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Abstract

We investigate sufficient conditions for the existence ofé&#an-Nash equi-
libria that satisfy theCondorcet Jury Theorer(CJT). In the Bayesian gam&,
amongn jurors, we allow for arbitrary distribution on the types afgrs. In partic-
ular, any kind of dependency is possible. If each jurbas a “constant strategy”,
o (that is, a strategy that is independent of the size i of the jury), such that
On=(01,02,...,0q...) satisfies theCJT, then by LcLennan (1998) there exists a
Bayesian-Nash equilibrium which also satisfies@idd. We translate th€JT con-
dition on the sequence of constant strategies into theviollp problem:

(**) For a given sequence of binary random variab¥es= (Xi, X2, ..., X, ...) with
joint distribution P, does the distributior? satisfy the asymptotic part of the
CJT?

We provide sufficient conditions and two general (distimggessary conditions for

(**). We give a complete solution to this problem whXns a sequence of exchange-
able binary random variables.

Introduction

The simplest way to present our problem is by quoting Coretarclassic result (see
Young (1997)):

Theorem 1. (CJT—Condorcet 1785) Let n voters (n odd) choose between
two alternatives that have equal likelihood of being cot@priori. Assume
that voters make their judgements independently and thet bas the same
probability p of being correc(% < p < 1). Then, the probability that the
group makes the correct judgement using simple majorit sl

n

[n!/hl (n—h)!]p"(L—p)™ "
h=(n+1)/2

which approache& as n becomes large.

We thank Marco Scarsini and Yosi Rinott for drawing our aitemto de Finetti’s theorem.
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We build on some of the literature on this issue in the lagtythjears. First we
notice that Nitzan and Paroush (1982) and Shapley and Grofbh®84) allow for unequal
competencies of the juries. They replace the simple mgjoommittee by weighted
majority simple games to maintain the optimality of the mgtrule.

Second, we notice the many papers on the dependency amang. jdimong these
papers are Shapley and Grofman (1984), Boland, Prochanaargd(T989), Ladha (1992,
1993, 1995), Berg (1993a, 1993b), Dietrich and List (20BBrend and Sapir (2007)
and Dietrich (2008). It is widely understood and accepted the votes of the jurors are
often correlated. For example, group deliberation priovdting is viewed, justifiably,
as undermining independence (Grofman, Owen and Feld (1288ha (1992, 1995),
Estlund (1994) and Dietrich and List (2004)). In particularetrich (2008) argues that
independence cannot be fully justified in the Condorcet mogel.

Finally, we mention the seminal paper of Austen-Smith andk8g1996) that incor-
porated strategic analysis into the Condorcet jury modied. paper had many followers,
in particular McLennan (1998), and Duggan and Martinel0@2) that investigated the
Condorcet Jury Theorent(T) for Bayesian-Nash equilibria (BNE).

In this work, we investigate th€JT for BNE. Unlike Austen-Smith and Banks
(1996), we do not assume that thgesof the voters are independent (given ttate
of naturg. Indeed we assume arbitrary dependency among (the typgsofs. As far
as we could check, McLennan (1998) is the only paper thaiefuleCJT for BNE as-
suming dependency among the jurors. In fact we rely heaviliWlaLennan’s work; the
game among jurors, is a Bayesian gant&, in which all the players have the same payoff
function which is the probability oforrect decision Therefore, any-tuple of strategies
on = (a},...,al) that maximizes the common payoff is a BNE (McLennan(1998g-T
orem 1). Now consider an infinite sequence of such stratepies(oy,02,...,0y,...)
which are BNE for the sequence of gan@&s Gy, ..., Gy, ... with growing size of jury. If
there exist any other sequence of strategies(11, T2, ..., Tp,...) (not necessarily BNE),
that satisfies th€JT, then the original sequenee is a sequence (of BNE) which also
satisfies th&€JT. Thus, we may focus on the following problem:

(*) For a given sequence of Bayesian gam®gsGs,, ..., Gy, ... of increasing set of ju-
rors, find some sequence of strategies (11, T2, ..., Tp,...) Wheret, is ann-tuple
of strategies for the gan@,, so that the sequencen);;_, satisfy theCJT.

In view of the generality and the complexity of our model, weait ourselves to se-
guenceg of “constant” strategies, that is we assume ma& rim fl<i<m<n< oo,
This means that the strategy of a specific juroii does not change when the size of the
jury increases. We shall refer to such sequence as a “cdrsstgnence”. We prove that
verifying theCJT for a constant sequence is equivalent to the following bl

(**) For a given sequence of binary random variab¥es- (X1, X, ..., Xy, ...) with joint
distributionP, find whether or not the distributidd satisfies th€JT.

Remark that prior to Austen-Smith and Banks (1996), theyasimabf the Condorcet
jury problem had focused on problem (**). One general resulihat of Berend and
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Paroush (1998) which characterizes the independent seegiehbinary random variables
that satisfy theCJT.

In this paper we find sufficient conditions for (**). Then wepgly two general nec-
essary conditions. However, we do not have a complete dieaization of the solution to
(**). We do have full characterization (necessary and sigfficconditions) for sequences
of exchangeableandom variables.

Our basic model is introduced in Section 1. The full chandza¢ion for the case of
exchangeable variables is given in Section 2. In Section giwe sufficient conditions
for the CJT. In section 4 we develop necessary conditions for the \gliofi the CJT
in two different planes parameters of the distribution. Bti®n 5 we prove that these
necessary conditions are not sufficient, unless the sequsraf exchangeable random
variable. Two proofs are given in the Appendix.

1 The basic model

We generalize Condorcet’s model by presenting it as a gatemgomplete information
in the following way: Letl = {1,2,...,n} be a set of jurors and I& be the defendant.
There are twatates of natureg— the defendant is guilty, are the defendant is innocent.
Thus® = {g,z} is the set of states of nature. Each juror has two availaltieresc c- to
convict the defendant a- to acquit the defendant, thés= {a,c} is the action set of
each of the jurors. Before voting, each jurors gets a privabtelom signat} eTi =

{t{,....t, }. In the terminology of games with incomplete informatiaH, is the type
setof jurori. The private signals of the jurors may be dependent and niayowsse,
depend on the state of nature. Again, in the style of gamdsinaomplete information,
let Q, = O x Tlx,...,xT" be the set of of thetates of the world That is, a state of
the worldw = (8,t,...,t") consists of the state of nature and the list of types ofrithe
jurors. Letp™ be the probability distribution (i.e., a common prior) ©q. This is the
joint probability distribution on of the state of nature ahe signals (types) of all jurors.
We assume that the action taken by the finite society of jurets{1,2,...,n} .i.e., the
jury verdict, is determined by the voting rule: A' — A, which is thesimple majority
rule (with some tie breaking procedure such as coin tossifg)ally, to complete the
description of the game, we let all jurors have the same pdyo€tionu: © x A— R
namely
u(g,c)=u(z.a)=1 and u(g,a)=u(z,c)=0, Viel

This concludes the definition of a game which we denot&pyA (pure) strategy of
jurori € | in G, is a functions : T' — A. We denote by8 the set of all pure strategies
of jurori € | and byS= Slx,..., xS" the set of strategy profiles of the society. The
(common) ex-ante payoff for each juror, when the strategyores = (s',...,s") € Sis
used isE, = Eu(0,V(st(t?),...,s"(t")), whered is the true state of nature. Note tiEyt
is precisely the probability correct decision bwhen the strategy vectasris used.

