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A 2-PERSON GAME WITH LACK OF INFORMATION 
ON 1 SIDES* 

SYLVAIN SORINt AND SHMUEL ZAMIR$ 

We consider a repeated 2-person 0-sum game with incomplete information about the 
pay-off matrix. Player I (maximizer) knows the real pay-off matrix but he is uncertain about 
the beliefs of his opponent. We show that in this case the Aumann-Maschler results on 
incomplete information on one side no longer hold. In particular such a game will not have a 
value in general, in spite of the fact that one player is fully informed about the state of nature. 

1. Introduction. In the literature on 2-person 0-sum repeated games of incomplete 
information ([1],[2],[3]) a distinction is made between games with incomplete informa- 
tion on one side in which one of the players is fully informed about the pay-off matrix 
and games with incomplete information on two sides in which both players are uncertain 
about the real pay-off matrix. In this note we consider what looks at first sight to be 
intermediate case (suggesting the name "incomplete information on 1 I sides"): one 
player is fully informed about the true state of nature but he is uncertain about the 
beliefs of his opponent about the state of nature. Although formally such games turn 
out to be equivalent to games of incomplete information on two sides, we think that 
they merit special attention for at least two reasons: 

(1) They underline the distinction between state of nature, which is in this case the 
true pay-off matrix, and state of the world, which is the state of nature and the state of 
all beliefs and mutual beliefs concerning the state of nature (see [4]). Here we have a 
situation in which one player has complete information about the state of nature 
(namely the pay-offs) but incomplete information about the state of the world, since he 
has incomplete information about the beliefs of the other player. As we shall see, these 
games will not have a value in general and hence behave mathematically as games of 
incomplete information on two sides. The conclusion to remember is therefore: when 
speaking about a game of incomplete information in which a certain player has a 
complete information, it has to be clear that he has a complete information about the 
state of the world (and not only on the state of nature) and only then may we apply the 
various results on incomplete information on one side. 

In reference to [4], the structure of hierarchy of beliefs, the case we will be 
considering is of the simplest generic type: the hierarchy of beliefs consists of one level 
after which all becomes a common knowledge. 

(2) The games considered here are mathematically equivalent to games of incom- 
plete information on two sides of what is called the dependent case (see [2]), that is the 
beliefs of each player on the types of the other player depend on his own type. This 
shows that the dependent case is not only conceivable but seems to be rather the 
typical case: whenever the states of the world or the "types" in question contain also 
the beliefs, as is typically the situation, the dependent case seems inavoidable. 
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2. The game. 

2.1. Let A and B be two IJI x IJI zero-sum pay-off matrices. For each X,r,s E 
[0, 1]3 we define a game G(A,r,s) as follows: 

Step 00. Chance chooses t E (r,s} with Prob(t = r) = X and this choice is told to 
Player II only. 

Step 0. Chance chooses C E (A, B } with Prob(C = A) = t and this choice is told to 
Player I only. 

Step 1. Player I (resp. Player II) selects some move i EG I (resp. j EG J) and this 
choice is announced to both players. For m = 1, ... , n: 

Step m. Both players knowing in addition to their private information (from Steps 
00 and 0) the previous history, i.e. (il, j ... , im,- , jm - ), select some move and this 
pair (im, j,) is announced to both players. G(AX,r,s) is the n-repeated game with 
pay-off for Player I (the maximizer) given by: n -' C=,I and Go is the infinitely 
repeated game. All the previous description including this sentence is common knowl- 
edge. 

The game can be represented as follows: 

FIGURE A B 

FIGURE 1 

where x' stands for 1 - x, Vx E [0, 1]. 
Hence Player I is told the true pay-off matrix without knowing the (objective) belief 

of PII about the true pay-off matrix. 
Obviously these games belong to the special class of games with lack of information 

on both sides, dependent case, as introduced in [2]. 
In fact, using the notations there we have: 
K = ( 1,2,3,4) (states of the world), 

