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Abstract 

We consider an infinite Markov chain with states Eo, E,," , such that 
E,, E2,- * is not closed, and for i - 1 movement to the right is limited by one 

step. Simple algebraic characterizations are given for persistency of all states, 
and, if Eo is absorbing, simple expressions are given for the probabilities of 

staying forever among the transient states. Examples are furnished, and simple 
necessary conditions and sufficient conditions for the above characterizations 
are given. 

ALGEBRAIC CHARACTERIZATION OF MARKOV CHAINS; PERSISTENCY; ABSORPTION 

PROBABILITIES 

1. Main characterization theorem 

Let Eo, E , * * be the state space of an infinite Markov chain, with transition 
matrix P = (pi). Feller ((1968), pp. 401-403), gives simple proofs of the three 

following facts. 

Theorem 1. Let T be the set of transient states, and Ei E T. The probabilities 
xi, that, starting from Ei, the system stays forever among the transient states are 

given by the (componentwise) maximal solution of 

(1) xi = piix, E E T, 
Ei ET 

such that 0 xi 1. 

Criterion. In an irreducible Markov chain with states Eo, E1 ,* ?, the state Eo is 

persistent if, and only if, the linear system 

(2) xi = s p i 1 
j=l 

admits of no solution with 0 - xi, 1, except xi = 0 for all i. 
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(Note that Equations (1) and (2) are the same if T = {E, E2, * *}.) 

Theorem 2. Let C be a closed persistent set and T be the set of transient states. 
The probabilities yi of ultimate absorption in C are given by the (componentwise) 
minimal non-negative solution of 

(3) yi = 2 p.iyJ + 2 p. Ei E T. 
EjeT EjEC 

In the present note we investigate in some detail the behavior of chains such 
that for i ' 1 transition to the right is possible only to the nearest neighbor, i.e., 
we assume 

(4) P = (p,) where p ii > 0, i = 1 and pj = 0, j > i + 1. 

We assume that the set E,, E2, * * is not closed, and investigate when the states 
E1, E2,' * * are transient, and, if Eo is an absorbing state (i.e. poo = 1), we compute 
the probability, that, starting from Ei, the chain stays forever among the 
transient states. (The latter is equivalent to saying that the chain drifts to infinity, 
if Ei is identified with i.) One minus this probability is then the probability of an 
eventual absorption at Eo. 

Assertion 1. For P satisfying (4), any non-negative solution of (2) satisfies 

(5) 0 XlX2< '. 

Proof. From (4) we have Xl = pllXl + p2x2, i.e. X2 = l(l - pll)/p12= 
Xi(plo + p12)/p12 

i 
X1 where the last inequality is true for x,i 0. Assume 0 - xi ' 

* *"*=xk. We shall show Xk+l Xk. By (2) pk.k+lXk+l = (1-pkk)Xk- -- pkjX; 
(l -pkk)Xk - Xk (-1 pkj) = (pkO + pk,k+l)Xk and the assertion follows. 

Let Xk- = (xl , . , Xk) and let xk be the corresponding column vector. Denote 
by Ak,k+l the k x (k + 1) matrix with elements satisfying for i= 1, * , k,j = 

1,-, k +l 

aii = 1- pi 

(6) aj= -pj j-'i+1, j7 i 

ai =0 j >i +l. 

In terms of this notation Equation (2) becomes 

(7) 0 = Ak. +lXk+l k = 1,2,-. 

Let Ak be the square matrix obtained from Ak,k+i by crossing out its last 
column, and let D, be the determinant of Ak. We have the following assertion. 

Assertion 2. For P satisfying (4) and any given value of x1 the system (2) 
admits of the unique solution 
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(8) Xk+I = (Dk / IPI,I) XI, k =l, 2,- \ k/ i=1 

Proof. Since the last column of Ak,.k+, has only its last element, -pk,k+l, 
different from zero, (7) can be rewritten as 

(9) (0, . 0, pk,k+lXk+) = AkXk. 

The columns of Ak are independent, since otherwise there would exist 
Xk = (x, ., ,Xk)' in which at least one component is positive, such that Akxk = 

(0,., 0)', and then Xk+l = (x,.. , xk, 0) would be a solution of (9) contradicting 
Assertion 1. Thus Ak is regular. Multiplying both sides of (9) by A k' and writing 
out explicitly the last row of this new equation, one obtains 

akkpk,k+IXk+l = Xk, 

where ak) is the k, kth element of A k. Now by definition of a(kk in terms of 

minors, we have a ) = Dk-/Dk. Thus 

Xk+l = XkDk /pk,k+,Dk-1. 

Now (8) follows directly by recursion, since it is true and easily directly 
established for k = 1. 

Remark 1. (8) together with Assertion 1 implies that Dk > 0 for all k (since 
D = (1- pll)>0). This fact is not completely trivial to verify directly. 

By the above assertions it follows that 

(10) lim Dk p = L 

exists, finite or infinite. 

Theorem A. Let P satisfy (4). If poo < 1 then all states are persistent if and only 
if L = oo, and all states are transient otherwise. 

If poo = 1 the probability of ultimate absorption in Eo is one if and only if L = c0. 