Example 1. In the original Condorcet theorem we have=F {ti t}}; p("(g) = p("(2) =
1/2 and the types are conditionally independent given the sthteature, each has a
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probability p> 1/2 of getting the correct signal. That is:

- - 1
p"(tglg) = P (t2) = p> 5

Condorcet further assumed that all the jurors vote inforively that is, use the strategy
s(t)) =aand $(t)) = c. In this case, the probability of correct voting, by eactojuis p
and as the signals are (conditionally) independent, the @lbws (for example, by the
Law of Large Numbers).

Figure 1 illustrates our construction in the case 2. In this example, according to
p? the state of nature is chosen with unequal probabilitiesHertwo statesp(® (g) =
1/4 andp®(z) = 3/4 and then the types of the two jurors are chosen accordingpiota
probability distribution that depends on the state of reatur

Nature
1/4 3/4
g z
N2 A AN
| 3| % 4/ 0] 0
| 3| 2 3 0 | 1

Figure 1 The probability distributiorp(?.

Following the seminal work of Austen-Smith and Banks (199&) intend to study the
CJT via the Bayesian Nash Equilibria (BNE) of the gae However, unlike in the case
of (conditionally) independent signals, there is no obsgiaay to find the relevant BNE in
the general case of arbitrary dependence. Therefore, puoagh will be indirect. Before
describing our techniques we first enlarge the set of stetexf the jurors by adding the
possibility of mixed strategies. Indeed it was shown by WWRY8) that the introduction
of mixed strategies may help the realization of GET.

A mixed strategy for juror i € I, in the gameGy, is a functiono!, : T' — A(A),
whereA(A) is the set of probability distributions ok Denote byz!, the set of all mixed
strategies of jurof and byZ, = =1x,..., 5 the set of mixed strategy vectors (profiles)
in the gameG,,. The (common) ex-ante payoff for each juror, when the gjsatector
on=(0}%,...,00) € Zyis used iy = Eu(0,V(ai(th),...,al(t")), where8 is the true
state of nature. Againk, is precisely the probability correct decision bywhen the
strategy vectouo is played.

2As a matter of fact, the strategy we define heretiehavior strategybut as the game is clearly a game
with perfect recal] it follows from Kuhn’s theorem (1953) that any mixed stggtdnas a payoff equivalent
behavior strategy. Thus we (ab)use the term ‘mixed stratelyich is more familiar in this literature.



We shall now find a more explicit expression for the payff Given a strategy vector
On = (0f,...,0R) € 2y we denote by (a}) : © x T' — {0,1} the indicator of the set of
correct voting of juroii when using the mixed strategy. That is,

o iadv [l if@=gandoh(t)y=cor 8=z and gt =a
Xi(on;0,1) _{ 0 Otherwise (1)

where by slight abuse of notation we denoteddiyt') the realized pure action when
juror i of typet' uses mixed strategy'. Given a strategy vectar, = (oi,...,a"), the
probability distributionp(™ on Q,, induces a joint probability distribution on the vector of
binary random variablegXi, Xz, ..., X,) which we denote also bp(”) (another abuse of
notation for the sake of simplicity). Assume now thas odd therg, is given by

Eu=p" (51X > 2).
Guided by Condorcet, we are looking for limit theorems asthieesize of the jury
increases. Formally, asgoes to infinity we obtain an increasing sequence of “worlds”

(Qn)p_1, such that for alh, the projection o€, 1 on Qp is the wholeQ,. The corre-
sponding sequence of probability distributiong ri}é”))ﬁzl and we assume that for every
n, the marginal distribution 0™ on Q. is p". It follows from the Kolmogorov ex-
tension theorem (see Loeve (1963), p. 93) that this definesqaue probability measure
P on the (projective, oinversg limit

Q=IlimQ,=0xTIx...xT"...

00+—nN

such that, for alh, the marginal distribution o on Q,, is p(".
Let (on);_, be an infinite sequence of strategy vectors for increasing jWe say
that(on),_; satisfies the (asymptotic part @pT if

lim p® (5% (o) > 5) =1 2)

Our aim in this work is to find sufficient conditions for the stance of a sequence of
BNE (on),_; that satisfy the (asymptotic part @I T. As far as we know, the only exist-
ing result on this general problem is that of Berend and Par@ii998), which deals only
with independent jurors. For that, we make use of the folhgaesult due to McLennan
for games with common interest (which is our case):

Theorem 2. (McLennan (1998)) Fore=1,2,. .., if

oh=(0it,...,of" earg max Ey(0,V(oi(th),...,ant")), 3)

(ai,...,a0)

thenagy, is a Bayesian Nash Equilibrium of the gamg G



This is an immediate application of Theorem 1 in McLennarB@9which implies
thatoy, is a Nash equilibrium of the type-agent representatio@pfSince by Theorem 3,

a Bayesian Nash Equilibrium @, maximizes the probability of correct decision, then
clearly, if there exist any sequence of strategy vectorg;_,; that satisfies the asymp-
totic part ofCJT, (2), then there is also a sequerieg,);>_, of BNE that satisfy (2), the
asymptotic part o€JT.

Our approach in this paper is to provide such a sequencedtsfystheCJT. In par-
ticular, we shall consider infinite sequences of mixed sgatvectors which are constant
with respect to the number of players thatds,)%_, such that iin > mthena!, = ol,, for
alli <m. Such a constant sequence can be represented as one isfiuense of strate-
gieso = (o1,02,...,a0",...). Whenever we find such constant sequence that satisfy the
CJT, it will follow, as we argued, that there is a sequegg),,_, of BNE that satisfy (2),
the asymptotic part aJT. A constant sequenge,);,_, can be interpreted as a sequence
of increasing jury in which the strategies of the jury mensb#o not change as the jury
increases. In addition to their plausibility, we restriar @ttention to constant sequences
because of the complexity of our model. As we shall see, evéinthis restriction,we get
some interesting results.

Example 2. (Reverse voting) Suppose that given the state of naturesigivals of the
voters are i.i.d. with fig | g) = p(t; | z) = p < 1/2. Clearly, in the probabilistic model
with informative voting such a jury will not satisfy the CJT. However, if we considher t
strategyo given by: o(ty) = a (that is, acquit with probabilityl) and o(t;) = ¢ (convict
with probability 1). Then, the sequence of constant strategies (o, 0,...,0,...) will
satisfy the CJT and consequently, there exists a seqyerjgg , of BNE that satisfy (2),
the asymptotic part of CJT.

Example 3. (Random voting) Suppose that a fractimmf the jury @ < 1/2) receive i.i.d.
signals with probability p> 1/2 of being correct, that is (| g) = p(t} | 2) = p> 1/2
The rest, al— a) fraction of the jury, receive the wrong signal, that i@ép{ g) = p(t! |
z) = 0. Again, in the probabilistic model with informative votirguch a jury will not
satisfy the CJT. However, if only the well informed jurorsevinformatively while the
rest of the jurors vote randomly (convict with probability2 and acquit with probability
1/2), such strategy vector will satisfy the CJT. Consequetiig game also has an
infinite sequenceoy,);y_; of BNE that satisfy the asymptotic part of CJT.

A constant sequence of mixed strategies- (gt,02,...,a0",...) yield naturally a
sequence of binary random variablEs= (X, Xo,...,X%y,...) where X; = Xi(a'; 0,t")
is the indicator variable of correct voting of jurodefined in (1). As theCJT is ex-
pressed in terms ok, we shall be mostly working with this infinite sequence ofdrin
random variables. In fact, working with the infinite seques is equivalent to work-
ing with the underlying infinite sequences of games andesiyavectors: On one hand,
as we said, a sequence of ganf€s);_; and infinite sequence of constant strategies

3In informative voting, each juror votes according to his/signal: Typetq juror votes to convict and
typet; juror votes to acquit.



o= (agt,ad?,...,0"...),yield an infinite sequencké of binary random variables. On the
other hand, as it is shown in Appendix 7.1, for any infinitewsagce of binary random
variablesX there is a sequence of gam&);;_; and infinite sequence of constant strate-
gieso = (at,0?,...,0",...) that yield thisX as the infinite sequence of the indicators of
correct voting.

