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We consider a situation in which an agent M (the “maven”) possesses informa- 
tion relevant to the players of an n-person game in which he is not a participant. 
We define the “inducible set” as the set of ah outcomes which can be made 
unique Nash equilibria of a game resulting from the maven’s transmission of 
information. This inducible set is a formal expression of M’s ability to manipulate 
the game. We demonstrate some properties of the inducible set and characterize it 
for 2-person zero-sum games. Finally, we define the notion of the “value of 
information” possessed by M and provide an explicit formula to calculate this 
value in terms of the inducible set. Journal of Economic Literature Classification 
Number: 026. o 1990 Academic press. I K .  

1. INTRODUCTION 

The presence of uncertainty imparts value to information. In a decision 
theoretic framework the value of information equals the increment in 
expected utility an individual can realize by possessing it (see Hirshleifer 
and Riley, 1979) and therefore is the most he would be willing to pay to 
acquire it. In determining the value of information the individual does not, 
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in the decision theoretic framework, explicitly consider how the actions 
of others will affect it nor what information others possess. Neither fea- 
ture remains valid in a general conflict situation under uncertainty involv- 
ing more than one decision maker, namely, a game. 

The question we address is: What is an appropriate definition of the 
“value of information” in an extensive form game? As in the decision 
theoretic framework this value should reflect how much the parties to the 
conflict are willing to pay for it. However, in the decision theoretic frame- 
work, the value of information can be determined independently of the 
mechanism by which payment takes place. This is not true in the game 
theoretic framework because of the presence of externalities that give rise 
to the free rider problem. To deal with value of information in the context 
of a strategic conflict we posit the existence of a sole possessor of infor- 
mation, dubbed “the maven,” who is not a party to the conflict, and ask 
how much he can profit by disclosing some or all of it to some or all the 
affected parties. The nonparticipation of the maven in the conflict is as- 
sumed so as to assure his impartiality beyond his quest to maximize the 
value of his information. We imbue him with sole possession of the infor- 
mation so as to abstract from the effects of competing mavens on its 
value. Finally, because it is commonly easier to sell something specific 
than something vague, we focus on those situations in which disclosure of 
information leads to an unambiguous outcome of the conflict situation. It 
should be kept in mind that the maven is merely an artifact for getting at 
the value of information. Moreover, our analysis is in the spirit of offering 
an approach to determining the value of information in any specific con- 
text rather than providing a value of information for all contexts. Our 
approach to this question requires resolution of the following two ques- 
tions. 

(a) Given a strategic conflict, which outcomes can the maven induce 
through partial or full disclosure of information to the players? The 
maven’s ability to affect the outcomes may be regarded as his possession 
of “power” (as in the expression “knowledge is power”). 

(b) What profit can the maven realize from his power to induce 
changes in the conflict situation by various disclosures of information? 
This involves determining the optimal mode of its sale. 

We begin by defining a natural “action space” for the maven, which is 
the space of possible information transmissions. It includes the naive 
actions of revealing or not revealing some information to a certain player 
and more sophisticated ones as well. The maven’s actions are similar in 
nature to the communication devices proposed in Forges (1986) to study 
communication equilibria. In our context this is equivalent to an exten- 
sive form communication device, i.e., a communication device at each 
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node of the tree. These communication devices have the special feature 
that the players have no input to send. 

Next we describe the consequences of the maven’s actions in the space 
of outcomes of the games: What outcomes can he induce using the actions 
available to him? We use a rather strong definition of this notion. The 
maven can induce a certain outcome if he has an action (i.e., information 
transmission) that makes it the unique perfect Nash equilibrium of the 
resulting game. The set of all such outcomes is called the inducible set, 
which we propose as an expression for the maven’s ability to manipulate 
the game. 

Despite the strong definition of inducibility adopted here, the inducible 
set may be “large” in nontrivial families of games of interest. We con- 
sider such a family and display properties of its inducible set. A full 
characterization of the inducible set of 2-person zero-sum games is also 
presented. 

We then turn to the second question, attributing an economic value to 
the maven’s power as measured by the inducible set. All mechanisms the 
maven can design to achieve a certain point in the inducible set are con- 
sidered. The value of his information is defined to be the highest payoff, u, 
he can “guarantee” himself. Under an optimal mechanism, the maven 
collects the payoff u from the players of the game. Furthermore, it is a 
dominant strategy for each player to pay his share in u. We provide an 
explicit formula (Theorem 7.2, below) to calculate the value of informa- 
tion. This result has been applied in Kamien et al. (1988) to determine the 
optimal licensing mechanism for a cost reducing innovation of significant 
magnitude. 

