resulting from a move not in NR has a value which can be 
guaranteed by both players from that stage on. In other words, using stochastic 
games terminology, the result of such a move is an absorbing state with payoff 
equal to that value. 

Writing this formally, for each move (s, t) and for each signal a let 
pk'. Kst(a ) = {k E K I As~ = a} and pst(a) = Ek,eK,,(a ) Let pa be the probability 

distribution on K«(a) given by p~ = pk/p«(a). Finally, denote by vst(a ) the 
value of the garne obtained from F~(p) when replacing K by Kst(a ) and p by 
Pa" The garne F=(p) is equivalent to an S x T garne with absorbing states in 
which the payoffs are given by (x* indicates an absorbing state with payoff x): 

{ p G st if (s, t) E NR ,  
(r.ùe A p~,(a)v«(a))* otherwise. 

Since this garne (like any finite stochastic garne) has a value, the original 
garne F=(p) also has a value, completing the inductive step of the proof. [] 

Remark.  It is worth noting that historically the reduction of symmetric garnes 
of incomplete information to garnes with absorbing states was done before the 
latter were known to have a value [see Kohlberg and Zamir (1974)]. In fact, 
this focused attention on games with absorbing states and on the particular 
example of The big match treated by Blackwell and Ferguson (1968). The 
general solution of these garnes by Kohlberg (1974) then led to the solution of 
general stochastic games [Bewley and Kohlberg (1976a, 1976b, 1978), Mertens 
and Neyman (1981)]. 

In the general signaling case a "revealing" signal need not eliminate ele- 
ments of K as impossible but rather it leads to a new (posterior) probability 



144 S. Zamir 

distribution Pl ¢ P on K. The value function is then a continuous function on 
= A(K) and its existence is proved by induetion on the dimension of this 

simplex [see Forges (1982) and MSZ (1993)]. 

6. Games with no signals 

We consider here a class of games which was introduced by Mertens and Zamir 
(1976a) under the name "repeated games without a recursive structure". These 
games consist again of a finite collection of S × T payoff matrices G~, k E K, 
with an initial probability distribution p on K. No player is informed of the 
initial state. The signals are defined by a family of matrices A k with determinis- 
tic entries (the extension to random signals is simple). Moreover, we assume 
that in each matrix A k there are only two possible signals; either both players 
receive a "white" (totally uninformative) signal (0) or the garne is completely 
revealed to both players. We can thus assume in the second case that the 
payoff is absorbing and equal to the value of the revealed game from this time 
on. It is then enough to define the strategies on the "white" histories; hence 
the name "garne with no signals". Note that unlike the garnes considered in the 
previous section, the signal 0 does not include the moves of the players. By 
Dalkey's theorem [Dalkey (1953)], each player may be assumed to remember 
his own move, and hence the "white" signal is actually asymmetric infor- 
mation. 

For a typical simple example of such games consider a game with two states, 
# S  = # T  = 2 and signaling matrices given by 

To see the special feature of these games assume that in our example the prior 
probability distribution is (1/2, 1/2), both players play at the first stage the 
mixed move (1/2, 1/2) which results in (top, right) and a white signal (an event 
of probability 3/4). Consequently, the posterior probability distribution of 
player I is (1/3, 2/3) while that of player II is (2/3, 1/3). The "state variable" 
of the problem can no longer be just a probability distribution on K. A larger 
and actually unbounded dimensional space is needed, and hence the name 
"games without a recursive structure". The above mentioned example was 
introduced and solved in Mertens and Zamir (1976a). The general case (i.e. 
general K and general size A k) was solved by Waternaux (1983a, 1983b). 

The analysis of these games brought about a new tool. The minmax and the 
maxmin of the game F~ are equal, respectively, to the values of two auxiliary 
one-shot garnes G and G in strategic form. The pure strategies in each of these 
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games mimic strategies in F~, and the payoffs are defined to be the correspond- 
ing asymptotic payoffs in F~ to the strategies which are mimicked. Fix p and 
write F for F~(p), and g(F)  and v__(F) for its minmax and maxmin, respec- 
tively. 

