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The authors introduce a new team game, the intergroup chicken game, to model intergroup conflicts 
involving bilateral threats (e.g., military conflicts, industrial disputes). The group that wins the game is the 
one that competes while the other group yields, and the benefits associated with winning (e.g., territory, 
higher wages) are public goods for the members of that group. However, a failure to yield on the part of 
both groups leads to an outcome (e.g., war, strike) that is disastrous to all the players. The authors report an 
experiment in which an intergroup chicken game with two players on each team was compared to a 
two-person chicken game and a (single-group) four-person chicken game. The games were played repeat- 
edly, and each round was preceded by a signaling period. Results showed that subjects were more 
competitive (and, consequently, less efficient) in the intergroup chicken game than in either the two-person 
or the four-person chicken game. 

The two-person game of chicken derives its name from the following story. Two 
drivers race toward each other on a narrow road. Each driver has the choice to swerve 
and avoid a head-on collision or to continue on the collision course. Much of the 
interest in this game has stemmed from questions concerning intergroup and interna- 
tional relations rather than interpersonal relations. The two-person chicken game has 
been used to model a variety of intergroup conflicts involving bilateral threat, ranging 
from military confrontations between states to disputes between management and 
workers (Allison 1971; Brams 1975; Snidal 1991). These conflicts are analogous in 
the sense that a failure on the part of both sides to yield leads to an outcome, such as 
war or bankruptcy, that is disastrous to both. 
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The use of a two-person game to model conflict between groups presupposes that 
all group members have identical preferences over the set of possible outcomes and 
therefore that each group can be treated as a unitary player. The unitary player 
assumption, however, collapses when, as is often the case, the benefits associated with 
the outcome of the intergroup conflict (e.g., territory, higher wages) are public goods 
that, at least to some degree, are nonexcludable with respect to the members of a group 
involved in the competition. Thus, whereas as a collective all group members benefit 
from winning the competition and acquiring these goods, rational and selfish individu- 
als who take a "free ride" (e.g., declining to fight, standing on a picket line) gain more 
(Taylor 1987). 

The goal of this study is to examine the internal problem of collective action in 
intergroup conflicts of this type and its effects on conflict resolution. Following the 
pioneering work of Palfrey and Rosenthal (1983) on voting behavior, we model 
intergroup conflict as a team game. A team game entails a competition between two 
groups or teams labeled A and B with nA and nB members, respectively. Each member 
of team A (B) receives an endowment of size e and then must decide privately whether 
to contribute the endowment to his or her team's effort. Denote the number of 
contributors in teams A and B by mA and mB, respectively (0 < mA < nA and 0 < mB < 
nB). If mA > mB (mA < mB), then each member of team A (B) receives a payoff of r units. 
If mA = mB, then each player on both teams receives a payoff of s units. Members of 
the losing team receive no reward, and contributions are not refunded. 

A general definition of the intergroup chicken game is provided by the following 
pair of inequalities involving the payoff parameters: r > s + e and s < e. The first 
expresses the fact that being on a winning team, even at the cost of contributing one's 
endowment, is strictly better than keeping one's endowment and not being on a 
winning team. The second inequality means that, unless a player ends up on a winning 
team, he or she would rather keep the endowment. 

In the present study, the game is described as a competition between two teams of 
two members each. Each player receives an endowment of e = 2 points (to be converted 
into money) and has to decide between keeping the endowment or "investing" it. A 
reward of r = 5 points is given to each member of a team if the number of investors 
on his or her team exceeds that on the other team. Members of the losing team receive 
nothing. If there is an equal number of investors on both teams, then the players receive 
no bonus (s = 0). Regardless of the outcome of the game, players who do not invest 
their endowments keep them. Table 1 presents the payoff matrix for the intergroup 
chicken game. 

We report an experiment in which the intergroup chicken game was contrasted with 
two-person and four-person chicken games. Our interest is in assessing the ability of 
the participants in the different games to achieve the cooperation necessary to the 
realization of their mutual interests. In the two-person chicken game, each player 
receives an endowment of 2 points and has to decide whether to keep the endowment 
or invest it. A reward of 5 points is provided to a player who invests although the other 
player does not. If both or neither of the players invest, then neither receives a bonus. 
A player who does not invest his or her endowment gets to keep it. Note that this is 
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are for the members of team B. The first payoff is for the left member of the team, and the second is for the 
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identical to the previous team game if each team consists of a single player. The payoffs 
are presented in Table 2.1 

1. Using the notations x for the cooperative outcome (both players not investing), w for the competitive 
outcome (both players investing), y for the free-rider payoff (the payoff to a single investor), and z for sucker 
payoff (the payoff to a single noninvestor), the traditional conditions defining a chicken game are y > x > z > w. 
In our case, the conditions satisfied are y > x = z > w. It can easily be verified that the game of chicken retains 
all of these strategic properties under these conditions as well. 
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TABLE 3 

Four-Person Chicken Game 

m 0 1 2 3 4 

Invest 2.5 2.5 2.5 2.5 
Not invest 2 4.5 4.5 4.5 

NOTE: The payoff to player i is a function of his or her decision and of the total number of investors m. 
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In the four-person chicken game, each player receives an endowment of 2 points 
and has to decide between keeping the money or investing it. A reward of 2.5 points 
is provided to each of the four players if at least one of them invests his or her 
endowment. If no one invests, then the players receive no reward. As in the other 
conditions, players who do not invest their endowments keep them. Table 3 presents 
the payoffs in this four-person chicken game. 

The three variants of the chicken game are comparable in two important aspects. 
First, the Nash equilibria in pure strategies in all three games are such that only a single 
player invests (see Appendix for a complete specification of the games' Nash equili- 
bria). Second, the pure-strategy equilibria are Pareto efficient; that is, these strategy 
combinations maximize the sum of payoffs to all the individuals involved.2 This 
property implies that, as a collective, all players have an interest in coordinating their 
actions on a pure-strategy equilibrium. However, because any player can assume the 
role of the single investor, each game has multiple equilibrium points. How do players 
choose among these alternative equilibria? 

If the game is played only once and choices are made simultaneously and without 
communication, then the players have no way of choosing. Indeed, under such 
conditions, they can hardly be expected to settle on one of the pure-strategy equilibria. 
Instead, it can be argued, they might settle on a mixed-strategy equilibrium (e.g., 
Rasmusen 1989). As we prove in the Appendix, all three chicken games have a unique 
symmetric mixed-strategy equilibrium that does not distinguish among the players and 
can therefore serve as a focal point for solving the coordination problem presented by 
the game.3 However, the uncoordinated use of a mixed strategy has a major disadvan- 
tage: it leads to a Pareto-deficient outcome and is therefore wasteful in comparison to 
the pure-strategy equilibria. 

One device that could prove useful for solving this coordination problem is "cheap 
talk" or signaling-costless communication that takes place outside the specification 
of the game. As suggested by Palfrey and Rosenthal (1991), cheap talk can be 
beneficial in settings where the potential gains for coordinated behavior are substantial. 
Indeed, a simulation by Ward (1990) demonstrated that joint gains are likely to be 
realized in a three-person game of chicken if the game is preceded by a pregame phase 

2. An outcome is Pareto efficient (or Pareto optimal) if there is no other outcome with greater or equal 
payoffs to all players and a strictly higher payoff to at least one player. 