The paper is structured as follows. In Section 2 we discuss the issue of 
information transmission via an example. We demonstrate a signaling 
strategy that motivates the definition and the results presented in Sections 
3 and 4. In Section 5 we apply the results of Section 4 to characterize the 
inducible set of the example of Section 2. In Section 6 we characterize the 
inducible set of any 2-person zero-sum game in extensive form. The eco- 
nomic value of information and the related literature are discussed in 
Section 7. 

2. AN EXAMPLE 

The following example is intended to fix ideas in clarifying the main 
issues and concepts and motivate the formal theory that follows. Consider 
the following three-stage game: 

Stage 0. A black (B) or white (W) card is drawn by chance and placed 
face down. Each color has equal probability of being drawn. 
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Nature 

FIG. 1. The black and white game. 

Stage 1. Player 1 announces a color B or W. 
Stage 2. Player 2 knowing the color announced by player 1 announces 

a color B or W. 
Payoffs: If both players announce the same color, each obtains 2 

units. If the announced colors are different, the player who announced it 
correctly receives 5 while the other receives 0. 

Denote this game by I(t) (parametrized by the probability of B in stage 0). 
The extensive form of the game is given in Fig. 1. 

It is easily seen that this game has a unique Nash equilibrium (NE) 
outcome with expected payoff (2.5, 2.5). In fact it is a dominant strategy 
for player 2 to announce the color opposite to that announced by player 1, 
since it yields an expected payoff i * 5 + $ .O = 2.5 which exceeds the sure 
payoff of 2 if he announces the same color. 

Suppose now that a third party, M, the maven, knows the color of the 
card chosen at stage 0. Although he is not a player in the original game, he 
has the ability to affect its outcome by disclosing his information. The 
obvious way of doing so is to inform either one or both players about the 
actual color of the card chosen in stage 0. There are four possibilities. 

If only player 1 is informed of the true color, and it is common knowl- 
edge that this is the case, the resulting game is described in Fig. 2. It is 
now a dominant strategy for player 1 to announce the true color and 
knowing that, the only best reply for player 2 is to repeat the same color, 
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(2.2) (590) (025) (2,2) (2.2) (0.5) (5,O) (232) 

FIG. 2. It is common knowledge that only Player 1 is informed. 

yielding (2.2) as the only NE outcome of the game. This outcome is 
strictly inferior for both players than the NE outcome of the original 
game. This means in particular that the informed player 1 is worse offthan 
the uninformed player 1 of the original game. It is tempting to conclude 
that “information can be harmful” to a player, but it is not the informa- 
tion itself that harms player 1 but the fact that player 2 knew that he had it. 

By the same argument one concludes that the game in which both 
players are informed also has (2, 2) as the unique NE outcome (since this 
is just a consequence of the common knowledge that player 1 is in- 
formed). Finally if only player 2 is informed of the true color it is a 
dominant strategy for him to announce the correct color and thus the only 
NE outcome is .5(2, 2) + S(0, 5) = (1, 3.5). 

The four simplistic possibilities of information transmission are summa- 
rized by their outcomes in Fig. 3 in what we call the I-U matrix, in which 
I stands for “informed” and U for “uninformed.” 

Can the maven induce other outcomes? In particular can he induce a 
payoff above 3.5 to player 2? It may be thought that player 2’s best 
situation is to be exclusively and fully informed as player 1, who moves 
first, cannot take advantage of the information transmitted to player 2. 
Yet it turns out that player M can transmit “partial” information to the 
two players that will induce a payoff of 9 to player 2 (and y to player 1). 
Let us show this before formally describing the set of all strategies avail- 
able to M. Player M’s strategies consist of two parts. The first is a com- 
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Player- 2 

I I I 
u I 2.5, 2.5 I I, 3.5 I 

I I I 
Player 1 I -1 

I I I 
I ’ 2, 2 I 2, 2 I 

I I 
I I I 

FIG. 3. The I-U matrix of the black and white game. 

mon signal p or w transmitted to both players before player l’s move. The 
second is a private signal to player 2 after player l’s move. The common 
signal is chosen as follows: if the true color is B, player M chooses /3 or o 
with probabilities 4 and 3, respectively. If the true color is W the probabili- 
ties are 3 and 4, respectively. After player l’s move, player M reveals the 
true color to player 2 only if player l’s move “matches” the signal an- 
nounced by player M (i.e., if player 1 chooses B following the announce- 
ment /3 or chooses W following CO). 

