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Abstract Maskin and Riley (Games Econ Behav 45:395–409, 2003) and Lebrun
(Games Econ Behav 55:131–151, 2006) prove that the Bayes–Nash equilibrium of
first-price auctions is unique. This uniqueness requires the assumption that a buyer
never bids above his value (which amounts to the elimination of weakly dominated
strategies). We demonstrate that, in asymmetric first-price auctions (with or without
a minimum bid), the relaxation of this assumption results in additional equilibria that
are substantial. Although in each of these additional equilibria no buyer wins with a
bids above his value, the allocation of the object and the selling price may vary among
the equilibria. In particular, we show that these yield higher revenue. We show that
such phenomena can only occur under certain types of asymmetry in the distributions
of values.
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66 T. R. Kaplan, S. Zamir

1 Introduction

In symmetric auctions, there is a unique Bayes–Nash equilibrium (see Vickrey 1961;
McAdams 2007).1 This uniqueness also applies to asymmetric auctions; however,
with the additional assumption that a buyer never bids above his value (see Lebrun
2006; Maskin and Riley 2003). This assumption amounts to the elimination of weakly
dominated strategies which, in other contexts of game theory, may be questionable. 2

We demonstrate that, in asymmetric first-price auctions (with or without a minimum
bid), the relaxation of this assumption may result in additional equilibria that are
substantially different from each other. Although in each of these additional equilibria
no buyer wins with a bid above his value, the allocation of the object and the selling
price vary among the equilibria. These additional equilibria are closely related to
equilibria in an environment with a minimum bid where buyers do not bid above their
values.

To present our main observation, consider the following example.

Example 1 Buyer 1 has values drawn uniformly from [0,5]. Buyer 2 has values drawn
uniformly from [6,7]. There is no minimum bid.

Claim (Equilibrium 1): The following pair of inverse bid functions form an equilib-
rium, buyer 1 bids his value if v1 ≤ 3 (i.e., v1(b) = b if b < 3), and, otherwise,

v1(b) = 36

(2b − 6)
( 1

5

)
e

9
4 + 6

6−2b + 24 − 4b
, (1)

v2(b) = 6 + 36

(2b − 6) (20) e− 9
4 − 6

6−2b − 4b
. (2)

for 3 ≤ b ≤ 4 1
3 (see Fig. 1 for a graph of the bid functions).

Proof It follows from (Kaplan and Zamir 2012) that this is the unique equilibrium
under the assumption that no buyer bids more than his value. ��

Now, by allowing buyers to bid more than their values, we are able present two
other equilibria in which such bidding occurs off the equilibrium path.

Claim (Equilibrium 2): The following vector of bid functions b̃ form an equilibrium.
Buyer 1 bids b̃1(v1) = v1

2 + 2 if v1 > 4 and b̃1(v1) = v1/4 + 3, otherwise. Buyer 2
bids b̃2(v2) = v2

2 + 1. (See Fig. 2.)

1 This uniqueness requires a low bound for the bids (such as 0). See (Baye and Morgan 1999) and (Kaplan
and Wettstein 2000) for details.
2 For example, in strategic form games, the iterated elimination of weakly dominated strategies may
eliminate a Nash equilibrium that strictly Pareto dominates all other Nash equilibria (see Maschler et al.
2013, page 108, Example 4.34). Furthermore, different orders of the elimination of the weakly dominated
strategies may result in different outcomes (see Maschler et al. (2013), page 95, Example 4.15).
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Multiple equilibria in asymmetric first-price auctions 67

Proof To prove that this is indeed an equilibrium we argue as follows.

– Since buyer 2 is always bidding 4 or more, buyer 1 with v1 < 4, has no profitable
deviation since any deviation to b1 < 4 is irrelevant and any deviation to b1 > 4
yields a negative expected payoff.