Formally, define the (pure) strategy sets X and Y, in the one-shot game G, 
by 

x =  U a ( s ' )  x ~s,«, x s ' ,  
S ' C S  

g =  U k ( T ' )  x N T\T" , 
T ' C T  

where N is the set of positive integers. Given x in X (resp. y in Y) we denote 
the corresponding subset S' by S x, the first component by a x, the second by c x 
and the third by s x. 

The heuristic representation of the strategies in G is given by the following 
strategies in Fa. For x in X, player I plays i.i.d, the mixed move a x E k(S x) 
except for c(x) = E s c~ exceptional moves; each move s which is not part of the 
mixed move a x (i.e. s5gS x) is played c~ times uniformly distributed before 
some large state N 0. From stage N O on, player I uses the (pure) move s x. 

A strategy y E Y of player II has a similar meaning with the difference that, 
after stage No, he continues playing i.i.d, his mixed move (with no exceptional 
moves). 

Note that these (behavioral) strategies are specified only for uninformative 
histories of the type 0 . . . 0 .  As soon as a signal other than 0 appears, both 
players know the true payoff matrix G k and the payoff stream in the super- 
garne is assumed to be "absorbed" at v(G ~) from that stage on. 

The payoffs in G when x and y are used is defined as the asymptotic payoff 
corresponding to these strategies in the finite game [for formal definitions see 
Waternaux (1983a, 1983b) or MSZ (1993)]. 

Note that the players are not symmetric in G since this game is designed to 
provide the upper value ~(F).  In a dual way we define the strategy sets X and 
Y for the garne _GG which provides the lower value u__(F). 

We first have: 

Proposition 6.1. The game G has a value v(G) and both players have 
e-optimal strategies. 

m 

Theorem 6.2. (i) ~(F)  exists and equals v(G). 
(ii) Player I1 has an e-optimal strategy which is a f inte mixture of  i.i.d. 

sequences, each of which is associated with a finite number of  exceptional 
moves, uniformly distributed before some stage N o. 

(iii) Dual results hold for v_(F). 
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It follows that the game under consideration has a value iff v ( G )  = v ( G ) ,  

which is generally not the case [examples of garnes where v ( G )  v a v ( G ) ,  were 
exhibited by Mertens and Zamir (1976a))]. In view of this, one is led to study 
lim v n and lim v A [Sorin (1989)]. Sorin's approach is similar to that adopted in 
the study of F~; that is, using more manageable auxiliary "approximating 
garnes" as follows. For each L in N we construct a game G L. The heuristic 
interpretation of G L is F~ played in L large blocks, during each of which both 
players use stationary strategies, except for some singular moves. The strategy 
sets in G L are X/~ and Y/~, where 

2 = U a ( S ' )  x N s's' , 
S ' C S  

I7" = U A(T')  X N r\r' 
T ' C T  

Again, the payoff to a pair of strategies is defined as the corresponding 
asymptotic average payoff (as the block size tends to ~). Then we have first: 

Proposition 6.3. G L has a value w L and both players  have • -op t ima l  strategies. 

Theorem 6.4. limos= v~ and limÆ_~~ w L exist and coincide. 

Then, a similar construction gives: 

Theorem 6.5. lim v A exists and limA_~ o v A = limL_~~ W L. 

7. A game with state dependent signaling 

For garnes with incomplete information on two sides, the general results so far 
are mainly those described in Section 4. In that section we considered the 
special case in which the signals provided to the players after each stage do not 
depend on the state k (but only on the player's moves). When the signals 
depend also on the states, we have results only for two special cases: the 
symmetric case (Section 5), and "games with no signals" (Section 6). 