Suppose now that player M’s above strategy, (T, becomes common 
knowledge to the two players. To describe the game I, induced by cr, 
observe that 

Prob (Player M announced w) = (i)(q) + (f)(G) = d 

and by Bayes’ rule 

Prob (true color is B/player M announced o) 

= (3wmt> + WB) = 3. 

Similarly, 

Prob (true color is Blplayer M announces u) = 6. 

Thus, the game I, can be described by Figs. 4, 5, and 6, where the 
subgames Pp and I, are shown in Figs. 5 and 6. 

Let us now find the perfect equilibrium point of Ip. Taking into account 
that player 2 chooses the correct color when he is informed about it, we 
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Nature 

FIGURE 4 

describe his strategy in lYP by specifying his moves only when he is not 
informed about the correct color (i.e., when player 1 chooses W). Thus, 
we obtain the following strategic form game: 

2 

B W 

In this game player l’s choice of W and player 2’s choice of B are domi- 
nant. Thus the unique perfect equilibrium payoff of IP is (Y, 9). Similarly 
(Y, Y) is also the unique perfect equilibrium payoff of I, and, hence, also 
of the game I,,. It is interesting to note that in the game I, player 1 
chooses W although his conditional probability of matching the true color 
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Nature 

FIGURE 5 

is only d compared to 4 if he would have chosen B. He does this to prevent 
player 2 from being informed about the true color. The set of all outcomes 
inducible by the maven in this example will be characterized in Section 5 
where we employ the definitions and results of the next section. 

Nature 

- -- -- - -----_ 

_--- 

(Z,.?) (5,O) (035) (292) (2,2) co,51 (530) (232) 

FIGURE 6 
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3. SIGNALING STRATEGIES 

Let I be a finite n-person game in extensive form with the set of players 
N={l,. . . ) n}. Let M e N. We refer to M as the maven or player M. 

DEFINITION 3.1. Player M’s information is a partition E of the set of 
all nonterminal nodes of I. 

This definition provides considerable generality: player M’s informa- 
tion may be about chance moves, about players’ moves, or about any 
combination of the two. E may be a refinement of a particular player’s 
information sets, which means that player M “knows more” than that 
player. In general, however, an information element e E E may intersect 
two of the same player’s information sets. This means that player M does 
not know some information known to that player. Furthermore, an ele- 
ment e E E may intersect two information sets of two different players i 
and j. This means that player M at e does not know which player’s move 
it is but still has some information that may be relevant to one or both of 
them. 

DEFINITION 3.2. (1) Player M’s signal set is a set S of any alphabet. 
(2) Player M’s set of pure strategies is x0 = (,SN)E and the set of mixed 

strategies is c = A(&,) (the set of probability distributions on co). 

The signal set S is the set of messages; each element of S is a message 
that can be communicated by Player M to each of the players. A pure 
strategy is a prescription of what message to send to each of the players in 
each information element e E E. We denote a pure strategy s E co by 
s = {S(e)},EE with the interpretation that if the node x E e belongs to 
player i then upon reaching it, he receives the ith component of s(e) 
before making his move. 

We assume that a strategy (T of player M becomes common knowledge 
before the beginning of the game and that he is committed to implement- 
ing it. This eliminates the possibility of player M “cheating” by transmit- 
ting a signal which is not according to (T. Consequently, at any point in the 
induced game the players’ beliefs are consistent in Harsanyi’s sense; i.e., 
they are derived from common prior given their private information. 

The above assumption also rules out the idea of “secret” transmission 
of information, e.g., to inform player 1 (in the black and white example) 
about the color while player 2 “thinks” that he is uninformed. Strictly 
speaking this is not a game; it is a situation in which player 2 “thinks” that 
he is playing the game in Fig. 1 while in fact he is playing the game in Fig. 
2. Imbedding this in a larger game with incomplete information would 
necessarily involve inconsistent beliefs that are not possible in our model. 
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Any strategy cr E x of player M modifies the original game I’ to another 
game with the same set of players. We denote this game by I-,, and call it 
the game induced by the stmtegy CJ. If ~0 is a pure strategy then r,,, is 
obtained from r by refining each player’s information sets by the signals 
he receives from M. If o is the mixed strategy using pure strategies 
a;, . . . ) erg with probabilities p r, . . , pi, respectively, then f, is the 
extensive form game shown in Fig. 7. The “information set” in Fig. 7 
indicates that for each of the players the same nodes in Trr;, and T,:, are 
indistinguishable unless the signals received there are distinct. 

DEFINITION 3.3. (i) A payoff vector x E RS is inducible by player M 
in the game r if there exists a u E 2 such that the induced game rn has a 
unique perfect Nash equilibrium point with payoff .Y. 