– Buyer 2 with value v2 cannot profit by deviating to b2 < 4. Indeed, the probability
of winning with such a bid is 4(b2 − 3)/5 and hence the best bid in this region is

b̃2 = arg max
b2∈[3,4]

4(b2 − 3)

5
(v2 − b2) = min

{
max

{
v2 + 3

2
, 3

}
, 4

}
= 4,

since v2 ≥ 6.

– Buyer 2 with value v2 bidding b2 in [4, 4.5] has probability (2b2−4)/5 of winning.
Hence, his best bid in this region is

b̃2 = arg max
b2∈[4,4.5]

2b2 − 4

5
(v2 − b) = min

{
max

{v2

2
+ 1, 4

}
, 4.5

}
= v2

2
+ 1,

since v2 ∈ [6, 7].
Buyer 1 with v1 > 4 cannot profit by deviating to b1 < 4 (again since buyer 2 is

always bidding 4 or more). For b1 ∈ [4, 4.5], the probability of winning is (2b1 − 8)

and hence the best reply to buyer 2’s bid function is

b̃1 = arg max
b1∈[4,4.5] (2b1 − 8) (v1 − b) = v1

2
+ 2.

��
Note that in Equilibrium 2, buyer 1 bids strictly more than his value for v1 ∈ [0, 4).

Claim Equilibrium 3: The following vector of bid functions b̂ form an equilibrium.
Buyer 1 bids b̂1(v1) = v1/5 + 4 and buyer 2 bids 5. (See Fig. 3.)

Proof Note that buyer 1 has no incentive to deviate to bidding above 5 since winning
would yield a negative profit for him. There is also no incentive for buyer 1 to deviate
to a bid below 5, since it would yield the same profit of zero. Given buyer 1’s strategy,
buyer 2 then faces the following maximization problem:

b̂2(v2) = arg max
b2∈[0,5](b2 − 4)(v2 − b2) = min

{
max

{
v2 + 4

2
, 4

}
, 5

}
= 5,

since v2 ≥ 6. ��
Note that in Equilibrium 3, buyer 1 always bids strictly more than his value for all

v1 ∈ [0, 5).
The revenue clearly differs among all three equilibria; yet, this is still consistent

with revenue equivalence (Myerson 1981) since all three equilibria yield different
allocations, and hence revenue need not be the same. See Fig. 4 for the expected
revenue and probability that buyer 1 wins in each of the possible equilibria.
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68 T. R. Kaplan, S. Zamir

Fig. 1 Equilibrium 1. The thicker line is buyer 1’s bid function

Fig. 2 Equilibrium 2. The thicker line is buyer 1’s bid function

Fig. 3 Equilibrium 3. The thicker line is buyer 1’s bid function
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Multiple equilibria in asymmetric first-price auctions 69

Probability that buyer 1 wins Revenue
Equilibrium 1 0.13333 3.99099
Equilibrium 2 0.1 4.26666
Equilibrium 3 0 5

Fig. 4 Probability that buyer 1 wins and the expected revenue in each of the three equilibria

2 Model

Consider n buyers bidding for an indivisible good. Each buyer i has his value drawn
from a distribution Fi with support [vi , vi ] (where 0 ≤ vi < vi ). This environment will
be fixed throughout the paper. The selling mechanism that we will consider is a first-
price auction with a minimum bid m, which we denote by Am . Let bi : [vi , vi ] → R

denote a bid function (pure strategy) and b = (bi )
n
i=1 denote a vector of bid functions.

Definition 1 An equilibrium bm of auction Am is said to be standard if P({bm
i (vi ) >

vi and bm
i (vi ) ≥ m}) = 0 for all i; otherwise, it is called non-standard.

To elaborate on the definition, let us call an acceptable bid, a bid greater than or
equal to the minimum bid. The above definition says that in a standard equilibrium no
buyer makes an acceptable bid that is (strictly) above his value, even if such bids that
never win in equilibrium. In contrast, in a non-standard equilibrium there is a least
one buyer that with positive probability makes an acceptable bid that is strictly above
his value (but still never wins in the equilibrium).