3. The symmetric mixed-strategy equilibria of the intergroup, two-person, and four-person games of 
chicken, as described here, are for each player to invest with probabilities of .42, .60, and .07, respectively 
(see Appendix). 
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in which the players can signal their commitment to a certain course of action. Similar 
effects of nonbinding communication on cooperation were found in the experimental 
studies of the minimal contribution set paradigm-an n-person game of chicken (van 
de Kragt, Orbell, and Dawes 1983). 

Another coordination device that could improve the prospects of cooperation is 
repetition of the game. If the players repeat the game time after time, then they 
eventually may settle on one of the Nash equilibria even in the absence of communi- 
cation. Repetition is important for yet another reason: it enables players to achieve fair 
and equal payoffs in addition to Pareto efficiency. Individuals, as well as profit- 
maximizing firms (see Kahneman, Knetsch, and Thaler 1986), care about being treated 
fairly and are willing to resist unfair treatment by others even at some cost to 
themselves. An iterated setting in which current behavior depends on the earlier 
choices of other players enables them to do that. Ideally, an optimal and fair outcome 
can be achieved by alternating between the pure-strategy equilibria such that each 

player invests on every second round in the two-person game and on every fourth 
round in the intergroup and four-person games. 

The mathematical formulations of the repeated interaction outcomes are given by 
the folk theorem, which states that the set of (subgame perfect) equilibrium payoffs in 
the infinitely repeated, undiscounted game is the set of individually rational payoffs 
in the convex-hull of the payoffs in the one-stage game (e.g., Rubinstein 1980). 

Figure 1 illustrates the folk theorem for the two-person chicken game but not for 
the four-person games (due to lack of competence in drawing four-dimensional 
figures). 

The one-stage payoffs are (2, 2), (5, 2), (2, 5), and (0, 0). When the convex-hull of 
these points is intersected with the individual rationality conditions xi > 2, i = 1, 2 (each 
player can guarantee 2 by not investing), we obtain the shaded triangle in Figure 1 
with vertices (5, 2), (2, 5), and (2, 2). Each point in this triangle can be sustained as an 
equilibrium outcome of the repeated game. In particular, this is true for efficient 
outcomes, namely the points on the Pareto-optimal frontier-the line segment [(5, 2), 
(2,5)]. For example, the symmetric (i.e., "fair") efficient outcome (3.5, 3.5) is obtained 
by investing alternately, in turns, to obtain the string of payoffs (5, 2), (2, 5), (5, 2), (2, 
5)... (with the threat never to invest again as soon as the other player deviates from 
this coordination pattern). Unlike the efficient (3.5, 3.5), which requires the coordina- 
tion of the two players, the inferior payoff (2, 2) is achievable as an equilibrium payoff 
of the repeated game with no need for coordination. At each stage, each player invests 
with probability .6; that is, the mixed equilibrium of the one-stage game, (.6, .6), is 
played repeatedly. Note that the payoff (2, 2) also can be achieved if both players never 
invest, but this is not an equilibrium behavior. 

Table 4 lists, for each of the three games, all the symmetric equilibria in the repeated 
game that are based on equilibria of the one-stage game. An equilibrium of the 
one-stage game is given as a vector of probabilities (to invest) for each of the players. 
An asterisk added to such a vector indicates a strategy in the repeated game in which 
the cyclic permutations of the vector are played successively. Thus, (1, 0)* stands for 
the pattern (1, 0), (0, 1), (1, 0), ... , and (.42, .42, .42, .42)* means to play repeatedly 
(and independently) the mixed strategy (.42, .42, .42, .42). Finally (.6, .6; 0, 0)** means 
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Figure 1: Equilibria in the Repeated Two-Person Chicken Game 

that the two groups take turns in the role of investors; that is, (.6, .6; 0, 0), (0, 0; .6, 
.6), (.6, .6; 0, 0) .... Within each game, the solutions are listed according to their 
expected payoffs (from highest to lowest). 

To each of the equilibria in Table 4, we indicated the expected payoff per player 
(per stage), the percentage of stages in which an individual invests (on average), and 
the level of coordination needed to execute the equilibrium. The important feature of 
Table 4 for our purposes is that, in all games, the efficient symmetric equilibrium 
requires the highest level of coordination (namely taking turns). On the other extreme, 
repeating the same, one-stage, mixed strategy requires no coordination whatsoever 
and yields the lowest expected payoffs. 

In the present experiment, the games were, of course, finitely repeated. However, 
although the participants were not informed about the exact length of the games, they 
knew that the games involve a large number of repetitions. These conditions approxi- 
mate, at least roughly, the conditions for the application of the folk theorem. Each 
repetition was preceded by a pregame period in which the players could signal their 
intentions to invest or not. Given the opportunity and the means of coordination, we 
compared the relative success of the participants in the different games in achieving 
an optimal and fair outcome. 
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TABLE 4 

Symmetric Equilibria in the Repeated Games 
Based on Equilibria in the One-Stage Games 

Average Percentage 
Game Equilibrium Individual Payoff Invested Coordination 

Two-person chicken (1,0)* 3.50 50.0 Two players 
(.6,.6)* 2.00 60.0 None 

Four-person chicken (1, 0, 0, 0)* 4.00 25.0 Four players 
(0, 0, .2, .2)* 2.70 10.0 Four players 

(0,.11, .11, .11)* 2.55 8.3 Four players 
(.072, .072, .072, .072)* 2.50 7.2 None 

Intergroup chicken (1, 0, 0, 0)* 4.00 25.0 Four players 
(.6, .6; 0, 0)** 3.50 30.0 Two teams 

(.42, .42, .42, .42)* 2.70 42.0 None 

NOTE: See text for explanation of asterisks. 

One obvious predictor of the likelihood of cooperation, as defined earlier, is the 
number of players involved. The prospects of successful coordination decrease as the 
number of players increases (Hamburger, Guyer, and Fox 1975; Marwell and Schmitt 
1972; Oye 1986). Thus, the mere complexity of the (intergroup and single-group) 
four-person games, as compared to that of the two-person game, renders the realization 
of common interests in the larger games more difficult. 