(ii) The inducible set in r with respect to information E is the closure 
of all payoffs inducible by player M with information E. (Notation: 
x = X(T, E).) 

Note that the uniqueness of (r is not required; a certain x E X may 
be inducible by two (or more) different strategies v and o’. In this case 
each of I?, and r,, has a unique perfect NE with payoff X. 

Remark. Definition 3.3 is a special case of a conceivably more general 
definition of inducibility. Let I; be a subset of the class of all games in 
extensive form with a given set N = { 1, . . . , n} of players. Given a game 

Nature 

FIGURE 7 
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I with the set of player N and given the information partition E we define 

rE = {G E G(3u E x, s.t. G = I,}. 

Let C#J be a single valued solution concept 4: Cj --, R”. The inducible set X 
of I with respect to 4 is defined to be the closure of the image 4(IE). In 
Definition 3.3, G is the set of all games with unique perfect NE and 4 
associates with each game in 9 the payoff of its perfect NE. 

LEMMA 3.4 For any r and any E, the set of all inducible outcomes is 
convex. 

Proof. Letx = hixi + . . -+XkxkrwherexiEX,hi>O;i=l,. . . , 
k and Z A; = 1. Let (T; E 2 be such that xi is the payoff for the unique NE 
in I,, . Let (T be the strategy in which player M chooses {a;}~=, with proba- 
bilities {hi}b=, , announces ui to all players, and then implements it. 
It is readily seen that I, has a unique NE with payoff x. 

COROLLARY. The noninducible outcomes in X can be only on the 
boundary of X. 

4. INFORMATION ABOUTCHANCEMOVES 

A class of games of special interest is that in which player M knows the 
outcomes of some of the chance moves in I. By taking the product space 
of all chance moves known to player M we may equivalently consider 
the situation in which there is one chance moue with outcomes 0 = 
{Ol, . * . , ok} (“states”), probability distributionp = (~1, . . . , pk), and 
the chosen state is known to player M. We view p as a parameter of the 
game with range A(0) = {p = (~1, . . . , ok) E Rk(pi 2 0, xp; = l}, and 
write r(p), l?,(p), etc. 

LEMMA 4.1 (Splitting strategy). Let A = (A,, . . . , A,), Xi L 0, 
I=Aj = 1, and let p, (pj)j”_l be points in A such that p = c,.=, kjpj; then 
in T(p) player M can induce a game which is equivalent to the 
following: a chance move chooses a member of {p’, . . . , p”} according 
to the probabilities A,, . . . , A,, all players are informed of the outcome 
pj, and then T(pj) is played. 

This is a well known result from the theory of games with incomplete 
information (see Mertens and Zamir, 1971, Lemma 2, p. 46). We provide a 
rather simple proof for the sake of completeness. 

Proof. Let So = (~1, . . . , s,} be any subset of m signals from S. For 
iE{i,. . . , k} for which pi > 0 let y ’ = (7;) . . . , -yi) E A(&) be de- 
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fined by y,; = Ajp j/p,: i = 1, . , k, j = I, , rrt. Consider the 
following signaling strategy by player M: if the true state is 0;. perform the 
lottery y’ on So (i.e., for ,j = 1, . . , m, choose signal s, with probability 
ri> and announce the outcome to all players. The probability of announce- 
ment Sj is x; p,iyj = c; A.,& = A,;, and for Ai > 0 the conditional probabil- 
ity on 0 given announcement s, is 

P(State is O;)announcement is Sj) = p;rilAj = I)<. 

In other words, the conditional distribution on 0 given the announcement 
Sj is pj. The resulting game is therefore equivalent to the one in Fig. 8. 
completing the proof of the lemma. 

Let X: A + 2R” be the set valued function from A to subsets of R n where 
X(p) is the inducible set of T(p). The set X(p) may be empty for some or 
even for all p E A since by our definition inducibility has to occur via a 
unique NE. Consider, for instance, a case as in Fig. 9 in which chance 
chooses one of two games IL and IR with probabilities p, 1 - p, respec- 
tively, and the chosen game is publicly announced and played. In such a 
game player M has no role at all if p = 0 or p = 1. Therefore if, say, IL has 
more than one equilibrium payoff then X(1) = 0. However, Lemma 3.4 
states that whenever X(p) # 0 it is convex. A consequence of Lemma 4.1 
is that the set D = {p E AlX(p) # 021) is also convex. Actually the same 
argument demonstrates a stronger result, namely: 

THEOREM 4.2. The graph of the set valued function X dejined on D is 
a convex set in A x R”. 

