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a b s t r a c t

In this paper, we propose to use elements of the mathematical formalism of Quantum Mechanics
to capture the idea that agents’ preferences, in addition to being typically uncertain, can also be
indeterminate. They are determined (i.e., realized, and not merely revealed) only when the action takes
place. An agent is described by a state that is a superposition of potential types (or preferences or
behaviors). This superposed state is projected (or ‘‘collapses’’) onto one of the possible behaviors at
the time of the interaction. In addition to the main goal of modeling uncertainty of preferences that
is not due to lack of information, this formalism seems to be adequate to describe widely observed
phenomena of non-commutativity in patterns of behavior.We explore some implications of our approach
in a comparison between classical and type indeterminate rational choice behavior. The potential of the
approach is illustrated in two examples.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

It has recently been proposed that models of quantum games
can be used to study how the extension of classical moves
to quantum ones (i.e., complex linear combinations of classical
moves) can affect the analysis of a game. For example, Eisert,
Wilkens, and Lewenstein (1999) show that allowing the players
to use quantum strategies in the Prisoner’s Dilemma is a way
of escaping the well-known ‘‘bad feature’’ of this game.1 From a
game-theoretical point of view the approach consists in changing
the strategy spaces, and thus the interest of the results lies in the
appeal of these changes.2
This paper also proposes to use elements of the mathematical

formalism of Quantum Mechanics but with a different intention:

I We are grateful for helpful comments from J. Busemeyer, V.I. Danilov, J. Dreze,
P. Jehiel, D. Laibson, P. Milgrom, W. Pesendorfer, A. Roth, seminar participants at
Harvard, Princeton, and CORE and to our anonymous referees.
∗ Corresponding address: Paris School of Economics, 48 Boulevard Jourdan, Paris,
France.
E-mail addresses: alambert@pse.ens.fr (A. Lambert Mogiliansky),

zamir@math.huji.ac.il (S. Zamir), herve.zwirn@m4x.org (H. Zwirn).
1 In the classical version of the dilemma, the dominant strategy for both players
is to defect and thereby to do worse than if they had both decided to cooperate. In
the quantum version, there are a couple of quantum strategies that are both a Nash
equilibriumand Pareto optimal andwhose payoff is the one of the joint cooperation.
2 This approach is closely related to quantum computing. It relies on the use
of a sophisticated apparatus to exploit q-bits’ property of entanglement in mixed
strategies.

0022-2496/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmp.2009.01.001
to model uncertain preferences.3 The basic idea is that the Hilbert
space model of Quantum Mechanics can be thought of as a very
general contextual predictive tool, particularly well-suited to de-
scribing experiments in psychology or in ‘‘revealing’’ preferences.
The well-established Bayesian approach suggested by Harsanyi

(1967) to model incomplete information consists of a chance
move that selects the types of the players and informs each
player of his own type. For the purposes of this paper, we
underline the following essential implication of this approach: all
uncertainty about a player’s type exclusively reflects the other
players’ incomplete knowledge of it. This follows from the fact
that a Harsanyi type is fully determined. It is a complete, well-
defined description of the characteristics of a player that is known
to her. Consequently, from the point of view of the other players,
uncertainty as to the type can only be due to lack of information.
Each player has a probability distribution over the type of the other
players, but her own type is fully determined and is known to her.
This brings us to the first important point at which we depart

from the classical approach: we propose that in addition to
informational reasons, the uncertainty about preferences is due to
indeterminacy: prior to the moment a player acts, her (behavior)
type is indeterminate. The state representing the player is a
superposition of potential types. It is only at the moment when

3 In this work we borrow the elements of the quantum formalism that concern
the measurement process. We will not use the part of the theory concerned with
the evolution of systems over time.
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the player selects an action that a specific type is actualized.4 It
is not merely revealed but rather determined in the sense that
prior to the choice, there is an irreducible multiplicity of potential
types. Thus we suggest that in modeling a decision situation, we
do not assume that the preference characteristics can always be
fully knownwith certainty (neither to the decision-maker nor even
to the analyst). Instead, what can be known is the state of the
agent: a vector in a Hilbert space which encapsulates all existing
information to predict how the agent is expected to behave in
different decision situations.
This idea, daringly imported from Quantum Mechanics to the

context of decision and game theory, is very much in line with
Tversky and Simonson (Kahneman & Tversky, 2000), according
to whom ‘‘There is a growing body of evidence that supports an
alternative conception according to which preferences are often
constructed – not merely revealed – in the elicitation process. These
constructions are contingent on the framing of the problem, the
method of elicitation, and the context of the choice’’. In Ariely, Prelec,
and Lowenstein (2003), the authors show in a series of experiments
that ‘‘valuations are initially malleable but become ‘‘imprinted’’ after
the agent is called upon to make an initial decision’’ (p. 74).
This view is also consistent with that of cognitive psychology,
which teaches one to distinguish between objective reality and the
proximal stimulus to which the observer is exposed, and to further
distinguish between those and the mental representation of the
situation that the observer eventually constructs. More generally,
this view fits in with the observation that players (even highly
rational ones) may act differently in game theoretically equivalent
situations that differ only in seemingly irrelevant aspects (framing,
prior unrelated events, etc.). Our theory as to why agents act
differently in game theoretically equivalent situations is that they
are not in the same state; (revealed) preferences are contextual
because of (intrinsic) indeterminacy.
The basic analogy with Physics, which makes it appealing to

adopt the mathematical formalism of Quantum Mechanics in the
social sciences, is the following: we view decisions and choices as
something similar to the result of a measurement (of the player’s
type). A situation of decision is then similar to an experimental
setup to measure the player’s type. It is modeled by an operator
(called observable), and the resulting behavior is an eigenvalue
of that operator. The non-commutativity of observables and its
consequences (very central features of Quantum Mechanics) are
reminiscent of many empirical phenomena like the following
one exhibited in a well-known experiment conducted by Leon
Festinger.5 In this experiment, people were asked to sort a batch
of spools into lots of twelve and give a square peg a quarter turn
to the left. They all agreed that the task was very boring. Then,
theywere told that one subjectwasmissing for the experiment and
asked to convince a potential female subject in thewaiting room to
participate. They were offered $1 for expressing their enthusiasm
for the task.6 Some refused, but others accepted. Those who
accepted maintained afterwards that the task was enjoyable. This
experiment aimed at showing that attitudes change in response
to cognitive dissonance. The dissonance faced by those who
accepted to fake enthusiasm for $1 was due to the contradiction
between the self-image of being ‘‘a good guy’’ and that of ‘‘being
ready to lie for a dollar’’. Changing one’s attitude and persuading

4 The associated concept of irreducible uncertainty, which is the essence of
indeterminacy, is formally defined in Section 2 of the paper.
5 Leon Festinger is the father of the theory of cognitive dissonance (Festinger,
1957).
6 The experience was richer. People were divided into two groups offered
different amounts of money. For our purpose it is sufficient to focus on a single
result.
oneself that the task really was interesting was a way to resolve
the dissonance. Similar phenomena have been documented in
hazardous industries, with employees showing very little caution
in the face of a danger. Here too, experimental and empirical
studies (e.g., Ben-Horin (1979)) showed how employees change
their attitude after they have decided to work in a hazardous
industry. More generally, suppose that an agent is presented
with the same situation of decision in two different contexts.
The contexts may vary with respect to the situation of decision
that precedes the investigated one. In Festinger’s experiment the
two measurements of the attitude toward the task differ in that
the second one was preceded by a question about willingness
to lie about the task for a dollar. Two contexts may also vary
with respect to the framing of the situation of decision (cf. Selten
(1998)). If we do not observe the same decision in the two contexts,
then the classical approach considers that the two situations
are not identical and hence that they should be modeled so
as to incorporate the context. In many cases, however, such an
assumption (i.e., that the situations are different) is difficult to
justify.
In contrast, we propose that the difference between the two

decisions comes from the fact that the agent is not in the same
state. The context (e.g., a past situation of decision to which the
agent has been exposed) is represented by an operator that does
not commute with the operator associated with the situation
of decision currently considered. The consequence is that the
initial state of the agent has changed and that the agent is
therefore expected to behave differently from what she would
have done if confronted directly with the situation. As in Quantum
Mechanics, the non-commutativity of certain situations of decision
(measurements) leads us to conjecture that the preferences of an
agent are represented by a state that is indeterminate and gets
determined (with respect to any particular type characteristics) in
the course of interaction with the environment. In Section 3, we
show how this approach can explain the reversal of preferences
in a model of rational choice and that it provides a framework for
explaining cognitive dissonance and framing effects.
The objective of this paper is to propose a theoretical frame-

work for modeling the KT(Kahneman–Tversky)-man, i.e., for the
‘‘constructive preference perspective’’ . Our approach amounts to
extending the classical representation of uncertainty in Harsanyi’s
style to non-classical indeterminacy. This work is a contri-
bution to Behavioral Economics. A distinguishing feature of
behavioral theories is that they often focus on rather specific
anomalies (e.g., ‘‘trade-off contrast’’ or ‘‘extremeness aversion’’
(Kahneman & Tversky, 2000). Important insights have been ob-
tained by systematically investigating the consequences on util-
itymaximization of ‘‘fairness concerns’’ (Rabin, 1993), ‘‘temptation
and costly self-control’’ (Gul & Pesendorfer, 2001) or ‘‘concerns for
self-image’’ (Benabou & Tirole, 2002). Yet, other explanations ap-
peal to bounded rationality, e.g., ‘‘superficial reasoning’’ or ‘‘choice
of beliefs’’ (Akerlof & Dickens, 1982; Selten, 1998). In contrast, the
type indeterminacy model is a framework model that addresses
structural properties of preferences, i.e., their intrinsic indetermi-
nacy. A value of our approach is in providing a unified explanation
for a wide variety of behavioral phenomena.
In Section 2, we present the framework and some basic notions

of quantum theory. In Section 3, we develop applications of
the theory to social sciences. In Section 4, we discuss some
basic assumptions of the model. The Appendix provides a brief
exposition of some basic concepts of QuantumMechanics.