Let us now briefly remark on the non-asymptotic part of@3d (see Ben-Yashar and
Paroush (2000)). An infinite sequence of mixed strategyorect, = (at,...,a"), n=
1,2,...is said to beconsistent with the majority ruliéfor n=121,2,.. .,

P (ZLX(0h) > 5) > PU(Xi(oh) =1); i=1....n

i n+1 i n
p+Y) (z{‘:llx(ogﬂ) > T) > pl" (Z{‘lei(a'n) > é) ;=12
In view of the generality and complexity of our model we shadt investigate non-
asymptotic consistency with majority rule of infinite seqoes of strategies, and will
be content in studying only the asymptotic part of @ET.

2 Exchangeable variables

In this section we fully characterize the distributions efjgsenceX = (X1, Xo, ..., X, -..)
of exchangeableandom binary variables that satisfy G4 T. Let us first introduce some
notation:

Given a sequence of binary random variat{es (X3, Xo, ..., Xy, ...) with joint distribution
P denotep; = E(X;), Var(X) = E(X — pi)? andCouX;, Xj) = E[(X; — pi)(Xj — p;)], for

i # j, whereE denotes, as usual, the expectation operator. Alsp,let (p1+ pz,... +
pn)/nandXp, = (Xy+ Xz, ... + Xn) /n. Next we recall:

Definition 1. A sequence of random variables=X(Xy, Xz, ..., Xy, ...) is exchangeabldf
for every n and every permutatigky, ..., kn) of (1,...,n), the finite sequende,, . .., X,)
has same n-dimensional probability distribution(@§, ..., Xn).

In our context, this property may be interpretechasnymityof the jurors; the names
and the location in the list of jurors does not affect thertistion of correct voting. Note
that this does not rule out correlation between the distiobs of the ‘correct voting’
among jurors.

We shall make use of the following characterization theodei® to de Finettf (see,
e.g., Feller (1966), Vol. II, page 225).

Theorem 3. A sequence of binary random variables=X(Xy, Xz, ..., Xn, ...) IS exchange-
able if and only if there is a probability distribution F df, 1] such that for every n:

4As far as we know, Ladha (1993) was the first to apply de Fiadttieorem to exchangeable variables
in order to derive (some parts) of CJT. However, Ladha ingatts only the non-asymptotic part of CJT.



1
PriXpy=-=X=1 X1=...=%=0) = /06"(1—6)”de (4)

Pr(Xi 4+ + X =k) = <E) /Olgk(l—e)”de (5)

In words, de-Finetti’'s theorem says that binary exchanigeadriables areondition-
ally i.i.d.: Given the value oB, the variables are i.i.d. Bernouli random variables with
parameteB. In our underlying model, the parametcan be interpreted gmublic infor-
mationregarding the defendant (all available evidence, witreesse). Given this public
information, the distribution of ‘correct voting’ is thersa& for all jurors and independent
among jurors.

Using de Finetti’'s theorem we can characterize the didiobs of sequences of ex-
changeable binary random variables by their expectatidnla asymptotic variance of
Xn.

Theorem 4. Let X = (Xg, X2, ..., Xn,...) be a sequence of exchangeable binary random
variables and let F be the corresponding distribution fuoictin de Finetti’'s theorem.
Then,

y = lim E(X,—u)?=V(F), (6)

- N—oo

where
1

u:/OlGdF and V(F):/O (6 — u)%dF.

Proof. We have

u:E(Xi):Pr(Xizl):/olxdF L V(X) = u(1—u)

and fori # |,
1
CovX;, X)) =Pr(X = Xj=1) — u? :/ X2dF —u? =V (F).
0
So,
1 2
£ u? = E(52x-u)
1, 1
= SENV(X) + Ei CouX, X))
nu(l—u) n(n—1)
= n2 + n2 V(F),
which implies equation (6). O



We can now state the characterization theorem:

Theorem 5. A sequence % (X1, X2, ..., Xp, ...) Of binary exchangeable random variables
with a corresponding distribution {9) satisfies the CJT if and only if

Pr(%<6§1):1, (7)

that is, if and only if a support of F is in the semi-open intdrid/2, 1].

Proof. The “only if” part follows from the fact that any sequen¥e= (X, Xz, ..., Xn, ...)
of binaryi.i.d. random variables with expectati@{X;) = 6 < 1/2, violates theCJT (by
the Berend and Paroush’s necessary condition).

To prove that a sequence satisfying condition (7) alsofsegitheCJT, note that for
0<e<1/4,

_ 1 1 - 1 1
-] > > —16 > = .
Pr(Xn>2)_Pr(6_2+28)Pr(Xn>2\6_2+28) (8)
For the second term in (8) we have:
_ 1 1 1
Pr (Xn > §|9 > §+28> = Zk>r,21Pr <X1+---+Xk: k@ > §+28) (9)
— S (D / ' 0%(1— )" dF (10)
3 \k 3+2¢
! ny\ ok n—k
_ / Seon () 61— 6)" | dF (11)
%+2£ 2\ k
1
- / Si(6)dF (12)
%+2£
Now, using Chebyshev’s inequality we have:
S(6) =Pr <¥n>%|9) > Pr (Yn>%+5|9) (13)
> 1-— w —1— 6(1—1_9> (14)
(0—35—¢)? ne—s—e¢)?

Since the last expression in (14) converges to 1 uniformljlgR+ 2¢, 1] ash — o, taking
the limitn — o of (12) and using (14) we have:

: - 1 1 1 1
lim Pr (xn> 16> 2+25) > /%+2ng Pr (e > 2+25) (15)
From (8) and (15) we have that for and fixed- O,
lim Pr( X >} > |Pr 9>}+2£ i (16)
n— "“2)° =2 '
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Since (16) must hold for all 4 > € > 0, and sincér (3 < 6 < 1) = 1, we conclude
that

. - 1
rImgoPr (Xn > E) =1, a7
i.e., the sequencé = (X1, Xo, ..., X, ...) satisfies th&€JT. O

To draw the consequences of Theorem 5 we prove first the foitpw

Proposition 1. Any distribution F of a variablé in [1/2, 1] satisfies

V(F) < (u-3)(1-u), 18)

where u= E(F), and equality holds in (18) only for F in which

Pr(6 = %) =2(1—u) and Pr(6=1)=2u—1. (19)
Proof. We want to show that
1 1
| 0%dF(6) — 12 < (u-2)(1-u), (20)
1/2 2
or, equivalently,
/l 62dF (6) — Sut 1 <0 21)
1/2 2 27

Replacingu = fll/z 6 dF(9) and% = f 1/2 2 dF(6), inequality (20) is equivalent to
1 3 1
/ 02— 204 L) dre) = [ g(6) dF(6) <0, 22)
1/2 2 2 1/2

The parabola(6) is convex and satisfieg{1/2) = g(1) = 0 andg(8) < 0 for all 1/2 <
0 < 1, which proves (22). Furthermore, equality to O in (22) isanted only wherf is
such thaPr(1/2 < 8 < 1) =0, and combined witlu = E(F) this implies (19). O]

The next proposition provides a sort of an inverse to pramsi.

Proposition 2. For (u,w) = (1,0) and for any pair(u,w) wherel/2 < u< 1and
0<w< (u—1/2)(1—u), there is a distribution F£0) on (1/2,1] such that EF ) = u and
V(F)=w.

