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Abstract We investigate necessary and sufficient conditions for the existence of
Bayesian-Nash equilibria that satisfy the Condorcet Jury Theorem (CJT ). In the Bayes-
ian game Gn among n jurors, we allow for arbitrary distribution on the types of jurors.
In particular, any kind of dependency is possible. If each juror i has a “constant strat-
egy”, σ i (that is, a strategy that is independent of the size n ≥ i of the jury), such
that σ = (σ 1, σ 2, . . . , σ n . . .) satisfies the CJT , then by McLennan (Am Political Sci
Rev 92:413–419, 1998) there exists a Bayesian-Nash equilibrium that also satisfies
the CJT . We translate the CJT condition on sequences of constant strategies into the
following problem:

(**) For a given sequence of binary random variables X = (X1, X2, . . . , Xn, . . .)

with joint distribution P , does the distribution P satisfy the asymptotic part of
the CJT?

We provide sufficient conditions and two general (distinct) necessary conditions for
(**). We give a complete solution to this problem when X is a sequence of exchange-
able binary random variables.

1 Introduction

The simplest way to present our problem is by quoting Condorcet’s classic result
(see Young 1997):

Theorem 1 (CJT–Condorcet 1785) Let n voters (n odd) choose between two alterna-
tives that have equal likelihood of being correct a priori. Assume that voters make their
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92 B. Peleg, S. Zamir

judgements independently and that each has the same probability p of being correct
( 1

2 < p < 1). Then, the probability that the group makes the correct judgement using
simple majority rule is

n∑

h=(n+1)/2

[n!/h!(n − h)!]ph(1− p)n−h

which approaches 1 as n becomes large.

We build on some of the literature on this issue in the last 30 years. First, we notice
that Nitzan and Paroush (1982) and Shapley and Grofman (1984) allow for unequal
competencies of the juries. They replace the simple majority committee by weighted
majority simple games to maintain the optimality of the voting rule.

Second, we notice that many papers are on the dependency among jurors. Among
these papers are Shapley and Grofman (1984), Boland et al. (1989), Ladha (1992,
1993, 1995), Berg (1993a,b), Dietrich and List (2004), Berend and Sapir (2007), and
Dietrich (2008). It is widely understood and accepted that the votes of the jurors are
often correlated. For example, group deliberation prior to voting is viewed, justifiably,
as undermining independence (Grofman et al. 1983; Ladha 1992, 1995; Estlund 1994;
Dietrich and List 2004). In particular, Dietrich (2008) argues that independence cannot
be fully justified in the Condorcet jury model.

Finally, we mention the seminal paper of Austen-Smith and Banks (1996) which
incorporated strategic analysis into the Condorcet jury model. This paper had many
followers, in particular McLennan (1998) and Duggan and Martinelli (2001) which
investigated the Condorcet Jury Theorem (CJT ) for Bayesian-Nash equilibria (BNE).

In this work, we investigate the CJT for BNE. Unlike Austen-Smith and Banks
(1996), we do not assume that the types of the voters are independent (given the
state of nature). Indeed, we assume arbitrary dependency among (the types of) jurors.
As far as we could ascertain, McLennan (1998) is the only paper that studies the
CJT for BNE assuming dependency among the jurors. In fact, we rely heavily on
McLennan’s work; the game among n jurors, is a Bayesian game Gn in which all the
players have the same payoff function which is the probability of correct decision.
Therefore, any n-tuple of strategies σn = (σ 1

n , . . . , σ n
n ) that maximizes the common

payoff is a BNE (McLennan 1998, Theorem 1). Now consider an infinite sequence
of such strategies σ = (σ1, σ2, . . . , σn, . . .) that are BNE for the sequence of games
G1, G2, . . . , Gn, . . . with a jury of growing size. If there exists any other sequence of
strategies τ = (τ1, τ2, . . . , τn, . . .) (not necessarily BNE), that satisfies the CJT , then
the original sequence σ is a sequence (of BNE) that also satisfies the CJT . Thus, we
may focus on the following problem:

(*) For a given sequence of Bayesian games G1, G2, . . . , Gn, . . . with an increasing
set of jurors, find some sequence of strategies τ = (τ1, τ2, . . . , τn, . . .) where τn

is an n-tuple of strategies for the game Gn , so that the sequence (τn)∞n=1 satisfies
the CJT .

In view of the generality and the complexity of our model, we limit ourselves to
sequences τ of “constant” strategies; that is, we assume that τ i

n = τ i
m if 1 ≤ i ≤ m ≤
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Extending the Condorcet Jury Theorem 93

n <∞. This means that the strategy τ i
n of a specific juror i does not change when the

size of the jury increases. We shall refer to such a sequence as a “constant sequence.” 1

We prove that verifying the CJT for a constant sequence is equivalent to the following
problem:

(**) For a given sequence of binary random variables X = (X1, X2, . . . , Xn, . . .)

with joint distribution P , find whether or not the distribution P satisfies the
CJT .

Note that prior to Austen-Smith and Banks (1996), the analysis of the Condor-
cet jury problem had focused on problem (**). One general result is that of Berend
and Paroush (1998) which characterizes the independent sequences of binary random
variables that satisfy the CJT .

In this paper, we find sufficient conditions for (**). Then, we supply two gen-
eral necessary conditions. However, we do not have a complete characterization of the
solution to (**). We do have full characterization (necessary and sufficient conditions)
for sequences of exchangeable random variables.

Our basic model is introduced in Sect. 2. The full characterization for the case of
exchangeable variables is given in Sect. 3. In Sect. 4, we give sufficient conditions for
the CJT . In Sect. 5, we develop necessary conditions for the validity of the CJT in two
different planes of parameters of the distribution. In Sect. 6, we prove that these nec-
essary conditions are not sufficient. In Sect. 7, we introduce the notion of interlacing
of two sequences, which proves to be a useful tool to construct new classes of distribu-
tions that satisfy the CJT . In particular, we construct rich classes of non-exchangeable
sequences that satisfy the CJT . We conclude in Sect. 8. Two proofs are given in the
Appendix. In the last part of the appendix, we clarify the relationship between the
CJT and the Law of Large Numbers (L L N ). Basically, we show that these are two
different properties that do not imply each other in spite of their superficial similarity.

2 The basic model

We generalize Condorcet’s model by presenting it as a game with incomplete infor-
mation in the following way: let I = {1, 2, . . . , n} be a set of jurors and let D be
the defendant. There are two states of nature: g—the defendant is guilty, and z—the
defendant is innocent. Thus, � = {g, z} is the set of states of nature. Each juror has
two available actions: c—to convict the defendant, and a—to acquit the defendant;
thus A = {a, c} is the action set of each of the jurors. Before voting, each juror gets
a private random signal t i

j ∈ T i = {t i
1, . . . , t i

ki
}. In the terminology of games with

incomplete information, T i is the type set of juror i . The private signals of the jurors
may be dependent and may, of course, depend on the state of nature. Again, in the
style of games with incomplete information, let �n = �× T 1×, . . . ,×T n be the set
of the states of the world. That is, a state of the world ω = (θ, t1, . . . , tn) consists
of the state of nature and the list of types of the n jurors. Let p(n) be the probability

1 The restriction to constant strategies is needed only for the existence results. The sufficient condition as
well as the necessary conditions are valid for any infinite sequence of strategies. See Remark 1
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Fig. 1 The probability
distribution p(2)
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distribution (i.e., a common prior) on �n . This is the joint probability distribution of
the state of nature and the signals (types) of all jurors. We assume that the action taken
by the finite society of jurors I = {1, 2, . . . , n}.i.e., the jury verdict, is determined by
the voting rule V : AI → A, which is the simple majority rule (with some tie-breaking
procedure such as coin tossing). Finally, to complete the description of the game, we
let all jurors have the same payoff function u : �× A→ R namely,

u(g, c) = u(z, a) = 1 and u(g, a) = u(z, c) = 0, ∀i ∈ I

This concludes the definition of a game, which we denote by Gn . A (pure) strategy
of juror i ∈ I in Gn is a function si : T i → A. We denote by Si the set of all pure
strategies of juror i ∈ I and by S = S1×, . . . ,×Sn the set of strategy profiles of
the society. The (common) ex-ante payoff for each juror, when the strategy vector
s = (s1, . . . , sn) ∈ S is used, is Eu = Eu(θ, V (s1(t1), . . . , sn(tn))), where θ is the
true state of nature. Note that Eu is precisely the probability of correct decision by I
when the strategy vector s is used.

Example 1 In the original Condorcet theorem, we have T i = {t i
g, t i

z }; p(n)(g) =
p(n)(z) = 1/2 and the types are conditionally independent given the state of nature;
each has a probability p > 1/2 of getting the correct signal. That is,

p(n)(t i
g|g) = p(n)(t i

z |z) = p >
1

2

Condorcet further assumed that all the jurors vote informatively, that is, use the strat-
egy si (t i

z) = a and si (t i
g) = c. In this case, the probability of correct voting, by each

juror, is p, and as the signals are (conditionally) independent, the CJT follows (for
example, by the Law of Large Numbers).

Figure 1 illustrates our construction in the case n = 2. In this example, accord-
ing to p(2) the state of nature is chosen with unequal probabilities for the two states:
p(2)(g) = 1/4 and p(2)(z) = 3/4 and then the types of the two jurors are chosen
according to a joint probability distribution that depends on the state of nature.