2. The basic framework

In this section we present the basic notions of our framework.
They are heavily inspired by the mathematical formalism of
Quantum Mechanics (see, e.g., Cohen-Tannoudji, Diu, and Laloe
(1973) and Cohen (1989)) fromwhichwe also borrow the notation.
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2.1. The notions of state and superposition

The object of our investigation is individual choice behavior,
which we interpret as the revelation of an agent’s preferences in a
situation of decision that we shall call a DS (Decision Situation). In
this paper, we focus on decision situations that do not involve any
strategic thinking. Examples of suchDS include the choice between
buying a Toshiba or a Compaq laptop, the choice between investing
in a project or not, the choice between a sure gain of $100 or a
bet with probability 0.5 to win $250 and 0.5 to win $0, etc. When
considering games, we view them as decision situations from the
perspective of a single player who plays once.7
An agent is represented by a state which encapsulates all

the information on the agent’s expected choice behavior. The
formalism that we present below allows for a variety of underlying
models. For instance, if the choice set is {a, b, c}, we may identify
three possible states corresponding to the respective choices a, b,
and c. Alternatively, a state may correspond to an ordering of the 3
items, in which case we have six possible states (e.g., a state could
be (a,b,c) in this order). We may also consider other models. In
Section 3.1we examine some consequences of the second case. For
ease of exposition, the basic framework is presented in terms of the
first case where states are identified with choices (but the reader
is invited to keep in mind that other interpretations of the model
are possible).
Mathematically, a state |ψ〉 is a vector in a Hilbert space H

of finite or countably infinite dimensions, over the field of the
real numbers R.8 The relationship between H and a decision
situation will be specified later. For technical reasons related to
the probabilistic content of the state, each state vector has to be
of length one, that is, 〈ψ |ψ〉2 = 1 (where 〈·|·〉 denotes the inner
product in H). So all vectors of the form λ |ψ〉, where λ ∈ R,
correspond to the same state, which we represent by a vector of
length one.
A key ingredient in the formalism of indeterminacy is the

principle of superposition. This principle states that the linear
combination of any two states is itself a possible state.9 Consider
two states |ϕ1〉 , |ϕ2〉 ∈ H . If |ψ〉 = λ1 |ϕ1〉+λ2 |ϕ2〉with λ1, λ2 ∈
R then |ψ〉 ∈ H . The principle of superposition implies that, unlike
the Harsanyi type space, the state space is non-Boolean.10

2.2. The notion of measurement and of observable

Measurement is a central notion in our framework. A measure-
ment is an operation (or an experiment) performed on a system.
It yields a result, the outcome of the measurement. A defining fea-
ture of a measurement is the so-called first-kindness property.11

7 All information (beliefs) and strategic considerations are embedded in the
definition of the choices. Thus an agent’s play of cooperation in a Prisoner’s Dilemma
is a play of cooperation given his information (knowledge) about the opponent.
8 In Quantum Mechanics the field that is used is the complex numbers field.
However, for our purposes the field of real numbers provides the structure and the
properties needed (see e.g. Beltrametti and Cassinelli (1981) and Holland (1995)).
Everything we present in the Appendix (Elements of quantummechanics) remains
true when we replace Hermitian operators with real symmetric operators.
9 We use the term state to refer to ‘‘pure state’’. Some people use the term state
to refer to mixture of pure states. A mixture of pure states combines indeterminacy
with elements of incomplete information. They are represented by the so-called
density operators.
10 The distributivity condition defining a Boolean space is dropped for a weaker
condition called orthomodularity. The basic structure of the state space is that of
a logic, i.e., an orthomodular lattice. For a good presentation of Quantum Logic, a
conceptwas introduced by Birkhoff and vonNeuman (1936), and further developed
by Mackey (2004), see Cohen (1989).
11 The term first-kind measurement was introduced by Pauli.
It refers to the fact that if one performs a measurement on a sys-
tem and obtains a result, then one will get the same result if one
performs again that measurement on the same system immedi-
ately afterwards. Thus, the outcome of a first-kind measurement
is reproducible but only in a next subsequent measurement. First-
kindness does not entail that the first outcome is obtained when
repeating a measurement if other measurements were performed
on the system in between.Whether an operation is ameasurement
(i.e., is endowedwith the property of first-kindness) is an empirical
issue. When it comes to decision theory, it means that we do not,
a priori, assume that any choice set can be used to measure pref-
erences. In particular, the product set of two sets, each of which is
associated with a first-kind measurement, is not in general associ-
ated with a first-kind measurement. The set of decision problems
that we consider consists exclusively of decision problems that can
be associatedwith first-kindmeasurements.We call these decision
problems Decision Situations (DS).12
A Decision Situation A can be thought of as an experimen-

tal setup where the agent is invited to choose a particular action
among all the possible actions allowed by this Decision Situation.
In this paper, we will consider only the case of finitely many pos-
sible outcomes. They will be labeled from 1 to n by convention.
When an agent selects an action, we say that she ‘‘plays’’ the DS. To
every Decision Situation A, wewill associate an observable, namely,
a specific symmetric operator onH , which, for notational simplic-
ity, we also denote by A.13 If we consider only one Decision Situa-
tion Awith n possible outcomes,we can assume that the associated
Hilbert space is n-dimensional and that the eigenvectors of the cor-
responding observable,whichwedenote by |1A〉, |2A〉, . . . , |nA〉, all
correspond to different eigenvalues, denoted by 1A, 2A, . . . , nA re-
spectively. By convention, the eigenvalue iA will be associatedwith
choice i.

A |kA〉 = kA |kA〉 , k = 1, . . . , n.

As A is symmetric, there is a unique orthonormal basis of the
relevant Hilbert space H formed with its eigenvectors. The
basis {|1A〉, |2A〉, . . . , |nA〉} is the unique orthonormal basis of H
consisting of eigenvectors of A. It is thus possible to represent the
agent’s state as a superposition of vectors of this basis:

|ψ〉 =

n∑
k=1

λk |kA〉 , (1)

where λk ∈ R,∀k ∈ {1, . . . , n} and
∑n
k=1 λ

2
k = 1.

The Hilbert space can be decomposed as follows:

H = H1A ⊕, . . . ,⊕HnA , HiA ⊥ HjA , i 6= j, (2)

where ⊕ denotes the direct sum of the subspaces H1A , . . . ,HnA
spanned by |1A〉, . . . , |nA〉 respectively.14 Or, equivalently, we can
write IH = P1A+, . . . ,+PnA where PiA is the projection operator
onHiA and IH is the identity operator onH .
A Decision Situation A is an experimental setup and the

actual implementation of the experiment is represented by a
measurement of the associated observable A. According to the so-
called Reduction Principle (see Appendix), the result of such a
measurement can only be one of the n eigenvalues of A. If the

12 Even standard decision theory implicitly restricts its application to decision
problems that satisfy the first-kindness property (or that can be derived from
such decision problems). In contrast, random utility models do not require choice
behavior to satisfy the first-kindness property in the formulation used in this paper.
13 Observables in Physics are represented by Hermitian operators because QM is
defined over the field of complex numbers. Here, we confine ourselves to the field
of real numbers, which iswhy observables are represented by symmetric operators.
14 That is, for i 6= j any vector in HiA is orthogonal to any vector in HjA and any
vector inH is a sum of n vectors, one in each component space.
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result is mA (i.e., the player selects action m) the superposition∑
λi |iA〉 ‘‘collapses’’ onto the eigenvector associated with the

eigenvalue mA. The initial state |ψ〉 is projected into the subspace
HmA (of eigenvectors of A with eigenvalue mA). The probability
that the measurement yields the result mA is equal to 〈mA|ψ〉2 =
λ2m, i.e., the square of the corresponding coefficient in the
superposition. The coefficients themselves are called ‘amplitudes
of probability’. They play a key role when studying sequences
of measurements (see Section 2.3). As usual, we interpret the
probability of mA either as the probability that one agent in state
|ψ〉 selects action mA or as the proportion of the agents who will
make the choice mA in a population of many agents, all in the
state |ψ〉.
In our theory, an agent is represented by a state. We shall

also use the term type (and eigentype) to denote a state
corresponding to one eigenvector, say |mA〉. An agent in this
state is said to be of type mA. An agent in a general state |ψ〉
can be expressed as a superposition of all eigentypes of the DS
under consideration. Our notion of type is closely related to the
notion introduced by Harsanyi. Consider a simple choice situation
e.g., when an employee faces a menu of contracts. The type
captures all the agent’s characteristics (taste, subjective beliefs,
private information) of relevance for uniquely predicting the
agent’s behavior. In contrast to Harsanyi, we shall not assume that
there exists an exhaustive description of the agent that enables us
to determine the agent’s choice uniquely and simultaneously in all
possible Decision Situations. Instead, our types are characterized
by an irreducible uncertainty that is revealed when the agent is
confronted with a sequence of DS (see Section 2.3.2 for a formal
characterization of irreducible uncertainty).

Remark. Clearly, when only one DS is considered, the above de-
scription is equivalent to the traditional probabilistic representa-
tion of an agent by a probability vector (α1,...,αn) in which αk is the
probability that the agent will choose action kA and αk = λ2k for
k = 1, . . . , n. The advantage of the proposed formalism consists in
enabling us to study several decision situations and the interaction
between them.

2.3. More than one Decision Situation

When studying more than one DS, say A and B, the key
question iswhether the corresponding observables are commuting
operators in H , i.e., whether AB = BA. Whether two DS can be
represented by two commuting operators or not is an empirical
issue. We next study its mathematical implications.