Proof. For (u,w) = (1,0) the claim is trivially true (with the distributioRr(6 = 1) = 1).
Given (u,w), for anyy satisfying %2 < y < u < 1 define the distributiofy, for which

Pr(=y)=(1-u)/(1-y) and Pr(6=1)=(u-y)/(1-y).
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This distribution satisfieE(F,) = u and it remains to show that we can chogsso that
V(Fy) =w. Indeed,
~1-u u-y -
V(Fy) = iy Y+ 1oy
For a givenu < 1 this is a continuous function of satisfying: lim_,V(F) = 0 and
limy_,1 oV (Fy) = (u—1/2)(1—u). Therefore, for < w < (u—1/2)(1—u), there is a
valuey* for whichV (Fy) = w. O

2.1 Presentation in thelL, plane

Given a sequencé = (Xg,Xo, ..., Xn, ...) of binary random variables with a joint probabil-
ity distributionP, we define the following two parameters (e, P):

p = Iirr]ninfbn (23)
y = IirrpinfE(Yn—r)n)z (24)

Note that this definition oy is consistent with that given in equation (6) for exchange-
able variables; a case in which the limit exists.

It turns out to be useful to study tRI T property of a sequencé= (Xy, X2, ..., Xn, ...)
through its projection on thép,y) plane which we shall refer to as the plane. We first
identify the range of this mapping:

Proposition 3. For every pair(X,P), the corresponding parametefp, y)
satisfy y< p(1—p).

Proof. Given a sequence of binary random variabfewith its joint distributionP, we
first observe that for any+ |,

CovX;, Xj) = E(XXj) — pipj < min(pi, pj) — Pipj-
Therefore,

_ 1 n n
EXn—Ppn)? = @{iZ;COWN,Xj)+iZDi(1—Di)} (25)

< n_lz{izl;[min(pi,pj)—pipj]+izlpi(l—pi)}. (26)

We claim that the maximum of the last expression (26), urfdeconditions ' ; pi = Py,
is ph,(1—P,). This is attained whep; = --- = p, = p,. To see that this is indeed the
maximum, assume to the contrary that the maximum is attaah@d= (f1,-- -, Pn) with
i # p;j for somei and j. Without loss of generality assume thai: < f, < --- < py with
P1 < Pjandpy = fy for £ < j. Let 0< & < (Pj — P1)/2 and defingp* = (p3,---, p;) by

11



pi=P1+e, pj=Pj—¢& andp; =P for £ ¢ {1,j}. A tedious, but straightforward,
computation shows that the expression (26) is highepfdahan forp, in contradiction to
the assumption that it is maximized@tWe conclude that

E(Xn—Pn)? < Pa(1—Pn)-

Let now (P, )i_, be a subsequence convergingtdhen

y = liminf E(Xq—Pp)? < liminf E(Xn, — Py, )2

= n—oo k— o0

< liminf Py (1-Py) = p(1-p)-

O]
This leads to:
Theorem 6. The range of the mapping,P) — (p,y) is (see Figure 1)

FE;={(uw)|0<u<1 0<w<u(l-u)} (27)
Y T . w=u(l—u)
1 /\/
1 ,

FE,
0 T T > u :B
0 ! 1

Figure 1: The feasible s&tE,

That is, for any pai(X,P), we have(p,y) € FEz and for any(u,w) € FE; there is a
pair (X, P) for which p = uandy = w.

Proof. The first part follows from Proposition 3 (since cleagly> 0). For the second
part, observe first (as we have remarked in the proof of Pibpos3) that for the pair
(X,P)inwhichP{X; =X, =... =1} =uandP{X; = X; =... =0} = 1—u we have
pL=PpP2="---=pPh=P,=uand hence = u. Also, foralln=1,2, ...,

E(Xn—Pn)?=E(Xn—u)>=u(1—u) and hencey= liminf E(X, —Pr)?=u(1—u),

which means that any point on the parabola u(l—~ u) is attainable as an image of a
pair (X,P). Next note that fou € [0, 1], the pair(Y,P) in which (Yi){Z, are i.i.d. with
P{Yi = 1} = uandP{Y; = 0} = 1—uis mapped tqp,y) = (u,0) since

. R | - .. 1 .. uUl—u
y:I|m|nfE(Xn—r)n)2:IlnmJQfFZleE(Xi—u)zzllrr]rllorgfﬁz{‘zlu(l—u):Ilmlnf¥:o.

= n—oo n—oo
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It remains to prove that all interior points &fE, are attainable. Letu,w) be such an
interior point that is, 0< u < 1 and 0< w < u(1—u). Define the pairZ,Q) to be the
above defined paifX,P) with probabilityw/u(1 — u) and the above defingy, P) with
probability 1— w/u(1—u). It is readily seen that this pair is mapped to

U(l—u) (U,U(l—U)) + (1_ ﬁ) (U,O) = (U,W).

O

The geometric expression of Theorem 5, combined with ThedgeProposition 1
and Proposition 2, can now be stated as follows: In.thplane of(p,y) let

{(py)|—<p<1 andy<(p—} 1- D}U{lo (28)

This is the region strictly below the small parabola in Fg@r excluding1/2,0) and
adding(1,0).

w=y
w=u(l —u) w=(u—3%)(1—-u)
1 \A
4
1] FE,
16
r u=p
0 % % 1

Figure 2: TheCJT region for exchangeable variables.

Theorem 7. 1. Any exchangeable sequence of binary random variabldssttefy
the CJT corresponds t@,y) € A.

2. Toany(p,y) € Athere exists an exchangeable sequence of binary randdables
with parametere{p y) that satisfy the CJT.

Proof. The statements of the theorems are trivially true for thenipdi, 0), as it corre-
sponds to the unique distributioRr(X; = ... = X,...) = 1, which is both exchangeable
and satisfies th€JT. For all other points irA,

e Part 1. follows de Finetti's Theorem 3, Theorem 5 and PrdjoosL.

e Part 2. follows de Finetti’'s Theorem 3, Theorem 5 and PrdjuosR.

13



2.2 Application to symmetric juries

A jury gameG,, as defined in section 1 ia said to &gmmetriaf
o Tl=T2=_. =T
e The probability distributiop™ is symmetric in the variables, . . . t".

We consider a sequence of increasing jui®g),,_, such thatG, is symmetric for alin.
In such a sequencs, is the same for all and alln and is denoted b¥. A strategy vector

On=(0},...,00) € 2, is said to besymmetricif oL = 02 = ... = al.

Corollary 1. Leto = (0,0,...,0,...) € £* and let X= (X1, Xg,...,Xn,...) be the se-
guence of binary random variables derived franby (1), then Xis exchangeable. If X
satisfies (7), then there exists a sequence of BNE; (o3,,...,07) of Gyforn=12,...
that satisfies the CJT.

Proof. Follows from Theorem 7 and Theorem 2 of McLennan (1998). O]

3 sufficient conditions

Having characterized th@JT conditions for exchangeable variables we proceed now to
the general case and we start with sufficient conditions.

Let X = (Xg, X2, ..., Xn,...) be a sequence of binary random variables with range in
{0,1} and with joint probability distributiorP. The sequenc& is said to satisfy the
Condorcet Jury Theoref@€JT) if

. n
lim P (271 > 5) ~1 (29)

This is the condition corresponding to condition (2) (ong@aywhenX; = X;(oj) for
an infinite sequence of constant stratedi@g;” ; that satisfyCJT.

In this section we provide sufficient conditions for a pgf, P) to satisfy theCJT.
Recall our notationX, = (X1 + Xz, ...+ Xn)/n, pi = E(X) andp, = (p1+ P2, -.- + pn)/N.