There is, however, another basis for predicting the prospects of cooperation that is 

specific to the game of chicken. A basic feature of a chicken game (when some form 
of communication or signaling among the players is possible) involves the first-mover 

advantage, that is, the incentive each player has to be the first to bind himself 

irrevocably to noncooperation. The noncooperative strategy in the two-person chicken 

game is to invest the endowment; a player who succeeds in making his intention to 
invest seem convincing is bound to win if the other player is rational (e.g., Rapoport 
1997). In the four-person (single-group) chicken game, players who establish them- 
selves as noninvestors can compel the other players to make the investments necessary 
for provision of the public good (Ward 1990).4 In addition to being an effective tactic 
for the individual player, preemption is an important coordination device for the group 
as a whole. Introducing asymmetry among the players to match the asymmetry 
inherent in the pure-strategy equilibrium solutions can help the group avoid the inferior 
outcome associated with uncoordinated action. Of course, there always is some risk 

involved; the uncertainty about the behavior of the other player(s) leaves open the 

possibility of "collision" (in the two-person game) or nonprovision (in the four-person 
game) in which committed players cannot back down or cannot do so in time (Schelling 
1977; Jervis 1978). 
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4. This game is equivalent to the symmetric volunteer dilemma by Dieckman (1985). 4. This game is equivalent to the symmetric volunteer dilemma by Dieckman (1985). 4. This game is equivalent to the symmetric volunteer dilemma by Dieckman (1985). 
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In the intergroup chicken game, where the pure-strategy equilibria are asymmetric 
both between the two teams and within each team, the situation is considerably more 
precarious. Each player in this game prefers that his or her team contain the single 
contributor, but each also prefers that the other team member bear the cost of 
contribution. Thus, each player has an interest in establishing himself or herself as an 
investor vis-a-vis the members of the other team and, at the same time, as a noninvestor 
vis-a-vis the other member of his or her own team. Because these two objectives are 
contradictory, players in the intergroup chicken game cannot commit themselves 
credibly to any given action. 

To illustrate this point, assume that the members of team A are the first to commit 
themselves to the competitive "invest" strategy. To the extent that this commitment is 
perceived as credible by the members of team B, they have no incentive to invest their 
endowments. Here the intergroup conflict has the characteristics of a chicken game as 
understood by Schelling (1960) and other social psychologists and political scientists. 
That is, victory can result from a display of the intention to win and the resolve to 
follow through on that intention. However, the expectation that the members of the 
opposing team will "chicken out" results in a two-person game of chicken between 
the members of team A, as each prefers to free ride rather than pay the cost of 

participation. Of course, if the members of team B expect that the members of team A 
will become involved in this intragroup game, then they might decide to invest their 
endowments in the hope of winning. Yet the possibility of their implementing this 
decision depends on their ability to solve their own intragroup chicken game, and so 
on. In other words, although the players on each team can improve on the Nash 
equilibrium outcome by coordinating their strategies, no such coordination is self- 
enforcing (Berenheim, Peleg, and Whinston 1987). 

This strategic structure of the intergroup game also is likely to obstruct the 
effectiveness of reciprocation as a coordination device. Reciprocation, or the tendency 
to respond to present cooperation (defection) with future cooperation (defection), is 
effective only to the extent that it is credible (Oye 1986). Credibility, in turn, hinges 
on the ability of the actors to distinguish reliably between cooperation and defection 

by others and to respond in kind. Because reciprocity requires flexibility, both control 
and recognition are important for the successful implementation of tit-for-tat or similar 

strategies. Unitary players have few control or recognition problems (because the 
actors can easily distinguish between cooperative and competitive actions of the other 

players and respond in kind). However, as the preceding scenario illustrates, teams are 

expected to have difficulties with both. 
In sum, our experiment involves two contrasts. First, on the basis of the number of 

players involved, we expect more cooperation in the two-person game of chicken than 
in the larger (intergroup and single-group) four-person games. Second, based on the 

strategic properties of the two four-person games, we predict more cooperation in the 

single group than in the intergroup chicken game. 
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THE EXPERIMENT 

METHOD 

Subjects and Design 

The subjects were 100 male undergraduate students at the Hebrew University of 
Jerusalem. Subjects were recruited by campus advertisements promising a monetary 
reward for participation in a decision-making task. Subjects participated in the experi- 
ment in groups of four (in the intergroup and four-person game conditions) or two (in 
the two-person game condition); each condition consisted of 10 groups. 

Procedure 

On their arrival at the laboratory, subjects were seated in a single room (in the 
intergroup condition, they were randomly assigned to the "green" and "red" teams 
with two subjects on each team). Subjects were given verbal instructions concerning 
the rules and payoffs of the game (see Tables 1-3). The game instructions were phrased 
in terms of individual i's payoffs as a function of his or her own decision to invest or 
not and the decisions made by the other players in the game. Subjects were not 
instructed to maximize their earnings, and no reference to cooperation or defection 
was made. Subjects were given a quiz to test their understanding, and explanations 
were repeated until the experimenter was convinced that all subjects understood the 
payoff matrix. Subjects were told in advance that they would receive their payoffs in 
sealed envelopes and leave the laboratory one at a time with no opportunity to meet 
the other participants, and they were assured that the experiment involved no deception. 

Each group of four or two subjects played 40 rounds (iterations) of the same game. 
The number of rounds to be played was not known to the participants. Each subject 
had an electric switch that controlled a green or a red light bulb (according to team 
membership) on an electric board at the front of the room. At the beginning of each 
round, all the switches were off. A subject could signal his or her intention to contribute 
by turning on the electric switch. Subjects had a 30-second period in which they could 
change their signals as often as they wanted to in real time. When the 30-second period 
was up, the board was frozen automatically and subjects were paid according to the 
decisions made by all the subjects. Following the completion of a round, the decisions 
were recorded by the experimenter (subjects also recorded the outcome of each round, 
enabling them to double check their earnings). The lights on the board were turned off 
and the sequence was repeated. 

Following the final round, the points were added up and cashed in at the rate of IS 1 
for 5 points (1 Israeli shekel equaled approximately U.S. $0.40 at the time the 
experiment took place, and the average earnings per subject were IS 24.34, about U.S. 
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Figure 2: Mean Number of Contributions per Subject per 10-Round Block 
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RESULTS 

Contribution Rates and Pareto Efficiency 

Out of the 40 decisions, the mean number of contributions per subject was 22.45 
in the intergroup game, 22.75 in the two-person game, and 7.80 in the four-person 
game. For each game type, the 40 rounds (repetitions) were divided into four blocks 
of 10 rounds each, and the mean number of contributions per individual subject in each 
block was calculated. The mean values appear in Figure 2. 

The data were analyzed in a two-way analysis of variance (ANOVA) with one 

between-subjects (type of game) and one within-subjects (block number) factor. This 

analysis revealed a significant effect of game type, F(2, 97) = 51.71, p < .01, no 

significant effect for block, F(3, 95) = 2.42,p > .01, and a significant interaction effect, 
F(6, 190) = 4.19, p < .01. A series of pairwise Tukey's HSD tests indicated that the 
number of contributions was significantly lower in the four-person condition, but there 
was no difference between the intergroup and two-person conditions. The finding that 

subjects in the intergroup game contributed at about the same rate as those in the 

two-person game should be interpreted in light of the fact that, according to the 

Pareto-optimal solution, subjects in the intergroup game were predicted to contribute 
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TABLE 5 

Number of Investors for Each of the Three Games, across Groups and Rounds 

Number of Investors Two-Person Chicken Four-Person Chicken Intergroup Chicken 

0 36 (9.00) 123 (30.75) 5 (1.25) 
1 273 (68.25) 243 (60.75) 104 (26.00) 
2 91(22.75) 33 (8.25) 129 (32.25) 
3 1(0.25) 112 (28.00) 
4 0 (0.00) 50 (12.00) 

Total 400 (100.00) 400 (100.00) 400 (100.00) 
Mean 1.14 0.76 2.25 

Variance 0.30 0.35 2.58 

NOTE: Percentages are in parentheses. The Pareto-optimal equilibria are highlighted in bold type. 

in 25% of the rounds, whereas players in the two-person game were predicted to 
contribute in 50% of the rounds. The interaction also is highly enlightening in that the 
number of contributions decreases across blocks for the two-person and four-person 
games but not for the intergroup game. 