Following the seminal work of Austen-Smith and Banks (1996), we intend to study
the CJT via the Bayesian-Nash Equilibria (BNE) of the game Gn . However, unlike
in the case of (conditionally) independent signals, there is no obvious way to find the
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Extending the Condorcet Jury Theorem 95

relevant BNE in the general case of arbitrary dependence. Therefore, our approach
will be indirect. Before describing our techniques, we first enlarge the set of strategies
of the jurors by adding the possibility of mixed strategies. Indeed, it was shown by
Wit (1998) that the introduction of mixed strategies may help the realization of the
CJT .

A mixed strategy2 for juror i ∈ I , in the game Gn , is a function σ i
n : T i →

�(A), where �(A) is the set of probability distributions on A. Denote by
∑i

n

the set of all mixed strategies of juror i and by
∑

n =
∑1

n × · · · ×
∑n

n the set
of mixed strategy vectors (profiles) in the game Gn . The (common) ex-ante pay-
off for each juror, when the strategy vector σn = (σ 1

n , . . . , σ n
n ) ∈ ∑n is used, is

Eu = Eu(θ, V (σ 1
n (t1), . . . , σ n

n (tn))), where θ is the true state of nature. Again, Eu is
precisely the probability of correct decision by I when the strategy vector σ is played.

We shall now find a more explicit expression for the payoff Eu . Given a strategy
vector σn = (σ 1

n , . . . , σ n
n ) ∈ ∑n , we denote by Xi

n(σ i
n) : � × T i → {0, 1} the

indicator of the set of correct voting of juror i when using the mixed strategy σ i . That
is,

Xi
n(σ i

n; θn, t i
n) =

{
1 if θn = g and σ i

n(t i
n) = c or θn = z and σ i

n(t i
n) = a

0 otherwise
(1)

where by a slight abuse of notation we denoted by σ i
n(t

i
n) the realized pure action when

juror i of type t i
n uses mixed strategy σ i

n . Given a strategy vector σn = (σ 1
n , . . . , σ n

n ),
the probability distribution p(n) on �n induces a joint probability distribution on the
vector of binary random variables (X1

n, X2
n, . . . , Xn

n ) which we denote by p(n)
σn . Assume

now that n is odd; then Eu is given by

Eu = p(n)
σn

(
n∑

i=1

Xi
n >

n

2

)
.

Guided by Condorcet, we are looking for limit theorems as the the size of the
jury increases. Formally, as n goes to infinity we obtain an increasing sequence of
“worlds”, (�n)∞n=1, such that for all n, the projection of �n+1 on �n is the whole �n .
The corresponding sequence of probability distributions is (p(n))∞n=1 and we assume
that for every n, the marginal distribution of p(n+1) on �n is p(n). It follows from
the Kolmogorov extension theorem (see Loève 1963, p. 93) that this defines a unique
probability measure P on the (projective, or inverse) limit

� = lim∞←n
�n = �× T 1 × · · · × T n . . .

such that, for all n, the marginal distribution of P on �n is p(n).

2 As a matter of fact, the strategy we define here is a behavior strategy, but as the game is clearly a game
with perfect recall, it follows from Kuhn’s theorem (1953) that any mixed strategy has a payoff equivalent
behavior strategy. Thus we (ab)use the term “mixed strategy” which is more familiar in this literature.
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96 B. Peleg, S. Zamir

Let (σn)∞n=1 be an infinite sequence of strategy vectors for an increasing jury. We
say that (σn)∞n=1 satisfies the (asymptotic part of) CJT if

lim
n→∞ p(n)

σn

(
n∑

i=1

Xi
n(σ i

n) >
n

2

)
= 1. (2)

Our aim in this work is to find sufficient conditions for the existence of a sequence
of BNE (σn)

∞
n=1 that satisfy the (asymptotic part of) CJT . As far as we know, the only

existing result on this general problem is that of Berend and Paroush (1998), which
deals only with independent jurors. For that, we make use of the following result due
to McLennan for games with common interest (which is our case):

Theorem 2 (McLennan 1998) For n = 1, 2, . . ., if

σ ∗n = (σ ∗1n , . . . , σ ∗nn ) ∈ arg max
(σ 1

n ,...,σ n
n ))

Eu(θ, V (σ 1
n (t1), . . . , σ n

n (tn))), (3)

then σ ∗n is a Bayesian-Nash Equilibrium of the game Gn

This is an immediate application of Theorem 1 in McLennan (1998), which implies
that σ ∗n is a Nash equilibrium of the type-agent representation of Gn . Since by The-
orem 2, a Bayesian-Nash Equilibrium of Gn maximizes the probability of correct
decision, then clearly, if there exists any sequence of strategy vectors (σn)∞n=1 that
satisfies the asymptotic part of CJT , (2), then there is also a sequence (σ ∗n )∞n=1 of BNE
that satisfies (2), the asymptotic part of CJT .

Our approach in this paper is to provide such a sequence that satisfies the CJT .
In particular, we shall consider infinite sequences of mixed strategy vectors that are
constant with respect to the number of players, that is, (σn)

∞
n=1 such that if n ≥ m

then σ i
n = σ i

m for all i ≤ m. Such a constant sequence can be represented as one
infinite sequence of strategies σ = (σ 1, σ 2, . . . , σ n, . . .), where σ i is the strategy of
juror i in all juries that he is a member of (i.e. in all games Gn with n ≥ i). Whenever
we find such a constant sequence that satisfies the CJT , it follow, as we argued, that
there is a sequence (σ ∗n )∞n=1 of BNE that satisfies (2), the asymptotic part of CJT .
A constant sequence (σn)∞n=1 can be interpreted as a sequence of an increasing jury
in which the strategies of the jury members do not change as the jury increases. In
addition to their plausibility, we restrict our attention to constant sequences because
of the complexity of our model. As we shall see, even with this restriction, we get
some interesting results. The following two examples demonstrate the advantage of
the game theoretical model over the traditional probabilistic model3.

Example 2 (Reverse voting) Suppose that given the state of nature, each juror has two
types, tg and tz , and the signals of the voters are i.i.d. with p(tg | g) = p(tz | z) =
p < 1/2. Clearly, in the probabilistic model with informative voting4 such a jury

3 We are grateful to an anonymous referee for drawing our attention to these examples
4 In informative voting, each juror votes according to his/her signal: type tg juror votes to convict and type
tz juror votes to acquit.
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Extending the Condorcet Jury Theorem 97

will not satisfy the CJT . However, if we consider the strategy σ given by: σ(tg) = a
(that is, acquit with probability 1) and σ(tz) = c (convict with probability 1), then
the sequence of constant strategies σ = (σ, σ, . . . , σ, . . .) will satisfy the CJT and
consequently, there exists a sequence (σ ∗n )∞n=1 of BNE that satisfy (2), the asymptotic
part of CJT .

Example 3 (Random voting) In a model with equal probability to the two states of
nature (p(g) = p(z) = 1/2), suppose that a fraction α of the jury (0 < α < 1/2)
receive i.i.d. signals with probability p > 1/2 of being correct, that is p(t i

g | g) =
p(t i

z | z) = p > 1/2. The rest, a (1−α) fraction of the jury, receive the wrong signal,
that is p(t i

g | g) = p(t i
z | z) = 0. Again, in the probabilistic model with informative

voting, such a jury will not satisfy the CJT . However, if only the well informed jurors
vote informatively while the rest of the jurors vote randomly (convict with probabil-
ity 1/2 and acquit with probability 1/2), such strategy vector will satisfy the CJT .
Consequently, this game also has an infinite sequence (σ ∗n )∞n=1 of BNE that satisfy the
asymptotic part of CJT .

Remark 1 As far as we can see, the assumption of constant strategies will be needed
only for our existence results (Theorem 5, Corollary 8, and Theorem 16). For the suffi-
cient condition, as well as for the two necessary conditions, we need neither the restric-
tion to constant strategies, nor the assumption on the stationarity of the probabilities
p(n) (of Gn). The proofs are the same, with the appropriate adjustment of notations;
mainly, for a general sequence of strategies (σn)∞n=1, the corresponding sequence
X of binary random variables, is the sequence of n-vectors of random variables
(X1

n, . . . , Xn
n ) corresponding to the game Gn and the strategy vector σn ; that is, X =

(X1
1 ; X1

2, X2
2 ; . . . ; X1

n, . . . , Xn
n ; . . .). The CJT property is defined, as usual, by Eq. 2.

A constant sequence of mixed strategies σ = (σ 1, σ 2, . . . , σ n, . . .) naturally yields
a sequence of binary random variables X = (X1, X2, . . . , Xn, . . .) where Xi :=
Xi

n(σ i
n; θn, t i

n) is the indicator variable of correct voting of juror i defined in (1), and
is independent of n since the strategy is constant. As the CJT is expressed in terms
of X , we shall mostly be working with this infinite sequence of binary random vari-
ables. In fact, working with the infinite sequences X is equivalent to working with
the underlying infinite sequences of games and strategy vectors: on the one hand, as
we said, a sequence of games (Gn)

∞
n=1 and an infinite sequence of constant strategies

σ = (σ 1, σ 2, . . . , σ n, . . .), yield an infinite sequence X of binary random variables.
On the other hand, as we show in Appendix 9.1, for any infinite sequence of binary
random variables X there is a sequence of games (Gn)∞n=1 and an infinite sequence of
constant strategies σ = (σ 1, σ 2, . . . , σ n, . . .) that yield this X as the infinite sequence
of the indicators of correct voting.