Theorem 8. Assume thaX]! ;p; > 5 for all n > Np and

X 1)\2
lim M _0, (30)
e Pn— 2)
or equivalently assume that
o1
lim 12— o (31)

then the CJT is satisfied.

14



Proof.
P(sx<]) = P(-sx D)
= P(Sap—T X =T p— )
< P(IEupi—EX| = 5 - )

By Chebyshev’s inequality (assumid ; p; > 5) we have

M E(ELX—2p)°  E(Xn—Pn)?
P <|Zin=1pi =L X > 2 pi - 5) < (s Inlzpl) = <—n 1pn2)
(ZL.pi—5) (Pn—3)
As this last term tends to zero by (30), 8T (29) then follows. O

Corollary 2. If Z' ;ZCovX;,X;) < 0for n> Np (in particular if Cou(X;, Xj) < 0 for
alli # j) andlimp_e /N(P, — 3) = », then the CJT is satisfied.

Proof. Since the variance of a binary random variallevith meanp is
p(1—p) <1/4 we have fon > Np,

- 1
0<EXn—Tn)® = SE(EL(X-p))’

! 1
= F (Zin:1Val’(Xi) +ZF:12]7E,COV(X,,XJ)) < %
Therefore if limh . /N(Py, — %) — o0, then
X )2
0< fim EXn=P0)” _ iy —0

O

Remark 3.1. It follows from equation (30) that an{X, P) satisfying this sufficient con-
dition must have y= 0, that is it corresponds to a poirip,0) in the Ly plane. Thus, any
distribution with y> 0 that satisfy the CJT, does not satisfy this sufficient caoditin
particular this is true for the exchangeable sequencesh(yit 0) we identified in Sec-
tion 2 and the non-exchangeable sequences satisfying thex@Jwill see in Section 6.

Remark 3.2. Note that under the condition of corollary 2, namely, for hdad random

variable with all covariances being non-positive, the (Welaw of large numbers (LLN)
holds for arbitrarily dependent variables (see, e.g., &l1957) volume I, exercise 9,
p. 262). This is not implied by corollary 2 since, as we showppendix 8.3, the CJT,
strictly speaking, is not a law of large numbers. In parteaulCJT does not imply LLN

and LLN does not imply CJT.

Remark 3.3. When X, X5, ..., X,, ... are independent, then under mild conditions
limn_e +/N(P, — 3) = @ is a necessary and sufficient condition for CJT
(see Berend and Paroush (1998)).

15



4 Necessary conditions

We start this section by a simple observation and then stet@écessary conditions that

do not fully imply one another in either direction.

Proposition 4. Given a sequence % (Xi,Xp, ..., Xp, ...) of binary random variables with
a joint probability distribution P. If the CJT holds the_n;p%.

Proof. Define a sequence of ever{&)>_, by By = {w | Xn(w) > 1/2}. Since theCIT
holds, lim— P (Z_,X > 5) = 1 and hence lif P(By) = 1. Since

1 - 1 1
Ph=5= E <Xn— é) > —EP(Q\Bn%

taking the liminf, the right-hand side tends to zero and wiolkthat
liminfn_wPh=p> 3. O

4.1 A necessary condition in the., plane

In this subsection we provide a necessary conditiobifior a general sequend&, P)
to satisfy theCJT. That is, a condition in terms of two characteristipss liminf, .. P,

andy = liminfp_.. E(Xn — Py)?.

Theorem 9. Let X= (X1, Xp, ..., Xn, ...) be sequence of binary random variables with joint

distribution P. If(X,P) satisfy the CJT, then¥ (p— %)(1—9).

Proof. Recall our notatio, = {w € Q | Xp(w) > %}, then, sincé X, P) satisfy theCJT,
limn_.P(Bn) = 1. The main part of the proof is a direct computatiofe¢X ,(w) — Py, ).
Denote byBS := Q\ B, the complement 0B, then:
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o) () e e 2 (2
= () @ [ (@ -3 - [ (Xolw)-3) 0P

For anye > 0 there existd(g) such that fom > N(¢),

/B%(Yn(w)_%)zdP<g and ‘%Aﬁ(xn(@_%)cﬂ:%g

Hence fom > N(¢),

We conclude that

- n—oo n—oo

y = liminf E(X, —p,)? < liminf (p - }) (1=Pn) +&,

for everye > 0. Hence

y = liminf E(Xn — Pp)? < liminf (r)n—}) (1-P,)-

Nn—oo Nn—oo

Choose a sequenésy),’_, such that lim_.. P, = p, then

. 1 -
y < liminf (T)nk - 5) (1=Pn) =(P—

17



w=u(l—u) w=(u—1)(1-u)

NCJT

1

o
I
| 0o

Figure 3. TheCJT region validity for general distributions.

Figure 3 depicts the regions of validity of R T in theL, plane: Any distribution
for which the parameter,y) lie in lightly colored region denoted BMCJT, does not
satisfy theCJT. In particular, if a sequence of strategy vecttws)>_; in McLennan’s
theorem (i.e. maximizers in equation (3)) does not satiséyrtecessary condition (i.e.,
the correspondingp,y) lies in the regiorNCJT) then there is no sequence of strategies
(on)%_;, whether constant or not, that satisfy B&T.

The dark region, denoted by CJT (for weak CJ7) is the closed area below the small
parabola. Any distribution that satisfies 88T must have paramete(p,y) in this re-
gion. As we saw in Section 2, for exchangeable random vasalihe regiotWCJT
(excluding the parabola and including the pdit0)) defines also a sufficient condition:
any sequence of exchangeable variables whose paramptgydie in this region satisfy
theCJT. However, for general distributions this is not a sufficieandition; As we shall
see later, for anyp,y) in this region, there is a sequence with these parametdrddkla
not satisfy theCJT.

4.2 A necessary condition in the; plane

In this subsection we provide a necessary conditiobjifior a general sequend«, P)
to satisfy theCJT. That is, a condition in terms of two characteristig&, liminfp_e Py,

andy* = liminfn_e E[Xn—Py|.

Theorem 10. Let X = (X3, X2,...,Xn,...) be sequence of binary random variables with
joint distribution P. If (X, P) satisfy the CJT, then'y< 2(2p—1)(1— p).

Proof. See Appendix 7.2
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L 3
w= 2u(1{A
1
27 w=22u—1)(1—u)
1 NCJT
1
f u=p
0 % % 1

Figure 4: TheCJT region of validity inL.

Figure 4 depicts the regions of validity of T in theL; plane; the analogue of
Figure 3.

Strangely enough, Theorem 10 and Theorem 9 do not imply ghehn io either direc-
tion. Furthermore, the techniques of the proofsand inL, are very different. We could
derive only a weak implication in one direction which stemms1 the following lemma:

Lemma 1. One always has:'y> 2y.

Proof. DenotingA, = {w € Q | P, — Xn(w) > 0}, we have:

[ Pn=R)2dP = [ (oK) (P~ Xe) P
An An

Similarly,

Hence for alln we have:

Yn = E(Xn_bn)z = /()(Xn_r)n)z dP < bni +(1_T)n)§ = yg]

Taking a subsequenceg),’_; such thatlim .. y;, = y*, we conclude that

y' > 2Ii|£ninfynk > 2y.

Combining Lemma 1 with Theorem 10 yields,

Corollary 3. Let X = (X1,X2,...,Xn,...) be sequence of binary random variables with
joint distribution P. If y> (2p—1)(1— p), then(X,P) does not satisfy the CJT.
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Figure 5: TheCJT validity region inL, as implied by the condition ih;.