Next we turn to an analysis of the results at the group (rather than the individual) 
level. In each of the three game conditions, 10 sets of subjects played 40 rounds, that 

is, a total of 400 repetitions for each game. Table 5 summarizes the number of 
contributors per group as a function of game type. 

A very clear pattern emerges. In almost 70% of the 400 rounds played in the 

two-person chicken condition, the number of contributors is 1-the Pareto-optimal 
outcome. In the four-person game, more than 60% of the rounds resulted in the optimal 
outcome, and, with a single exception, the deviation from this solution was ? 1. The 

intergroup chicken game, however, induced much higher (and inefficient) rates of 
contributions. Only 26% of the rounds resulted in the Pareto-efficient outcome. The 
modal number of contributors was in fact 2, and, in more than 40% of the rounds, the 
number of contributors was even higher. 

The final analysis in this section looks at the actual amounts of money earned by 
the subjects in the various conditions. Recall that all three games share a common 

Pareto-optimal solution, namely one contributor. At this equilibrium point, the average 
payment per subject in the two-person game is 3.5 points (i.e., the contributor wins 
the game and receives 5 points, whereas the noncontributor keeps his or her 2-point 
endowment), and the average payment per subject in the four-person and intergroup 
games is 4 points (i.e., in the four-person game, the single contributor gets 2.5 points, 
whereas each of the other three players gets 4.5 points; in the intergroup game, the 
contributor gets 5 points, his or her teammate gets 7 points, and each of the two 
members of the other team gets 2 points). Table 6 summarizes an individual's average 
earnings as a function of the game played and the block. To interpret these numbers, 

keep in mind that the average number of points earned by a member of a group that 
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TABLE 6 

Mean Number of Points per Player as a Function of Game, Type, and Block 

Block Two-Person Chicken Four-Person Chicken Intergroup Chicken 

1 22.80 34.95 30.25 
2 24.14 32.75 26.45 
3 26.40 32.30 29.18 
4 29.40 33.75 28.85 

Total 102.76 133.64 119.24 
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played the equilibrium solution in each and every round is 35 for each block (140 
across all blocks) in the two-person game and 40 for each block (160 across all blocks) 
in the four-person and intergroup games. Thus, it is meaningful to compare only the 
two larger games in terms of the average amount earned per player. Comparing the 
mean earnings in these two games indeed indicates that subjects earned significantly 
more in the four-person game than in the intergroup game, F(1, 18) = 7.72, p < .01. It 
also is interesting to note that the amount earned increases steadily and at an impressive 
rate only for the two-person game. 

Coordination and Turn Taking 

The Pareto-optimal outcome involves a contribution of a single player, whereas a 
fair and symmetric outcome involves turn taking among all players. Ideally, each 
player should contribute on every second trial in the two-person game and on every 
fourth trial in the four-person and intergroup games. How often do individual subjects 
contribute, and is there a distinct pattern of contributions under the various game 
conditions? The following analyses attempt to answer these questions. First, we 
calculated for each subject the lag between two successive contributions. Thus, if a 
certain subject contributed on trial 1, did not contribute on trials 2-6, and contributed 
again on trial 7, then this lag is (7 - 1 =) 6. The number of lags varies from person to 
person because it depends on the subject's total number of contributions. In fact, for 
those few subjects who never contributed or contributed only once, there are no lags 
to be analyzed. Table 7 shows the distribution of lags summed over subjects and rounds 
in each game condition. 

The results are quite clear. For the two-person game, the modal lag is 2 (alternate 
between contributions and noncontributions) with a sizable number of contributions 
on successive trials (lag = 1). For the four-person game, we have a single peaked 
distribution at 4, that is, contributions on every fourth round. In the intergroup chicken 
game, more than two thirds of the contributions are on adjacent trials.5 

Next we analyze the evidence for coordination among the members of the various 
sets. First we report correlations between a subject's own decision to contribute on a 

5. The same analysis was repeated after aggregation of within-subjects results. For each individual, we 
identified the modal lag and tabulated this value as a function of the condition in which he or she participated. 
These results support the same conclusions. 
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again on trial 7, then this lag is (7 - 1 =) 6. The number of lags varies from person to 
person because it depends on the subject's total number of contributions. In fact, for 
those few subjects who never contributed or contributed only once, there are no lags 
to be analyzed. Table 7 shows the distribution of lags summed over subjects and rounds 
in each game condition. 

The results are quite clear. For the two-person game, the modal lag is 2 (alternate 
between contributions and noncontributions) with a sizable number of contributions 
on successive trials (lag = 1). For the four-person game, we have a single peaked 
distribution at 4, that is, contributions on every fourth round. In the intergroup chicken 
game, more than two thirds of the contributions are on adjacent trials.5 

Next we analyze the evidence for coordination among the members of the various 
sets. First we report correlations between a subject's own decision to contribute on a 

5. The same analysis was repeated after aggregation of within-subjects results. For each individual, we 
identified the modal lag and tabulated this value as a function of the condition in which he or she participated. 
These results support the same conclusions. 
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TABLE 7 

Distribution of Contribution Lag by Type of Game 

Lag Two-Person Chicken Four-Person Chicken Intergroup Chicken 

1 196 (45.06) 39 (14.18) 583 (67.95) 
2 210 (48.28) 44 (16.00) 154 (17.95) 
3 16 (3.68) 51 (18.55) 62 (7.23) 
4 5 (1.15) 69 (25.09) 23 (2.68) 
5 3 (0.69) 24 (8.73) 20 (2.33) 
6 1 (0.23) 12 (4.36) 8 (0.93) 

7 or more 4 (0.92) 36 (13.09) 8 (0.93) 

NOTE: Percentages are in parentheses. 

given trial and the decisions of the other players. Because the Pareto-optimal solution 

requires a single contributor in each set, coordination implies negative correlations 
between the player's own decision and the decisions of the other players; that is, one 
should contribute only when this is required (i.e., when the others do not). The 

aggregate correlations between a player's contribution and the contribution of the other 
member(s) of the set are -.39, -.32, and -.16 for the two-person, four-person, and 

intergroup chicken games, respectively. When correlations are calculated for each 

subject separately, the median (individual) values for the three games are -.63, -.34, 
and -.19, respectively. Thus, in both analyses, the two-person chicken game has the 

highest level of coordination and the intergroup chicken has the lowest. 
Turn taking also means that each player's contribution on a given trial should be 

negatively correlated with his or her own contributions on previous rounds and 

positively with other players' contributions on previous rounds. In Table 8, we report 
these correlations for lags of k = 1, 2, 3, 4, and 5. The correlations were computed 
across all players and rounds. 