K = { (1, 3), (2,4)) l (initial information partitions), 
KIl = (1,2), (3,4)})J 

q = (q1, q2, q3, q4) = (Xr, Xr', A's, X's') (prior probability distribution), 
u(q) = val((ql + q3)A + (q2 + q4)B) (value of the nonrevealing game), 
nI(q) = {aql, '3q2,aq3, /3q4; a > 0, /6 > 0, a(q1 + q3) + f/(q2 + q4) = 1}, 
HI1(q) = {Yql Yq2, q3,8q4; y > 0, 8 > 0, y(ql + q2) + S(q3 + q4) = 1} (sets of con- 

cavification and convexification). 
It follows then from [2] and [3] that: 
Minmax Goo exists and equals VexH1Cav1u(q), 
Maxmin Go, exists and equals CavlVex1lu(q), 
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v = lim val(G,) exists and is the only simultaneous solution of 

w(q) = Vexmax{u(q),w(q)}, (1) 
II 

w(q) = Cavmin{ u(q), w(q)}. (2) 
I 

Let us first compute Cavlu and Vex1lu. Define u7(p) = val(pA + p'B) for p E [0, 1] 
and p = qI + q3. 

2.2. 

Cavu(q) = sup {tu(q') + t'u(q2); t E [0,1 ] tq + t'q2 = q, q E 1I(q); i 1,2} 
t,q l,q2 

= sup {t(pl)+ t(p2); t[, 1],tp+ t'p2=p,(*)pi+ ip 1; i = 1,2} 
tP,p p2 

where p' = q[ + q3; i = 1,2 and p' = 1 - p q2 + q4. 
If p' = q2 + q4 = 0, Hi(q) = {q) and Prob(C = B) = 0 and otherwise for any p' E 

[0, 1] there exists /'i such that (*) holds; i = 1,2. Hence: 

Cavu(q) = sup {tu(pl) + t'u(p2); tE[, 1],tp+ tp2 =p, pi [0,1] i = 1,2}. 
,p i,p2 

Thus Cavlu(q) = Cav u(q, + q3), where Cav is the usual operator on [0, 1]. 
Note that this is the value of the usual Aumann-Maschler game with incomplete 

information on one side (see [1]), where Player II is not told t. 

2.3. 

Vexu(q) = inf {tu(q') + t'u(q2); t E [0,1 ],tq1 + t'q2 = q, q, E Ii(q) i= 1,2} II 
t,q,q2 

- inf {tU(p1)+t'U (p2); tp + t'p2 = p, t E [0, 1] 
t,p ,p2 

(**) pi + yiq2 + iq4 = 1, i = 1,2}. 

(Note that tq' + t'q2 = q? <tp' + t'p2 = p whenever AA'(r - s) - 0.) 
(**) gives as extreme values for p': ir(q) = qI(ql + q2) and T(q) = q3/(q3 + q4). 

Letting | r(q), (q)l be the interval of points between these values, we obtain: 
Vexl1u(q) = Vexjl(q),,(q)li7(ql + q3), where Vexlab f is the greatest function less than f 
and convex on la, bl. (Note that Vex,,u(q) is not a function of p only.) 

2.4. Since Cavlu(q) depends only on p and is concave on [0, 1], we obtain: 

Vex Cavu(q) = /t Cavui(7r(q)) + i'Cavu(Tr(q)) with jr(q) + L'T(q) = P, 

= XCav u(r) + X' Cav u (s). 

Note that the min max is the value of the game where Player I is also informed of t. 

2.5. Finally for the maxmin we get: 

Cav Vexu(q) = sup { t Vexl,,( q),T(q) I(p) + t'Vex(q2)q2)(p2); t [0,1], 
t,q +,q2 

tql + t'q2= q, q' E I(q); i = 1,2}. 
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u(p) 

0 3/8 1/2 5/8 1 p 

FIGURE 2. The function u. 

3. Example. Let 

A=5 -3) B-( 3 5) 

We moreover assume s = 1, i.e., q4 = 0 and r( ) 1. 

3.1. Let us first look at the point r = , X= . 
From 2.4 we obtain: min maxG(?, , 1) = Cav U(?) = ? and from 2.5: 

maxmin G(? ,1) = sup t Vexlu(q,),1z2(p') + t'Vexl2(q2).Z1u(p2); 
t,ql.q2 

t E[0,1], tp + tp2 = , q' E (q) i = 1,2}. 