If L < oo, the probability of staying forever among the transient states, starting from 
Ek, is Dk- ,(L Inl pi, +l). 

Proof. Immediate. 

Remark 2. The values of (8) and (10) do not depend upon pii, i = 1,2, * , in 

the following sense. 
Let P satisfy (4) and define P* = (p j), by letting p j be arbitrary, and 

(11) p*,j=pi,/l(l-p,i) i j p*,i=O, i l, j 0. 

If we denote by x * the solution (2) with pij replaced by p *j, and choose x, = x* 

then it follows immediately from (8) that Xk = x , k - 1, and hence also the 
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value of L does not change. We may therefore, whenever convenient, assume 

pi = 0, i _ 1, which renders all diagonal elements of Ak unity. 
Clearly the fact whether L is finite or infinite, does not depend on the values 

of pij for small i, i.e. for i - s, s fixed, provided (4) is satisfied. 

2. Examples 

Some simple examples, particular cases of which are well known, but derived 

by different methods, follow directly. 

Example 1. pij = 0 for j~ {0, i + 1}, i _ 1. Here Dk = 1 and L is finite if and 

only if nI= pi,,i+ >O, i.e. if and only if i, (1 -p,.ii) = E,=,pi,< . This is 

Example (c), Feller (1968), p. 400. If pii does not necessarily vanish, then by 
Remark 2, the above condition should be replaced by L7=,p,o/( - pii)< oc, or 

equivalently by ,r=,pio/pi.,i+ < m. 

Example 2. Let t > 1 be fixed. Assume p, =0 for j? {0, t, i, i + 1}, and by 
Remark 2 we assume also p, i = 0. Dk = 1 for k ' t, and for k > t, computing Dk 

through its last row yields Dk = pk, nHj 1',pj + Dk-l, and by recursion 

k i-1 

Dk = 1 - i pitn1pJ,. 
i=t+1 j = 

If IH7nipi,+li>0 then clearly L <cx. This product is positive if and only if 

Er=@i(pio+pit)< o. We claim that the opposite is also true, i.e. r=I (pio +pi,)= oc 

implies L = o, unless pi, = 0 for all i > t. (Notice that the assumption that 

E1, E2, * * * is not closed rules out the possibility of pi, = 0 for all i - t.) Clearly 
E =,(pio+ pi)= o? implies L = oc, unless limk,.Dk = 0. Since pi,, 1- pi,+i it 
follows that 

k i- k 

Dk 

> 

1- E (1 pii,+) H p,j+l= 

1 

ptt+ + p,j+ 1 pt.t+ 
i=t+l j=t j=t 

This limit is positive unless p,,,t+ = 1 (i.e. p,(,= O). If p,,= 0, then by our 

assumptions there exists an s > t such that p,o > and then for k > s Dk - 
1 + nl'=,p,,j+l + p,oni-pjj+ which tends to a positive limit. If not all pii vanish, 
and there exist an s t such that p,o >O, L is finite if and only if 

ET=I(pio + i)/( - pii) < -) . 

Example 3. p, = 0 for j {0 i -, i- , i + 1}, i 1 and by Remark 2 we as- 
sume also pii = 0. Computing Dk through its last row yields Dk = 

Dk-- pk,k-lpk-, kDk-2. This yields a recursion relation which is not, in general 
easy to handle. For the special case pi 0 = 0 for i > 1, we have pi, i- + pi, i+ = 1, 
and the above yields, if we set x, = 1 

k 

Dk -pk,k+ ,Dk I =p k,k-(Dk-i -pk-l,kDk-2)= ... = i 
i=1 

743 



ESTER SAMUEL-CAHN AND SHMUEL ZAMIR 

Thus 
k k 

Xk+- Xk = (Dk -pk.k+lDk-1) f pi,i+1 = 71 i-1(p I/p ii+) 

and L <oo if and only if S iJ=k=(pi.- i/p i+l)< oo. By Remark 2 this criteria 
remains unchanged also if pii Z 0. This is the well-known birth and death process 
given as Example (d), p. 402 of Feller (1968). 

Example 4. If the chain is a martingale, i.e. satisfies = opijj = i, i - 0, then 
xi = i is a solution of (2). If (4) is satisfied, this is essentially a unique solution and 
hence L = oo, which, since poo = 1 implies absorption with probability one at Eo. 
This is therefore a simple particular case of the martingale convergence theorem. 

3. Necessary and sufficient conditions for L = oo 

Several sufficient conditions for recurrence of general Markov chains have 
been treated in the literature. The best-known seems to be the following 
condition, which has recently been shown by Tweedie (1975) to be sufficient also 
for ultimate recurrence. (For definition of this concept, see Tweedie (1975). If a 
chain is irreducible, as is the case in the present discussion, ultimate recurrence is 
the same as recurrence.) 

Theorem (Tweedie). If there exists an integer N and a sequence {x,} with 
oo > x, 0 such that x, - oo as j -- oo, and 

(12) p j (i-> N) 
j=o 

then the chain is ultimately recurrent. 