Clearly, the players' contributions in the two-person game correlate positively with 
their partners' behavior on the previous trial and negatively with their own previous 
behavior. In other words, subjects within each pair tend to alternate (take turns). To 
facilitate comparison among the games, we adopted a simple rule for coding behavior 
of the others in the larger (four-person and intergroup) games: we simply distinguish 
between cases in which one or more of the other players contributed (without taking 
into account the exact number of contributors) and those in which none contributed. 
As can be seen in Table 8, there is some weak evidence for coordination in the 

four-person game (note that the tendency to contribute is smaller immediately after a 
contribution and peaks on the fourth trial) but no sequential pattern whatsoever for the 

intergroup chicken game. 
Another implication of coordination is that the number of contributors per round 

should be constant (namely 1) across trials; in other words, the variance in the number 
of contributors per round should be low (ideally 0). The mean variances were found 
to be 2.74, 3.25, and 7.81 for the two-person, four-person, and intergroup games, 
respectively. The data were analyzed by a one-way ANOVA (after a log transformation 
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TABLE 8 

Correlation Coefficients of Contribution on Trial i with 
Contribution on Trial i - k(lag) by Type of Game 

Two-Person Chicken Four-Person Chicken Intergroup Chicken 

Lag k Own Others Own Others Own Others 

1 -.29 .50 -.08 .12 .24 -.01 
2 .57 -.37 -.02 .07 .23 .01 
3 -.26 .41 .08 .03 .23 .01 
4 .50 -.33 .22 -.08 .23 -.01 
5 -.22 .43 .07 -.01 .26 .00 
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to stabilize the variances), and we found a significant effect of game, F(2, 26) = 8.35, 
p < .01, with the lowest variance in the two-person chicken and the highest in the 
intergroup chicken game.6 

Next we analyzed the number of contributors on a given game as a function of the 
number of contributors on the previous trial. The analysis was done within the game 
condition, across all 10 groups and 40 rounds. The trademark of coordination is 
persistence, that is, repetition of the same strategy and in particular for the Pareto- 
optimal single-contributor solution. The now familiar pattern emerged again: coordi- 
nation is extremely high (77% overall persistence rate and 60% persistence rate for 
the equilibrium) in the two-person chicken game and is lowest for the intergroup 
chicken game (37% overall persistence rate and 12% persistence rate for the equilib- 
rium), with the four-person chicken game in between (52% overall persistence rate 
and 39% persistence rate for the equilibrium).7 

Our final analysis examines the symmetry in contribution rates among players. We 
listed for each player his or her proportion of contributions (out of the 40 decisions) 
and calculated for each set of K players (K = 2 or 4, depending on game type) the 
difference between the highest and lowest contribution proportions. The range for each 
set and the mean range for each game type appear in Table 9. As can be seen in the 
table, this range is lowest in the two-person game and highest in the intergroup game. 

We also tested the hypothesis that the contribution proportions of the K players in 
a particular set are equal. The standard test for equality of K proportions is inappro- 
priate in this case because (a) the K proportions are not independent and (b) the 40 
rounds are not independent. To overcome the first problem, we used Cochran's (1950) 
test (Q) of equally matched proportions. To deal with the second problem, we adjusted 
Cochran's statistic for serial dependence in responses using the procedure de- 
scribed by Budescu (1985). We estimated for each subject the first-order serial 

6. In one of the two-person chicken games, we observed perfect coordination; that is, the two players 
took turns from trials 1 to 40. This pair has a variance of zero and cannot be used in the ANOVA (because 
log 0 is undefined). Thus, the results, although significant, underestimate the amount of coordination 
obtained in this game. 

7. Similar results were obtained when the data for the first 20 trials and the last 20 trials were analyzed 
separately, and so they are not reported here. 
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TABLE 9 

Differences in Contribution Proportions between the Player with the Highest 
Proportion and the Player with the Lowest Proportion (ranges of proportions) 

Set Two-Person Chicken Four-Person Chicken Intergroup Chicken 

1 .5000 .3250 .3000 
2 .3000 .3250 .4750 
3 .0250 .3750 .1250 
4 .0250 .1000 .5750 
5 .2500 .0750 .2750 
6 .0750 .1250 .2000 
7 .0500 .1750 .8250 
8 .0250 .4000 .3750 
9 .0250 .0750 .5500 

10 .0500 .3500 .5000 
Mean .1325 .2275 .4200 
Variance .0267 .0169 .0430 
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correlation and used the median within-set serial correlation, C, to calculate an 
adjusted statistic, QA, as 

QA=Q(1 +C)/(1-C). 

The symmetry hypothesis was tested separately for each set. Therefore, to avoid 
inflated error rates due to multiple tests, we used a more conservative level of 
significance, namely a = .05/10 = .005. The critical value for rejecting the hypothesis 
of equality between two proportions is X2(1, .995) = 7.88. In only 1 of the 10 sets in 
the two-person chicken condition was the hypothesis of symmetry (equality) in 
contribution proportions rejected; that is, in only one set did the observed QA value 
exceed the critical value. In the four-person chicken game, the hypothesis of equal 
proportions was rejected in 4 of the 10 sets (in testing the equality of four proportions, 
the critical value for rejection is X2[1, .995] = 12.84). 

In the intergroup chicken game, we performed two types of symmetry tests: the 
symmetry within each dyad (team) and the symmetry among all four players (using 
the suitable X2 values). The hypothesis of symmetry within teams was rejected in only 
4 of the 20 teams. On the other hand, the hypothesis of symmetry among the four 
participants was rejected in 6 of 10 sets. 

DISCUSSION 

We contrasted the intergroup chicken game with two control conditions: a two- 
person chicken and an n-person (single-group) chicken game. As predicted, the level 
of cooperation in the intergroup game was lower than that in either the two-person or 
the n-person game. We discuss these two contrasts in turn. In the two-person game, 
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almost 70% of the rounds resulted in the Pareto-optimal outcome of one player 
contributing, and in many of the pairs this proportion was much higher. There also was 
a clear indication of learning as the level of efficiency and, consequently, the amounts 
of money earned increased steadily as the game progressed. Finally, turn taking 
between the two players was the rule rather than the exception. These results stand in 
sharp contrast to those observed in the intergroup competition, as only 26% of the 
rounds resulted in the Pareto-optimal outcome; practically all of the other rounds 
resulted in a higher, and therefore inefficient, rate of contribution; and, most notably, 
12.5% of the rounds resulted in a full-scale "collision" of all four players contributing. 
In addition, there was little indication of turn taking among the participants within 
teams or between teams, and there were no signs of improvement over time. 

It can be argued that the differences between the two-person and intergroup chicken 
games are due to the fact that the intergroup game involves a larger number of players 
and therefore entails a more intricate coordination problem. However, the results in 
our second control condition attest against this possibility. The contrast involving the 
intergroup and four-person chicken games is a straightforward one. Both games 
involve the same solution and the same number of players and therefore present 
subjects with an identical coordination problem: to achieve the Pareto-optimal out- 
come, a single player should contribute on each round of the game; to obtain fair 
outcomes, the players should alternate in taking this role. Yet, as our results clearly 
indicate, there was better coordination in the single-group game than in the intergroup 
game. More than 60% of the rounds in the former game resulted in the Pareto-optimal 
outcome as compared to only 26% in the latter. Obviously, players did not treat these 
two games as an identical coordination problem. 