Figure 5 depicts the conclusion if the last corollary: Thgioa with the lightest color,
denoted byNCJT, is the region in which th€JT is not satisfied for anyX, P) with these
values of(p,y). The darkest region, denoted WYCJT, is the region of p,y) for which
there exist(X,P) with these parameters that satisfy 8aT. Clearly, this is a weaker
result than Theorem 9 that we obtained directly_sand is described in Figure 3 which
determines that the crescent in Figure 5, denoted by “2rgs to theNCJT region.

5 Distributions in WCJTthat do not satisfy theCJT

In this section we prove that the necessary conditionsdiatdheorems 9 and 10 are
not sufficient. In fact we prove a stronger result namely: iy pair of parameters in the
closure of the darkVCJT region (either in Figure 3 ih or in Figure 4 inL1), excluding
the point(1,0), there is a distribution that does not satisfy &&T. We shall prove
this only forL, plane (the proof for thé&, plane is similar). This is established by the
following:

Theorem 11. For any (u,w) € {(uw)[0<u<1l; 0<w<u(l—u)},
there is a pair a sequence of binary random variables Z withtjdistribution H such
that:

(i) E(Z) = u,Vi.
(i) liminf, o E(Zn—u)?=w.
(i) The distribution H does not satisfy the CJT.
Proof. ForO<u< 1,
e let (X,Fp) be givenbyX; =Xo = ... =Xq=...andE(X) = u;

o let(Y,F;) be a sequence of ofi.d. random variablegY;)? ; with expectatioru.
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e For 0<t <1 let(Z',H') be the pair in whichz! = tX + (1—-t)Y; fori =1,2,...
andH! is the product distributiob! = Fy x Fy (that is, theX and theY sequences
are independent).

Note first thatE(Z!) = ufor all i and

u(l—u)

lim E(Zf, —u)? = lim ((1—t)

N—o0 N—o0

+tu(l— u)) =tu(l—u),

and therefore the paifZt,H!) corresponds to the poirfu,w) in the L, space, where
w=tu(1—u)rangesinO,u(l—u))as 0<t <1.
Finally, (Zt,H!) does not satisfy th€JT since for alln,

= 1
Pr(Zt, > 5) < 1-PriZi=2=...=0)=1-t(1-u) < 1.

As this argument does not apply fioe= 0 it remains to prove that, except f(t, 0), to
any point(u,0) on thex axis corresponds a distribution that does not satisfi\CXhE. For
0<u<1/2, the sequencer,Fy) of of i.i.d. random variablegY;) ; with expectatioru
does not satisfy th€JT, as follows from the result of Berend and Paroush (1998). For
1/2 < u< 1 such a sequence bf.d. random variables does satisfy 88T and we need
the following more subtle construction:

Given the two sequencéX, Fy) and (Y, F;) defined above we construct a sequence
Z = ()2 4 consisting of alternating blocks of-s andY;-s, with the probability distribu-
tion onZ being that induced by the product probabilidy= Fy x F1. ClearlyE(Z) = u
for alli, in particularp, = u for all n andp = u. We denote byB, the set of indices of the
¢-th block and its cardinality bi,. Thusn(¢) = Zlebj is the index oZ; at the end of the
¢-th block. Therefore

Biri={n(¢)+1,...,n(¢) +by11)} and n(l+1) =n(£)+bys.
Define the block sizé, inductively by:
1. bi=1,andfork=1,2,...,
2. by = kzlj(zlsz_l andbyy 1 = bo.

Finally we define the sequenZe= (Z;);* ; to consist ofX;-s in the odd blocks ang-s in
the even blocks, that is,

7 _ X; if 1€By_1 forsomek=12,...
'Y, if ieBy  forsomek=1,2,...

Denote byny(¢) andny(¢) the number oK coordinates and coordinates respectively
in the sequencg at the end of thé-th block and byn(¢) = ny(¢) + ny(¢) the number of
coordinates at the end of tlieh block ofZ. It follows from 1 and 2 (in the definition of
by) that fork=1,2,...,
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Nx(2K)
ny(2k) —

k(2k—1) = ny(2k—1)+1 (32)
1
k

ne(2k) 1
< —
and hence also n(2k) =k (33)

It follows from (32) that at the end of each odd-numbered bl2k— 1, there is a
majority of X; coordinates that with probabilifyt — u) will all have the value 0. Therefore,

Pr (zn(Zkl) < %) >(1—u) for k=1,2,...,

and hence 1
liminf Pr (Zn > 5) <u<li;

n—oo

that is,(Z,H) does not satisfy th€JT.
It remains to show that

y =liminf E(Z,—p,)? = 0.

- n—oo

To do so, we show that the subsequencé®f(Z, —r)n)z)}:;l corresponding to the end
of the even-numbered blocks converges to 0, namely,

lim E(Zn(ax) — Pni2g)” = 0.

Indeed,
- _ Ny (2K 1 ok 2
E(Zn(Zk) - pn(2k)>2 =E (%(Xl_ U) + Wzrﬁl )<Y| - U)) .

Since they;-s arei.i.d. and independent of; we have

2
E 2 ~ Prag) = i g UL U+ 521 )

and by property (33) we get finally:
I E(Zysg ~ o) < Jim (Uit —0)+ - su1-v) ) =0
concluding the proof of the theorem. ]
An immediate implication of Theorem 11 is the following:

Corollary 4. For any pair of parametergp,y) satisfyingl/2<p<land0<y < (p—
1/2)(1— p) (that is, the pointp,y) is in the closure of the regiow/ CJT in Figure 3,

excluding(1,0)), there is a distribution with these parameters that doe suatisfy the
CJT.
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6 Non-exchangeable sequences satisfying t8d T

In this section prove the existence of sequencéd®) of dependent random variables,
non-exchangeable that satisfy B8T. By Theorem 9, such distributions must have their
parameter in the closure of the dAMCJIT region (either in Figure 3 ih, or in Figure 4

in L1). In fact we shall prove that for any point in this region #és a distribution that
satisfies th&€JT, and is not exchangeable. We shall show that only inLthplane; the
proof for theL, plane is similar. The construction of these sequences hsesl¢a of
interlacingof two sequences which can be generalized and proves to hd.use

Theorem 12. Lett € [0, %]. If F is a distribution with parametergp, y), then there exists
a distribution H with parameter =1 -t +tpandy = t23_/ that satisfy the CJT.

Proof. To illustrate the idea of the proof we first prove (somewhé&brimally) the case
t=1/2. LetX = (X1, X2, ..., Xy, ...) be a sequence of binary random variables with a joint
probability distributior. Let G be the distribution of the sequente= (Y1,Y2,..., Y, ...),
whereEY, =1 for alln (thatis,Y; = Yo = ...Y, = ... andP(Y; = 1) = 1Vi). Consider now
the followinginterlacingof the two sequences andY:

Z= (Y17Y27X17Y37X27Y47X37 ~~~7Yn7xn—17Yn+17Xn~~~)»

and let the probability distributior of Z be the product distributioM = F x G. It
is verified by straightforward computation that the paraerebdf the distributiorH are
in accordance with the theorem for= 3, namely,p™= 3 + 1p andy'= }y. Finally, as
each initial segment of voters ihcontains a majority oY;’s (thus with all values 1), the
distributionH satisfies th&€€JT, completing the proof for = %

The proof for a generdle [0,1/2) follows the same lines: We construct the sequence
Z so that any finite initial segment ofvariables, includes “about, but not more than” the
initial tn segment of th&X sequence, and the rest is filled with the cons¥nariables.
This will imply that theCJT is satisfied.