In this section we briefly introduce another game with state dependent 
signals which was studied by Sorin (1985b). This work illustrates an example of 
a game at the forefront of the research in games with incomplete information. 
It is not only strongly related to stochastic garnes (as were the games studied in 
the previous two sections), hut it involves what may be called stochastic games  
with incomple te  in format ion.  

Consider the class of games with lack of information on both sides (and state 
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dependent signaling) given by the following data: K =  {0, 1} 2 :  L x M [we 
write k = (l, m)], and the probability on K is the product p ® q of its marginals. 

At  stage 0, player I is informed about l and player II about m. The payoffs 
are defined by 2 x 2 payoffs matrices G tm, and the signaling matrices are given 
by 

AI~:(~ ~), A10:(c~ e), 
A°l=(c" i)' A°°:(~ J) 

The special features of this information structure to be noted are: 
(a) The signals include the moves. 
(b) As soon as player I plays Top, the " type" of one of the players is 

revealed: l if player II played Left at that stage, m if he played Right. 
Denoting this garne by F ( p ,  q), we note first that as soon as plpOqlqO = 0, it 

is reduced to a game with incomplete information on one side (treated in 
Section 2). In particular it has a value v (p ,  q). 

Sorin has given explicit expressions for the minmax and maxmin of these 
garnes, which will not be given here. We just mention that these also rely on a 
family of auxiliary garnes which are of the form: 

\a21 a22/ , = b21 b22 , P = (pl,  pO) . 

That is, the auxiliary garnes are repeated games of incomplete information 
on one side in which the games G 1 and G ° are stochastic garnes with absorbing 
states (more specifically, "Big match" type games). In fact, when studying the 
game under consideration Sorin found the minmax and the maxmin of this 
family of games and of the dual family in which the absorbing states are in the 
columns, i.e. in the control of the uninformed player: 

G 1 la;1 a12) G 0 { b l l  b12~ 
~-. ~a21 a22/I '  : ~b21 b22] » P = (pl,  pO). 

The analysis of these garnes, which is beyond the scope of this review, is 
rather deep and involves new ideas and tools developed specifically for this 
purpose. 

8. Miscellaneous results 

In this section we mention some interesting results which somehow remained 
isolated and were not followed by further research. 
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8.1. Discounted repeated games with incomplete information 

Mayberry  (1967) studied a game with incomplete information on one side, full 
monitoring, and A-discounted payoff. Specifically, he considered the garne in 
Example 1.1. Denoting this garne by FA(p) and its value by va(p), he first 
derived the following formula: 

va(p) = max{A min(ps ,  p' t ' )  + (1 - A)(Sv~(ps/g) + S'va(ps' /g')} . (5.5) 

Here ,  for x E [0, 1], x '  stands for (1 - x), and (s, t) E X 2 is the pair of mixed 
moves used by player I in one stage [that is, play (s, 1 -  s) in game G 1 and 
(t, 1 - t) in game G;] ,  and $-= ps + p't.  

Using this formula and the concavity of va, it can be proved that the value of 
v a at any rational p = n/m <~ 1/2 is given in terms of v a at some other rational 
numbers q with smaller denominator.  

By differentiating (5.5) we obtain (letting v~ = dvJdp) :  

v'A(p) = (1 - A)(1 - p / p ' ) v ' A ( p / p '  ) - (1 - A)vA(p/p' ) . (5.6) 

From this it follows (using the symmetry of va) that for 2/3 < A< 1, the 
function has a left derivative and a right derivative at p = 1/2, but they are not 
equal. 

By induction on the denominator,  one can then prove that for any rational p,  
the sequence of derivatives obtained by repeated use of equation (5.6) leads to 
an expression for v'~(p) in terms of v~(0), v~(1) and v~(1/2). 

Combining the last two results we conclude, for 2/3 < A < 1, that although v A 
is concave, it has discontinuous derivatives at every rational point. 