Can the results be explained by the notion of mixed strategy? As indicated in the 
introductory paragraphs of this article, according to the symmetric Nash equilibrium 
in mixed strategies, subjects should contribute with probabilities of p's = .42, .60, and 
.07 in the intergroup, two-person, and four-person chicken games, respectively. If each 
subject indeed contributes according to these probabilities independently of the other 
n - 1 players, then the total number of contributors is expected to be a binomial with 
n being the number of players and p being the probability of contribution according 
to the mixed-strategy equilibrium for each game. Thus, for example, we would expect 
the number of contributors in the two-person chicken game to follow a binomial 
distribution with n = 2 and p = .60; that is, 16% of the games should have no 
contributors, 48% of the cases should have exactly one contributor, and the remaining 
36% should have both players contributing. Similarly, the number of contributors in 
the intergroup chicken game is given by a binomial distribution with n = 4 and p = 
.42; in the four-person game, it is given by a binomial with n = 4 and p = .07. To test 
the hypothesis that subjects followed this strategy, we compared the expected (bino- 
mial) distribution to the actual number of contributors per game (across groups and 
trials). The null hypothesis was soundly rejected (at the .01 level) by a Kolmogorov- 
Smirnov test in all cases (D's = .13, .44, and .20 for the two-person, four-person, and 
intergroup chicken games, respectively). Thus, the results cannot be explained by use 
of mixed strategies alone. 
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An interesting result is that failure to coordinate on the Pareto-optimal solution was 
likely to result in overprovision in the two-person and intergroup games but in 
underprovision in the four-person game. Specifically, of the 127 nonoptimal rounds 
in the two-person game, 91 (72%) resulted in both players contributing, whereas 36 
(28%) of the rounds resulted in neither player contributing. In the intergroup game, 
there were 296 nonoptimal rounds, and 291 (almost 99%) of them resulted in 
overprovision (i.e., two or more players contributing). By contrast, of the 157 non- 
optimal rounds in the single-group four-person game, 123 (78%) resulted in under- 
provision (i.e., no contributors). 

We can offer two explanations for these results. The first is based on the dynamic 
nature of the repeated game. A repeated game of chicken entails long-term considera- 
tions of reputation; each player may refrain from yielding in the present to force the 
other player(s) to yield in the future. Establishing a reputation of toughness may be 
costly, but if the "shadow of the future" (Axelrod 1984) is long enough, it might be 
well worth the cost. As explained earlier, reputation considerations may lead a player 
to contribute (even if other player also does) in the two-person game and to withhold 
contribution (even if no one else contributes) in the four-person game. The reputation 
effect is thus consistent with overprovision in the former game and underprovision in 
the latter. 

In the intergroup chicken game, establishing a reputation of toughness is more 
problematic. Each player has an interest to appear as an investor vis-a-vis the members 
of the other team and as a noninvestor vis-a-vis the other members of his own team. 
The overprovision observed in this condition suggests that establishing reputation of 
toughness vis-a-vis the opposing team may be the more important consideration. This 
interpretation receives support from studies involving between-dyad play in a mixed- 
motive game followed by within-dyad play of the same game for division of winnings 
(Doise 1978; Wilson and Kayatani 1968). These studies found consistently more 
competition between the two-person groups than within the groups. 

The dynamics observed in one of our experimental sessions illustrates this point 
quite nicely. In this particular session, one of the teams (team A) established its 
dominance quite early in the game. After a few collisions with the opposing team (team 
B), teamA began to win one round after another. The scenario became quite predictable 
(perhaps even boring); at the beginning of each 30-second signaling period, all four 
lights went on, indicating an intention by all players to contribute, but before the time 
was up one of the players in team B turned off his or her light and the other immediately 
followed. The two members of team A, however, did not use this opportunity to free 
ride. Rather than get involved in the internal game of chicken, both kept their lights 
on until the end of the period. Although this strategy can be considered wasteful 
(because both players in team A lost their endowments), it was quite effective in 
deterring the other team. 

Another explanation is based on the symmetric mixed-strategy equilibrium of the 
static and repeated game. It is possible that when coordination on the pure-strategy 
equilibrium fails, players resort to the use of mixed strategies. Although we were able 
to reject the null hypothesis that mixed strategies can explain the behavior observed 
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throughout the entire game, it is nonetheless possible that, when coordination failed, 
mixed strategies exerted some pull on the subjects' behavior. The mixed-strategy 
equilibrium predicts contribution with low probability (.07) in the four-person game 
and with relatively high probability in the two-person and intergroup games (.60 and 
.42, respectively). These predictions are consistent with the observed pattern of results. 
Recall that if subjects contributed independently with these probabilities, then the 
expected number of contributions in the four-person game is .28 (4 players x .07), 
which is less than 1 (i.e., underprovision). On the other hand, the expected number of 
contributions in the two-person and intergroup chicken games is 1.2 (2 players x .60) 
and 1.68 (4 players x .42), respectively. Both values are greater than 1 and so predict 
overprovision. It is, of course, possible for both factors to operate simultaneously, but 
it is impossible to distinguish the relative contributions of the two effects based on this 
study. 

CONCLUSION 

The problem of collective action in intergroup conflict has been largely ignored by 
the existing literature. The literature on social dilemmas and public goods provision 
traditionally has treated these problems as single-group n-person games. Even re- 
searchers who acknowledge that one group's public good often is another's public 
"bad" (Hardin 1982; Fireman and Gamson 1979) do not integrate this additional 
dimension of intergroup conflict into their models of individual and group decision 
making. On the other hand, strategic analyses that represent intergroup conflict as 
two-person games overlook the collective action problem within the competing 
groups. Despite the recognition that the unitary player assumption is too simplistic, 
most researchers are reluctant to drop this assumption because of the fear that this 
would result in models that are too complex for heuristic or explanatory purposes 
(Bendor and Hammond 1992). 

The team game approach overcomes the limitations of the standard paradigms. It 
integrates the intragroup and intergroup levels of analysis and enables researchers to 
investigate systematically the interaction between internal organization and outside 
conflict. The results of the present study accentuate the importance of this integrated 
framework. Clearly, the intergroup chicken game is not played out as a two-person 
game of chicken between unitary players, nor is it treated as a four-person game of 
chicken among four individuals. Rather, the conflict of interests within the groups 
intensifies the conflict between the groups, and the conflict between the groups 
increases the competition among the individual players. Similar results were obtained 
in a recent study by Bornstein and Ben-Yossef (1994) that compared the intergroup 
prisoner's dilemma group game with a single-group prisoner's dilemma game. If 
nothing else, these team game experiments suggest that extrapolation from experi- 
ments with two-person and n-person games to intergroup conflicts could be misleading 
because it provides a prediction that is far too optimistic about the prospects of 
cooperation. 
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APPENDIX 
Nash Equilibrium Points 

In this Appendix, we find all Nash equilibrium points of each of the three variants of chicken 
game studied in this article. 

