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1. INTRODUCTION

Information transmissions in strategic games were discussed by Forges (1986)
and by Kamien et al. (1988). The latter deals with games in extensive form
where an outside player, an information holder, has some information unknown
to the players in the game. The information holder’s strategies are various infor-
mation transmissions available to him. Each one of these strategies induces a
new game with the same set of players. The set of all Nash equilibrium points
obtained as the unique perfect equilibrium of a game induced by an information
transmission is called the inducible set. This set measures the ability of the in-
formation holder to change the game. The inducible set of any two-person zero-
sum game in extensive form is characterized in Kamien ez al. (1988). However,
the characterization of the inducible sets of a non-zero sum game is, in general,
far from trivial. An illustration of the characterization of an inducible set of a
two-person non-zero game is given in Kamien et al. (1988). In this paper we
focus on a different phenomenon. We provide an example where basic transmis-
sions of information induce games with multiple and even a continuum of perfect
Nash equilibria payoffs. Thus, by our definition such games do not contribute any
point to the inducible set (only Nash equilibrium payoffs which are the payoff of
a unique perfect equilibrium of a game induced by some transmission of infor-
mation are inducible). Nevertheless, it turns out that these multiple equilibrium
payoffs are all inducible. Namely, each one of these equilibrium payoffs is the
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unique Nash equilibrium of a game induced by some transmission of informa.
tion. We do not know, however, how general this phenomenon 1s.
We start with a brief overview of the basic definitions and results in Kamiep

et al. (1983).

2. THE Basic DEFINITIONS AND RESULTS

Let I be a finite n-person game in extensive form in which the set of players
isN =1{1,2,...,n} Let M & N. We refer to M as the information holder or
player M (the ““maven”).

DEFINITION 1. Player M’s information of player I is a partition E of the sei
of all nonterminal modes of I.

DEFINITION 2.

(1) Player M’s signal set is a set S of any alphabet.
(2) The set of player M’s pure strategies is >, = (SY)% and his set of mixed
strategies is 2 = A(2,) (the set of probability distributions on 9

A mixed strategy of M is called a signalling strategy.

The signal set S is the set of messages; each element of S 1s a message that
player M can communicate to each of the other players. A pure strategy is a
prescription of what message to send to each of the players in each information
element ¢, € E. We denote a pure strategy s € 2, by s = {s(€)}.ex With the
interpretation that if the node x € e belongs to player i then this player, upon
reaching this node, receives the ith component of s(e) before making his move.

We assume that player M’s strategy choice o, becomes common knowledge
before the beginning of the game and that he is committed to carrying it out.
This eliminates the possibility of player M’s “‘cheating” by transmitting a signal
which is not according to o. Consequently, at any point in the induced game,
the beliefs of the players are consistent in Harsanyi’s sense, 1.¢., they are derived
from common prior given each player’s private information.

Any strategy o € 2 of player M modifies the original game I" to another game
with the same set of players. We denote this game by I', and call it the game
induced by the strategy o. If o, is a pure strategy then I, is obtained from 1 by
refining the information sets of each player by the signals he receives from M. If
o is the mixed strategy using pure strategies oy, . . - of with probabilities
Pis - . ., pi respectively, then I'; is the extensive form game in Figure 1. The
“information set” in Figure 1 indicates that for each of the players the same
nodes in I'y; and ',k are indistinguishable unless the signals feceived there are
distinct.
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Fic. 1. The form game I, for which o is the mixed strategy.

DEFINITION 3.

(1) A payoff vector x € R" is inducible by player M in the game I' if there
exists a o € S, such that the induced game T, has a unique perfect Nash
equilibrium point with payoff x.

(2) The inducible set in T with respect to information E is the closure of all
payoffs inducible by player M with information E. (Notation: X =
X(T, E)). '

Note that the uniqueness of o is not required; a certain x € X may be inducible
by two (or more) different strategies o- and o’ In such a case eachof I, and I',
has a unique perfect NE with payoff x.

Remark. Definition 3 is a special case of a possibly more general definition
of inducibility. Let G be a subset of the class of all games in extensive form with
a given set N = {1, . . ., n} of players. Given a game I" with the set of players
N and given the information partition E denote |

Fo=lGet| e st =T,)

Let W be a single-valued solution concept ¥ : G — R". The inducible set x of
I', with respect to ¥, is defined to be the closure of the image W(I'y). In Defi-
nition 3, G is the set of all games with unique perfect Nash equilibrium and
V¥ associates with each game in G the payoff of its perfect Nash equilibrium.

Owr first result is easily obtained. |
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1. For any I" and any E, the set of all pavoffs inducible bv M is

OROLLARY. The noninducible outcomes in X can be only on the boundg,
e )

3. INFORMATION ABOUT CHANCE MOVES

A class of games of special interest is that for which player M knows the
outcomes of some of the chance moves in I'. By taking the product space of a]]
chance moves known to player M we may equivalently consider the situation ip
which there is one chance move with outcomes O = {0y, . . . , o} (“states™),
probability distribution over the states p = (p;, . . . , px) and the chosen state
is known to player M. We view p as a parameter of the game with range A =
Ip = (p, -0 ER|p, = 0,2 p, = 1}, and write I'(p), I'o(p) ete.