8.2. Sequential games 

Sequential games with incomplete information were first studied by Ponssard in 
a series of papers [Ponssard (1975a, 1975b, 1976)] and also by Ponssard and 
Zamir  (1973), Ponssard and Sorin (1980a, 1980b) and Sorin (1979). The basic 
model  is the following. The players' type sets are K = {1 . . . .  , L} for player I 
and R = { 1 , . . . ,  M} for player Il. For each pair of types (k, r) the correspond- 
ing payoff matrix is G ~~ = (Gk~~ For each p E P = A(K) and q @ Q = \ s t  ] s E S , t Œ T "  

A(R),  the n-stage sequential garne Fù(p, q) is played as follows: 
• At  stage 0, a chance move chooses independently k according to p and r 

according to q. Player I is informed of (his type) k and player II is informed 
of r. 
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• At  stage m (m = 1 , . . . ,  n), knowing h m = (sl, t 1 . . . .  , Sm_i, tm_l) , the his- 
tory of the moves up to that stage, player I chooses s m in S. This is told to 
player II who then, knowing h "  = (sl, ta, . . . , Sm_i, tm_ 1, Sm), chooses t m. 

n kr 
• At  the end of n stages player II pays player I the amount ( l / n )  Zm=a G~mtù, 

Let v~(p,  q) denote the value of Fn(p, q) and v (p ,  q) = limù__,~ vù(p,  q). 
Clearly, by normalizing the strategies of player II at each stage, this is shown to 
be a special case of the simultaneous repeated games discussed in Section 3, in 
which the payoff matrices are of size ISI x ITI Isl (a move of player II is an 
element of T depending on the choice of player I at that stage). However, it 
turns out that stronger results hold for this case because of its special structure. 

The (behavior) strategies o- n and % of Fn(p, q) are defined in the natural way 
as sequences of mappings from the player's type and available history to the set 
of his mixed moves [A(S) and A(T) ,  respectively]. The non-revealing game is 
again the one-shot sequential game with payoff matrix G(p ,  q) = ~k« pkq rGk'r, 
and its value is therefore 

u(p, q) = max min ~2 pkqrGkr. 
k,r 

8.2.1. Incomplete information on one side 

For incomplete information on the side of player II (the minimizer and the 
second to move), it was proved by Ponssard and Zamir (1973) that: 

Proposition 8.1. For all p ~ P ,  va(p) = Cavp u( p).  

Using the monotonicity of vn(p)  (Proposition 3.19), one has: 

Corollary 8.2. % ( p )  = Cavp u(p) ,  for all n and all p E P. Consequently 
limn~~ vl(P) = Cavp u(p) .  

8.2.2. Incomplete information on two sides 

In this case one can prove a recursive formula for vn(p, q) which is much 
simpler than the corresponding formula for the general simultaneous move 
game: 

1 m i n / ~  k r.,~kr } Vn+l(P' q ) -  n + 1 Cavp max Vexq P q ~st + nvn(p ,  q) . 
t I.k, r 

Using this, it was proved by Sorin (1979) that for all p and all q the sequence 
vn(p,  q) is increasing (and therefore it converges), the speed of convergence is 
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bounded by 

C 
0 «- v(p, q ) - v n ( p ,  q)<~- 

n 

for some positive constant C, and that this is the best bound. 

8.3. A game with incomplete information played by "non-Bayesian players" 

Megiddo (1980) considered a game with incomplete information on one side in 
which there is no given prior on the states of nature. More specifically, the 
uninformed player II knows only the set of his moves (columns) and is told his 
payoff at each stage. Megiddo provided an algorithm to construct an optimal 
strategy for the uninformed "non-Bayesian" player. Basically the algorithm 
considered a dense grid of games with a given number of columns, and tested 
statistically the performance of each strategy which is optimal in orte of these 
games. 

Looking carefully at the problem, it turns out that this result can be derived 
as a consequence of the general results in Section 2 along the following lines 
[Mertens (1987)]. 

(a) Assume first that the unknown payoff matrix is an element of a finite set 
(Gk)keK of matrices having the same set J of columns and any (finite or 
infinite) number of rows. 