Nature 

r.(P”) 

FIGURE 8 
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1-P 

FIGURE 9 

Proof. Let x1 E X(p*), x2 E X(p2); p = hp’ + (1 - h)p2; 0 5 A 
5 1. We have to show that x = Xxi + (1 - A)x2 E X(p). If p 1 = p 2 or 
A = 0 or A = 1, the result follows from Lemma 4.1, so assume p ’ # p2, 
and0 < A < 1. 

For any E > 0, x1 E X(p’) implies that 3~~1 E x such that I,,(p2) has a 
unique NE with payoff E-close to x1. Similarly 3~9 E x such that IU2( p2) 
has a unique NE with payoff E-close to x2. Let 6 be the mixed strategy 
inducing (by Lemma 4.1) the game of Fig. 10. 

Nature 

W1) l-(P2) 

FIGURE 10 
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Chance 

P 

x 

/ 
r (Pl) 

5 

1 -A 

\ 
r (P2) 
a2 

FIGURE 11 

Let u be player M’s strategy consisting of Cr followed by (g,, oz), that 
is: perform the lottery 6, announce the outcome 1 or 2, and then apply g1 
or (~2, respectively. Clearly this can be written as a signaling strategy 
(mixed or behavioral) based on the signal set (1, 2) x S. The resulting 
game is equivalent to the one of Fig. 11, and it is common knowledge to all 
players whether 1 or 2 is reached. Clearly the unique NE of this game is 
the one which follows the unique NE in I,,(p *) or Icz(p2) according 
to whether the state is 1 or 2. The corresponding payoff is Xx, 
+ (1 - A)XZ = x. Therefore x E X(p), completing the proof of the theo- 
rem. 

It is worth mentioning that x(p) is continuous on int D, where 
D = {p E A/x(p) # 0}. This follows from the next lemma which is 
proved in the Appendix. 

LEMMA 4.3. Let c be a convex subset of iw” and let f be a single 
valued function from c into subsets of [Wk. Suppose that the graph off is 
convex on 6 X Rk and that f(x) is a closed subset of Rk for each x E C. 
Then f is continuous in Znt i? (the interior of c). 

5. THEBLACKANDWHITEGAMEREVISITED 

Let us now find the inducible set for the black and white game I%). 
Thus far we have shown the following: 
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l The payoff (2, 2) is inducible by informing player 1 (or both players) 
of the color of the card. 

l The payoff (1, 8) is inducible by informing player 2 only. 
l Payoffs arbitrarily close to (Y’, Y) are inducible by the behavioral 

signaling strategy described in Section 2. 

Assume that player M has full information both about nature’s moves and 
player l’s move, i.e., E = {{O}(l), {2}, {3}, {4}, {5}, {6}} (see Fig. 5). 

PROPOSITION 5.1. (3, 2) belongs to the inducible set X(T($), E). 

Proof. Consider the game IQ) for 0 5 p i 1. Its strategic form is 
given by 

BB BW WB ww 

I I I I I 
I I I I I 

B I 2, 2 I 2,2 I 5P, x1 - P) I 5P, Xl - PI I 
I I I I I 
I I 1 I I 
I I I I I 

w 1 31 - PI> 5P 1 2, 2 ; 31 - P), 5P 1 2, 2 I 
I 

I I I I I 

Here the left component of player 2’s strategy indicates his move if player 
1 announces B and the right component indicates his move if player 1 
announces W. For p = g + E the game I’(p) has a unique perfect equilib- 
rium in which player 1 announces W and player 2 plays WB (which is the 
opposite choice to that of player 1). The resulting payoff is (3 - 5~, 
2 + 5~). Similarly the game I($ - E) has a unique perfect equilibrium 
point which results in the same payoff, (3 - 5&, 2 + 5~). Consequently 
(3 - 5a, 2 + 5~) E X(5 + E) fl X($ - E). Thus, by Theorem 4.2, (3 - 5~, 
2 + 5~) E X(t) for each F. Since X(d) is a closed set, (3, 2) E X(i) and 
the proof is complete. 

Note that this proof does not establish the inducibility of (3, 2). In fact, 
we suspect that (3,2) is not inducible although we do not have a proof for 
that. 

PROPOSITION 5.2. The inducible set in l?(2) with information E = {{0}, 
{l}, {3}, {4}, {5}, (6))for player A4 is (see Fig. 12) 

X(B) = ConK2, 2), (3, 2), (1, f), (9, 5, 

where for a set S, Con S denotes the conuex hull of S 
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s Payoff 

(1,3.5) :: 
D (10/7,25/7) 

, I 2 3 l’s Payoff 

FIG. 12. The inducible set for the black and white game. 