Let us now briefly remark on the non-asymptotic part of the CJT (see
Ben-Yashar and Paroush 2000). An infinite sequence of mixed strategy vectors
σn = (σ 1

n , . . . , σ n
n ), n = 1, 2, . . ., is said to be consistent with the majority rule

if for n = 1, 2, . . .,

p(n)
σn

(
n∑

i=1

Xi
n(σ i

n) >
n

2

)
> p(n)

σn
(Xi

n(σ i
n) = 1); i = 1, . . . , n

123

Author's personal copy



98 B. Peleg, S. Zamir

p(n+1)
σn+1

(
n+1∑

i=1

Xi
n+1(σ

i
n+1) >

n + 1

2

)
≥ p(n)

σn

(
n∑

i=1

Xi
n(σ i

n) >
n

2

)
; n = 1, 2, . . . .

In view of the complexity of our model, we shall not investigate non-asymptotic con-
sistency with majority rule of infinite sequences of strategies, and shall study only the
asymptotic part of the CJT .

3 Exchangeable variables

In this section, we fully characterize the distributions of sequences X = (X1, X2, . . . ,

Xn, . . .) of exchangeable random binary variables that satisfy the CJT . Let us first
introduce some notation:
Given a sequence of binary random variables X = (X1, X2, . . . , Xn, . . .) with joint
distribution P , denote pi = E(Xi ), V ar(Xi ) = E(Xi − pi )2 and Cov(Xi , X j ) =
E[(Xi− pi )(X j− p j )], for i 
= j , where E denotes, as usual, the expectation operator.
Also, let pn = (p1 + p2, . . . + pn)/n and Xn = (X1 + X2, . . . + Xn)/n. Next, we
recall:

Definition 1 A sequence of random variables X = (X1, X2, . . . , Xn, . . .) is
exchangeable if for every n and every permutation (k1, . . . , kn) of (1, . . . , n), the
finite sequence (Xk1 , . . . , Xkn ) has the same n-dimensional probability distribution
as (X1, . . . , Xn).

In our context, this property may be interpreted as anonymity of the jurors; the
names and the location in the list of jurors does not affect the distribution of correct
voting. Note that this does not rule out correlation between the distributions of the
“correct voting” among jurors.

We shall make use of the following characterization theorem according to de Fi-
netti5 (see, e.g., Feller 1966, vol II, p. 225).

Theorem 3 A sequence of binary random variables X = (X1, X2, . . . , Xn, . . .) is
exchangeable if and only if there is a probability distribution F on [0, 1] such that for
every n,

Pr(X1 = · · · = Xk = 1, Xk+1 = . . . = Xn = 0) =
1∫

0

ρk(1− ρ)n−kdF (4)

Pr(X1 + · · · + Xn = k) =
(

n
k

) 1∫

0

ρk(1− ρ)n−kdF (5)

In words, de-Finetti’s theorem says that binary exchangeable variables are condi-
tionally i.i.d.: Given the value of ρ, the variables are i.i.d. Bernoulli random variables

5 As far as we know, Ladha (1993) was the first to apply de Finetti’s Theorem to exchangeable variables
in order to derive (some parts) of CJT . However, Ladha investigates only the non-asymptotic part of CJT .
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Extending the Condorcet Jury Theorem 99

with parameter ρ. In our underlying model, the parameter ρ can be interpreted as
public information regarding the defendant (all available evidence, witnesses etc.).
Given this public information, the distribution of “correct voting” is the same for all
jurors and independent among jurors.

Using de Finetti’s theorem, we can characterize the distributions of sequences of
exchangeable binary random variables by their expectation and the asymptotic vari-
ance of Xn .

Theorem 4 Let X = (X1, X2, . . . , Xn, . . .) be a sequence of exchangeable binary
random variables and let F be the corresponding distribution function in de Finetti’s
theorem. Then,

y := lim
n→∞ E(Xn − u)2 = V (F), (6)

where

u =
1∫

0

ρdF and V (F) =
1∫

0

(ρ − u)2dF.

Proof We have

u = E(Xi ) = Pr(Xi = 1) =
1∫

0

xdF; V (Xi ) = u(1− u)

and for i 
= j ,

Cov(Xi , X j ) = Pr(Xi = X j = 1)− u2 =
1∫

0

x2 dF − u2 = V (F).

Therefore,

E(Xn − u)2 = E

(
1

n

n∑

1

(Xi − u)

)2

= 1

n2

n∑

1

V (Xi )+ 1

n2

∑

i 
= j

Cov(Xi , X j )

= nu(1− u)

n2 + n(n − 1)

n2 V (F),

which implies Eq. 6. ��
We can now state the characterization theorem:
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100 B. Peleg, S. Zamir

Theorem 5 A sequence X = (X1, X2, . . . , Xn, . . .) of binary exchangeable random
variables with a corresponding distribution F(ρ) satisfies the CJT if and only if

Pr

(
1

2
< ρ ≤ 1

)
= 1, (7)

that is, if and only if a support of F is in the semi-open interval (1/2, 1].

Proof The “only if” part follows from the fact that any sequence X = (X1, X2, . . . ,

Xn, . . .) of binary i.i.d. random variables with expectation E(Xi ) = ρ ≤ 1/2, violates
the CJT (by the Berend and Paroush’s necessary condition).

To prove that a sequence satisfying condition (7) also satisfies the CJT , note that
for 0 < ε < 1/4,

Pr

(
Xn >

1

2

)
≥ Pr

(
ρ ≥ 1

2
+ 2ε

)
Pr

(
Xn >

1

2

∣∣∣∣ ρ ≥ 1

2
+ 2ε

)
. (8)

For the second term in (8), we have:

Pr

(
Xn >

1

2

∣∣∣∣ ρ ≥ 1

2
+2ε

)
=
∑

k> n
2

Pr

(
X1+ . . .+Xk = k

∣∣∣∣ ρ ≥
1

2
+2ε

)
(9)

=
∑

k> n
2

(
n
k

) 1∫

1
2+2ε

ρk(1− ρ)n−kdF (10)

=
1∫

1
2+2ε

⎡

⎣
∑

k> n
2

(
n
k

)
ρk(1− ρ)n−k

⎤

⎦ dF (11)

:=
1∫

1
2+2ε

Sn(ρ) dF (12)

Now, using Chebyshev’s inequality we have:

Sn(ρ) = Pr

(
Xn >

1

2

∣∣∣∣ ρ

)
≥ Pr

(
Xn >

1

2
+ ε

∣∣∣∣ ρ

)
(13)

≥ 1− V (Xn|ρ)

(ρ − 1
2 − ε)2

= 1− ρ(1− ρ)

n(ρ − 1
2 − ε)2

(14)
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Extending the Condorcet Jury Theorem 101

Since the last expression in (14) converges to 1 uniformly on [1/2+2ε, 1] as n→∞,
taking the limit n→∞ of (12) and using (14) we have:

lim
n→∞ Pr

(
Xn >

1

2

∣∣∣∣ ρ ≥ 1

2
+ 2ε

)
≥

1∫

1
2+2ε

dF = Pr

(
ρ ≥ 1

2
+ 2ε

)
. (15)

From (8) and (15), we have that for any fixed ε > 0,

lim
n→∞ Pr

(
Xn >

1

2

)
≥
[

Pr

(
ρ ≥ 1

2
+ 2ε

)]2

. (16)

Since (16) must hold for all 1/4 > ε > 0, and since Pr
( 1

2 < ρ ≤ 1
) = 1, we

conclude that

lim
n→∞ Pr

(
Xn >

1

2

)
= 1, (17)

i.e., the sequence X = (X1, X2, . . . , Xn, . . .) satisfies the CJT . ��
To draw the consequences of Theorem 5, we prove first the following proposi-

tion which enables us, for testing the validity of the CJT , to use the easily computed
parameters u and V (F), rather than the unknown distribution F .

Proposition 1 Any distribution F of a variable ρ in [1/2, 1] satisfies

V (F) ≤
(

u − 1

2

)
(1− u), (18)

where u = E(F), and equality holds in (18) only for F for which

Pr

(
ρ = 1

2

)
= 2(1− u) and Pr(ρ = 1) = 2u − 1. (19)

Proof We want to show that

1∫

1/2

ρ2dF(ρ)− u2 ≤
(

u − 1

2

)
(1− u), (20)

or, equivalently,

1∫

1/2

ρ2dF(ρ)− 3

2
u + 1

2
≤ 0. (21)

Replacing u = ∫ 1
1/2 ρ dF(ρ) and 1

2 =
∫ 1

1/2
1
2 dF(ρ), inequality (20) is equivalent to
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102 B. Peleg, S. Zamir

1∫

1/2

(ρ2 − 3

2
ρ + 1

2
) dF(ρ) :=

1∫

1/2

g(ρ) dF(ρ) ≤ 0. (22)

The parabola g(ρ) is convex and satisfies g(1/2) = g(1) = 0 and g(ρ) < 0 for all
1/2 < ρ < 1, which proves (22). Furthermore, equality to 0 in (22) is obtained only
when F is such that Pr(1/2 < ρ < 1) = 0, and combined with u = E(F) this
implies (19). ��

The next Proposition provides a sort of inverse to proposition 1.

Proposition 2 For (u, w) = (1, 0) and for any pair (u, w) where 1/2 < u < 1 and
0 ≤ w < (u−1/2)(1−u), there is a distribution F(ρ) on (1/2, 1] such that E(F) = u
and V (F) = w.

Proof For (u, w) = (1, 0) the claim is trivially true (with the distribution Pr(ρ =
1) = 1). Given (u, w), for any y satisfying 1/2 < y ≤ u < 1 define the distribution
Fy for which

Pr(ρ = y) = (1− u)/(1− y) and Pr(ρ = 1) = (u − y)/(1− y).