2.3.1. Commuting Decision Situations
Let A and B be two DS. If the corresponding observables

commute then there is an orthonormal basis of the relevant Hilbert
spaceH formed by eigenvectors common to both A and B. Denote
by |i〉 (for i = 1, . . . , n) these basis vectors. We have

A |i〉 = iA |i〉 and B |i〉 = iB |i〉 .

In general, the eigenvalues can be degenerated (i.e., for some i and
j, iA = jA or iB = jB).15 Any normalized vector |ψ〉 of H can be
written in this basis:

|ψ〉 =
∑
i

λi |i〉 ,

15 In the argument that we develop in Section 3.1, the pure states are linear orders
— therefore choice experiments are observables with degenerated eigenvalues.
where λi ∈ R, and
∑
i λ
2
i = 1. If we measure A first, we observe

eigenvalue iA with probability

pA (iA) =
∑
j;jA=iA

λ2j . (3)

If we measure B first, we observe eigenvalue jB with probability
pB (jB) =

∑
k;kB=jB

λ2k . After B is measured and the result jB
is obtained, the state |ψ〉 is projected into the eigensubspace
EjB spanned by the eigenvectors of B associated with jB. More
specifically, it collapses onto the state:∣∣ψjB 〉 = 1√ ∑

k;kB=jB

λ2k

∑
k;kB=jB

λk |k〉

(the factor 1√∑
k;kB=jB

λ2k

is necessary to make
∣∣ψjB 〉 a unit vector).

When we measure A on the agent in the state
∣∣ψjB 〉, we obtain

iA with probability

pA (iA|jB) =
1∑

k;kB=jB

λ2k

∑
k;kB=jB
and kA=iA

λ2k .

Sowhenwemeasure first B and thenA, the probability of observing
the eigenvalue iA is pAB (iA) =

∑
j pB (jB) pA (iA|jB):

pAB (iA) =
∑
j

1∑
k;kB=jB

|λk|
2

∑
k;kB=jB

λ2k

∑
l;lB=jB
and lA=iA

λ2l

=

∑
jB

∑
l;lB=jB
and lA=iA

λ2l =
∑
l;lA=iA

λ2l .

Hence, pAB (iA) = pA (iA) ,∀i, and similarly pBA (jB) = pB (jB) ,∀j.
When dealing with commuting observables, it is meaningful to

speak of measuring them simultaneously. Whether we measure
first A and then B or first B and then A, the probability distribution
on the joint outcome is p (iA ∧ jB) =

∑
k;kB=jB
and kA=iA

λ2k , so (iA, jB) is a

well-defined event. Formally, this implies that the two DS can be
merged into a singleDS. Whenwemeasure it, we obtain a vector as
the outcome, i.e., a value in A and a value in B. To each eigenvalue
of the merged observable, we associate a type that captures all the
characteristics of the agent relevant to her choices (one in eachDS).

Remark. Note that, as in the case of a single DS, for two such
commuting DS our model is equivalent to a standard (discrete)
probability space in which the elementary events are {(iA, jB)}
and p (iA ∧ jB) =

∑
k;kB=jB
and kA=iA

λ2k . In particular, in accordance with

the calculus of probability we see that the conditional probability
formula holds:

pAB(iA ∧ jB) = pA(iA)pB(jB|iA).

This alsomeans that the type space associatedwith type character-
istics represented by commuting observables is equivalent to the
Harsanyi type space. When all DS commute, a Type-Indeterminate
(TI) agent cannot be distinguished from a classical agent. In par-
ticular, if the Decision Situations A and B together provide a full
characterization of the agent, then all types iAjB are mutually ex-
clusive: knowing that the agent is of type 1A2B it is certain that she
is not of type iAjB for i 6= 1 and/or j 6= 2. All uncertainty about the
agent’s choice behavior is due to our incomplete knowledge about
her type, and it can be fully resolved by making a series of suitable
measurements.
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As an example, consider the following two Decision Situations.
Let A be the Decision Situation presenting a choice between a
week’s vacation in Tunisia and a week’s vacation in Italy. And let
B be the choice between buying 1000 euros of shares of Bouygues
Telecom or of Deutsche Telecom. It is quite plausible that A and
B commute, but whether or not this is the case is, of course, an
empirical question. If A and B commute, we expect that a decision
on portfolio (B) will not affect the decision-making concerning the
vacation (A). And thus the order in which the decisions are made
does not matter, as in the classical model.
Note, finally, that the commutativity of the observables does

not exclude statistical correlations between observations. To see
this, consider the following example in which A and B each have
two degenerated eigenvalues in a four-dimensional Hilbert space.
Denote by |iAjB〉 (i = 1, 2, j = 1, 2) the eigenvector associated
with eigenvalues iA of A and jB of B, and let the state |ψ〉 be given by

|ψ〉 =

√
3
8
|1A1B〉 +

√
1
8
|1A2B〉 +

√
1
8
|2A1B〉 +

√
3
8
|2A2B〉

Then, pA (1A|1B) =
3
8

3
8+

1
8
=
3
4 , pA (2A|1B) =

1
8

3
8+

1
8
=
1
4 .

So if we first measure B and find, say, 1B, it is much more
likely (with probability 34 ) that when measuring A we will find
1A rather than 2A (with probability 14 ). But the two interactions
(measurements) do not affect each other; i.e., the distribution of
the outcomes of the measurement of A is the same whether or not
we measure B first.

2.3.2. Non-commuting Decision Situations
It is when we consider Decision Situations associated with

observables that do not commute that the predictions of our
model differ from those of the probabilistic one. In such a
context, the quantum probability calculus (p(iA|ψ) = 〈iA|ψ〉2)
generates cross-terms, also called interference terms. These cross-
terms are the signature of indeterminacy. In the next section, we
demonstrate how this feature can capture the phenomenon of
cognitive dissonance, as well as that of framing.
Consider two Decision Situations A and B with the same

number n of possible choices. We shall assume for simplicity
that the corresponding observables A and B have non-degenerated
eigenvalues 1A, 2A, . . . , nA and 1B, 2B, . . . , nB respectively. Each
set of eigenvectors {|1A〉, |2A〉, . . . , |nA〉} and {|1B〉, |2B〉, . . . , |nB〉}
is an orthonormal basis of the relevant Hilbert space. Let |ψ〉 be the
initial state of the agent

|ψ〉 =

n∑
i=1

λi|iA〉 =
n∑
j=1

νj |jB〉 . (4)

We note that each set of eigenvectors of the respective
observables forms a basis of the state space. The multiplicity of
alternative bases is a distinguishing feature of this formalism.
It implies that there is no single or privileged way to describe
(express) the type of the agent. Instead, there exists a multiplicity
of equally informative alternative ways to characterize the agent.
We shall now compute the probability for type iA under two
different scenarios. In the first scenario, wemeasure A on the agent
in state |ψ〉. In the second scenario, we firstmeasure B on the agent
in state |ψ〉 and thereafter measure A on the agent in the state
resulting from the first measurement. We can write observable B′s
eigenvector |jB〉 in the basis made of A′s eigenvectors:

|jB〉 =
n∑
i=1

µij|iA〉. (5)
Using the expression above we write the last term in Eq. (4)

|ψ〉 =

n∑
j=1

n∑
i=1

νjµij|iA〉. (6)

From expression (6), we derive the probability pA(iA) that the
agent chooses iA in the first scenario: pA(iA) =

(∑n
j=1 νjµij

)2.
In the second scenario, she first plays B. By (4) we see that she
selects action jB with probability ν2j . The state |ψ〉 is then projected
onto |jB〉. When the state is |jB〉, the probability for iA is given
by (5), namely, µ2ij. Summing up the conditionals, we obtain the
(ex-ante) probability for iA when the agent first plays B and then
A : pAB(iA) =

∑n
j=1 ν

2
j µ
2
ij, which is, in general, different from

pA(iA) =
(∑n

j=1 νjµij
)2
. Playing first B changes theway A is played.

The difference stems from the so-called interference terms

pA(iA) =

(
n∑
j=1

νjµij

)2
=

n∑
j=1

ν2j µ
2
ij + 2

∑
j6=j′

[(
νj′µij

) (
νjµij′

)]
︸ ︷︷ ︸

Interference term

= pAB(iA)+ interference term

The interference term is the sum of cross-terms involving the
amplitudes of probability (the Appendix provides a description of
interference effects in Physics).
Some intuition about interference effects may be provided

using the concept of ‘‘propensity’’ due to Popper (1992). Imagine
an agent’s mind as a system of propensities to act (corresponding
to different possible actions). As long as the agent is not required
to choose an action in a given DS, the corresponding propensities
coexist in her mind; the agent has not ‘‘made up her mind’’. A
decision situation operates on this state of ‘‘hesitation’’ to trigger
the emergence of a single type (of behavior). But as long as
alternative propensities are present in the agent’smind, they affect
choice behavior by increasing or decreasing the probability of the
choices in the DS under investigation.
An illustration of this kind of situation may be supplied by

the experiment reported in Knetz and Camerer (2000). The two
DS they study are the Weak Link (WL) game and the Prisoner’s
Dilemma (PD) game.16 They compare the distribution of choices
in the Prisoner’s Dilemma (PD) game when it is preceded by a
Weak Link (WL) game and when only the PD game is being played.
Their results show that playing the WL game affects the play of
individuals in the PD game. The authors appeal to an informational
argument, which they call the ‘‘precedent effect’’.17 However, they
cannot explain the high rate of cooperation (37.5%) in the last
round of the PD game (Table 5, p. 206). Instead, we propose that
theWL and the PD are two DS that do not commute. In such a case,
we expect a difference in the distributions of choices in the (last
round of the) PD, depending on whether or not it was preceded by
a play of the WL or another PD game. This is because the type of
the agent is being modified by the play of the WL game.