Proof. We have already shown that all four points, A = (2, 2), 
B = (3, 2), C = (1, S), and D = (9, Y), are in the inducible set. It 
follows from Proposition 3.4 that 

Con{A, B, C, D} C X(i). 

To prove the inverse inclusion it is sufficient to show that any inducible 
outcome (xi, x2) is constrained by the appropriate four straight lines, that 
is: 

(i) x1 +x255 (line BD) 
(ii) 3x, + 2x2 2 10 (line AC) 

(iii) x2 2 2 (line AB) 
(iv) XI - 6.~2 + 20 2 0 (line CD). 

Constraints (i) and (ii) are satisfied since these are constraints on the set of 
all possible outcomes, which is Con((2, 2), (5.0), (0, 5)). Constraint (iii) is 
clearly satisfied since 2 is player 2’s minimax value in any I, : player 2 can 
guarantee it simply by repeating player l’s announcement. Consequently 
no NE of I,, (for any u) yields player 2 a payoff smaller than 2. It is 
therefore sufficient to prove that (iv) is satisfied for any NE of Ic. To see 
this write any possible payoff (x, , x2) as a convex combination: 

(XI, x2) = do, 5) + P(S, 0) + (1 - CY - /3)(2, 2). (“1 
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Observe first that if (iv) is violated for (xi, ~2) then 

4a > 3p + 2. (**I 

Assume now that (xi, x2) satisfying (9) and (**) is in the inducible set. 
Then there is a (T E x and (f, g), and NE strategies of players 1 and 2 in I, 
with the corresponding payoff (XI, x2) satisfying (*> and (**>. 

The information sets of player 1 in IO are partitioned into three types: 

l Cry (resp. UT> information in which player 1 knows for sure (among 
other things) that the color is B (resp.W). 

l Uy information set in which player 1 does not know for sure whether 
the color is B or W. 

Given (T, f, and g, at any information set U, of player 1, let (&, 8, (1 - & 
- /3>) be the conditional probabilities of outcomes (0, 5), (5, 0), and (2, 2) 
at Ui . Since by assumption, the (unconditional) probabilities (a, p) satisfy 
(*) and (**), there must be at least one information set U, reached (by 
(f, g)) with positive probability, for which the probabilities (&, p) satisfy 

46 > 3p + 2. (***I 

Consider such a 11,. It cannot be of type rl-? or UT since in those sets 
& = 0 (since player 1 can avoid (0, 5)). Assume that (according to f) 
player 1 chooses W at U, (the other case treated in the same way), and let 
y be the (conditional) probability, at U,, that the true state is B. When 
choosing W, the outcome (0, 5) can be obtained only if the state is B. 
Hence y 2 CL So by choosing W (according to f) at UI player 1 expects: 
O& + 56 + 2(1 - 6 - p), but if he deviates and plays B he expects at least 
2y (with probability y it is the correct color and he gets at least 2). Now 
2y 2 26, and (***) is equivalent to 2& > 5fi + 2(1 - & - p). This 
is a contradiction to the fact that (f, g) is a NE. 

This completes the proof of Proposition 5.2. 

Note again that the inducible set we established for the black and white 
game is strictly larger than the convex hull of payoffs in the I-U matrix 
(see Fig. 9). 

The signaling strategies proposed here provide the maven a broad 
action space because he can induce outcomes not reachable by I-U 
actions alone and he can even sometimes induce a selection ofa spec@ic 
NE point from a set of several. This is illustrated in the following exam- 
ple. 

EXAMPLE 5.3. Consider a situation in which a chance move allows, 
with equal probabilities, one of two matrix 2-person games, GL and GR, 
and play occurs without knowledge of chance’s choice (see Fig. 13). If 
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Chance 

GL 

i Player 2 

L R 

T / 3.3 8. 2 
I 

Player 1 1 

B I 2.6 4. 4 

L R 

1 -6. -6 -3. -4 I 
I I 
I I 
I I 
I -4. -3 -2. -2 i 

FIG. 13. The game of Example 5.3. 

player M, knowing which game is actually being played, restricts his 
actions to inform/not inform, the NE of the resulting induced games are 
given by 

1 U 

I 
I I 
I (5, 3 I(e.5, 01, (2, O)] I 
I I 
I 

u I WJ, -3, (0, 211 I(l.5, -11, C-1, 1.51, (0, ON I 

The feature to be noted here is that except for the case in which neither 
player is informed (i.e., the original game), all the other three games have 
multiple NE; if only one player is informed, there is an entire segment of 
NE payoffs and if both are informed there are three NE. So with our 
definition of inducibility, it would appear that only (0.5, 0.5) is inducible 
by the I-U actions. However, with the above defined general signaling we 
have the following result proved by Kamien et al. (1988): 
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PROPOSITION 5.4. The inducible set X of the game in Example 5 satis- 
fies (see Fig. 14) 

x 3 ConK2, 01, (0, 21, (1.5, -11, C-1, 1.9, t-1, co, C-1, 01, (0, -1)). 