This distribution satisfies E(Fy) = u and it remains to show that we can choose y so
that V (Fy) = w. Indeed,

V (Fy) = 1− u

1− y
y2 + u − y

1− y
− u2.

For a given u < 1, this is a continuous function of y satisfying both limy→u V (Fy) = 0
and limy→1/2 V (Fy) = (u − 1/2)(1− u). Therefore, for 0 ≤ w < (u − 1/2)(1− u),
there is a value y∗ for which V (Fy∗) = w. ��

3.1 Presentation in R
2

In studying the validity of the CJT for a sequence X = (X1, X2, . . . , Xn, . . .) with
general joint distribution (X, P), rather than working with the whole covariance struc-
ture of the sequence, we shall see that many results can be obtained by examining just
two parameters of the distribution namely, (p, y) defined by.

p := lim inf
n→∞ pn (23)

y := lim inf
n→∞ E(Xn − pn)2 (24)

(Note that this definition of y is consistent with that given in Eq. 6 for exchangeable
variables; a case in which the limit exists.)

Therefore, we shall study the CJT property of a sequence X = (X1, X2, . . . ,

Xn, . . .) through its projection on the plane R
2 in which we shall denote the coordi-

nates by (u, w). We first identify the range of this mapping:
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Extending the Condorcet Jury Theorem 103

Proposition 3 For every pair (X, P), the corresponding parameters (p, y)

satisfy y ≤ p(1− p).

Proof Given a sequence of binary random variables X with its joint distribution P ,
we first observe that for any i 
= j ,

Cov(Xi , X j ) = E(Xi X j )− pi p j ≤ min(pi , p j )− pi p j .

Therefore,

E(Xn − pn)2 = 1

n2

⎧
⎨

⎩

n∑

i=1

∑

j 
=i

Cov(Xi , X j )+
n∑

i=1

pi (1− pi )

⎫
⎬

⎭ (25)

≤ 1

n2

⎧
⎨

⎩

n∑

i=1

∑

j 
=i

[min(pi , p j )− pi p j ] +
n∑

i=1

pi (1− pi )

⎫
⎬

⎭ . (26)

We claim that the maximum of the last expression (26), under the condition
∑n

i=1 pi =
n pn , is pn(1 − pn). This is attained when p1 = · · · = pn = pn . To see that this is
indeed the maximum, assume to the contrary that the maximum is attained at p̃ =
( p̃1, · · · , p̃n) with p̃i 
= p̃ j for some i and j . Without loss of generality assume that:
p̃1 ≤ p̃2 ≤ · · · ≤ p̃n with p̃1 < p̃ j and p̃1 = p̃� for � < j . Let 0 < ε < ( p̃ j − p̃1)/2
and define p∗ = (p∗1, · · · , p∗n) by p∗1 = p̃1+ ε, p∗ j = p̃ j − ε, and p∗� = p̃� for
� /∈ {1, j}. A tedious, but straightforward, computation shows that the expression (26)
is higher for p∗ than for p̃, in contradiction to the assumption that it is maximized at
p̃. We conclude that

E(Xn − pn)2 ≤ pn(1− pn).

Let now (pnk
)∞k=1 be a subsequence converging to p; then

y = lim inf
n→∞ E(Xn − pn)2 ≤ lim inf

k→∞ E(Xnk − pnk
)2

≤ lim inf
k→∞ pnk

(1− pnk
) = p(1− p).

��
This leads to:

Theorem 6 The range of the mapping (X, P)→ (p, y) is (see Fig. 2)

F E2 = {(u, w)|0 ≤ u ≤ 1, 0 ≤ w ≤ u(1− u)} (27)

That is, for any pair (X, P), we have (p, y) ∈ F E2 and for any (u, w) ∈ F E2 there
is a pair (X, P) for which p = u and y = w.
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104 B. Peleg, S. Zamir

Fig. 2 The feasible set F E2

Proof The first part follows from Proposition 3 (since clearly y ≥ 0). For the second
part, observe first, as we have remarked in the proof of Proposition 3, that for the pair
(X, P) in which P{X1 = X2 = . . . = 1} = u and P{X1 = X2 = . . . = 0} = 1− u
we have p1 = p2 = · · · = pn = pn = u and hence p = u. Also, for all n = 1, 2, . . .,

E(Xn − pn)2 = E(Xn − u)2 = u(1− u) and hence

y = lim inf
n→∞ E(Xn − pn)

2 = u(1− u),

which means that any point on the parabola w = u(1− u) is attainable as an image of
a pair (X, P). Next, note that for u ∈ [0, 1], the pair (Y, P̃) in which (Yi )

∞
i=1 are i.i.d.

with P̃{Yi = 1} = u and P̃{Yi = 0} = 1− u is mapped to (p, y) = (u, 0) since

y = lim inf
n→∞ E(Xn − pn)2 = lim inf

n→∞
1

n2

n∑

i=1

E(Xi − u)2 = lim inf
n→∞

1

n2

n∑

i=1

u(1− u)

= lim inf
n→∞

u(1− u)

n
= 0.

It remains to prove that all interior points of F E2 are attainable. Let (u, w) be such
an interior point, that is, 0 < u < 1 and 0 < w < u(1− u). Define the pair (Z , Q) to
be the above-defined pair (X, P) with probability w/u(1− u) and the above-defined
(Y, P̃) with probability 1− w/u(1− u). It is readily seen that this pair is mapped to

w

u(1− u)
(u, u(1− u))+

(
1− w

u(1− u)

)
(u, 0) = (u, w). ��

The geometric expression of Theorem 5, combined with Theorem 3, Proposition 1,
and Proposition 2, can now be stated as follows: in the R

2 plane of (p, y) let

A =
{
(p, y)

∣∣∣∣
1

2
< p ≤ 1; and y <

(
p − 1

2

)
(1− p)

}⋃
{(1, 0)} (28)

This is the region strictly below the small parabola in Fig. 3, excluding (1/2, 0) and
adding (1, 0).
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Fig. 3 The CJT region for exchangeable variables

Theorem 7 1. Any exchangeable sequence of binary random variables that satisfy
the CJT corresponds to (p, y) ∈ A.

2. To any (p, y) ∈ A there exists an exchangeable sequence of binary random vari-
ables with parameters (p, y) that satisfy the CJT.

Proof The statements of the theorems are trivially true for the point (1, 0), as it cor-
responds to the unique distribution: Pr(X1 = . . . = Xn . . .) = 1, which is both
exchangeable and satisfies the CJT . For all other points in A:

• Part 1. follows de Finetti’s Theorem 3, Theorem 5, and Proposition 1.
• Part 2. follows de Finetti’s Theorem 3, Theorem 5, and Proposition 2. ��

3.2 Application to symmetric juries

A jury game Gn , as defined in Sect. 2, is said to be symmetric if

• T 1 = T 2 = . . . = T n

• The probability distribution p(n) is symmetric in the variables t1, . . . , tn .

We consider a sequence of increasing juries (Gn)∞n=1 such that Gn is symmetric for all

n. In such a sequence,
∑i

n is the same for all i and all n and is denoted by
∑

. A strategy
vector σn = (σ 1

n , . . . , σ n
n ) ∈∑n is said to be symmetric, if σ 1

n = σ 2
n = . . . = σ n

n .

Corollary 8 Let σ∼ = (σ, σ, . . . , σ, . . .) ∈ ∑∞ and let X∼ = (X1, X2, . . . , Xn, . . .)

be the sequence of binary random variables derived from σ∼ by (1); then X∼ is exchange-

able. If X∼ satisfies (7), then there exists a sequence of BNE, σ n∗ = (σ ∗n , . . . , σ ∗n ) of Gn

for n = 1, 2, . . ., that satisfies the CJT.

Proof Follows from Theorems 5 and 2 of McLennan (1998). ��
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4 Sufficient conditions

Having characterized the CJT conditions for exchangeable variables, we proceed now
to the general case and we start with sufficient conditions.

Let X = (X1, X2, . . . , Xn, . . .) be a sequence of binary random variables with
range in {0, 1} and with joint probability distribution P . The sequence X is said to
satisfy the CJT if

lim
n→∞ P

(
n∑

i=1

Xi >
n

2

)
= 1 (29)

Observe that in our model the vector X results from strategic voting and (29) is the
condition corresponding to condition (2) when Xi = Xi (σi ) for an infinite sequence
of constant strategies (σ i )∞i=1 that satisfy C J T .

In this section, we provide sufficient conditions for a pair (X, P) to satisfy the
CJT . Recall our notation: Xn = (X1 + X2 + · · · + Xn)/n, pi = E(Xi ), and pn =
(p1 + p2 + · · · + pn)/n.

Theorem 9 Assume that pn > 1
2 for all n > N0 and

lim
n→∞

E(Xn − pn)2

(pn − 1
2 )2

= 0, (30)

or equivalently assume that

lim
n→∞

pn − 1
2√

E(Xn − pn)2
= ∞; (31)

then the CJT is satisfied.

Proof

P

(
n∑

i=1

Xi ≤ n

2

)
= P

(
−

n∑

i=1

Xi ≥ −n

2

)

= P

(
n∑

i=1

pi −
n∑

i=1

Xi ≥
n∑

i=1

pi − n

2

)

≤ P

(∣∣∣∣∣

n∑

i=1

pi −
n∑

i=1

Xi

∣∣∣∣∣ ≥
n∑

i=1

pi − n

2

)
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By Chebyshev’s inequality (assuming
∑n

i=1 pi > n
2 ), we have

P

(∣∣∣∣∣

n∑

i=1

pi −
n∑

i=1

Xi

∣∣∣∣∣ ≥
n∑

i=1

pi − n

2

)
≤ E

(∑n
i=1 Xi −∑n

i=1 pi
)2

(∑n
i=1 pi − n

2

)2

= E
(
Xn − pn

)2

(pn − 1
2 )2

As this last term tends to zero by (30), the CJT (29) then follows. ��
Corollary 10 If

∑n
i=1
∑

j 
=i Cov(Xi , X j ) ≤ 0 for n > N0 (in particular if

Cov(Xi , X j ) ≤ 0 for all i 
= j ) and limn→∞
√

n(pn − 1
2 ) = ∞, then the CJT

is satisfied.