TWO-PERSON CHICKEN GAME 

Given that player 1 invests with probability p, the expected payoff for player 2 is 0 * p + 5(1 - 

p) if he or she invests and 2 if he or she does not invest. Hence, player 2's best reply is to invest 
if 5(1 - p) > 2 (i.e., p < .60). In other words, if we denote by b(p) the probability of investing 
in the best reply to p, then the best reply correspondence b(p) is given by 

1 ifp < 0.6 

b(p) = [O,1] ifp = 0.6. 
0 ifp > 0.6 

A Nash equilibrium is a pair of probabilities (p, q) such that q E b(p) andp E b(q). It is easily 
seen that the only three equilibria are (1, 0), (0, 1), and (.6, .6). 

FOUR-PERSON CHICKEN GAME 

Denote bypi the probability of player i to invest and the general strategy profile by p = (pI, P2, 

P3, P4). 

Proposition 5.1: The set of all Nash equilibria of the four-person chicken game consists of 
the following: 

(i) p = (1, 0, 0, 0) and all its permutations (pure-strategy equilibria). 
(ii)p = (p*, p*, p*, p*), where p* = 1 - VI0.8 = 0.072 (symmetric mixed-strategy 

equilibrium). 
(iii)p = (0, q*, q*, q*) and all its permutations, where q* = 1 - -0.8 = .11. 
(iv) p = (0, 0, .2, .2) and all its symmetries. 

Proof. If players 2, 3, and 4 invest with probabilities P2, P3, and P4, respectively, and if player 1 
does not invest, then his or her expected payoff is 

2(1 -p2)( 1 -)( -P4) + 4.5[1 - (1 - p2)(1 -p3)(1 - 4)]. 

If player 1 does invest, then his or her payoff is 2.5. Therefore, player l's best reply correspon- 
dence is 

0 if (1 - P2)(1 - P3)( - P4) < 0.8 

b(p2, P3, P4) = 10,] if (1 -P2)(1 -P3)(l - 4)08 (1) 
1 if (1 - P2)( - )((1 - P4) > 0.8 
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dence is 

0 if (1 - P2)(1 - P3)( - P4) < 0.8 

b(p2, P3, P4) = 10,] if (1 -P2)(1 -P3)(l - 4)08 (1) 
1 if (1 - P2)( - )((1 - P4) > 0.8 

and similarly for the other players. and similarly for the other players. and similarly for the other players. 
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If for any i e {1, 2, 3, 4} and {pl, p2, p3, p4} we let p-i = {Pi, P2 P3, P4} \ {Pi}, then p = 

(P1, P2, P3, P4) is a Nash equilibrium if and only if Pi E b(p_) for i = 1, 2, 3, 4. 
Let p = (PI, P2, P3, P4) be a Nash equilibrium. 

(i) If pi = 1, then (by the symmetries of condition 1) P2 = p3 = p4 = 0, which yields the 
pure-strategy equilibrium (1, 0, 0, 0) and all its symmetries. The remaining equilibria 
must therefore satisfy pi < 1 Vi. 

(ii) If 0 < pi < 1 for all i, then (by condition 1) 

0 <Pl < 1 implies (1 -p2)(l O 3)(1 -P4) = .8. 

Applying this for all players, we must have the following: 

(1 -p)(l -P2)(l -P3) = .8, 

(1 -P4)(1 -P2)(1 -P3) = .8, 

(1 -p4)(1 -)(1 -Pi) = .8, and 

(1 -p4)(1 -Pl)(l -P3) = .8, 

which imply pi = p2 = p3 = p4 = p*, where p* satisfies (1 - p*)3 = .8, that is, p* = 1 - 

V0.8= .072. It follows that this is not only the unique symmetric Nash equilibrium but 
also the unique Nash equilibrium in which all players use mixed strategies. The 
remaining equilibria must thus satisfy pi < 1 for all i and pi = 0 for at least one i. 

(iii) Assume that only one component is zero, say pi = 0, and 0 < Pi < 1 for i = 2, 3, 4. Then 
(by condition 1) 

(1 -p3)(1 -p4) = .8, 

(1 - 3)(l -P2) = .8, and 

(1 -P2)(1 -P4) = .8, 

which imply P2 =3 =p 4 = q*, where q* satisfy (1 - q*)2 = .8, that is, q* = 1 - 0-.8 = .11, 

andp = (0, q*, q*, q*) is in fact a Nash equilibrium because condition 1 also is satisfied 
for player 1. Because (1 - q*)(l - q*)(1 - q*) = .8(1 - q*) < .8, player l's best reply is 

P1 =0. 

(iv) If two components of p are zero, say pi = p2 = 0, and 0 < pi < 1 for i = 3, 4, then by 
condition 1 (1 - p3) = .8 and (1 - p4) = .8, that is, p3 = p4 = .2, and (0, 0, .2, .2) is in fact 
a Nash equilibrium because condition 1 for players 1 and 2 also is satisfied; that is, 
because (1 -p3)(l -p4) = .82 < .08, player l's and player 2's best replies are pi = 0 and 
p2 = 0, respectively. 

Finally, if three components of p are zero, then the fourth player's best reply is 1 and hence 
this is the pure-strategy equilibrium in condition 1. We conclude that all the equilibria of the 
game are those in items (i), (ii), (iii), and (iv) of the proposition. 
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game are those in items (i), (ii), (iii), and (iv) of the proposition. 



404 JOURNAL OF CONFLICT RESOLUTION 404 JOURNAL OF CONFLICT RESOLUTION 404 JOURNAL OF CONFLICT RESOLUTION 

INTERGROUP CHICKEN 

Assume that the teams are {1, 2} and {3, 4}. Denote by p = (Pl, P2, ql, q2) the probabilities of 
the players to invest. Given (P2, ql, q2), the expected payoff of player 1 is 5[(1 - ql)(l - q2) + 
P2ql(1 - q2) + 2q2(1 - ql)] if he or she invests and 2 + 5p2(l - ql)(1 - q2) if he or she does not 
invest. Therefore, player 1 invests or not depending on the direction of the inequality 

5[(1 - qj)(l - q2) +p2ql(1 - q2) + P2q2(1 - ql)] >2 + 5P2(i - ql)(l - q2), 

which is equivalent to 

(1 -p2)(l - ql)(l - q2) + P2q(1 - q2) + P2q2(1 - q) 
> 

0.4. 

Thus, the best reply correspondence of player 1 is 

f0 if (1 -p2)(l - ql)(l - q2) +p2q1(l - q2) + P2q2(1 - ql) < 0.4 

(p2; q, q2) = [0,1] if (1 -P2)(l - q)(1 - q2) +2ql( - q2) + p2q2(1 - ql) = 0.4 (2) 

[0 if (1 -p2)(l - ql)(l - q2) +p2ql(1 - q2) +P2q2(1 - ql) > 0.4 

and with the apropriate permutations for other players. 
We shall find all Nash equilibria and arrange them according to the number of players who 

do not invest, that is, the number of zero coordinates inp. Clearly, (0, 0; 0, 0) is not an equilibrium 
because (by condition 2) b(O; 0, 0) = 1. 