In Fig. 14 the polyhedron ABCDEFG is the set of all possible outcomes 
(i.e., payoffs for 1 and 2) which are of the form x = .5x~ + .5x~, where XL 
is a point in the convex hull of ((3, 3), (6, 2), (2, 6), (4,4)} and XR is a point 
in the convex hull of ((-6, -6), (-3, -4), (-4, -3), (-2, -2)). The 
polyhedron ABCRSG is the convex hull of all Nash equilibrium payoffs in 
the I-U matrix and strictly larger than it, is the polyhedron ABCMNG, 
each point of which is inducible by the maven. 

The fact that the I-U payoffs are in the inducible set mean that, for 
instance, (1, 0), which is one point in the continuum of equilibria of the 
game in which only player 1 is informed, can be made the unique NE in a 
game induced by some signaling strategy. 

C-1.5,-1.5) E\ 

2’s Payoffs 

A 

FIG. 14. The inducible set for the game in Example 4.5. 
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6. THE ~-PERSON ZERO-SUM CASE 

in this section we treat the special case in which the original game 1 is a 
%person, zero-sum game. We will confirm the well known statement that 
information has a positive value in this case: the best a maven can do for 
one player is to disclose it all to him and none to his opponent. The fact 
the opponent is aware of this does not matter and no sophisticated signal- 
ing can do better than that. 

To state this result formally, let I be a 2-person, zero-sum game. Let 
E={e,, . . . , e,} player M’s information. Take S = (0, 1,2, . . , m} to 
be the set of signals and define as before the set x of (mixed) signaling 
strategies, For each u E 2 denote, as usual, by I, the game induced by v 
and its value by u,. Let Cr and a be the (pure) strategies of player M given 
by 

Z(ei) = (i, O), aCei> = (0, 9, Ve; E E. 

with the interpretation that according to a: at e; communicate i to player 1 
and 0 (the neutral signal) to player 2. Similarly for a. 

THEOREM 6.1. u, 5 u, 5 u,-, Vu E Ix. 

That is, the inducible set is the segment [II,, ~1. 
Proof. Given any mixed strategy o of player M, define (T by 

k(ei> = (i, u2(ei)), i= 1,2,. . . ,m. 

Clearly in I$ player I’s strategy set contains his strategy set in I* while 
the strategy set of player II is the same in both games. Since the values are 
maximin it follows that u, 5 u,. Observing that a(ei) = ((+i(ei), 0), i = 1, 
2 7.. . > m, it follows by the same arguments that u, 5 u, and hence 
Us % u,-. Similarly one obtains Us 5 u,. 

7. THEVALUEOFINFORMATION 

In this concluding section we turn briefly to the question of what is the 
value of information to the maven. There is a vast literature dealing with 
the value of information both in economics and game theory. We refer to 
only a small subset of it. The relationship between the value of informa- 
tion to its possessor and the number of others having the information was 
analyzed by Hirshleifer (1971) in the context of the return to inventive 
activity, by Hakansson et ul. (1982), and by Novos and Waldman (1982). 
Ponssard (1976) analyzed the implications of differences in information 
between duopolistic firms, while Sakai (1985) has also included the effects 
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of these differences on consumers. Green and Stokey (1981) studied the 
value of information in the context of the principal-agent problem. Allen 
(1986) studied the value of information to consumers in a general equilib- 
rium framework. Levine and Ponssard (1977) compared the values of 
public, private, and secret information to the players involved in a game 
of incomplete information. However, they did not consider the strategic 
behavior of the owner of information in assessing the values of the differ- 
ent types of information. Analyses of the value of information when its 
owner behaves strategically have been conducted by Kamien and Tauman 
(1984, 1986), Kamien et al. (1988), and Katz and Shapiro (1985, 1986) in 
the context of patent licensing, and by Admati and Pfleiderer (1986a,b), in 
the context of stock market information. Guth (1984) and Muto (1986) 
analyze the dissemination of information regarding a superior technology 
as it is resold by its initial purchasers. 