Proof Since the variance of a binary random variable X with mean p is
p(1− p) ≤ 1/4 we have for n > N0,

0 ≤ E(Xn − pn)2 = 1

n2 E

(
n∑

i=1

(Xi − pi )

)2

= 1

n2

⎛

⎝
n∑

i=1

V ar(Xi )+
n∑

i=1

∑

j 
=i

Cov(Xi , X j )

⎞

⎠ ≤ 1

4n

Therefore, if limn→∞
√

n(pn − 1
2 ) = ∞, then

0 ≤ lim
n→∞

E(Xn − pn)2

(pn − 1
2 )2

≤ lim
n→∞

1

4n(pn − 1
2 )2
= 0

��
Remark 2 It follows from Eq. 30 that any (X, P) satisfying this sufficient condition
must have y = 0; that is, it corresponds to a point (p, 0) in the R

2 plane. Thus, any
distribution with y > 0 that satisfy the CJT , does not satisfy this sufficient condition.
In particular, this is true for the exchangeable sequences (with y > 0) we identified in
Sect. 3 and the non-exchangeable sequences satisfying the CJT we will see in Sect. 7.

Remark 3 Note that under the condition of Corollary 10, namely, for bounded random
variables with all covariances being non-positive, the (weak) Law of Large Numbers
(L L N ) holds for arbitrarily dependent variables (see, e.g., Feller (1957), vol I, exer-
cise 9, p. 262). This is not implied by Corollary 10 since, as we show in Appendix 9.3,
the CJT , strictly speaking, is not a Law of Large Lumbers. In particular, CJT does not
imply L L N and L L N does not imply CJT .

Remark 4 When X1, X2, . . . , Xn, . . . are independent, then under mild conditions
limn→∞

√
n(pn− 1

2 ) = ∞ is a necessary and sufficient condition for CJT (see Berend
and Paroush 1998).
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5 Necessary conditions

We start this section with a simple observation and then state two necessary conditions
that do not fully imply one another in either direction.

Proposition 4 Given a sequence X = (X1, X2, . . . , Xn, . . .) of binary random vari-
ables with a joint probability distribution P, if the CJT holds then p ≥ 1

2 .

Proof Define a sequence of events (Bn)
∞
n=1 by Bn = {ω | Xn(ω) ≥ 1/2}. Since the

CJT holds, limn→∞ P
(∑n

i=1 Xi > n
2

) = 1 and hence limn→∞ P(Bn) = 1. Since

pn −
1

2
= E

(
Xn − 1

2

)
≥ −1

2
P(�\Bn),

taking the lim inf, the right-hand side tends to zero and we obtain that
lim infn→∞ pn = p ≥ 1

2 . ��

5.1 A necessary condition with respect to the L2 norm

In this section, we provide a necessary condition with respect to the L2 norm for
a general sequence (X, P) to satisfy the CJT . That is, a condition in terms of two
characteristics, p = lim infn→∞ pn and y = lim infn→∞ E(Xn − pn)2.

Theorem 11 Let X = (X1, X2, . . . , Xn, . . .) be a sequence of binary random vari-
ables with joint distribution P. If (X, P) satisfy the CJT, then y ≤ (p − 1

2 )(1− p).

Proof Recall our notation Bn = {ω ∈ � | Xn(ω) ≥ 1
2 }; then, since (X, P) satisfy

the CJT , limn→∞ P(Bn) = 1. The main part of the proof is a direct computation of
E(Xn(ω)− pn)2. Denote by Bc

n := � \ Bn the complement of Bn ; then:

E(Xn(ω)− pn)2 = E

(
Xn(ω)− 1

2
+ 1

2
− pn

)2

= E

(
Xn(ω)− 1

2

)2

+ 2

(
1

2
− pn

)
E

(
Xn(ω)− 1

2

)

+
(

1

2
− pn

)2

= E

(
Xn(ω)− 1

2

)2

−
(

1

2
− pn

)2

=
∫

Bc
n

(
Xn(ω)− 1

2

)2

dP +
∫

Bn

(
Xn(ω)− 1

2

)(
Xn(ω)− 1

2

)
dP

−
(

1

2
− pn

)2
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≤
∫

Bc
n

(
Xn(ω)− 1

2

)2

dP + 1

2

∫

Bn

(
Xn(ω)− 1

2

)
dP −

(
1

2
− pn

)2

.

Thus,

E(Xn(ω)− pn)2 ≤
∫

Bc
n

(
Xn(ω)− 1

2

)2

dP − 1

2

∫

Bc
n

(
Xn(ω)− 1

2

)
dP

+1

2
E

(
Xn(ω)− 1

2

)
−
(

1

2
− pn

)2

= 1

2

(
pn −

1

2

)
−
(

1

2
− pn

)2

+
∫

Bc
n

(
Xn(ω)− 1

2

)2

dP

−1

2

∫

Bc
n

(
Xn(ω)− 1

2

)
dP

=
(

pn −
1

2

)
(1− pn)+

∫

Bc
n

(
Xn(ω)− 1

2

)2

dP

−1

2

∫

Bc
n

(
Xn(ω)− 1

2

)
dP

For any ε > 0 there exists N (ε) such that for n > N (ε),

∫

Bc
n

(
Xn(ω)− 1

2

)2

dP <
ε

2
and

∣∣∣∣∣∣∣

1

2

∫

Bc
n

(
Xn(ω)− 1

2

)
dP

∣∣∣∣∣∣∣
<

ε

2
.

Hence for n > N (ε),

E(Xn(ω)− pn)
2 ≤

(
pn −

1

2

)
(1− pn)+ ε. (32)

We conclude that

y = lim inf
n→∞ E(Xn − pn)2 ≤ lim inf

n→∞

(
pn −

1

2

)
(1− pn)+ ε,

for every ε > 0. Hence,

y = lim inf
n→∞ E(Xn − pn)2 ≤ lim inf

n→∞

(
pn −

1

2

)
(1− pn).
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Fig. 4 The CJT region of validity for general distributions

Choose a sequence (nk)
∞
k=1 such that limk→∞ pnk

= p; then

y ≤ lim inf
k→∞

(
pnk
− 1

2

)
(1− pnk

) =
(

p − 1

2

)
(1− p).6

��
Figure 4 depicts the regions of validity of the CJT in the R

2 plane: any distribu-
tion for which the parameters (p, y) lie in lightly colored region denoted by NCJT ,
does not satisfy the C J T . In particular, if a sequence of strategy vectors (σn)∞n=1 in
McLennan’s theorem (i.e. maximizers in Equation (3)) does not satisfy the necessary
condition (i.e., the corresponding (p, y) lies in the region NCJT ) then there is no
sequence of strategies (σn)∞n=1, whether constant or not, that satisfy the CJT . The
dark region, denoted by WCJT (for weak C J T ), is the closed area below the small
parabola. Any distribution that satisfies the CJT must have parameters (p, y) in this
region. However, for general distributions this is not a sufficient condition; as we shall
see later, for any (p, y) in this region, excluding (1, 0), there is a sequence with these
parameters that does not satisfy the CJT .

5.2 A necessary condition with respect to the L1 norm

In this section, we provide a necessary condition with respect to the L1 norm for
a general sequence (X, P) to satisfy the CJT . That is, a condition in terms of two
characteristics, p = lim infn→∞ pn and y∗ = lim infn→∞ E

∣∣Xn − pn

∣∣.

6 Since for any ε > 0 inequality (32) holds for all n > N (ε), then for a subsequence (nk )∞k=1 such that

limk→∞ pnk
= p̃ and limk→∞ E(Xnk − pnk

)2 = ỹ, we get ỹ ≤ ( p̃− 1
2 )(1− p̃). It follows that if (X, P)

satisfies the CJT , then any limit point of (pn , E(Xn − pn)2) is in the region A of Fig. 3 (or region WCJT
in Fig. 4). We are indebted to A. Neyman for a discussion concerning this observation.
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Fig. 5 The CJT region of validity with respect to the L1 norm

Theorem 12 Let X = (X1, X2, . . . , Xn, . . .) be a sequence of binary random vari-
ables with joint distribution P. If (X, P) satisfy the CJT, then y∗ ≤ 2(2p−1)(1− p).

Proof See Appendix 9.2 ��
Figure 5 depicts the regions of validity of the CJT in the R

2 plane with respect to
the L1 norm; the analog of Fig. 4.

Strangely enough, Theorem 12 and Theorem 11 do not imply each other in either
direction. Furthermore, the techniques of the proofs for the L1 norm and for the L2
norm are very different. We could derive only a weak implication in one direction
which stems from the following lemma:

Lemma 1 One always has: y∗ ≥ 2y.

Proof Denoting An = {ω ∈ � | pn − Xn(ω) ≥ 0}, we have:

∫

An

(pn − Xn)2 dP =
∫

An

(pn − Xn)(pn − Xn) dP

≤ pn

∫

An

(pn − Xn) dP = pn
y∗n
2

.