Remark. In the case where A and B do not commute, they
cannot have simultaneously defined values: the state of the
agent is characterized by an irreducible uncertainty. Therefore,
and in contrast with the commuting case, two non-commuting

16 The Weak Link game is a type of coordination game where each player picks
an action from a set of integers. The payoffs are defined in such a manner that each
player wants to select the minimum of the other players but everyone wants that
minimum to be as high as possible.
17 The precedent effect hypothesis is as follows: ‘‘The shared experience of playing
the efficient equilibrium in theWL game creates a precedent of efficient play strong
enough to (...) lead to cooperation in a finitely repeated PD game’’; see Knetz and
Camerer (2000, p. 206).



354 A. Lambert Mogiliansky et al. / Journal of Mathematical Psychology 53 (2009) 349–361
observables cannot be merged into one single observable. There
is no probability distribution on the events of the type ‘‘to have the
value iA for A and the value jB for B’’. The conditional probability
formula, derived from the law of total probability, does not hold:

pA(iA) 6=
n∑
j=1

pB(jB)p(iA|jB).

Indeed,
(∑n

j=1 νjµij
)2
= pA(iA) 6=

∑n
j=1 pB(jB)p(iA|jB) =∑n

j=1 ν
2
j µ
2
ij.

Consequently, the choice experiment consisting of asking the
agent to select a pair (iA, jB) out of the set of alternatives A × B
is NOT a DS. The agent cannot simultaneously choose iA and jB. Of
course, he can make the two choices in some ordered sequence,
but such an experiment cannot be represented by a single DS.
Wemust here acknowledge a fundamental distinction between

the type space of our TI-model (Type Indeterminacy model) and
that of Harsanyi. In the Harsanyi type space the (pure) types are
all mutually exclusive: the agent is either of type θi or of type
θj, but she cannot be both. In the TI-model, this is not always
the case. When dealing with (complete) non-commuting DS,18 the
types associated with respective DS are not mutually exclusive:
knowing that the agent is of type 1A, which is a full description
of her type, it cannot be said that she is not of type 1B. The
eigentypes of non-commutingDS are ‘‘connected’’ in the sense that
the agent can transit from one type to another under the impact of
a measurement. Whenmaking ameasurement of B on the agent of
type 1A, she is projected onto one of the eigenvectors of DSB. Her
type changes from being 1A to being some jB.

3. The type indeterminacy model and social sciences

The theory of choice presented in this paper does not allow for
a straightforward comparison with standard choice theory. Signif-
icant further elaboration is required. Yet, some implications of the
type indeterminacy approach can be explored. First, we shall be
interested in comparing the behavior of an agent of indeterminate
type with that of a classical agent in the case where both behaviors
satisfy the Weak Axiom of Revealed Preference (WARP)19 which is
a basic axiomof rational choice. Then,wewill show that this frame-
work can be used to explain two instances of behavioral anomalies
that have been extensively studied in the literature.

3.1. The TI-model and the classical rational man

In standard decision theory, it is assumed that an individual has
preferences (i.e., a complete ranking or a complete linear ordering)
on the universal set of alternatives X . The individual knows her
preferences, while the outsiders may not know them. But it is also
possible that the individual only knows what she would choose
from some limited sets of alternatives and not from the whole set
X . Thus, a less demanding point of view consists in representing the
choice behavior by a choice structure (i.e., a familyB of subsets of
the universal set of alternatives X and a choice rule C that assigns
a nonempty set of chosen elements C(A) for all A ∈ B). The link
between the two points of view is well known. From preferences,
it is always possible to build a choice structure, but the reverse is
not always true. For it to be true, the choice structure must display
a certain amount of consistency (satisfying the Weak Axiom of

18 We say that a DS is complete when its outcome provides a complete
characterization of the agent.
19 Samuelson (1947).
Revealed Preference) and the familyBmust include all subsets ofX
of up to three elements.20 So, preferences can be revealed by asking
the individual tomake several choices from subsets of X . How does
this simple scheme changewhenwe are dealingwith an individual
whose type is indeterminate?
Consider a situation where an individual is invited to make

a choice of one item out of a set A, A ⊆ X . If this experiment
satisfies the first-kindness property, we can consider it to be a
measurement represented by an observable. The set of possible
outcomes of this experiment is the set A. We also denote the
observable by A.21
We make two key assumptions on the individual choice

behavior:
A1. Choices out of a ‘‘small’’ subset satisfy the first-kindness

property (the meaning of ‘‘small’’ will be made precise).
A2. Choices out of a ‘‘small’’ subset respect our Weak Axiom of

Revealed Preference (WARP’; see below).
Assumption A1 means that ‘‘small’’subsets are associated with

DS, i.e., the experiment consisting of letting an individual choose an
itemout of a ‘‘small’’ subset of items is ameasurement. Assumption
A2 means that choices from ‘‘small’’ subsets are rational. The
idea behind these assumptions is that an individual can, in her
mind, structure any ‘‘small’’ set of alternatives, i.e., simultaneously
compare those alternatives. She may not be able to do that within
a ‘‘big’’ set, though. But this does not mean that our individual
cannot make a choice from a ‘‘big’’ set. For example, she might use
an appropriate sequence of binary comparisons and select the last
winning alternative. However, such a compound operator would
not in general satisfy the first-kindness property, i.e., there may
not exist any DS representing such an operation.
A standard formulation of theWARP can be found inMas-Colell,

Whinston, and Green (1995).22 We shall use a stronger version
by assuming that C (B) , for any B ∈ B, is a singleton.23 For the
purpose of discussing choice experiments that may not commute,
it is useful to formulate the axiom in two parts:
Consider two subsets B, B′ ∈ B such that B ⊂ B′.
(a) Let x, y ∈ B, x 6= ywith x ∈ C (B) then y 6∈ C

(
B′
)
.

(b) Let C
(
B′
)
∩ B 6= ∅ then C (B) = C

(
B′
)
.

The intuition for (a) is that as we enlarge the set of items from B
to B′ a rational decision-maker never chooses from B′ an item that
is available in B but was not chosen. The intuition for (b) is that as
we reduce the set of alternatives, an item chosen in the large set
is also chosen in the smaller set containing that item, and no item
previously not chosen becomes chosen.24
It can be shown that, in the classical context, (b) implies (a)

(see Arrow (1959)). In our context where choice experiments
can be non-commuting, we may not have such an implication.
Moreover, the notion of choice function is not appropriate because
it implicitly assumes the commutativity of choice (see below).
Since our purpose is to investigate this issue explicitly, we express
the axiom more immediately in terms of (observable) choice
behavior in the following way, which we call WARP’:
Consider two subsets B, B′ ∈ B with B ⊂ B′.
(1) Suppose the agent chooses from B some element x. In a next

subsequent measurement of B′ the outcome of the choice is not in
B \ {x}.

20 See for exampleMas-Colell,Whinston, and Green,Microeconomic Theory, p.13.
21 The use of the same symbol for sets of items and observables should not confuse
the reader. Either the context unambiguously points to the right interpretation, or
we make it precise.
22 ‘‘If for some B ∈ B with x, y ∈ B we have x ∈ C (B), then for any B′ ∈ B
with x, y ∈ B′ and y ∈ C

(
B′
)
, we must also have x ∈ C

(
B′
)
’’. (Mas-Colell et al.,

1995, p.10).
23 At this stage of the research we do not want to deal with indifference relations.
24 Conditions (a) and (b) are equivalent to C2 and C4 in Arrow (1959).
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(2) Suppose the agent chooses from B′ some element x that
belongs to B. In a next subsequent measurement of B the agent’s
choice is x.
Points (1) and (2) capture the classical intuitions about rational

choice behavior associated with (a) and (b) above. A distinction
with the standard formulations of WARP is that we do not refer
to a choice function but to choice behavior, and that our axiom
only applies to two subsequent choices. We show below that in
the context where choices commuteWARP’ is equivalent toWARP.
But, as we shall see, the equivalence does not hold if we allow for
some choices not to commute.
Wenow investigate the choice behavior of a type indeterminate

agent under assumptions A1 and A2 above, i.e., under the
assumption that choices from small subsets satisfy the property
of first-kindness and that they respect WARP’. We consider, in
turn, two cases. In the first one, we assume that all the DS
considered pairwise commute. In the second one, we allow for
non-commuting DS. In the following, we define ‘‘small’’ subsets as
subsets of size 3 or less.
Case 1
The assumption here is that all experiments of choice from

small subsets are compatible with each other, i.e., the correspond-
ing observables commute. A first implication of the commutativ-
ity of choice experiments is that for any B ⊆ X , the outcome of
the choice experiment B only depends on B (whatever was done
before the choice in B will always be the same and, in particular,
the outcome does not depend on other choice experiments that
were performed before). Consider now a situationwhere the agent
has made a choice in each one of the possible subsets. Then we
know, appealing to the first-kindness property, that all subsequent
choices are deterministic.25 Therefore,we can express the outcome
in terms of a choice function C (X) : B→ x that associates to each
B ∈ B a chosen item x ∈ B. A second consequence of commuta-
tivity is that the restriction of WARP’ to two subsequent choices is
inconsequential. This is because the outcome of any given choice
experiment must be the same in any series of two consecutive ex-
periments. In particular, WARP’ implies the transitivity of choices.
This can easily be seen when we take an example on a subset
of three items and perform choice experiments on pairs in dif-
ferent orders.26 So for the case where choice experiments com-
mute, WARP’ is equivalent to WARP and we recover the standard
results. We know that if (B, C(.)) is a choice structure satisfying
WARP’ and defined for B including all subsets of X of up to three
elements, then there exists a rational preference relation that ra-
tionalizes choice behavior.27 It is therefore natural to identify the
states (types) of the individualwith the preference orders that rank
all the elements of X . The type spaceH has dimension |X |!. We ob-
tain the well-known classical model. Thus, we make the following
statement.

Statement 1. When all DS associated with subsets of up to 3
items commute, WARP’ is equivalent to the standard Weak Axiom
of Revealed Preferences. The type indeterminate agent’s choice
behavior is not distinguishable from that of a classical agent’s.