(b) Since player II is told his payoff at each stage, any non-revealing strategy 
o-E NR(p) yields the same distribution of payoffs, and a fortiori the same 
expected payoff, in all garnes G k in the support of p, for all columns j ~ J. It 
follows that u(p)  is constant in the interior of each facet of the simplex A(K). 
Since u is upper-semicontinuous, this implies that Cav u is linear in p on A(K). 

(c) Since Cav u(p) is linear, player II has a strategy (in F=) which guaran- 
tees v(G k) if the true state is k, for all k. In fact, any optimal strategy ~-(p) of 
player II at some interior point p has this property [otherwise player I could 
obtain against ~-(p) strictly more than v(G k°) at some state k 0 and, by playing 
optimally at each other state, he could ger strictly more than 2 k p%(G ~) = 
Cav u(p), contradicting the optimality of ~-(p)]. 

(d) These results are valid not only for a finite state set K but also for a 
countable K. In particular, if we consider the countable set ~ of all finite 
matrices with J columns and rational entries, it foUows that if the true garne is 
in ~, then player II has a strategy ~.r which guarantees its value. To extend this 
to any real entries, we perform the following approximation procedure. 

(e) For any • > 0 let ~-~ be the strategy of player II which consists of playing 
~-r while "rationalizing" the histories as follows: if the announced payoff (at 
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some stage) is a,  replace it by a rational number r («)  t> a such that r (a )  - a < 
• . Clearly, for any play of the game induced by r~ there is a G" E ~ with 
IIG'- GII < • such that if it was the true garne instead of G, it would have 
induced the same play when player II is using r ~, and hence the expected 
payoff  would be at most v ( G ' ) ,  which is at most v ( G )  + e. 

We conclude that for any • > 0 player II has a strategy r~ which guarantees 
v ( G )  + e. 

(f) Finally, choose a sequence {•n}~=l decreasing to 0 and play successively 
r r  in large blocks with appropriately increasing sizes so that the resulting 
strategy guarantees v ( G )  + e n for all n and hence it guarantees v ( G ) .  [] 

The main idea of this argument is that the announcement of the payoffs 
induces the linearity of Cav u, which in turn implies the existence of a strategy 
for the uninformed player which is uniformly optimal for all prior distributions 
on K. This is the sense in which the player is non-Bayesian, since he does not 
need any prior in order to play his optimal strategy. 

8.4. A stochastic game with signals 

Ferguson, Shapley and Weber (1970) considered the following garne which was 
the first t reated example of a stochastic garne with incomplete information. 

We are given two states of nature with the following payoff matrices.: 

100), G2=(~ Ò). G I = ( 1  

The transition probability from state 1 to state 2 is a constant (1 - vr) E (0, 1), 
independent  of the moves. The reverse transition, from state 2 to state 1, takes 
place if and only if player I plays Bottom. Player I knows everything while 
player II is told only the times of the transition from 2 to 1. 

Let  us consider FA, the discounted game starting from k = 1, and write v A for 
its value. It can be shown that 

[1 - (1 - a)~][1 - vr(1 - a)] - a{[1 - 2[vr(1 - A)] k} 

va = [1 - (1 - a)k+l][1 - 7r(1 - a)] + 2(1 - a)k+lvrea 

Lett ing 

r(1 - vr) - ( 1 -  27r r) 
v° = [i+mo va = (r + 1)(1 - vr) + 2 7 r  r 

where r is the positive integer satisfying v r r - l >  1/2, and vrr<~l/2,  orte can 
then find optimal strategies o-* and r* for the two players such that for each •, 
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e a c h  p l a y e r  (with  his o p t i m a l  s t r a t egy) ,  can  « - g u a r a n t e e  v 0 in  all  F A wi th  
suf f ic ien t ly  smal l  A [for de ta i l s  see M S Z  (1993)] .  
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