Formally, for any reak > O let | x| be the largest integer less than or equad &md let
[X] be smallest integer greater than or equat.tdNote that for anyn and any 0<t <1
we have|tn| + [(1—t)n] = n; thus, one and only one of the following holds:

(i) [tn] <[t(n+1)] or

(i) [(1-t)n] <[(1-t)(n+1)]

From the given sequeneéand the above-defined sequeiYc@f constant 1 variables) we
define now the sequen@e= (Z1,72, ...,Z,,...) as follows:Z; =Y; and for anyn > 2, let
Zn= XLt(nJrl)J if (I) holds andZ, = Y[(lft)(nJrlﬂ if (II) holds. This inductive construction
guarantees that for afl, the sequence containsn| X; coordinates and(1—t)n]| Y

coordinates. The probability distributidth is the product distributior x G. The fact
that(Z,H) satisfies th€JT follows from:

[(1—-t)n] > (1—t)n>tn> |tn],
and finallyg=1—-t+tpandy= t23_/ is verified by straightforward computation. [
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Remark 6.1. e Note that the sequence Z is clearly not exchange@eept for the
caset = 0 which corresponds td), 0)).

e The interlacing of the two sequences X and Y described inrtud pf Theorem 12
may be defined for anyd [0, 1]. We were specifically interested irt{0,1/2] since
this guarantees the CJT.

Corollary 5. For any(p,y) in the set

A={(py |0<y<(p-1/2)(1-p); 1/2<p<1}

(Thisis the closure of the regid CJTin Figure 3) there is a sequence of non-exchangeable
random variables, with these parameters, that satisfy thé.C

Proof. By straightforward verification we observe that the &a$ obtained from Theo-
rem 12 by letting p,y) range over the points of parabele= u(1—u) defining the feasible

setFE,. In other wordsA can also be written as:

A={(py) |p=1—t+tu; y=t?u(l—u); 1/2<t<1, 0<u<1}

O

NoteA is the closure of the sé defined in equation (28) for exchangeable variables,
but A # A. More specifically, the pointép,y) on the paraboly = (p—1/2)(1— p),
excluding(1,0), are inA but not inA. For each of these points there is a corresponding
sequence satisfying tli&J T but this sequence cannot be exchangeable.

Finally, combining Corollary 5 and Theorem 11 yields:

Corollary 6. For any point(p,y) in A\ {(1,0)} there is a corresponding sequence satis-
fying the CJT and a corresponding sequences that does nstystdite CJT .

6.1 Other distributions satisfying the CJT: General interlacing

So far we have identified three types of distributions th&ssathe CJT; all correspond
to parametersp,y) in the setA, the closure of the regiowCJTin Figure 3.

1. Distributions satisfying the sufficient condition (Them 8).
2. Exchangeable distributions characterized in Theorem 5.

3. Non-exchangeable distributions obtained by interlgewth constant sequence
Y =(1,1,...) (Theorem 12).

In this section we construct more distributions satisfyimgCJT which are not in either of
the three families mentioned above. We do that by genengliie notion of ‘interlacing’
of two distributions that we introduced in Section 6.
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Definition 2. Let X = (X1, X, ..., Xn, ...) be a sequence of binary random variables with
joint probability distribution F and let ¥= (Y1, Y2, ..., Y, ...) be another sequence of binary
random variables with joint distribution G. Ford [0, 1], the tinterlacingof (X,F) and
(Y,G) is the pair(Z,H) := (X,F) % (Y,G) where forn=1,2,.. .,

Xitn if [tn]>[t(n-1)]
Zn= Ltn] : 34
n { Yiaom if [@-tn>[1-t)n-1] ’ (34)

and H=F x G is the product probability distribution of F and G.
The following lemma is a direct consequence of Definition 2.

Lemma 2. If (X,F) and(Y,G) satisfy the CJT then for any4 [0, 1] the pair(Z,H) =
(X,F)* (Y,G) also satisfies the CJT.

Proof. We may assume that (0,1). Note that

{olza@)> 5} 2 {oRin(@ > 310 10V e n(@)> 5

By our construction and the fact that bdtk, F) and(Y, G) satisfy theCJT,

lim F (Ym > %) =1 and IimG (V((lonw > %) =1
As
H (zn . %) S F (m . %) G (VM_W . %) ,
the proof follows. O

Thus, from any two distributions satisfying tBd T we can construct a continuum of
distributions satisfying th€JT. These distributions will generally be outside the union
of the three families listed above.

7 Conclusions

We have analyzed the Condorcet jury problem in a detailedneraas a strategic game
with incomplete information (Section 2). This frameworlshhbe following advantages:

() Itis in line with the modern approach of Austen-Smith @ahks (1996);

(1) It enables us to focus on a natural candidate BNE forsggatig theCJT, namely,
McLennan’s BNE (see Theorem 3);

(111 1t explains, in a transparent way, Condorcet’s own ralbahich was originally re-
stricted to two types of voters and informative voting;
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(IV) It enables us to deal with "reverse voting” and "randowoting” (and other strate-
gies) without altering our model, since we considéipossible strategieand not
only informative voting (see Examples 3 and 2);

(V) Using our model we find (sharp) necessary conditions lier éxistence of a se-
guence of BNE that satisfies the CJT. Indeed, as we statedyen(pd), if a McLen-
nan sequence of BNE does not satisfy one of our necessaritioosgdthemo other
sequence of strategisatisfies th&€JT.

Technically, we deal, in most of the paper, with distribngof sequences of binary
random variables that are derived from sequences of sieated the players. This is
mainly implied by the fact that th€JT is a probabilistic property. In Section 2 we find
necessary and sufficient conditions for a sequence of egeladnte variables to satisfy
the CJT (see Theorem 5). We then go on to find a purely geometricabctenization
for our result. For exchangeable variables the geometmclition is fully determined
by the expectation of a variable in the sequence and the iamar of the two variables
(see Theorem7). Our sufficient conditions are standard emndexived by Chebyshev’s
inequality. On the other hand the derivation of the necgssanditions makes use of
special techniques. The necessary conditiobpinquite surprisingly, coincides with the
necessary condition for exchangeable variables. Howetenurse, it is not a sufficient
condition for general sequences of random variables. bhdeeection 5 we provide
sequences of random variables satisfying this necessaditmm but do not satisfy the
CJT (see Theorem 11 and Corollary 4). The necessary conditidn iis difficult to
derive and may be useful in special cases. Finally, we initedn Section 6 the operation
of interlacing of two sequences of random variables. Thabs to generate many new
dependant sequences of binary random variables thatystestJT.
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8 Appendix

8.1 Every sequence of of binary random variables is attainale

In this section we prove what we claimed on page 7 namely,fthany infinite sequence

of binary random variableX there is a sequence of ganm&,),,_; and infinite sequence of

constant strategies = (o1,02,...,0",...) that yield thisX as the infinite sequence of the
indicators of correct voting.

Let X = (Xg,X2,..., Xn, ...) be sequence of binary exchangeable random variables on zaine
ability space(Q, %, ). Let P also denote the distribution of. In our model letT' =
{th,t} be the type set of juror and the type of juror is t' = t'(6,X(w)) is defined by:
t'(g,0) =t'(z 1) =t} andt'(g,1) =t'(z,0) =t|. We define the probability distributiop™ on
Qn=0xT!x...xT"asfollows: Letp™ (z) = p("W(g) = 1/2; Forex € {0,1}; k=1,...,n
let

~ N 1
p(g)xl = 51,---axn = Sn) = p(Z)X1 = 1—51,---,Xn = 1—5n) = EP(X].: 51,---axn = SI"I)
and define
pM (0,112, t") = P(6, X1, Xz, ..., Xn).-

The sequenceﬁp(”))ﬁ;l clearly satisfies the projective structure required for Kaémogorov's
extension theorem (that is, the marginal distributionp8¥? on Q, is equal top™). It
defines therefore a probability distributigqon Q = lime._n Qp.