(i) Three players do not invest and the fourth player does invest. Because b(0; 0, 0) = 1, 
this yields the pure-strategy equilibrium (1, 0; 0, 0) and all its permutations. 

(ii) Equilibrium in which exactly two players do not invest. This splits into two subcases: 
(a) Two members of the same team, say team {3, 4}, do not invest. By condition 2, we 

get (1,0; 0, 0) or (0, 1; 0, 0), which are already in item (i), and (.6, .6; 0, 0). This has 
a very clear interpretation: if it is known that the members of the other team are not 
investing, then the game between players 1 and 2 is equivalent to the two-person 
chicken game with the equilibria (1, 0), (0, 1), and (.6, .6). To complete the argument 
that (.6, .6; 0, 0) is a Nash equilibrium, we have to show that 0 e b(O; .6, .6), which 
is in fact true because (1 - .6)(1 - .6) < .4. 

(b) Two players of different teams, say players 2 and 4, are not investing. Here again, 
the game becomes a two-person chicken game between the other two players with 
the pure-strategy equilibria being (1,0; 0, 0) and (0, 0; 1,0) in item (i). Note, however, 
that the third candidate for an equilibrium, namely (.6, 0; .6, 0), is not an equilibrium 
because b(.6; .6, 0) = 1 as follows from condition 2 given that (1 - .6)(1 - .6) + 
(.6)(.6) = .52 > .4. 

(iii) Only one player does not invest, say pi = 0. If (pi, 0; ql, q2) is a Nash equilibrium, then 
it must be that ql < 1 and q2 < 1 because (by condition 2) b(O; 1, q2) = 0. Thus, again by 
condition 2, 
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(1 - q2)(1 -Pl) + q2P = .4, (4) 

which implies (ql - q2)(1 - 2pl) = 0, which in turn implies that either pl = .5 or ql = q2. 
(a) Pl = .5 is impossible because it contradicts condition 4: (1 - ql)/2 + q1/2 = .4 implies 

.5 = .4. 
(b) ql = q2 = q. Note that 0 < PI < 1 (because Pl = 1 and P2 = 0 would imply ql = q2 = .4, 

which in turn would imply, by condition 2, Pi = 0). It follows (by condition 2) that 
(1 - q)2 = .4 and hence q = 1 - Oi4 = .37 and (again by condition 2) (1 -.37)(1 - 
Pl) + .37 pi = .4 and consequently Pl = .88. So the only candidate for equilibrium in 
this class is (.88, 0; .37, .37). For this to be an equilibrium, P2 = 0 must be a best reply 
to (.88; .37, .37). But 

(1 -.88)(1 -.37) + 2(.88)(1 -.37) = 1.15 > .4. 

Hence the best reply for (.88; .37, .37) isp2 = 1. It follows that there is no equilibrium 
with precisely one player not investing. 

(iv) Equilibria in which all players invest with positive probability, namely p = (Pl, P2, ql, 
q2), where all components are strictly positive. A careful check shows that no component 
can be 1 (otherwise condition 2 would be violated). The following follow from condition 2: 

(1 -P2)(1 - ql)(l - q2) + 2q2(1 - q2) + P2q2(1 - ql) = .4, (5) 

(1 -pl)(l - ql)(l - q2) + Plq(1 - q2) +Plq2(1 - ql) = .4, (6) 

(1 - ql)(l -pl)(l -P2) + qlP2(1 -P2) + qIP2(l -P1) = .4, and (7) 

(1 - q2)(1 -pl)(l -P2) + q2pl(1 -P2) + q2P2(1 -P) = .4. (8) 

From conditions 7 and 8, we get (Pi -P2)(1 - ql)(l - q2) = .4(p -P2), so that either 
(1 - ql)(1 - q2) = .4 or Pi = P2- The first possibility, (1 - ql)(1 - q2) = .4, leads to a 
contradiction of conditions 7 and 8, hencepl =P2 =p and similarly ql = q2 = q. It follows 
that 

(1 -p)(l - q) + 2pq(l - q) = .4 

(1 - q)(1 -p) + 2pq(l -p) =.4 

and consequently that (1 -p) = (1 - q), that is, p = q. Hence, the only Nash equilibrium 
in which all players invest with positive probability is the completely mixed symmetric 
equilibrium: pi =P2 = ql = q2 = * is a solution of (1 - p) + 2p(l - p)2 = .4, which has 

only one real solution: p* = .42. 
We conclude that all Nash equilibria of the game are as follows: 

(i) pure strategy equilibriump = (1, 0; 0, 0) and all its symmetries, 
(ii) (.6, .6; 0, 0) and (0, 0; .6, .6), and 

(iii) the completely symmetric mixed equilibrium p = (.42, .42; .42, .42). 
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(1 - q)2 = .4 and hence q = 1 - Oi4 = .37 and (again by condition 2) (1 -.37)(1 - 
Pl) + .37 pi = .4 and consequently Pl = .88. So the only candidate for equilibrium in 
this class is (.88, 0; .37, .37). For this to be an equilibrium, P2 = 0 must be a best reply 
to (.88; .37, .37). But 

(1 -.88)(1 -.37) + 2(.88)(1 -.37) = 1.15 > .4. 

Hence the best reply for (.88; .37, .37) isp2 = 1. It follows that there is no equilibrium 
with precisely one player not investing. 

(iv) Equilibria in which all players invest with positive probability, namely p = (Pl, P2, ql, 
q2), where all components are strictly positive. A careful check shows that no component 
can be 1 (otherwise condition 2 would be violated). The following follow from condition 2: 

(1 -P2)(1 - ql)(l - q2) + 2q2(1 - q2) + P2q2(1 - ql) = .4, (5) 

(1 -pl)(l - ql)(l - q2) + Plq(1 - q2) +Plq2(1 - ql) = .4, (6) 

(1 - ql)(l -pl)(l -P2) + qlP2(1 -P2) + qIP2(l -P1) = .4, and (7) 

(1 - q2)(1 -pl)(l -P2) + q2pl(1 -P2) + q2P2(1 -P) = .4. (8) 

From conditions 7 and 8, we get (Pi -P2)(1 - ql)(l - q2) = .4(p -P2), so that either 
(1 - ql)(1 - q2) = .4 or Pi = P2- The first possibility, (1 - ql)(1 - q2) = .4, leads to a 
contradiction of conditions 7 and 8, hencepl =P2 =p and similarly ql = q2 = q. It follows 
that 

(1 -p)(l - q) + 2pq(l - q) = .4 

(1 - q)(1 -p) + 2pq(l -p) =.4 

and consequently that (1 -p) = (1 - q), that is, p = q. Hence, the only Nash equilibrium 
in which all players invest with positive probability is the completely mixed symmetric 
equilibrium: pi =P2 = ql = q2 = * is a solution of (1 - p) + 2p(l - p)2 = .4, which has 

only one real solution: p* = .42. 
We conclude that all Nash equilibria of the game are as follows: 

(i) pure strategy equilibriump = (1, 0; 0, 0) and all its symmetries, 
(ii) (.6, .6; 0, 0) and (0, 0; .6, .6), and 

(iii) the completely symmetric mixed equilibrium p = (.42, .42; .42, .42). 
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