LEMMA 2. (Splitting Strategy) Let A = (A, . . ., A), A, =0, 2 A = |
and let p, (p))7., be m + 1 points in A such that p = 27-; A;p’. Then in 1'( p)
player M can induce a game which'is equivalent to the following: a chance move
chooses a point in {p', . . . , p"} according to the probabilities \,, . . . , \,,, all

players are informed of the outcome p’ and then 1'(p’) is played.

This is a well known result from the theory of games with incomplete infor-
mation (see Mertens and Zamir, 1971, Lemma 2, p. 46). A proof is also pro-

vided in Kamien et al. (1988). By Lemma 2 we can now derive the following.
LetD = {p € A| X(p) # 0O}.

PROPOSITION 3. The graph of the set valued function X(-) defined on D isa
convex set in A X R".
For a proof see Kamien et al. (1988).

ExaMPLE. Consider the following two-person-game 1 (described in Fig-
ure 2). If player M, knowing which game is actually being played, T', or I,
restricts himself to the actions “‘inform’ (I) and “‘do not inform” (U), he can
induce the following four games: |

(1, I): Informing both players’ results in the only Nash equilibrium payoff
(0.5, 0.5).

(I, U): Informing Player 1 only. The informed player then uses his dominant
strategies (T in I, and B in I'y) leaving the uninformed player with the choice L,
with expected payoff (—0.5, 0), or R, with expected payoff (2, 0). Any mixture
(y, 1 — y),0 =y =1, of L and R by the uninformed player yields a perfect
Nash equilibrium with expected payoffs (2 — 2.5y, 0). Therefore, in the game
induced by informing the row player only, there is a continuum of perfect Nash

=
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0.5 0.5
(7 =)
Player 2
s R  § R
B3 6, 2 5 -6, —6 -3 —4
Player 1 :
26 4. 4 B -4, —3 -2, =2
Iy [y

Fic. 2. Two person game I

equilibria with payoffs consisting of the line segment [(—0.5, 0), (2, 0)]. Simi-
larly, the action (U, I) induces a game in which each point of the line segment
[(0, —0.5), (0, 2)] is a perfect Nash equilibrium payoff.

(U, U): If neither player is informed, they play the original game which is
equivalent to

L R
T — 38y =15 1.5, =1

B -4 1.9 15 1

This game has two pure Nash equilibria with payoffs (1.5, —1) and (=1, 1.5)
and a mixed Nash equilibrium in which each player plays the pure strategies
with equal probability, yielding the expected payoff (0, 0).

The I-U “matrix”’ summarizing the outcome of these four actions 1s:

i U
I (0.5, 0.5) [(—0.5, 0), (2, 0)]

U [{0,. —0.3), 10, 2)} [(1.5, —1), (=1, 1.5), (O, O)]

Which payoffs of the I-U matrix are in the inducible set? According to our
definition, only the outcome (0.5, 0.5) is inducible, by (I, I). Any other action
leads to a game with a multiplicity of perfect Nash equilibrium payoffs. Never-
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theless, we will show below that there are modes of information disclosure thq;
enable Player M to induce any point in a rather larger set X which contains th,
convex hull of all the Nash equilibrium payoffs described in the I-U matriy
above, and more.

PROPOSITION 4. Any point in the set X which is the open convex hull of
{2,0),(0,2), 1.5, —1),(—1, 1.5), (=1, 0), (0, — 1)}, is inducible.

In Fig. 3 the polyhedron ABCDEFG is the set of all payoffs which are of
the form x = 0.5x, + 0.5xz where x; is a point in the convex hull of {(3, 3),
(6, 2), (2, 6), (4, 4)} and xz is a point in the convex hull of {(—6, —6), (=3,
—4), (—4, —=3), (—2, —2)}. The polyhedron ABCRSG is the convex hull of
all Nash equilibrium payoffs in the /-U matrix and strictly larger than it, is the
shaded open polyhedron ABCMNG, each point of which is inducible by the
information holder. |

Proof. Let I'(p) be the game starting with a chance move which selects one
of the two games I'; and I'; with probabilities p and 1 — p, respectively. Thus
the game under consideration is I'(0.5) and we are interested in the inducible set
X(0.5). The games I'(1) and I'(0) are I'; and I';, respectively. These have perfect
Nash equilibrium payoffs (3, 3) and (—2, —2), respectively, and Player M has
no role there. Therefore, we have:

(1). X(©0) = {(—2, —2)} and X(1) = {(3, 3)}. Consider now I'(p) and the
pure signalling strategy:

oy: kkatl, and rkat]I;.