The value of information to player M derives from his ability to affect 
the game, that is, from the inducible set. The question we address is: 
Given a set X C RN (to be interpreted as a set of payoff vectors to the 
playersN={l,. . . , n}), and a player M 4 N with the ability to induce 
any x E X, what is the value of this power? However, at present, we do 
not have a completely satisfactory answer. In what follows we make the 
additional crucial assumption that player M has the ability to design the 
mechanism of his negotiation with the set N of players affected by his 
power (that is, a game with player N U {M}), and commit himself to 
implementing it. In such mechanisms, player M’s only possible action is 
to choose some x E X and the reactions of the other players are to 
influence his choice by paying him (assuming, of course, the possibility of 
transferring utility from each player to player M). 

DEFINITION 7.1. 

(i) Player M can guarantee a payoff z if for each E > 0 there is a 
mechanism with a unique NE in which it is a dominant strategy for each 
player i E N to pay ai, such that CiEN ai = Z, - E. 

(ii) The value of player M’s power is the maximum payoff he can 
guarantee. 

THEOREM 7.2. Given an inducible set X, the value of player M’s 
power is given by 

V = SUP 2 Xil(Xl, a a . 
1 

,x,) EX I - 2 inf{xIxEX}. (1) 
i=l i=l 

Proof. Assume for simplicity that all inf and sup are attained on X 
andletx*EargmaxCixj. . . . For j E N denote pj = min{xjlx E X}, 
xj E {x E Xlxj = pj}. Observe first that M cannot guarantee more than 
v. Indeed, any payoff, YM, of M, is of the form 
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where x E X and yi is the net payoff of i. Since XiEN xi 2 xjE~ x,* 
and yi 2 pi (individual rationality) we conclude that yM 5 u in any Nash 
equilibrium. 

Consider now the following two-step mechanism: 

Step 1. Player M requests that each player j E N pay him the amount 
xj* - pj - sin. Each player can choose either to pay or not to pay. Let 
N, = {j E N/j chooses not to pay}. 

Step 2. If Ni = 0 player M induces x*. If Ni f 0 player M gives each 
j E N\Ni a refund of x1! - kj and induces xk, where k is the least index 
in Ni. 

It is readily verified that in this mechanism it is a dominant strategy for 
each player j E N to pay x1! - pj - &In. As a result, x* will be induced and 
player M’S payoff will be Xj XT - Xj pj - &. 

Let us illustrate this result for the black and white game. A “best” 
outcome is x* = (2.5, 2.5) which is obtained when player M does nothing. 
The individuals’ minimum utility levels are 

PI = 1 (in (1, 9; 

P2 = 2 (in (2, 2)). 

So the value of player M’s power, which in this case is the value of the 
information, is u = 2.5 + 2.5 - 1 - 2 = 2. The mechanism which 
e-achieves it is: 

Step 1. Player 1 is asked to pay 1.5 - 42. Player 2 is asked to pay 
0.5 - E/2. 

Step 2. The maven acts according to the reaction of the two players 
according to the following table: 

Player 2 

Pay 

Do nothing. 

Does not pay 

Refund of 1.5 to player 1 
and announce publicly the 
color of the card. 

Player 1 

Does not pay Refund 0.5 to player 2 
and give him the 
information exclusively. 

Announce publicly the 
color of the card. 
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It is easily verified that in the induced game it is a dominant strategy for 
both players to pay, giving the maven the total payoff of 2 - E. 

APPENDIX 

ProofofLemma 4.3. Lower semicontinuity follows directly from the 
convexity of the graph off. It remains to prove that fis upper semicontin- 
uous on Int C. Let x0 E Int C, x, + x0, y, + yo, and y,, E f(x,). Let us 
prove that y. E I. Suppose to the contrary that yo $E f(xo>. Since f(xo) 
is convex and closed, by the separation theorem there is a linear func- 
tional 6 on Rk such that 

4dYo) ’ ,=& $dY’) 2 0. (*I 

Letzl, . . . , zk+ I be k + 1 points in C such that xo E Int Conv (zi , . . . , 
zk+i). Then for each E > 0 there exists an n sufficiently large such that x0 
can be represented as a convex combination of the form 

ktl 

X0 = CKXn + 2 aiZi3 
i=l 

wherea,airO,a+Cai=l,andarl-&. 
Now since the graph off is convex 

ktl 

fCxO) 1 CYf(Xn) + C c.Uif(Zj). 
i-1 

Thus, 

k+l 

p& 4(Y’) 2 HY”) for each y” E Qlf(x,J + 2 aif( 
i=l 

By the linearity of 4 we have 

Now fix yi E f(zi) and let p = max{l+(Li)l Ii = 1, . . . , k + l}. Taking the 
limit when n -+ 03 we obtain 
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Since this is true for any E > 0, we have 

contradicting (*). 
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