25 Before these choice experiments are conducted, the agent will generally be in a
state of superposition, i.e., with no well-defined choice function with respect to the
three items under consideration.
26 Consider the choice set {a, b, c}. We conduct the following two series of
experiments with the same individual. In the first series, we let the agent choose
from {a, b}, then from {b, c}, and last from {a, b, c}. In the second series, the agent
first chooses from {b, c}, then from {a, b}, and last from {a, b, c}. Assume the
outcomes of the two first experiments are a and b, then by WRAP’ the third choice
may be either a or b. The first two choices are not deterministic but thereafter,
because of commutativity, all the other choices are deterministic. In the second
series, the outcomesmust be b and a respectively. So the third choice may be either
a or c . By commutativity, the outcome of {a, b, c}must be the same in the two series,
which uniquely selects a. If then confrontedwith {a, c} byWRAP’, the agent chooses
a. So a choice behavior respecting WARP’ is transitive when choices commute.
27 See, e.g., Mas-Colell et al. (1995, p.13).
This should not surprise us becausewe know from Section 2.3.1
that when all DS commute, a quantum (non-classical) system
cannot be distinguished from a classical system (see Danilov and
Lambert-Mogiliansky (2008), for a general equivalence result in
a similar context). Here it means that the agent’s preferences
induce a deterministic choice behavior. For the case where all
choice experiments on small subsets commute, a probabilistic
representation of the TI-agent’s choice behavior reflects our
incomplete information, as opposed to an intrinsic indeterminacy
or randomness.
In this model, all DS are coarse measurements of the type (the

preference order), i.e., their outcomes are degenerated eigenvalues
(see Section 2.3.1). When all DS commute and satisfy WARP’, the
type indeterminate rational agent behaves, in all respects, as like a
classical rational agent. This should not surprise us since we know
that when observables commute they can be merged into a single
observable, and the TI-model is equivalent to the classical model.
Case 2
We now consider a case where some DS do not commute. We

need to emphasize that, in contrast with the commuting case, a
large number of non-commuting models are possible. The models
differ from each other according to which DS commute and which
do not. We investigate here a simple example that illustrates
interesting issues.
Assume the set X consists of four items: a, b, c , and d. As before,

any subset A ⊂ X consisting of three elements or less is associated
with a DS and we assume that any two consecutive choices made
from small subsets respect WARP’. There exists a multiplicity of
non-commuting models of this example. In order to formulate the
two properties that characterize our non-commuting model, we
define AC a ‘‘contextual’’ choice experiment with A ⊆ C ⊆ X .
The set C is the context in the sense of being the set of all the
alternatives that are present. And A is the set from which the
choice can be made. For instance, ab{a,b,c} (for ease of presentation
a choice out of {a, b} is denoted ab) is the choice experiment
where the agent can choose between a and b in a context where
the alternative c is present but is not available for choice. Our
non-commuting model is characterized by the two following
properties:
(nc) i. Let AC and BC be two DS with |C | = 3; then AC and BC

commute.
(nc) ii. Let AC and BC ′ be twoDS with |C | =

∣∣C ′∣∣ = 3 and C 6= C ′;
then AC and BC ′ do not commute.28

Property i means that we may perform choice experiments
in pairs and in triples, defined on the same context so as
to elicit a preference relation on each triple taken separately.
Property ii means that DS associated with different triples
(e.g., abc{a,b,c} and bcd{b,c,d}) are represented by observables that
do not commute with each other. This implies that the agent
does not have a preference order over the whole X. Instead,
the types can be identified with preference orders on triples.
Observables representing choice experiments on different triples
are alternative ways to measure the individual’s preferences. The
type space representing the individual is a six-dimensional Hilbert
space corresponding to the six ways to rank three items. There are
four alternative bases spanned by the eigenvectors corresponding
to the six possible rankings in each one of the four triples.
Requiring the satisfaction of WARP’, which is not formulated

contextually, imposes a certain amount of consistency in behavior

28 It is possible to show that properties (i) and (ii) can be combined in amodel (see
Zwirn (in press)).
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across triples.29 So, for instance, consider point 1 in the definition
of WARP’ above and let B = {a, b} and B

′

= {a, b, c} or {a, b, d}.
Then WARP’ says that if a is selected in the choice experiment
ab{a,b,c} then, in a consecutive choice experiment abc{a,b,c}, b is
not chosen. Note that this already follows from nc(i), i.e, from
the commutativity of choice experiments associated with one
and the same context. But WARP’ also says that the element b
cannot be chosen in a consecutive experiment abd{a,b,d}, which is
an additional requirement that links two experiments associated
with different contexts, namely, ab{a,b,c} and abd{a,b,d}. The same
must hold for any other pairs and associated triples.
Nevertheless, in our model the agent may violate transitivity.

Assume the agent first chooses a in ab{a,b,c} and b in bc{a,b,c}. We
now ask her to make a choice in bcd{b,c,d}. She picks d. Finally, we
let her make a choice in abc{a,b,c}. She picks c . This may happen
because the type resulting from the first two choice experiments
is modified by the performance of the bcd{b,c,d} choice experiment.
Recall that the satisfaction of WARP’ is only required for two
consecutive measurements.
Another interesting feature that may arise in our model

is the violation of the principle of Independence of Irrelevant
Alternatives (IIA). 30 This happens because WARP’ is formulated
for small subsets. While this is sufficient in a world of classical
decision-makers where WARP’ implies IIA (see Case 1), it is no
longer so in a world of type indeterminate decision-makers, as we
next illustrate.
In our model, the agent only has preferences over triples

of items. When invited to make a choice out of the whole set
{a, b, c, d}, the individual must proceed by making a series of
measurements (no single DS exists corresponding to abcd). For
instance, she first selects from a pair, followed by a choice from
a triple consisting of the first selected item and the two remaining
ones. We can call such a behavior ‘‘procedural rational’’ because
she acts as if she had preferences over the four items.
Consider the following possible line of events. Suppose the

individual just made a choice in acd{a,c,d} and picked d. Thus her
initial state is some superposition of type [d > a > c] and type
[d > c > a]. We now ask her to choose from {a, b, c, d} .
Assume the individual first plays ab{a,b,c} then acd{b,c,d} (which by
assumption of procedural rationality means that the outcome of
ab{a,b,c} is a).31 The choice of a from ab{a,b,c} changes the type of the
individual. The new type, expressed in terms of (the eigenvectors
representing) the preference orders on {a, b, c}, is a superposition
of types [a > b > c] , [a > c > b], and [c > a > b] . In order to
complete her choice out of {a, b, c, d}, she now plays acd. The
result of that last measurement (performed on the individual
of the type resulting from the ab{a,b,c} measurement) is c with
positive probability. But this violates IIA. She effectively selects c
from {a, b, c, d} while she initially picked d in {a, c, d} where c
was available (i.e., adding the irrelevant alternative b upsets the
preference order between c and d). Yet, it is easy to check that, in
this example, any two consecutive choices satisfy the WARP’, so
the choice behavior of our type indeterminate agent is ‘‘rational’’.

29 We have not formally proved that WARP’ and properties (i) and (ii) are
compatible. But the compatibility of WARP’ and non-commutativity has been
proved in a similar setting in Zwirn (in press). We also know that it holds for
this example in a more general context (see Sect. 4.4 in Danilov and Lambert-
Mogiliansky (2008)).
30 This principle says that if a is chosen in {a, b, c} and in particular a � b, then
adding, say, inferior alternative d cannot lead to the choice of b out of {a, b, c, d} .
31 We recall that ‘‘playing a DS’’ means performing the corresponding measure-
ment (see Section 2.2).
Statement 2. Under assumption (nc) a type indeterminate agent
whose choice behavior satisfies WRAP’ does not have a preference
order over the universal set X . But she may have well-behaved
preferences over subsets of X . Generally, she does not behave as
a classical rational agent.

In this example, the distinction between the classical rational
and the type indeterminate rational agent is only due to the non-
commutativity of DS associated with different subsets of items.
This distinctive feature of the TI-model of choice (i.e., the non-
commutativity of some choice experiments) delivers a formulation
of bounded rationality in terms of the impossibility of comparing
and ordering all items simultaneously. Non-commutativity also
implies that, as the agent makes a choice, her type (preferences)
changes. The preferences of a type indeterminate agent are shaped
in the process of elicitation, as proposed by Kahneman and Tversky
(2000)32.
TI-rationality Using the examples developed above, we can
contribute to the discussion on the meaning of rationality in the
case of a TI-agent. The essence of rational behavior in decision
theory is that the agent makes her choices in order to maximize
her preferences. In this section we have ‘‘operationalized’’ rational
behavior as a behavior that satisfies WARP’. As we saw WARP’ is
equivalent to the standard weak axiom of revealed preferences for
the case, all DS commute. But we also found that WARP’ does not
guarantee the existence of a preference order over the universal
set X when some DS do not commute. With non-commuting DS
two things happen: first the choice is random, second there is an
effect of choice-making on the preferences themselves, i.e., they
change. In order to be able to talk about ‘‘TI-rationality’’ we must
impose requirements on the choice behavior in non-commuting
DS and on the changes in preferences that occur as the result of
choice-making. We do not intend to formulate these requirements
explicitly. Instead we suggest a way to proceed.
i. The randomcharacter of the choices between incompatibleDS

suggests that stochastic rationality (see McFadden (1999)) may be
a suitable concept. Stochastic rationality only supposes the station-
arity of preferences in the population. A similar feature arises in
the TI-model, which assumes stable (probabilistic) correlations be-
tween the eigentypes (preferences) over incompatible choice sets
(see Section 2.3.2). An axiom of revealed stochastic preferences in
the spirit of McFadden (2004) could be formulated. Such an ax-
iom would be rather constraining because choice behavior must
be consistent with a specific correlation matrix, not any stable dis-
tribution as in McFadden.
ii. Once the change of type has occurred as a consequence

of choice-making, TI-rationality can be tested on the choice
behavior in the new choice set. It should satisfy WARP’. The choice
with respect to the previous (incompatible) choice set must be
consistent with the same correlation matrix as the one governing
stochastic rationality in (i) above.
We thus want to argue that it is possible to formulate a

meaningful concept of TI-rationality. This concept would combine
elements of standard (classical) rationality with elements of
stochastic rationality depending on the context, i.e., whether the
DS commute or not. In linewith QuantumMechanics, the TI-model
assumes that whether DS commute or not is a property of the DS
themselves, not of the measured systems. Therefore, TI-rationality
can be formulated as a well-defined property of the individual
choice behavior. We are aware that TI-rationality may be rather
difficult to test empirically.33