A (0, 2)

L1959 G

C{1.5,+1

D (0, -2) ‘

FiG. 3. The inducible set x(0.5).
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This strategy tells Player 1 the true game and provides Player 2 no information
(i.e., always k). Since for Player 1, I is a dominant strategy in I, and B 18
dominant in Tk, Player 2 faces the choice between:

L with payoffs p(3, 3) + (1 — p)(—4, —=3) = (Tp — 4,6p — 3)
and | '
R with payoffs p(6, 2) + (1 — p)(—2, —-2) = (8p — 2,4p —2)

Therefore, for p < 0.5, the best reply is R, yielding a unique Nash equilibrium
with payoffs (8p — 2,4p — 2). Forp > 0.5, Player 2’s best reply is L, yielding
a unique Nash equilibrium with payoffs (7p — 4, 6p — 3). We conclude that:

{(8p—2,4p—2)EX(p) for 0=p<05

) (Ip— 4,6p— DEXp for 05<p=1

Notice that (2) implies (1).

Now for 0 < £ < 0.5, 0.5 = (0.5 — &)/(1 + 2¢) + 2e/(1 + 2¢). By (2),
2 — 8, —4e) € X(0.5 — ¢g) and (3, 3) € X(1). So by Proposition 3,
2 — 8e, —4e)/(1 + 2¢) + 2&(3, 3)/(1 + 2¢) € X(0.5), i.e., (2 — 2¢&, 2¢)/
(1 + 2g) € .X(0.2).

Taking & — 0 one obtains that the point A = (2, 0) in Figure 3 is in X(0.5)
(the closure of X(0.5)). Similarly, switching the roles of Players 1 and 2 we have
that (0, 2) € X(0.5). Although similar use of Proposition 3 may be employed to
prove that (—1, 0) and (—1, 1.5) are in X(0.5), it may be instructive to exhibit
directly signalling strategies which induce these outcomes in I'(0.5).

Inducing (—1 + 1.5, 0). Consider the following (behavioral) signalling
- strategy o by Player M: |

T, : (1/3 — g)kk + 2erk + (2/3 = &)rr.
¥ T:: (2/3 + e)kk + (1/3 = &)rr.

Interpretation: If the game is I';, with probability (1/3 — &) communicate k to
both players, with probability 2& communicate r to Player 1 and k to Player 2,
etc. :
We claim that the only Nash equilibrium in the game I;, induced by this
strategy is for Player 1 to play B if he obtains the signal k and play T if he obtains
the signal r, and for Player 2 to always play L. Indeed, the posterior probabilities
after receiving the signals are:

For Player 1: p, = P(I, | k) = /3 — e <1/3
p,=P(I,|r) =203 +e~> 213,

| For Player 2: ¢.'= P(I', | k) = (1/3 + g)/(1'+ 2e) < 1/3
g = P r) = @2/3 — &)1 — 2¢) > 2/3.
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Since it is common knowledge that, in any event, neither player will know the
true game after the signal, the available moves after the signalling will still be 7
B for Player 1 and L, R for Player 2. Each player will therefore face an expecteé
payoff matrix I'(p) given by

L y
T (9p—6,9p—6 9p—3,6p*4)

= pl; + (1 — I =
(p) = pl. + (1 — p)le B \ep—4,9p—3 6p—2 6p—2

in which p equals his posterior probability for I'.. Now, since p, < 1/3 and
p, > 2/3 it is a dominant strategy for Player 1 to play B when hearing k and T
when hearing r. For the same reason it is dominant for Player 2 to play L when
hearing r. Finally, when Player 2 hears k, then either Player 1 also heard %, in
which case Player 1 plays B and Player 2’s best response is L (since g, < 1/3)
or Player 1 heard r, which implies that the game must be I',, in which case L is
again a dominant strategy. This proves our claim that [', has a unique Nash
equilibrium. The corresponding payoff is 0.5[(1/3 — &)(2, 6) + 2&(3, 3) +
(2/3 — &)(3,3) + (2/3 + e)(—4, —3) + (1/3 — e)(—6, —6)] = (—1+
1.5¢, 0). Taking € — O we obtain that (—1, 0) € X(0.5) and similarly (0, —1)
€ X(0.5).

Inducing (—1 + 4.5e, 1.5 — 3g). With the same notation as above, con-
sider the following (behavioral) signalling strategy:

IfT, : (1/3 — e)kk + 2egk + egr + (2/3 — 2¢&)rr.
If Ty : (2/3 — 2e)kk + ks + 2ers + (1/3 — g)rr.
It is readily verified that the posteriors after receiving the signals satisfy:
For Player 1: p, < 1/3; p, < 2/3; p, = 1.
For Player 2: g, > 1/3; g, > 2/3; ¢, = 0.

A discussion similar to the one for the previous case leads to the conclusion that
in the game induced by this strategy there is a unique Nash equilibrium in which
Player 1 plays B when receiving k or r and 7 when receiving g. Player 2 plays
L when receiving k or r and R when receiving s. The corresponding payoft is
0.5[(1 — 3&)(2, 6) + 3e(3,3) + (1 — 38)(—4, —3) + 3&(=2, —-2)] =
(—1 + 4.5¢, 1.5 — 3¢), proving that (—1, 1.5) € X(0.5) and similarly
(1.5, —1) € X(0.5). This concludes the proof of Proposition 4.

Notice that Proposition 4 does not fully determine X (0.5). We conjecture,
however, that the set we found is in fact the whole of X(0.5).
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