As mentioned above, in our model, there is a unique standard equilibrium (see
Maskin and Riley 2003; Lebrun 2006). Also, in a non-standard equilibrium, although
some buyers may bid above their values, no buyer that bids above his value wins with
positive probability. Such bidding cannot occur on the equilibrium path since such a
buyer would have a profitable deviation (for example, bidding his value). Nevertheless,
as we already saw in our example, the ability to bid above one’s value may substantially
affect the allocation of the object and the selling price. In the above example, the first
equilibrium is standard, while the other two are non-standard.

In the following, we compare equilibria of two different mechanisms, namely, two
first-price auctions with different minimum bids.

Definition 2 A vector of bid functions bm in auction Am is said to be equivalent to a
vector of bid functions bm̃ in auction Am̃ if for any realization of values of the buyers,
both vectors yield the same ex-post payoffs for the buyers and the seller and the same
allocation of the good. We denote equivalence between bm and bm̃ by bm ≈ bm̃ .

Remark 1 The equivalence bm ≈ bm̃ does not imply the equality of the bid functions,
bm = bm̃ . In the opposite direction, bm = bm̃ does not imply bm ≈ bm̃ .

As an example of the first claim in the remark, consider the environment where
buyer 1 has a value uniformly drawn from [0, 1] and buyer 2 has a value uniformly
drawn from [4, 5]. Consider two equilibria for two different minimum bids. With a
minimum bid of 0, buyer 1 bids his value and buyer 2 bids 1. With a minimum bid
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of 1, buyer 1 bids 0 and buyer 2 bids 1. These two equilibria are equivalent but have
different bid functions.

For an example in the opposite direction, consider the symmetric auction where
both buyers have values drawn uniformly from [0, 1] and bid half their value. This is
an equilibrium when the minimum bid is 0 and when the minimum bid is 1. However,
in the former case, buyers always receive the object and in the latter case they never
do. Hence, the two equilibria are not equivalent.

Generalizing the insight from the above example that proves the first part of the
remark, consider two buyers where buyer 1’s value distribution is on [0, 1] and buyer
2’s value distribution is on [α, β] where 0 < α < β. Assume that there is a minimum
bid m where 0 < m < α. (For now, assume that whenever there is a tie, the winner
is buyer 2.) Consider a standard equilibrium with this minimum bid m. This is still
an equilibrium if it is modified with the only change that whenever buyer 1’s value is
below m, he bids m. Furthermore, if the minimum bid is now lowered to m̃ < m, this
modified vector of bid functions is still an equilibrium, but it is clearly non-standard.
The following proposition captures this intuition (without the assumption regarding
the case of a tie).

Proposition 1 For any standard equilibrium bm of auction Am where mini vi < m <

maxi vi and for any m̃ < m, there exists a non-standard equilibrium bm̃ of auction
Am̃ that is equivalent to bm (bm̃ ≈ bm).

Proof It is enough to prove this for bm in which bm
i (vi ) ≥ m if and only if vi ≥ m.

If instead bm does not satisfy this condition, we can construct an equivalent standard
equilibrium b̂

m
of Am that does satisfy this property. Since the equivalence relationship

is clearly transitive, any non-standard bm̃ equivalent to b̂
m

would also be equivalent

to bm . More specifically, define b̂
m

as follows: b̂m
i (vi )

def= bm
i (vi ) for all i , and for all

vi ≥ m where bm
i (vi ) ≥ m and for all vi < m (and hence bm

i (vi ) < m since bm is

a standard equilibrium). Also, define b̂m
i (vi )

def= m+vi
2 for all i , for all vi ≥ m where

bm
i (vi ) < m. Notice that when vi ≥ m and bm

i (vi ) < m, buyer i is not winning (with
positive probability) in bm and hence b̂m

i (vi ) is also not winning against bm
−i , since

this would be a profitable deviation which is impossible since bm is an equilibrium of
Am . Since by construction, b̂m

j (v j ) ≥ bm
j (v j ) for all j 	= i , b̂m

i (vi ) is also not winning

against b̂
m
−i . Thus, b̂

m ≈ bm . Finally, b̂
m

is an equilibrium of auction Am since the
winning bids are the same as in bm and the losing bids are weakly higher.