32 This is reminiscent of Nobel laureate Sen (1997), who proposes that the act of
choice has an impact on the agent’s preferences.
33 This is because, if we adopt a population approach, all agents must be of the
same type. Alternatively, with an individual approach the tested agent must be
‘‘prepared’’ (after each trial), so he is again of the same initial type.
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The TI-model and the RUM (Random Utility Maximization)
approach From Statement 1, we know that when all DS associated
with subsets of the universal set commute, then the agent’s choice
behavior cannot be distinguished from that of a classical agent. This
alsomeans that the agent’s choice behavior becomes deterministic
after a suitable series of experiments. All randomness is due
to our incomplete information about his true preferences. This
uncertainty can be fully resolved so that the agent’s choice
behavior can be predicted with certainty.
When some DS do not commute, the agent’s choice behavior

cannot be predicted with certainty, and there is an irreducible
randomness. Are we dealing with some random utility model?
The answer is NO. There exist two interpretations of RUMmodels.
In the first, the subject of the experiments is a population of
agents (each endowed with possibly volatile preferences) and
in the second it is an individual agent endowed with random
preferences. In both cases, the first choice is a draw from an
underlying distribution either in the population or in the mind
of the agent. The second choice (made by another agent, in the
population interpretation, and by the same agent in the individual
interpretation) is a second draw from the same distribution, which
may of course not yield the same outcome. In contrast, and as
a consequence of the first-kindness property (or the Reduction
Principle; see Section 2.2), when a TI-agentmakes a choice in some
subset, the result from the next identical choice experiment is fully
predictable, and it is the same as in the first experiment. In the TI-
model, the act of choosing changes the type (preferences). This also
has implications for other, non-commuting, choice experiments.
The distribution over the possible choices in the next incompatible
choice experiment depends on the outcomeof the first experiment.
It is not the same distribution, as before the agent played the first
DS. Hence, a TI-model is not a RUMmodel, because in the latter the
act of choosing has no impact on the preferences of the agent. They
are and remain random,with the same distributionwith respect to
all choice experiments.

3.2. Examples

In this section, we demonstrate how type indeterminacy can
explain two well-documented examples of so-called behavioral
anomalies. With these examples we want to suggest that one
contribution of our approach is to provide a unified framework
which can accommodate a variety of behavioral anomalies. These
anomalies are currently explained by widely different theories.

3.2.1. Cognitive dissonance
The kind of phenomena we have in mind can be illustrated as

follows. Numerous studies show that employees in risky industry
(like nuclear plants) often neglect safety regulations. The puzzle
is that before moving into the risky industry those employees
were typically able to estimate the risks correctly. They were
reasonably averse to risk and otherwise behaved in an ordinary
rational manner.
Psychologists developed a theory called cognitive dissonance

(CD) according to which people modify their beliefs or preferences
in response to the discomfort arising from conflicting beliefs or
preferences. In the example above, they identify a dissonance as
follows. On the one hand, the employee holds an image of himself
as ‘‘a smart person’’ and on the other hand he understands that
he deliberately chose to endanger his health (by moving to the
risky job), which is presumably ‘‘not smart’’. So in order to cancel
the dissonance, the employee decides that there is no danger and
therefore no need to follow the strict safety regulation.
We propose a formal model that is very much in line with

psychologists’ theory of cognitive dissonance. We shall compare
two scenarios involving a sequence of two non-commuting
Decision Situations, each with two options.34 Let A be a DS about
jobs with options a1 and a2 corresponding to taking a job with a
dangerous task (adventurous type) and respectively staying with
the safe routine (habit-prone type). Let B be a DS about the
willingness to use safety equipment with choices b1 (risk-averse
type) and b2 (risk-loving type) corresponding to the choice of using
and respectively not using the safety equipment.
First scenario: The dangerous task is introduced in an existing
context. It is imposed on theworkers. They are only given the choice
to use or not to use the safety equipment (B). We write the initial
state of the worker in terms of the eigenvectors of observable A:

|ψ〉 = λ1 |a1〉 + λ2 |a2〉 , λ21 + λ
2
2 = 1.

We develop the eigenvectors of A on the eigenvectors of B:

|a1〉 = µ11 |b1〉 + µ21 |b2〉 ,
|a2〉 = µ21 |b1〉 + µ22 |b2〉 .

We now write the state in terms of the eigenvectors of the B
operator:

|ψ〉 = [λ1µ11 + λ2µ21] |b1〉 + [λ1µ12 + λ2µ22] |b2〉 .

The probability that a worker chooses to use the safety equip-
ment is

pB (b1) = 〈b1|ψ〉2 = [λ1µ11 + λ2µ21]2

= λ21µ
2
11 + λ

2
2µ
2
21 + 2λ1λ2µ11µ21. (7)

Second scenario: First A, then B. Theworkers choose between taking
a new job with a dangerous task or staying with the current
safe routine. Those who choose the new job then face the choice
between using safety equipment or not. Those who turn down
the new job offer are asked to answer a questionnaire about their
willingness to use the safety equipment for the case where they
would beworking in the risky industry. The ex-ante probability for
observing b1 is

pBA (b1) = pA (a1) pB (b1|a1)+ pA (a2) pB (b1|a2)

= λ21µ
2
11 + λ

2
2µ
2
21. (8)

The phenomenon of cognitive dissonance can now be formulated
as the following inequality:

pBA (b1) < pB (b1) ,

which occurs in our model when 2λ1λ2µ11µ21 > 0.35 We next
show that interference effects may be quantitatively significant.
Numerical example
Assume for simplicity that |ψ〉 = |b1〉, which means that

everybody in the first scenario is willing to use the proposed safety
equipment. Let prob (a1|ψ) = 0.25 and prob (a2|ψ) = .75, so
|λ1| =

√
0.25 and |λ2| =

√
0.75. It is possible to show that

in this case we have |µ11| =
√
0.25 and |µ21| =

√
0.75.36 We

now compute pB(b1) using the formula in (7) and recalling that
|ψ〉 = |b1〉 (so pB(b1) = 1):

1 = 〈b1|ψ〉2 = λ21µ
2
11 + λ

2
2µ
2
21 + 2λ1λ2µ11µ21

= 0.0625+ 0.5625+ 2λ1λ2µ11µ21
= 0.625+ 2λ1λ2µ11µ21, (9)

34 We implicitly assume that the two measurements are complete, i.e., not
coarse. We return to this issue in the Discussion.
35 pBA (b1) includes the probability of a choice of safetymeasures both in the group
that chose the risky job and in the group that chose the safe job. This guarantees that
weproperly distinguish between the CDeffect (change in attitude) and the selection
bias.
36 Based on the fact that

(
µ11 µ22
µ21 µ22

)
is a rotation matrix.
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which implies that the interference effect is positive and equal to
1 − 0.625 = 0.375. We note that it amounts to a third of the
probability.
Under the second scenario the probability for using safety

equipment is given by the formula in (8), i.e., it is the same sum
as in (9) without the interference term:

pBA (b1) = 0.625.

So we see that our TI-model ‘‘delivers’’ cognitive dissonance:
pBA (b1) < pB (b1) .
The key assumption that drives our result is that the choice

between jobs and the choice between using or not using the
safety equipment are measurements of two incompatible type
characteristics (represented by two non-commuting observables).
A possible behavioral interpretation is as follows. The job decision
appeals to an abstract perception of risk, while the decision to
use the safety equipment appeals to an emotional perception of
concrete risks. In this interpretation, our assumption is that the
twomodes of perceptions are incompatible. This is consistent with
evidence that shows a gap between perceptions of one and the
same issue when the agent is in a ‘‘cold’’ (abstract) state of mind,
compared to when she is in a ‘‘hot’’ emotional state of mind (see
for instance Lowenstein (2005)).
Comments
In their article from 1982, Akerlof and Dickens explain the

behavior attributed to cognitive dissonance in terms of a rational
choice of beliefs. Highly sophisticated agents choose their beliefs
to fit their preferences.37 They are fully aware of the way their
subjective perception of the world is biased and yet they keep to
the wrong views. This approach does explain observed behavior
but raises serious questions as to what rationality means. The
type indeterminacy approach is consistent with psychologists’
thesis that cognitive dissonance prompts a change in preferences
(or attitude). We view its contribution as follows. First, the TI-
model provides a model that explains the appearance of cognitive
dissonance. Indeed, if coherence is such a basic need, as proposed
by L. Festinger and his followers, why does dissonance arise in
the first place? In the TI-model, dissonance arises when resolving
indeterminacy in the first DS because of the ‘‘limitations’’ on
possible psychological types (see Section 2.3.2). Second, the TI-
model features a dynamic process such that the propensity to use
safety measures is actually altered (reduced) as a consequence
of the act of choice. This dynamic effect is reminiscent of
psychologists’ ‘‘drive-like property of dissonance’’ that leads to a
change in attitude.