Note that p' > ~ implies Vexl ,q;)llu(p i) = 0. 
Moreover, since q' E Ill(q), p' < implies 'r(q') <j hence the Vex is still 0. Thus 

maxminG( , 1) = 0. 
The interpretation is the following: in order to obtain a strictly positive pay-off, 

Player I has to generate posteriors lying in [- , I ], i.e., to increase the probability of B. 
But then for t = r, the conditional probability of A (namely r(p')) will be less than 3 

and Player II will obtain 0 by playing either L (if t = r) or R (if t = s). 

3.2. Construction of the minmax and the max min. Note that 111(q) is the line 
through q and (0, 1,0). Hence Cav,f is the smallest function greater than f and 
concave on each of these lines. (Similarly IlT(q) is the line through q and (0,0, 1).) 
Thus we obtain the various functions which are described in the following figures. 

Here we represent each function by a pair of figures: On the left we draw the 
simplex Q = {(q2,q3) q2 > 0, q3 > 0 q2 + q3 < 1} cut into various regions. On each 
region (or line) we either write the value of the function or we draw an arrow (which 
corresponds to HII for HI1) to indicate that the function in question is linear in the 

(0,1) 

~~3(0,0)- 8 (0 ,0) 

0 53 

(0,0) (1,0) 

FIGURE 3. The function u. 
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Cav u 

A . _ 

Vex Cav u 
II I 

FIGURE 4. The functions Cavlu and Vexi,Cavlu. 

Vex u 
II 

FIGURE 5. The functions Vexjlu and CaviVexlu. 
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direction of the arrow. On the right-hand figure we give the three-dimensional shape of 
the function. 

REMARKS. It is easy to see the graph of f is in the right of the line from ( , ) to 

(0, 1) and coincides with this line near (?, ?). 
So we have: Cav1Vex1l - Vex11Cav, everywhere on the interior of the simplex. 

3.3. In order to study v, we first compare v and u (recall that max min < v 
< minmax). 

It is generally true for the solution v of (1) and (2) that (see [2]): 
-On the region in which v > u, v is I-linear. 
-On the region in which v < u, v is II-linear. 
In view of this, in order to find v it suffices to divide the simplex Q into the three 

subregions in which: v > u, v < u or v = u (see Figure 6). 
(a) Regions where v > u. First observe that v > CavjVex1lu > 0 everywhere hence 

v > u on region I, and v > 0 where Cav1Vex1,u > 0. It follows that v > u on region II. 
We have also v > u on region III in which Vex,lu = u, thus Cav,Vex11u > u which 

implies v > u. 
(b) Regions where v < u. Since v < Vex11Cavlu, v < u on the line q2 = ? (except for 

q3 0= ) and on the open segment ](3 ), (,8 )[. 
(c) Regions where v = u. This region consists of the following parts of the boundary 

of Q: the segments [(0, 0), (0, 1)], [(0, 1), ( , 5)], [( , 3 ), (1,0)] and the point (? , 0). (The 
value of v on the boundary is readily computed by the Aumann-Maschler result on 
incomplete information on one side.) 

From this and from (a) and (b) the region v = u must contain also two lines both 

starting from ( , 0), one on the left side of q2 = 
2 and reaching (3, I), the other on the 

right side reaching (8, 3). 

v = lim vn 

0 

FIGURE 6. Partition of Q according to the relation between v and u. 
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With the help of the last two lines of v = u mentioned in (c), the description of v can 
be thus summarized by: 

v < u-hence v is II-linear inside these lines, 
v > u-hence v is I-linear outside them. 

3.4. Comparison of v and min max, max min. Consider a point P on the line (L) 
through (1,0) and M where u > v (this is precisely IIH(M)). Note that at this point 
CavVex = 0. Now we claim that v(P) > 0, otherwise there are two points PI, P2 where 
u(Pi) = v(Pi) = 0 and Pi E -Il(P). But then one of these points lies on q2 = 8 and 
strictly below (L), where the Cav Vex is strictly positive, hence v also: a contradiction. 

Now let R be the point on the line (L) with q2 < 2 and u = v. The min max at R is 
greater than or equal to v. Now on (L) v is linear from R to the point on q2 = 0, but 
min max is strictly increasing up to the line [( ,0), (0, 1)] hence the min max is strictly 
greater than v near R on the left. 

Th fact that Cav Vex # Vex Cav everywhere in the interior of the simplex now 
implies that there is a game G(X, r, 1) with: maxmin < v < min max. 
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