Given an equilibrium bm of auction Am where mini vi < m < maxi vi and m̃ < m,
let ε be such that 0 < ε < min{maxi vi − m, m − m̃, m}. Define bm̃ as follows:

bm̃
i (vi )

def= bm
i (vi ) for all i and for all vi ≥ m and bm̃

i (vi )
def= m − ε + Fi (vi )

Fi (m)
ε for all vi

s.t. vi < m. We created bm̃ from bm by keeping the bids the same for values weakly
above m and distributing all bids below m uniformly on the interval [m − ε, m]. We
now proceed to show that bm̃ is a non-standard equilibrium of auction Am̃ and it is
equivalent to bm under the assumption that bm

i (vi ) ≥ m if and only if vi ≥ m.

Step 1. bm̃ ≈ bm .
Any buyer i with vi > m always bids higher than m in bm and hence by definition

any buyer i with vi > m always bids higher than m in bm̃ . Since maxi vi > m, both
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in bm̃ and in bm , there is at least one buyer whose bid is greater than or equal to m for
all his values (i.e., with probability 1). Hence, no buyer wins with positive probability
with a bid strictly below m . Since bm̃

i (vi ) = bm
i (vi ) for values vi ≥ m, the allocation

and the price paid for the object in bm̃ of auction Am̃ is the same as in the equilibrium
bm of auction Am . Thus, bm̃ ≈ bm .

Step 2. We next show that bm̃ is an equilibrium of Am̃ .

Step 2a. In bm̃ of auction Am̃ , no buyer with value less than m has an incentive to
deviate.

In fact, since the selling price is always greater than or equal to m, no buyer with
a value less than m would have an incentive to deviate; any deviation to a bid less
than m would not affect the payoff (as it would never win) and any deviation to a bid
greater than or equal to m would result in a non-positive payoff.

Step 2b. In bm̃ of auction Am̃ , no buyer i with value vi ≥ m has an incentive to
deviate to bi ≥ m.

Recall that by definition of bm̃ , we have bm̃
i (vi ) = bm

i (vi ) for all vi ≥ m (and hence
by our assumption on bm , for all bm

i (vi ) ≥ m). Since the distribution of bids above
m is the same for both bm̃ and bm and in bm there is no incentive to deviate to a bid
above m, in bm̃ there is also no incentive to deviate to a bid above m. Formally, let
W m

i (bi ; bm
−i ) be the winning probability of buyer i when bidding bi against bm

−i in auc-
tion Am and let W m̃

i (bi ; bm̃
−i ) be his winning probability when bidding bi against bm̃

−i

in auction Am̃ . Let πm
i (vi , bi ; bm

−i )
def= W m

i (bi ; bm
−i )(vi − bi ) and π m̃

i (vi , bi ; bm̃
−i )

def=
W m̃

i (bi ; bm̃
−i )(vi − bi ) be the expected profit of buyer i when bidding bi against bm

−i in
auction Am and against bm̃

−i in auction Am̃ , respectively. Observe that for all bi ≥ m,

it follows from the definition of bm̃ that W m̃
i (bi ; bm

−i ) = W m
i (bi ; bm̃

−i ) and hence
πm

i (vi , bi ; bm
−i ) = π m̃

i (vi , bi ; bm̃
−i ). Since πm

i (vi , bm
i (vi ); bm

−i ) ≥ πm
i (vi , bi ; bm

−i )

for all bi ≥ m (since bm is an equilibrium), we have π m̃
i (vi , bm̃

i (vi ); bm̃
−i ) =

π m̃
i (vi , bm

i (vi ); bm̃−i ) = πm
i (vi , bm

i (vi ); bm−i ) ≥ πm
i (vi , bi ; bm−i ) = π m̃

i (vi , bi ; bm̃−i )

for all bi ≥ m.