3.2.2. Framing effects
When alternative descriptions of one and the same decision

problem induce different decisions from agents, we talk about
‘‘framing effects’’. Below, we discuss a well-known experiment
that showed that two alternative formulations of the Prisoner’s
Dilemma (the standard presentation in a 2 by 2 matrix and
a presentation in a decomposed form; see below) induced
dramatically different rates of cooperation.
Kahneman and Tversky (2000, p. xiv) address framing effects

using a two-step (non-formal) model of the decision-making
process. The first step corresponds to the construction of
a representation of the decision situation. The second step
corresponds to the evaluation of the choice alternatives. The crucial

37 Akerlof and Dickens allow workers to freely choose beliefs (about risk) so as to
optimize their utility which includes psychological comfort. The workers are highly
rational in the sense thatwhen selecting beliefs, they internalize their effect on their
own subsequent bounded rational behavior.
point is that ‘‘the true objects of evaluation are neither objects in the
real world nor verbal descriptions of those objects; they are mental
representations’’. To capture this feature we suggest modeling the
‘‘process of constructing a representation’’ in a way similar to
the process of constructing preferences, i.e., as a measurement
performed on the state of the agent. This is consistent with
psychology that treats attitudes, values (preferences), beliefs, and
representations as mental objects of the same kind.
In line with Kahneman and Tversky, we describe the process of

decision-making as a sequence of two steps. The first step consists
of a measurement of the agent’s mental representation of the
decision situation. The second step corresponds to a measurement
of the agent’s preferences. Its outcome is a choice. Note that here
we depart from standard decision theory. We propose that agents
do not always have a unique representation of a decision situation.
Instead, uncertainty about what the decision situation actually is
about can be resolved in a variety of ways, some of which may
be reciprocally incompatible. The decision situation itself is, as in
standard theory, defined by the monetary payoffs associated with
the choices, i.e., in a unique way. The utility associated with the
options generally depends both on the representation and on the
monetary payoffs.
To illustrate this approach, we revisit the experiment reported

in Pruitt (1970) and discussed in Selten (1998). Two groups of
agents are invited to play a Prisoner’s Dilemma. The game is
presented to the first group in the usual matrix form, with the
options labeled 1G and 2G (instead of C and D, presumably to avoid
associations with the suggestive terms ‘‘cooperate’’ and ‘‘defect’’):

[C] [D]

1G
3

3
4

0

2G
0

4
1

1

The game is presented to the second group in a decomposed
form as follows:

For me For him
1G 0 3
2G 1 0

The payoffs are computed as the sum of what you take for
yourself and what you get from the other player. So for instance
if player 1 plays 1G and player 2 plays 2G, player 1 receives 0 from
his own play and 0 from the other’s play, which sums to 0. Player 2
receives 1 fromhis ownplay and3 fromplayer 1’s play,which sums
to 4. So we recover the payoffs (0,4) associated with the play of
Cooperate for player 1 and Defect for player 2. Game theoretically,
it should make no difference whether the game is presented in a
matrix form or in a decomposed form. Pruitt’s main experimental
result is that one observes dramatically more cooperation in the
game presented in decomposed form.
We now provide a possible TI-model for this situation. Let us

consider a two-dimensional state space and a sequence of two
incompatible measurements.38 The first measurement determines
themental representation of the DS.We call A the (representation)
observable corresponding to the matrix presentation. It has two
non-degenerated eigenvalues denoted a1 and a2. Similarly, B is the
observable corresponding to the decomposed presentation with
two eigenvalues b1 and b2. If |ψ〉 is the initial state of the agent, we
can write |ψ〉 = α1 |a1〉 + α2 |a2〉 or |ψ〉 = β1 |b1〉 + β2 |b2〉 . The

38 We again implicitly assume that the two measurements are complete, i.e., not
coarse.
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second measurement (i.e., the decision observable is unique; we
called it G. G) has also two eigenvalues denoted 1G and 2G.
For the sake of concreteness, we may think of the four

alternative mental representations as follows39:
|a1〉 : G is perceived as an (artificial) small-stakes game;
|a2〉 : G is perceived by analogy as a real-life PD-like situation

(often occurring in a repeated setting).
|b1〉 : G is perceived as a test of generosity;
|b2〉 : G is perceived as a test of smartness.
When confrontedwith a presentation of the DS the agent forms

her mental representation of the DS which prompts a change in
her state from |ψ〉 to some |ai〉 (if the frame is A) or

∣∣bj〉 i, j = 1, 2
(if the frame is B). The new state can be expressed in terms of the
eigenvectors of the decision situation: |ai〉 = γ1i |1G〉 + γ2i |2G〉 or∣∣bj〉 = δ1j |1G〉 + δ2j |2G〉 .
We can now formulate the framing effect as the following

difference:

pGA (iG) 6= pGB (iG) , i = 1, 2. (10)

Using our result in Section 2.3.2 we get

pGA (1G) = pG (1G)− 2α1γ11α2γ12 and
pGB (1G) = pG (1G)− 2β1δ11β2δ12
where pG (1G) is the probability of choosing 1 in a (hypothetical)
unframed situation. So we have a framing effect whenever
2α1γ11α2γ12 6= 2β1δ11β2δ12.
The central experimental result discussed in Selten (1998)

is that the decomposed presentation induces more cooperation
than the matrix presentation. In our model, this translates into
the following inequality: 2α1γ11α2γ12 − 2β1δ11β2δ12 > 0. The
inequality says that the interference term for 1G is larger in the
standard matrix presentation A than in the decomposed form
corresponding to the B presentation. In order to better understand
themeaning of this differencewe shall consider a simple numerical
example.
Set α1 =

√
.8, α2 =

√
.2, β1 =

√
0.4, β2 =

√
0.6. The key

variables are the correlations between the ‘‘representation types’’,
i.e., |ai〉 or

∣∣bj〉, and the ‘‘game type’’ 1G, i.e., the numbers γ11, γ12
and δ11, δ12. We propose that γ11 =

√
.3, which is interpreted as

when the agent views the game as a small-stakes game she plays 1G
with probability .3. Similarly γ12 =

√
.7, which means that when

the agent perceives the gameby analogywith real life, she ‘‘cooper-
ates’’ with probability .7. In the alternative presentation B, we pro-
pose that δ11 = 1, i.e., when the game is perceived as a test of gen-
erosity, the agent cooperates with probability 1. When the game is
perceived as a test of smartness, δ12 = 0 (because the agent views
the play of 1G as plain stupid). Computing these figures, we get

2α1γ11α2γ12 − 2β1δ11β2δ12 = 0.366− 0 > 0.

In the A presentation the contribution of both the |a1〉 and
the |a2〉 type is positive and significant. When the agent is
indeterminate, both types positively contribute, reinforcing each
other. In contrast, in the B presentation the contribution from
|b2〉 is null so there is no interference between the types. When
the agent determines herself (i.e., selects a representation) the
contribution from indeterminacy is lost and that loss is positive
withA, while it is nullwith B. Therefore, the probability for 1Gwhen
the game is presented in thematrix form is larger (here by .36) than
in the game presented in the decomposed form.
Comments
Selten proposes a ‘‘bounded rationality’’ explanation: players

make a superficial analysis and do not perceive the identity of the

39 This is only meant as a suggestive illustration.
games presented under the two forms. Our approach is closer to
Kahneman and Tversky who suggest that, prior to the choice, a
representation of the decision situation must be constructed. The
TI-model provides a framework for ‘‘constructing’’ a representa-
tion such that it delivers framing effects in choice behavior. Of
course framing effects can easily be obtained when assuming that
the mental images are incomplete or biased. In the TI-model we
do not need to appeal to such self-explanatory arguments. In the
TI-model, framing effects arise as a consequence of (initial) inde-
terminacy of the agent’s representation of the decision situation.
Since alternative (non-commuting) presentations are equally valid
and their corresponding representations (eigenvalues) equally in-
formative, a highly rational agent can exhibit framing effects.

4. Discussion

In this section, we briefly discuss some formal features of our
model.40
Our approach to decision-making yields that the type of

the agents, rather than being exogenously given, emerges as
the outcome of the interaction between the agent and the
decision situations. This is modeled by letting a decision situation
be represented by an operator (observable). Decision-making
is modeled as a measurement process. It projects the initial
state of the agent into the subspace of the state (type) space
associated with the eigenvalue corresponding to the choice made.
Observables may either pairwise commute or not. When the
observables commute, the corresponding type space has the
properties of the Harsanyi type space. From a formal point of
view, this reflects the fact that all (pure) types are then mutually
exclusive.41When the observables do not commute, the associated
pure types are not all mutually exclusive. Instead, an agent who is
in a pure state after the measurement of an observable will be in a
different pure state after the measurement of another observable
that is incompatible with the first one. As a consequence, the
type space cannot be associated with a classical probability space
and we obtain an irreducible uncertainty in behavior. The Type
Indeterminacy model provides a framework where we can deal
both with commuting and with non-commuting observables. In
the TI-model, any type (state) corresponds to a probabilitymeasure
on the type space which allows one to make predictions about the
agent’s behavior. It is in this sense that the TI-model generalizes
Harsanyi’s approach to uncertainty.
The more controversial feature of the TI-model as a framework

for describing human behavior is related to the modeling of the
impact of measurement on the state, i.e., how the type of the agent
changes with decision-making. The rules of change are captured
in the geometry of the type space and in the projection postulate.
It is more than justified to question whether this seemingly very
specific process should have any relevance to the Social Sciences.
It has been shown that the crucial property that gives all its

structure to the process of change can be stated as a ‘‘minimal
perturbation principle’’. The substantial content of that principle is
that we require that when a coarse DS resolves some uncertainty
about the type of an agent, the remaining uncertainty is left
unaffected. Recall our example in case 2 of Section 3.1. When
the agent chooses an item out of a subset A of three items, this
prompts a resolution of some uncertainty. The type is projected