Define now the (informative voting) strategieSby: o' (t)) = aandd’ (t}) = ¢, and letXy, ..., X, ..
be the indicators of correct voting (w.r.t. thi§ then

Xi(g9,t'(g,1)) =X(zt'(z1) =1 and X =0 otherwise

Thus

XiBw)=1 & X(w)=1

which means that we obtained the original given sequence.

8.2 Proof of Theorem 10
In this section we provide a necessary condition for a gérsaguence of binary random

variablesX = (X, Xz, ..., X, ...) with joint distributionP, in terms of two of its characteristics
namely,p = liminf,_. P, andy* = liminf,_e E[Xn — /.
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Letyy, = E[Xn— Py, theny* = liminf,_.y;. Forn=1,2,.. ., let
Ar={weQ|py—Xn(w) >0} and A;=Q\A,.

then, sincee(X, —P,) =0,

[ a-pnyP="% and [ (1-py) dP=(1-P)P(AY) = . Hence
c 2 A 2
_ c Yn
P(An) = 1—P(A}) < 1 52 (35)
Also,
[ (-0 P=p,P(A) ~ [ XnaP=2. (36)
A A
Hence, sinceX,, > 0,
Yn
P(An) > 20, (37)

Assumingy* > 0 andp < 1, it follows from (37) and (35) that there is a subseque(mggfy_, such
that (P(An,))x_4 is uniformly bounded away from 0 and 1,

limp, =p and kILrQ P(An) =¢ where O</<1 (38)

k— o0

Lemma 3. Lett > 0, then

— iva y;:k _
P~ X (@) < gaias t}) <. (39)

k— 00

Iimian({weAnk

Proof. Assume by contradiction that (39) does not hold, then siheeséts at the left hand
side are subsets &, , it follows from (38) that:

de({weAnk P, — Xn(w) < ZPﬁnk)_tD =/ (40)

— Vi
pnk—Xnk(w) < WAknk)—t}.Then,

Denote:A,, = {w € A,

- = - P(An, .
PaPlin) = [ Xn(wa < BT tp(Ay) 1)

Clearly, lim .. P(Ay) = £ =limy_.P(A,,) and sincéd, C A, we have

lim ‘/A Ynk(a))dP—/An Yo (@)dP | =o0.

k— 00

Thus fork sufficiently large, the inequality (41) contradicts thet kaguality in (36) fom = ny,. [
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Let

Bn=An\ A, = {weAn‘bn—Yn(w) > ZP)(/*nAn) —t},

then, by proposition 3, there is a subsequef®g);_, andq > 0, such thaP(B,, ) >q> 0
for all k, that is

a6 <P~ n

+t; Vwe By, Vk (42)

Example 4. Let3 < p< 1land y = 2p(1— p) then, by (35) and (42) we have

X () < Py, — Lﬁk +t; VweBy,; Yk (43)
2(1- zipy7)

By taking subsequences (ok),’_, (to make j; converge) we may assume w.l.g. that:

y te

lim P — — +t| =p- — T +t, forsomee > 0.
paes 2(1— 72(1_%%)) 2(1- —2@72))
Thus, for somedgwe have
— y'+e€ _ _
Xnk(CU) <B—W+2t, Yw e Bnk, vk > ko (44)
T 2(1-p
Inserting y = 2p(1— p) we have:
+ €&
B— )—/*7% +2t < B_ Ly* + 2t
21=51p) 21- 715
2p(1-p)
-k 2 2p(1-p) ta=2,
(=2
implying that
Xn (W) < 2t; Yw e Bp; Vk> ko. (45)

Ast> Ois arbitrary, in particular if2t < 1/2, since RBy, ) > g > 0for all k, inequalities (45) imply that
(X,P) does not satisfy the CJT.

We concludeNo distribution with% < p<landy* = 2p(1— p) satisfy theCJT.

Inspired by the previous example we move now to the proof aofém 10 stating the general
necessary condition for tH&JT in L;.

Theorem 13. Let X = (X1, X2, ..., X, ...) be sequence of binary random variables with joint distri-
bution P. If y > 2(2p—1)(1— p), then(X,P) does not satisfy the CJT.
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Proof. Let X= (2p—1)(1— p) and notice thak/(1—x/(1— p)) is an increasing function
for x < 1— p. Sincey*/2 > x lett be such that

1 X
0<t<§ X*y* B
A-mp) T

By Lemma 3, there exists a sequence of evéis),_, andqg > 0, such thaP (B, ) >q >0
for all k, and (42) and, (by choosing an appropriate subsequeneb)ald satisfied. Thus,
on these events we have,

. y*+£ y*

Xnk(w)<£)__7y*+£+2t < _p—_iy*—i—ﬁ
21— —2(1_2)) 2(1—- —2(1—_2))
< p-—2 -2t
T

Substituting<= (2p—1)(1— p) we have

We conclude thaXn, (w) < 3, for all w € By, and for allk > ko, implying that(X,P) does
not satisfy theCJT.

O

8.3 TheCJT and the Law of Large Numbers

At first sight, the asymptoti€JT condition may look rather similar to the well knoviuaw
of Large NumbergLLN). It is the purpose of this section to clarify and state melyi the
relationship between these two concepts.

Recall that an infinite sequence of binary random variallles (X1, Xz, ..., Xn,...) with a joint
probability distributionP satisfies the (weak) law of large numbetd ) if (in our nota-
tions):

Ve >0, r!iLQOP(|Yn—_Dn|<S)=1 (46)

while it satisfies the Condorcet Jury Theore@d7) if:

lim P (Yn > %) =1 47)

n—oo

Since by Proposition 4, the conditiqgn> % is necessary for the validity of tHeJT, let us
check the relationship between theN and theCJT in this region. Our first observation is:

Proposition 5. For a sequence X (X1,Xz, ..., Xy, ...) with probability distribution P satisfying
p > 3, if the LLN holds then the CJT also holds.
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Proof. Let p=1/2+ 35 for somed > 0 and letNo be such thap, > 1/2+ 24 for all n > No;
then for alln > Ng we have
- 1 o 1 v -
P(Xn> 5) > P(xnz §+5> > P (|Xn—T,| < 9)

Since the last expression tends to Inas> «, the first expression does too, and hence the
CJT holds. L]

Remark 8.1. The statement of Proposition 5 does not hold fee é Indeed, the sequence=X
(X1,X2, ..., %, ...) of i.i.d. variables with RX; = 1) = P(X; = 0) = 1/2 satisfies the LLN but does
not satisfy the CJT since it does not satibfy,_... /N(P, — %) = oo which is a necessary and
sufficient condition for CJT (see Berend and Paroush (1998))

Unfortunately, Proposition 5 is of little use to us. This isedo the following fact:

Proposition 6. If the random variables of the sequence=X(X1,Xz,...,Xn,...) are uniformly
bounded then the condition )

n—oo

is a necessary condition for LLN to hold.

The proof is elementary and can be found, e.g., in Uspen®di7(1 page 185.

It follows thus from Proposition 6 thdtLN cannot hold whery > 0 and thus we cannot use
Proposition 5 to establish distributions in this regiont thettisfy theCJT.

Summing up, Thd.LN and theCJT are substantially two different properties that do not im-
ply each other. The partial implicatiddLN =- CJT applies only for the horizontal line in
Lo; (p,0), for p> 0, where theCJT is easily established directly. Furthermore, all distribu
tions withy > 0 for which we established the validity of t T do not satisfy the-LN.
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