For irreducible aperiodic chains this theorem is due to Pakes (1969) (see his 
Theorem 3), and with N = 1 it is due to Foster (1952) and (1953). (See Theorem 

1, (1952) and Theorem 5, (1953).) Pakes and Foster prove a seemingly stronger 
theorem, since they do not require xi, 0. There is, however, no loss of 

generality in adding this requirement since it can always be achieved by shifting 
all xi's by a constant. 

For the chains considered in the present paper, the condition is also necessary. 
We have the following theorem. 

Theorem B. Let P satisfy (4). If poo < 1 all states are persistent if and only if 
there exist a solution to the set of inequalities (12), for which xj - oo0 as j - oo. If 
poo = 1 the probability of ultimate absorption in Eo is one, if and only if such a 
solution exists. 

Proof. Sufficiency is obvious. By Theorem A a necessary condition for 
recurrence is L = limjoxi /xl = oo, where xi satisfy (2), and a forteriori satisfy 
(12). 
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Remark 3. Since we can, without loss of generality, assume that xi ' 0, 
there is also no loss of generality in afterwards assuming Xo =0, since the 

inequalities (12) can at most be strengthened by this assumption. Thus Theorem 
B states that for P satisfying (4) the equalities in (2) of the criterion can be 

replaced by inequalities. 
Foster (1952) gives some additional assumptions on the chain under which (12) 

is also necessary, but gives, in a footnote, an example of a simple chain satisfying 
(4), to show that his additional assumptions are not always needed to render (12) 
necessary. 

A natural candidate for xi in (12) is xi = i. Thus one obtains the sufficient 
condition (see Tweedie (1975)) 

50 

(13) 2 jp i (iN), 
j=-i 

which, when Ei is identified with i, becomes a notion of eventual non-increasing 
expectation. (Compare with the notion of supermartingale.) 

For chains satisfying (4) there is a simple way to get necessary conditions, and 
(different) sufficient conditions for L = oo. It is intuitively clear that moving 
probability to the left, in each row separately, can only decrease the probability 
of staying in the transient states. This statement is made precise in the following 
assertion. 

Assertion 3. Let P = (pij) and Q = (q,,) satisfy (4), and 

(14) ptqit q jiO0, i> 1. 
t=O t=O 

Denote by xi and x *, i = 1, 2, * *, the solutions of (2) for P and Q respectively, and 
xl = x*. Thenxi < x*, i = 1,2, , and hence L = implies L * = oo, and L*< oo 

implies L < oo, where L * is the value of (10) defined for Q. 

Proof. Let Zk = Xk - Xk-l (xo = 0), k = 1, 2, * * and define z * correspondingly. 
The assertion follows if we show Zk = z *, k = 1,2, * *, and actually this latter 
statement is somewhat stronger. Transcribing (2) in terms of the zi's, we have 

k+l k k-1 i 

Pk,k+1 zi = (1 pkk) Zi,- ~ pki E Z, 
i=l i=l i=l j=l 

which after some rearrangement yields 
k i-1 

(15) pk,k+lZk+l = > Zi E pk/. 
i=1 j=o 

Since (14) implies pk,k+l ? qk,k+l the assertion follows directly by induction. 
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Conclusion 1. This assertion yields simple proofs of many inequalities about 
Dk, direct proofs of which are more difficult. For example, 

(16) Dk < Dk-, (1 - pkk), k > 1, 

is obtained by setting q,i = p, for i < k and all j, and qko = ,'k-pkj, qkk 
= pkk, 

qk,k+l = pk,k+l and qkj = 0 for all other j. Then (14) holds, and denoting the 

D-values of Q by D *, i _ 1, we have D l = (1 - qkk)D *k- = (1 - pkk)Dk-1. Now 

Xk+l Xk+ together with (8) imply (16). 

In contrast to (16), Assertion 1 together with (8) yield Dk-> pk,k+lDk-l. 

From (16) follows immediately 
k 

(17) D1 > D2 _-" and Dk _ -< H(1 - pi) 
i=1 

Assertion 3 and Examples 1 and 2 yield the following conclusion. 

Conclusion 2. 

(a) A sufficient condition for L = oo is that for some t _ 0, 

pij ii) = 
i=lj=O 

(b) A sufficient condition for L < oo is =, [1 - Pi,i+ /(1 - pi)] < 0. 

For chains satisfying (4) summation in (13) goes to i + 1 only, and thus it may 
seem that (13) is a more natural condition than (a) of Conclusion 2. Indeed, it 
seems difficult to violate (13) and still have L = oo. The following example shows 
that this is possible, however, also in cases which are not completely trivial. 

Example 5. For i - 2 pio = (2i)-', pi = (2i(i - 1))-1 for j = 1,- *, i - 1, p = 

0, p, i, = 1 - i-. Then '+ijpij = i + - i- so (13) is violated for all i > 4. 
Nevertheless Er=pijo = 0o, so (a) of Conclusion 2 holds (with t = 0), and L = oo. 

The results of this note can be generalized to similar results, when the chain is 

restricted to move to the right no more than any fixed number t > 1 of steps, i.e., 
when pi = 0 for all j > i + t, i _ 1. 
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