40 For a systematic investigation of the mathematical foundations of the HSM in
terms of their relevance to the social sciences, seeDanilov and Lambert-Mogiliansky
(2008).
41 We say that a type is pure when it is obtained as the result of a complete
measurement, i.e., the measurement of a complete set of commuting observables
(CSCO).
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into the eigenspace spanned by the two orderings consistent with
the choice made. The minimal perturbation principle says that
uncertainty relative to the ordering of the two remaining items is
the same as before. In behavioral terms, this can be expressed as
follows. When confronted with the necessity to make a choice, the
agent only ‘‘makes the effort’’ to select her preferred item, while
leaving the order relationship between the other items uncertain,
as initially.
It may be argued that the minimal perturbation principle is

quite demanding. Returning again to our example, if the mental
processes involved in the search for the preferred items fully upset
the initial state, the principle is violated. It could also be argued that
the mental processes involved in decision-making determine the
whole ranking. That would also violate the minimal perturbation
principle. This short discussion suggests that selecting a good TI-
model requires careful thinking and possibly some trial and error.
We do not expect the Type Indeterminacy model to be a fully

realistic description of human behavior. Rather, we propose it as
an idealized model of agents characterized by the fact that their
type changes with decision-making. In particular, some features
of the TI-model, like the symmetry of the correlation matrix in
simple examples, may seem very constraining from a behavioral
point of view. Consider twoDSwith two options, e.g., the Prisoner’s
Dilemma and the Ultimatum game (with options ‘‘share fairly’’
and ‘‘share greedily’’). Assuming those DS have non-degenerated
eigenvalues, the symmetry of the correlation matrix means that
the probability of playing (e.g., defecting after having played, say,
greedy) is exactly the same as the probability of playing greedy
after having played defect.Wedo not expect this kind of equality to
hold in general. A failure of this equality to hold may be due to the
fact that the DS have some degenerated eigenvalues. In fact, this is
likely to be the case in the Social Sciences, since we often deal with
rather coarse measurements of the agent’s type. Unfortunately, a
model with coarsemeasurements is plagued by serious limitations
regarding quantitative predictions. This is because there is no
singlewell-defined correlationmatrix linking twonon-commuting
observables representing two incompatible coarse measurements.
It is easy to understand why. Consider again our cognitive
dissonance example. Assume that the basis for the A DS (choice
of job) is three-dimensional so that we have three eigentypes: the
adventurous, the habit-prone, and the reasonable type. Similarly,
the basis of the B DS (decision to use the safety equipment) is
three-dimensionalwith the corresponding eigentypes: risk-loving,
risk-averse, and risk-neutral.42 Now assume the choice for the new
job (in A) can be made by the adventurous type or the reasonable
type or any superposition of the two. Since the eigentypes are
orthogonal, the (probabilistic) outcome of the measurement of the
B DS is not the same, whether the worker is of the adventurous
type or of the reasonable type. Therefore, knowing the first choice
(e.g., for the new job), we cannot give the probabilities for the
outcomes in the B DS. There is no unique correlation between the
choice of new job and the decision to use or not to use safety
equipment. It depends on the type of theworker after the decision,
which is not uniquely defined by the outcome. Notwithstanding
this lack of uniqueness, it remains true that the first choice changes
the type of the worker, i.e., we have non-commutativity and so
cognitive dissonance phenomena can be explained by a TI-model.
Nevertheless, keeping in mind some reservations as to its

realism, our view is that the Type Indeterminacymodel canprovide
a fruitful framework for analyzing, explaining, and predicting
human behavior. Clearly, much additional work is needed to
extend the TI-model to strategic and repeated decision-making.

42 Two non-commuting complete observables always have the same dimension-
ality for the dimensionality of the system they measure.
We are currently exploring this second stage of our research
program.
As a final remark, it should be emphasized that not all instances

of non-commutativity in choice behavior call for Hilbert space
modeling. Theories of addiction feature effects of past choices
on future preferences. And in standard consumer theory, choices
do have implications for future behavior, i.e., when goods are
substitutes or complements. But in those caseswe do expect future
preferences to be affected by the choices. The Type Indeterminacy
model of decision-making can be useful when we expect choice
behavior to be consistent with the standard probabilistic model,
because nothing justifies a modification of preferences. Yet, actual
behavior contradicts those expectations.

Appendix. Elements of QuantumMechanics

A.1. States and observables

In Quantum Mechanics the state of a system is represented by
a vector |ψ〉 in a Hilbert space H . According to the superposition
principle, every complex linear combination of state vectors is
a state vector. A Hermitian operator called an observable is
associated with each physical property of the system.

Theorem 1. A Hermitian operator A has the following properties:

- Its eigenvalues are real.
- Two eigenvectors corresponding to different eigenvalues are
orthogonal.
- There is an orthonormal basis of the relevant Hilbert space formed
with the eigenvectors of A.

Let us call |v1〉 , |v2〉 , . . . , |vn〉 the normalized eigenvectors of
A forming a basis of H . They are associated with eigenvalues
α1,α2, . . . , αn, so A |vi〉 = αi |vi〉. The eigenvalues can possibly
be degenerated, i.e., for some i and j, αi = αj. This means that
there ismore thanone linearly independent eigenvector associated
with the same eigenvalue. The number of these eigenvectors
defines the degree of degeneracy of the eigenvalue, which in turn
defines the dimension of the eigensubspace spanned by these
eigenvectors. In this case, the orthonormal basis ofH is not unique
because it is possible to replace the eigenvectors associated with
the same eigenvalue by any complex linear combination of them
to get another orthonormal basis. When an observable A has no
degenerated eigenvalue, there is a unique orthonormal basis ofH
formed with its eigenvectors. In this case (see below), it is by itself
a Complete Set of Commuting Observables.

Theorem 2. If two observables A and B commute there is an
orthonormal basis of H formed by eigenvectors common to A and B.

Let A be an observable with at least one degenerated eigenvalue
and B another observable commuting with A. There is no unique
orthonormal basis formed by A eigenvectors. But there is an
orthonormal basis of the relevant Hilbert space formed by
eigenvectors common to A and B. By definition, {A, B} is a Complete
Set of Commuting Observables (CSCO) if this basis is unique.
Generally, a set of observables {A, B, . . .} is said to be a CSCO if there
is a unique orthonormal basis formed by eigenvectors common to
all the observables of the set.

A.2. Measurements

An observable A is associated with each physical property of a
system S. Let |v1〉 , |v2〉 , . . . , |vn〉 be the normalized eigenvectors
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of A associated respectively with eigenvalues α1,α2, . . . , αn and
forming a basis of the relevant state space. Assume the system
is in the normalized state |ψ〉. A measurement of A on S obeys
the following rules, collectively called the ‘‘Wave Packet Reduction
Principle’’ (the Reduction Principle).
Reduction principle
1. When a measurement of the physical property associated

with an observable A ismade on a system S in a state |ψ〉, the result
can only be one of the eigenvalues of A.
2. The probability of getting the non-degenerated value αi is

P(αi) = |〈vi|ψ〉|2 .
3. If the eigenvalue is degenerated then the probability is

the sum over the eigenvectors associated with this eigenvalue:

P(αi) =
∑∣∣∣〈ν ji |ψ〉∣∣∣2 .

4. If the measurement of A on a system S in the state |ψ〉 has
given the result αi then the state of the system immediately after
the measurement is the normalized projection of |ψ〉 onto the
eigensubspace of the relevant Hilbert space associated with αi. If
the eigenvalue is not degenerated then the state of the system after
the measurement is the normalized eigenvector associated with
the eigenvalue.
If two observables A and B commute then it is possible to

measure both simultaneously: themeasurement of A is not altered
by the measurement of B. This means that measuring B after
measuring A does not change the value obtained for A. If we again
measure A after a measurement of B, we again get the same value
for A. Both observables can have a definite value.

A.2.1. Interferences
The archetypal example of interferences in quantummechanics

is given by the famous two-slits experiment.43 A parallel beam of
photons falls on a diaphragm with two parallel slits and strikes
a photographic plate. A typical interference pattern showing
alternate bright and dark rays can be seen. If one slit is shut then
the previous figure becomes a bright line in front of the open
slit. This is perfectly understandable if we consider photons as
waves, as it is the assumption in classical electromagnetism. The
explanation is based on the fact that when both slits are open,
one part of the beam goes through one slit and the other part
through the other slit. Then, when the two beams join on the plate,
they interfere constructively (giving bright rays) or destructively
(giving dark ones), depending on the difference in the length of
the paths they have followed. But a difficulty arises if photons are
considered as particles, as can be the case in quantum mechanics.
Indeed, it is possible to decrease the intensity of the beam so as
to have only one photon traveling at a time. In this case, if we
observe the slits in order to detect when a photon passes through
(for example, by installing a photodetector in front of the slits), it
is possible to see that each photon goes through only one slit. It
is never the case that a photon splits to go through both slits. The
photons behave like particles. Actually, the same experiment was
done with electrons instead of photons, with the same result. If
we do the experiment this way with electrons (observing which
slit the electrons go through, i.e., sending light through each slit
to ‘‘see’’ the electrons), we see that each electron goes through
just one slit and, in this case, we get no interference. If we repeat
the same experiment without observing which slit the electrons
pass through then we recover the interference pattern. Thus, the
simple fact that we observe which slit the electron goes through
destroys the interference pattern (two single-slit patterns are

43 See, e.g., Feynman (1980) for a very clear presentation.
observed). The quantum explanation is based on the assumption
that when we don’t observe through which slit the electron has
gone then its state is a superposition of both states ‘‘gone through
slit 1’’ and ‘‘gone through slit 2’’,44 while when we observe it, its
state collapses onto one of these states. In the first case, the position
measurement is made on electrons in the superposed state and
gives an interference pattern, since both states are manifested in
the measurement. In the second case, the position is measured on
electrons in a definite state, and no interference arises. In other
words, when only slit 1 is open we get a spectrum, say S1 (and S2
when only slit 2 is open).We expect to get a spectrum S12 that sums
the two previous spectra when both slits are open, but this is not
the case: S12 6= S1 + S2.
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