Step 2c. In bm̃ of auction Am̃ , no buyer i with value vi ≥ m has an incentive to
deviate to bi < m.

Since, as we saw in the proof of Step 1, there is a buyer j that in bm̃ bids m or
more with probability one (namely, any buyer j with v j ≥ m), no buyer i 	= j has
a profitable deviation to bid bi < m since such a bid would not win. It remains to
show that j also has no incentive to deviate to b j < m. Now if there are two or more
buyers with v j ≥ m, then there is no incentive for any such buyer to bid b j < m since
another buyer j ′ with v j ′ ≥ m is bidding m or more with probability one. Hence, we
are only left with the case of one buyer j with v j ≥ m and all other n − 1 buyers with
vi < m.

By the definition of bm̃ , there are no bids below m−ε; hence clearly any b j < m−ε

is not profitable. Thus, it is enough to show that for buyer j and for any possible value
v j , the expected profit of bidding b j ∈ [m − ε, m) is increasing in b j . If this is so and
if there is a profitable deviation to b j ∈ [m − ε, m), then there is a profitable deviation
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72 T. R. Kaplan, S. Zamir

to m (the expected profit is upper semi-continuous). This would be in contradiction to
what we proved in Step 2b.

To prove this monotonicity, note that
∂π m̃

j (v j ,b;bm̃− j )

∂b = W m̃′(b; bm̃
− j )(v j − b) −

W m̃(b; bm̃
− j ) and also note that by the definition of bm̃

i (vi ) the distribution of bids for
values below m of player i is uniform on [m − ε, m). Since all other n − 1 buyers bid
[m − ε, m) with positive probability, we have W m̃(b; bm̃

− j ) = (b − (m − ε))n−1 /c

(for b ∈ [m − ε, m)), and W m̃′(b; bm̃
− j ) = (n − 1) (b − (m − ε))n−2 /c where c is a

constant. Hence, since n ≥ 2, we have

∂π m̃
j (v j , b; bm̃

− j )

∂b
= (b − (m − ε))n−2

c

[
(n − 1)(v j − b) − (b − (m − ε))

]

≥ (b − (m − ε))n−2

c

[
v j − 2b + m − ε

]
.

The expression (b−(m−ε))n−2

c ≥ 0 for all b ∈ [m − ε, m]. Since ε < v j − m, when
b = m, the expression v j −2b+m −ε = v j −m −ε ≥ v j −m −ε ≥ 0. Since this last

expression is strictly decreasing in b, it is positive for b < m. Hence,
∂π m̃

j (v j ,b;bm̃− j )

∂b ≥ 0
for all b ∈ [m − ε, m). This together with the condition that W m̃(m − ε; bm̃

− j ) = 0

prove that π m̃
j (v j , m; bm̃

− j ) ≥ π m̃
j (v j , b; bm̃

− j ) for all b ≤ m.

This concludes the proof that bm̃ is an equilibrium of auction Am̃ .

Step 3. The equilibrium bm̃ is non-standard.
Since there exists a buyer k with vk < m, there exists a μ > 0 such that for values

between vk and vk +μ, buyer k bids in the interval [m −ε, m]. For small enough ε and
μ, these bids are strictly greater than his values and greater than m̃ (since ε < m −m̃ );
hence, bm̃ is non-standard. ��

We now show that while the condition m < maxi vi appearing in Proposition 1 is
not necessary for the existence of a non-standard equilibrium, the weaker condition,
m ≤ maxi vi , is a necessary condition.

Proposition 2 If m > maxi vi , then there does not exist a non-standard equilibrium
bm of auction Am.