Similarly,

∫

Ac
n

(Xn − pn)
2 dP ≤ (1− pn)

y∗n
2

.

Hence, for all n we have:

yn := E(Xn − pn)2 =
∫

�

(Xn − pn)2 dP ≤ pn
y∗n
2
+ (1− pn)

y∗n
2
= y∗n

2
.
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Fig. 6 The CJT validity region with respect to the L2 norm as implied by the condition with respect to the
L1 norm

Taking a subsequence (nk)
∞
k=1 such that limk→∞ y∗nk

= y∗, we conclude that

y∗ ≥ 2 lim inf
k→∞ ynk ≥ 2y. ��

Combining Lemma 1 with Theorem 12 yields,

Corollary 13 Let X = (X1, X2, . . . , Xn, . . .) be a sequence of binary random vari-
ables with joint distribution P. If y > (2p − 1)(1− p), then (X, P) does not satisfy
the CJT.

Figure 6 depicts the conclusion of the last corollary: the region with the lightest
color, denoted by NCJT , is the region in which the C J T is not satisfied for any (X, P)

with these values of (p, y). The darkest region, denoted by WCJT , is the region of
(p, y) for which there exist (X, P) with these parameters that satisfy the CJT . Clearly,
this is a weaker result than Theorem 11 that we obtained directly for the L2 norm and
is described in Figure 4 according to which, the crescent in Figure 6, denoted by “?”,
belongs to the NCJT region.

6 Distributions in WCJT that do not satisfy the CJT

In this section, we prove that the necessary conditions stated in Theorems 11 and 12
are not sufficient. In fact, we prove a stronger result, namely: to any pair of parameters
in the closure of the dark WCJT region (either in Fig. 4 for the L2 norm or in Fig. 5 for
the L1 norm), excluding the point (1, 0), there is a distribution that does not satisfy the
CJT . We shall prove this only for the L2 norm (the proof for the L1 norm is similar).
This is established by the following:

Theorem 14 For any (u, w) ∈ {(u, w) | 0 < u < 1 ; 0 ≤ w ≤ u(1− u)}, there is a
sequence of binary random variables Z with joint distribution H such that:

(i) E(Zi ) = u,∀i .
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(ii) lim infn→∞ E(Zn − u)2 = w.
(iii) The distribution H does not satisfy the CJT.

Proof For 0 < u < 1,

• let (X, F0) be given by X1 = X2 = . . . = Xn = . . . and E(Xi ) = u;
• let (Y, F1) be a sequence of of i.i.d. random variables (Y i )∞i=1 with expectation u.
• For 0 < t ≤ 1 let (Zt , Ht ) be the pair in which Zi

t = t Xi + (1 − t)Y i for
i = 1, 2, . . . and Ht is the product distribution Ht = F0 × F1 (that is, the X and
the Y sequences are independent).

Note first that E(Zi
t ) = u for all i and

lim
n→∞ E(Zt,n − u)2 = lim

n→∞

(
(1− t)

u(1− u)

n
+ tu(1− u)

)
= tu(1− u),

and therefore, the pair (Zt , Ht ) corresponds to the point (u, w) in the L2 space, where
w = tu(1− u) ranges in (0, u(1− u)) as 0 < t ≤ 1.

Finally, (Zt , Ht ) does not satisfy the CJT since for all n,

Pr

(
Zt,n >

1

2

)
≤ 1− Pr(Z1

t = Z2
t = . . . = 0) = 1− t (1− u) < 1.

As this argument does not apply for t = 0 it remains to prove that, except for
(1, 0), to any point (u, 0) on the x axis corresponds a distribution that does not satisfy
the CJT . For 0 ≤ u ≤ 1/2, the sequence (Y, F1) of i.i.d. random variables (Y i )∞i=1
with expectation u does not satisfy the CJT , as follows from the result of Berend and
Paroush (1998). For 1/2 < u < 1 such a sequence of i.i.d. random variables does
satisfy the CJT and we need the following more subtle construction.

Given the two sequences (X, F0) and (Y, F1) defined above, we construct a
sequence Z = (Zi )∞i=1 consisting of alternating blocks of Xi s and Y i s, with the prob-
ability distribution on Z being that induced by the product probability H = F0 × F1.
Clearly E(Zi ) = u for all i , in particular pn = u for all n and p = u. We denote by

B� the set of indices of the �th block and its cardinality by b�. Thus, n(�) =∑�
j=1 b j

is the index of Zi at the end of the �th block. Therefore,

B�+1 = {n(�)+ 1, . . . , n(�)+ b�+1)} and n(�+ 1) = n(�)+ b�+1.

Define the block size b� inductively by:

1. b1 = 1, and for k = 1, 2, . . .;
2. b2k = k

∑k
j=1 b2 j−1 and b2k+1 = b2k .

Finally, we define the sequence Z = (Zi )∞i=1 to consist of Xi s in the odd blocks and
Y i s in the even blocks, that is,

Zi =
{

Xi if i ∈ B2k−1 forsome k = 1, 2, . . .

Y i if i ∈ B2k forsome k = 1, 2, . . .
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Denote by nx (�) and ny(�) the number of X coordinates and Y coordinates respec-
tively in the sequence Z at the end of the �th block and by n(�) = nx (�)+ ny(�) the
number of coordinates at the end of the �th block of Z . It follows from 1 and 2 (in the
definition of b�) that for k = 1, 2, . . .,

nx (2k − 1) = ny(2k − 1)+ 1 (33)
nx (2k)

ny(2k)
≤ 1

k
and hence also

nx (2k)

n(2k)
≤ 1

k
(34)

It follows from (33) that at the end of each odd-numbered block 2k − 1, there is
a majority of Xi coordinates that with probability (1 − u) will all have the value 0.
Therefore,

Pr

(
Zn(2k−1) <

1

2

)
≥ (1− u) for k = 1, 2, . . . ,

and hence

lim inf
n→∞ Pr

(
Zn >

1

2

)
≤ u < 1;

that is, (Z , H) does not satisfy the CJT .
It remains to show that

y = lim inf
n→∞ E(Zn − pn)2 = 0.

To do so, we show that the subsequence of
{

E((Zn − pn)2)
}∞

n=1 corresponding to the
end of the even-numbered blocks converges to 0, namely,

lim
k→∞ E(Zn(2k) − pn(2k))

2 = 0.

Indeed,

E(Zn(2k) − pn(2k))
2 = E

⎛

⎝nx (2k)

n(2k)
(X1 − u)+ 1

n(2k)

ny(2k)∑

i=1

(Y i − u)

⎞

⎠
2

.

Since the Y i s are i.i.d. and independent of X1 we have

E(Zn(2k) − pn(2k))
2 = n2

x (2k)

n2(2k)
u(1− u)+ ny(2k)

n2(2k)
u(1− u),

and by property (34) we get finally:

lim
k→∞ E(Zn(2k) − pn(2k))

2 ≤ lim
k→∞

(
1

k2 u(1− u)+ 1

n(2k)
u(1− u)

)
= 0,

123

Author's personal copy



Extending the Condorcet Jury Theorem 115

concluding the proof of the theorem. ��
An immediate implication of Theorem 14 is the following:

Corollary 15 For any pair of parameters (p, y) satisfying 1/2 ≤ p < 1 and 0 ≤
y ≤ (p − 1/2)(1− p) (that is, the point (p, y) is in the closure of the region WCJT
in Fig. 4, excluding (1, 0)), there is a distribution with these parameters that does not
satisfy the CJT.

7 Non-exchangeable sequences satisfying the CJT

In this section, we prove the existence of sequences (X, P) of dependent random vari-
ables, sequences that are non-exchangeable and satisfy the CJT . By Theorem 11, such
distributions must have their parameter in the closure of the dark WCJT region (either
in Fig. 4 in L2 or in Fig. 5 in L1). In fact, we shall prove that for any point in this
region there is a distribution that satisfies the CJT , and is not exchangeable. We shall
prove that only in the L2 plane. The proof for the L1 plane is similar. The construction
of these sequences uses the idea of the interlacing of two sequences, which can be
generalized and proves to be useful.

Theorem 16 Let t ∈ [0, 1
2 ]. If F is a distribution with parameters (p, y), then there

exists a distribution H with parameters p̃ = 1− t + t p and ỹ = t2 y that satisfy the
CJT.

Proof To illustrate the idea of the proof we first prove (somewhat informally) the
case t = 1/2. Let X = (X1, X2, . . . , Xn, . . .) be a sequence of binary random vari-
ables with a joint probability distribution F . Let G be the distribution of the sequence
Y = (Y 1, Y 2, . . . , Y n, . . .), where EY n = 1 for all n (that is, Y 1 = Y 2 = . . . Y n = . . .

and P(Y i = 1) = 1 ∀i). Consider now the following interlacing of the two sequences
X and Y :

Z = (Y 1, Y 2, X1, Y 3, X2, Y 4, X3, . . . , Y n, Xn−1, Y n+1, Xn . . .),

and let the probability distribution H of Z be the product distribution H = F × G.
It is verified by straightforward computation that the parameters of the distribution H
are in accordance with the theorem for t = 1

2 , namely, p̃ = 1
2 + 1

2 p and ỹ = 1
4 y.

Finally, as each initial segment of voters in Z contains a majority of Y i s (thus with all
values 1), the distribution H satisfies the CJT , completing the proof for t = 1

2 .
The proof for a general t ∈ [0, 1/2) follows the same lines: we construct the

sequence Z so that any finite initial segment of n variables, includes “about, but not
more than” the initial tn segment of the X sequence, and the rest is filled with the
constant Yi variables. This will imply that the CJT is satisfied.

Formally, for any real x ≥ 0 let �x� be the largest integer less than or equal to x
and let �x� be smallest integer greater than or equal to x . Note that for any n and any
0 ≤ t ≤ 1 we have �tn� + �(1 − t)n� = n; thus, one and only one of the following
holds:
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Fig. 7 Interlacing with (1, 0) in L2

(i) �tn� < �t (n + 1)� or
(ii) �(1− t)n� < �(1− t)(n + 1)�
From the given sequence X and the above-defined sequence Y (of constant 1 variables)
we define now the sequence Z = (Z1, Z2, . . . , Zn, . . .) as follows: Z1 = Y 1 and for
any n ≥ 2, let Zn = X �t (n+1)� if (i) holds and Zn = Y �(1−t)(n+1)� if (ii) holds. This
inductive construction guarantees that for all n, the sequence contains �tn� Xi coor-
dinates and �(1− t)n� Y i coordinates. The probability distribution H is the product
distribution F × G. The fact that (Z , H) satisfies the CJT follows from:

�(1− t)n� ≥ (1− t)n > tn ≥ �tn�,

and finally p̃ = 1− t + t p and ỹ = t2 y is verified by straightforward computation. ��
Remark 5 • Note that the sequence Z is clearly not exchangeable (except for the

case t = 0 which corresponds to (1, 0) ).
• The interlacing of the two sequences X and Y described in the proof of Theorem 16

may be defined for any t ∈ [0, 1]. We were specifically interested in t ∈ [0, 1/2]
since this guarantees the CJT .

Figure 7 depicts the interlacing procedure: the parabolic line joining (u∗, w∗) to the
point (1, 0), corresponds to all interlacing with t ∈ [0, 1]. The lower part, described
as a thick line, corresponds to interlacing when t ∈ [0, 1/2]. For these values of t , the
interlacing yields distributions satisfying the CJT . The small parabola is the locus of
points corresponding to t = 1/2 when (u∗, w∗) ranges over the parabola w = u(1−u).

Corollary 17 For any (p, y) in the set

A = {(p, y) | 0 ≤ y ≤ (p − 1/2)(1− p) ; 1/2 ≤ p ≤ 1}

(this is the closure of the region WCJT in Fig. 4), there is a sequence of non-exchange-
able random variables, with these parameters, that satisfy the CJT.

Proof By straightforward verification we observe that the set A is obtained from The-
orem 16 by letting (p, y) range over the points of parabola w = u(1− u) defining the
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feasible set F E2. In other words, A can also be written as:

A = {(p, y) | p = 1− t + tu ; y = t2u(1− u) ; 0 ≤ t ≤ 1/2, 0 ≤ u ≤ 1} ��

Note that A is the closure of the set A defined in Eq. 28 for exchangeable variables,
but A 
= A. More specifically, the points (p, y) on the parabola y = (p−1/2)(1− p),

excluding (1, 0), are in A but not in A. For each of these points there is a corresponding
sequence satisfying the CJT but this sequence cannot be exchangeable.

Finally, combining Corollary 17 and Theorem 14 yields:

Corollary 18 For any point (p, y) in A \ {(1, 0)} there is a corresponding sequence
satisfying the CJT and a corresponding sequences that does not satisfy the CJT.

7.1 Other distributions satisfying the CJT : general interlacing

So far, we have identified three types of distributions that satisfy the CJT ; all corre-
spond to parameters (p, y) in the set A, the closure of the region WCJT in Fig. 4.

1. Distributions satisfying the sufficient condition (Theorem 9).
2. Exchangeable distributions characterized in Theorem 5.
3. Non-exchangeable distributions obtained by interlacing with constant sequence

Y = (1, 1, . . .) (Theorem 16).

In this section, we construct more distributions satisfying the CJT that are not in
either of the three families mentioned above. We do so by generalizing the notion of
the “interlacing” of two distributions that we introduced in Sect. 7.

Definition 2 Let X = (X1, X2, . . . , Xn, . . .) be a sequence of binary random vari-
ables with joint probability distribution F and let Y = (Y 1, Y 2, . . . , Y n, . . .) be
another sequence of binary random variables with joint distribution G. For t ∈ [0, 1],
the t-interlacing of (X, F) and (Y, G) is the pair (Z , H) := (X, F) ∗t (Y, G) where
for n = 1, 2, . . .,

Zn =
{

X �tn� if �tn�>�t (n−1)�
Y �(1−t)n� if �(1−t)n�>�(1−t)(n−1)�, (35)

and H = F × G is the product probability distribution of F and G.

The following lemma is a direct consequence of Definition 2.

Lemma 2 If (X, F) and (Y, G) satisfy the CJT, then for any t ∈ [0, 1] the pair
(Z , H) = (X, F) ∗t (Y, G) also satisfies the CJT.

Proof We may assume that t ∈ (0, 1). Note that

{
ω|Zn(ω) >

1

2

}
⊇
{
ω|X �tn�(ω) >

1

2

}⋂{
ω|Y �(1−t)n�(ω) >

1

2

}
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By our construction and the fact that both (X, F) and (Y, G) satisfy the CJT ,

lim
n→∞ F

(
X �tn� >

1

2

)
= 1 and lim

n→∞G

(
Y �(1−t)n� >

1

2

)
= 1.

As

H

(
Zn >

1

2

)
≥ F

(
X �tn� >

1

2

)
· G
(

Y �(1−t)n� >
1

2

)
,

the proof follows. ��
Thus, from any two distributions satisfying the CJT we can construct a continuum

of distributions satisfying the CJT . These distributions will generally be outside the
union of the three families listed above.

8 Conclusions

We have analyzed the Condorcet jury problem in a detailed manner as a strategic game
with incomplete information (Sect. 2). This framework has the following advantages:

(I) It is in line with the modern approach of Austen-Smith and Banks (1996);
(II) It enables us to focus on a natural candidate BNE for satisfying the CJT ,

namely, McLennan’s BNE (see Theorem 2);
(III) It explains, in a transparent way, Condorcet’s own model which was originally

restricted to two types of voters and informative voting;
(IV) It enables us to deal with “reverse voting” and “random voting” (and other strat-

egies) without altering our model, since we consider all possible strategies and
not only informative voting (see Examples 3 and 2);

(V) Using our model, we find (sharp) necessary conditions for the existence of a
sequence of BNE that satisfies the CJT. Indeed, as we stated on page (22), if a
McLennan sequence of BNE does not satisfy one of our necessary conditions,
then no other sequence of strategies satisfies the CJT .

(VI) Informative voting may not be a Bayesian-Nash Equilibrium (See Austen-
Smith and Banks (1996)).

Technically, we deal, in most of the paper, with distributions of sequences of binary
random variables that are derived from sequences of strategies of the players. This
is mainly implied by the fact that the CJT is a probabilistic property. In Sect. 3 we
find necessary and sufficient conditions for a sequence of exchangeable variables to
satisfy the CJT (see Theorem 5). We then go on to find a purely geometrical charac-
terization for our result. For exchangeable variables, the geometric condition is fully
determined by the expectation of a variable in the sequence and the covariance of the
two variables (see Theorem 7). Our sufficient conditions are standard and are derived
by Chebyshev’s inequality. On the other hand, the derivation of the necessary con-
ditions makes use of special techniques. The necessary condition with respect to the
L2 norm, quite surprisingly, coincides with the necessary condition for exchangeable
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variables. However, of course, it is not a sufficient condition for general sequences
of random variables. Indeed in Sect. 6, we provide sequences of random variables
satisfying this necessary condition but do not satisfy the CJT (see Theorem 14 and
Corollary 15). The necessary condition with respect to the L1 norm is difficult to derive
and may be useful in special cases. Finally, we introduce in Sect. 7 the operation of
interlacing of two sequences of random variables. This enables to generate many new
dependant sequences of binary random variables that satisfy the CJT .

Acknowledgment We thank Marco Scarsini and Yosi Rinott for drawing our attention to de Finetti’s
theorem.

9 Appendix

9.1 Every sequence of of binary random variables is attainable

In this section, we prove what we claimed towards the end of Sect. 2, namely, that
for any infinite sequence of binary random variables X there is a sequence of games
(Gn)∞n=1 and an infinite sequence of constant strategies σ = (σ 1, σ 2, . . . , σ n, . . .)

that yield this X as the infinite sequence of the indicators of correct voting.
Let X = (X1, X2, . . . , Xn, . . .) be a sequence of binary random variables on some

probability space (�̃,B,P). Let P also denote the distribution of X . In our model
let T i = {t i

0, t i
1} be the type set of juror i and let the type of juror i, t i = t i (θ, Xi (ω))

be defined by: t i (g, 0) = t i (z, 1) = t i
0 and t i (g, 1) = t i (z, 0) = t i

1. We define the
probability distribution p(n) on �n = � × T 1 × · · · × T n as follows: let p(n)(z) =
p(n)(g) = 1/2; for εk ∈ {0, 1}; k = 1, . . . , n let

p̃(g, X1 = ε1, . . . , Xn = εn) = p̃(z, X1 = 1− ε1, . . . , Xn = 1− εn)

= 1

2
P(X1 = ε1, . . . , Xn = εn)

and define

p(n)(θ, t1, t2, . . . , tn) = p̃(θ, X1, X2, . . . , Xn).

The sequence (p(n))∞n=1 clearly satisfies the projective structure required for the
Kolmogorov’s extension theorem (that is, the marginal distribution of p(n+1) on �n

is equal to p(n)). It defines therefore a probability distribution p on � = lim∞←n �n .
Define now the (informative voting) strategies σ i by: σ i (t i

0) = a and σ i (t i
1) = c,

and let X̃1, . . . , X̃n . . . be the indicators of correct voting (w.r.t. this σ ), then

X̃ i (g, t i (g, 1)) = X̃ i (z, t i (z, 1)) = 1 and X̃ i = 0 otherwise.

Thus,

X̃ i (θ, ω) = 1 ⇔ Xi (ω) = 1,
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which means that we obtained the original given sequence.

9.2 Proof of Theorem 12

In this section, we provide a necessary condition for a general sequence of binary
random variables X = (X1, X2, . . . , Xn, . . .) with joint distribution P , in terms of two
of its characteristics namely, p = lim infn→∞ pn and y∗ = lim infn→∞ E |Xn − pn|.

Let y∗n = E |Xn − pn|; then y∗ = lim infn→∞ y∗n . For n = 1, 2, . . ., let

An = {ω ∈ � | pn − Xn(ω) ≥ 0} and Ac
n = � \ An .

Then, since E(Xn − pn) = 0,

∫

Ac
n

(Xn − pn) dP = y∗n
2

and
∫

Ac
n

(1− pn) dP = (1− pn)P(Ac
n) ≥ y∗n

2
. Hence,

P(An) = 1− P(Ac
n) ≤ 1− y∗n

2(1− pn).
(36)

Also,

∫

An

(pn − Xn) dP = pn P(An)−
∫

An

Xn dP = y∗n
2

. (37)

Hence, since Xn ≥ 0,

P(An) ≥ y∗n
2pn .

(38)

Assuming y∗ > 0 and p < 1, it follows from (38) and (36) that there is a subse-
quence (nk)

∞
k=1 such that (P(Ank ))

∞
k=1 is uniformly bounded away from 0 and 1,

lim
k→∞ pnk

= p and lim
k→∞ P(Ank ) = � where 0 < � < 1. (39)

Lemma 3 Let t > 0; then

lim inf
k→∞ P

({
ω ∈ Ank

∣∣∣∣ pnk
− Xnk (ω) ≤ y∗nk

2P(Ank )
− t

})
< �. (40)
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Proof Assume by contradiction that (40) does not hold; then, since the sets on the
left-hand side are subsets of Ank , it follows from (39) that:

lim
k→∞ P

({
ω ∈ Ank

∣∣∣∣ pnk
− Xnk (ω) ≤ y∗nk

2P(Ank )
− t

})
= �. (41)

Denote: Ãnk =
{
ω ∈ Ank

∣∣∣∣ pnk
− Xnk (ω) ≤ y∗nk

2P(Ank )
− t

}
. Then,

pnk
P( Ãnk )−

∫

Ãnk

Xnk (ω)dP ≤ y∗nk
P( Ãnk )

2P(Ank )
− t P( Ãnk ). (42)

Clearly, limk→∞ P( Ãnk ) = � = limk→∞ P(Ank ) and since Ãnk ⊆ Ank , we have

lim
k→∞

∣∣∣∣∣∣∣∣

∫

Ãnk

Xnk (ω)dP −
∫

Ank

Xnk (ω)dP

∣∣∣∣∣∣∣∣
= 0.

Thus for k0 sufficiently large, the inequality (42) contradicts the last equality in (37)
for n = nk0 . ��
Let

Bn = An \ Ãn =
{
ω ∈ An

∣∣∣∣ pn − Xn(ω) >
y∗n

2P(An)
− t

}
;

then, by Lemma 3, there is a subsequence (Bnk )
∞
k=1 and q > 0, such that P(Bnk ) >

q > 0 for all k, that is

Xnk (ω) < pnk
− y∗nk

2P(Ank )
+ t; ∀ω ∈ Bnk ; ∀k. (43)

Example 4 Let 1
2 ≤ p < 1 and y∗ = 2p(1− p); then, by (36) and (43) we have

Xnk (ω) < pnk
− y∗nk

2
(

1− y∗nk
2(1−pnk

)

) + t; ∀ω ∈ Bnk ; ∀k. (44)

By taking subsequences of (nk)
∞
k=1 (to make y∗nk

converge) we may assume w.l.o.g.
that:

lim
k→∞

⎛

⎜⎝pnk
− y∗nk

2
(

1− y∗nk
2(1−pnk

)

) + t

⎞

⎟⎠ = p − y∗ + ε

2
(

1− y∗+ε

2(1−p)

) + t, forsome ε ≥ 0.
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Thus, for some k0 we have

Xnk (ω) < p − y∗ + ε

2
(

1− y∗+ε

2(1−p)

) + 2t; ∀ω ∈ Bnk ; ∀k > k0. (45)

Inserting y∗ = 2p(1− p) we have:

p − y∗ + ε

2
(

1− y∗+ε

2(1−p)

) + 2t ≤ p − y∗

2
(

1− y∗
2(1−p)

) + 2t

= p − 2p(1− p)

2(1− 2p(1−p)

2(1−p)
)
+ 2t = 2t,

implying that

Xnk (ω) < 2t; ∀ω ∈ Bnk ; ∀k > k0. (46)

As t > 0 is arbitrary, in particular, if 2t < 1/2; since P(Bnk ) > q > 0 for all k,
inequalities (46) imply that (X, P) does not satisfy the CJT .

We conclude: No distribution with 1
2 ≤ p < 1 and y∗ = 2p(1 − p) satisfies the

CJT.

Inspired by the previous example we move now to the proof of Theorem 12 stating
the general necessary condition for the CJT in L1.

Theorem 19 Let X = (X1, X2, . . . , Xn, . . .) be sequence of binary random vari-
ables with joint distribution P. If y∗ > 2(2p−1)(1− p), then (X, P) does not satisfy
the CJT.

Proof Let x̃ = (2p − 1)(1 − p) and notice that x/(1 − x/(1 − p)) is an increasing
function for x < 1− p. Since y∗/2 > x̃ , let t be such that

0 < t <
1

2

⎛

⎝ y∗

2
(

1− y∗
2(1−p)

) − x̃

1− x̃
1−p

⎞

⎠

By Lemma 3, there exists a sequence of events (Bnk )
∞
k=1 and q > 0, such that P(Bnk ) >

q > 0 for all k, and (43) and, (by choosing an appropriate subsequence), (45) are sat-
isfied. Thus, on these events we have,

Xnk (ω) < p − y∗ + ε

2
(

1− y∗+ε

2(1−p)

) + 2t ≤ p − y∗

2
(

1− y∗
2(1−p)

) + 2t

< p − x̃

1− x̃
1−p

+ 2t − 2t.
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Substituting x̃ = (2p − 1)(1− p), we have

Xnk (ω) < p − (2p − 1)(1− p)

1− (2p − 1)
= 1

2
.

We conclude that Xnk (ω) < 1
2 , for all ω ∈ Bnk and for all k > k0, implying that

(X, P) does not satisfy the CJT . ��

9.3 The CJT and the law of large numbers

At first sight, the asymptotic CJT condition may look rather similar to the well-known
Law of Large Numbers (L L N ). It is the purpose of this section to clarify and state
precisely the relationship between these two concepts.

Recall that an infinite sequence of binary random variables X = (X1, X2, . . . ,

Xn, . . .) with a joint probability distribution P satisfies the (weak) Law of Large
Numbers (L L N ) if (in our notations):

∀ε > 0, lim
n→∞ P

(|Xn − pn| < ε
) = 1 (47)

while it satisfies the CJT if:

lim
n→∞ P

(
Xn >

1

2

)
= 1 (48)

Since by Proposition 4, the condition p ≥ 1
2 is necessary for the validity of the

CJT , let us check the relationship between the L L N and the CJT in this region. Our
first observation is:

Proposition 5 For a sequence X = (X1, X2, . . . , Xn, . . .) with probability distribu-
tion P satisfying p > 1

2 , if the L L N holds then the CJT also holds.

Proof Let p = 1/2 + 3δ for some δ > 0 and let N0 be such that pn > 1/2 + 2δ for
all n > N0; then for all n > N0 we have

P

(
Xn >

1

2

)
≥ P

(
Xn ≥ 1

2
+ δ

)
≥ P

(|Xn − pn| < δ
)

Since the last expression tends to 1 as n → ∞, the first expression does too, and
hence the CJT holds. ��
Remark 6 The statement of Proposition 5 does not hold for p = 1

2 . Indeed, the

sequence X = (X1, X2, . . . , Xn, . . .) of i.i.d. variables with P(Xi = 1) = P(Xi =
0) = 1/2 satisfies the L L N but does not satisfy the CJT since it does not satisfy
limn→∞

√
n(pn− 1

2 ) = ∞which is a necessary and sufficient condition for CJT (see
Berend and Paroush 1998).
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Unfortunately, Proposition 5 is of little use to us. This is due to the following fact:

Proposition 6 If the random variables of the sequence X = (X1, X2, . . . , Xn, . . .)

are uniformly bounded then the condition

lim
n→∞ E

(
Xn − pn

)2 = 0

is a necessary condition for L L N to hold.

The proof is elementary and can be found, e.g., in Uspensky (1937, p. 185).
It follows thus from Proposition 6 that L L N cannot hold when y > 0 and thus we

cannot use Proposition 5 to establish distributions in this region that satisfy the CJT .
Summing up, The L L N and the CJT are substantially two different properties that

do not imply each other. The partial implication L L N ⇒ CJT applies only for the
horizontal line in L2; (p, 0), for p > 1/2, where the CJT is easily established directly.
Furthermore, all distributions with y > 0 for which we established the validity of the
CJT do not satisfy the L L N .
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