Proof Assume by way of contradiction that there is a non-standard equilibrium bm of
auction Am . Then, there is a buyer j with value v j that bids with positive probability
b j (v j ) > v j where b j (v j ) ≥ m. There is also a positive probability that maxi 	= j vi <

b j (v j ) (since b j (v j ) ≥ m > maxi vi ). These two events are independent; hence,
their intersection has positive probability. In this event, buyer j will win the auction
and pay more than his value, which cannot be the case in equilibrium. Therefore, there
cannot be a non-standard equilibrium bm of auction Am . ��
Remark 2 The condition of Proposition 2 cannot be weakened to m ≥ maxi vi . In
other words, there may indeed be a non-standard equilibrium when m = maxi vi , as
demonstrated by the following example. There are two buyers with values uniformly

123



Multiple equilibria in asymmetric first-price auctions 73

distributed on [1, 2] and one buyer with a value uniformly distributed on [0, 1/2] and
a minimum bid m = 1. In this case, m = maxi vi . There exists an equilibrium in
which the first two buyers bid bi (vi ) = (vi + 1)/2 for i = 1, 2 and vi ∈ [1, 2] and
buyer 3 bids b3(v3) = 1 for all v3 ∈ [0, 1/2]. This equilibrium is non-standard since
the buyer 3 bids is strictly more than his value and weakly more than m.

We make use of Proposition 2 to prove a stronger result, namely:

Proposition 3 If m > maxi vi and bm is an equilibrium of auction Am, then there does
not exist an m̃ and non-standard equilibrium bm̃ of auction Am̃ such that bm̃ ≈ bm.

Proof By Proposition 2, bm must be a standard equilibrium of auction Am . If
m̃ > maxi vi , then by Proposition 2, there is no non-standard equilibrium of Am̃ .
A fortiori, there is no non-standard equilibrium that is equivalent to bm . So, now we
need to examine the case where m̃ ≤ maxi vi < m. Assume that bm̃ is a non-standard
equilibrium of Am̃ . We will show that in this case, there is a positive probability event
in which the object is allocated in bm of auction Am but not allocated in bm̃ of auction
Am̃ (and hence bm̃ 	≈ bm). Indeed, this happens when there exists a buyer j such that
m̃ < v j < m and maxi 	= j vi < v j . Note that, this happens with positive probability
since m̃ ≤ maxi vi implies that m̃ < maxi vi by the assumption that vi < vi for all
i . In this event, the object is not allocated in (the standard) equilibrium bm since all
values are below m. On the other hand, the object must be allocated in equilibrium
bm̃ . Otherwise, all buyers with such values must bid below m̃. However, if this were
the case, then buyer j could earn strictly positive profit by bidding v j − ε for small
enough ε > 0 (s.t. v j − ε > m̃). ��

We next show that any non-standard equilibrium has an equivalent standard equi-
librium with a higher minimum bid. This is evident from our example in Equilibrium 3
where if the seller sets a minimum bid of m = 5, then the Equilibrium 3 bid functions
(above the minimum bid) form the unique standard equilibrium.

Proposition 4 For any non-standard equilibrium bm̃ of Am̃, there exists an m > m̃
and a bm such that bm is a standard equilibrium of Am and bm ≈ bm̃ .

Proof Consider m = supi,vi
{bm̃

i (vi ) : bm̃
i (vi ) > vi and bm̃

i (vi ) ≥ m̃}. Clearly, m ≥ m̃.

Define bm
i (vi )

def= min{vi , bm̃
i (vi )}. By definition of m, bm̃

i (vi ) ≥ m implies that
bm̃

i (vi ) ≤ vi . Hence, bm
i (vi ) = bm̃

i (vi ) for all bm̃
i (vi ) ≥ m. In bm̃ of auction Am̃ , the

probability that the winning bid is strictly below m is zero. Otherwise, there is a positive
probability that there is a buyer j who wins while bidding bm̃

j (v j ) ≤ b∗ < m. Then,
any bid greater than b∗ (by any buyer) must win with a positive probability. However,
by definition of m, there is a buyer k bidding bm̃

k (vk) where m ≥ bm̃
k (vk) > vk and

bm̃
k (vk) > b∗. This buyer k will be winning with positive probability in Am̃ while

bidding above his value which cannot happen in equilibrium. Hence, bm ≈ bm̃ since
in both auctions all winning bids are (weakly) above m and in that region, bm and bm̃

coincide.
To see that bm is indeed an equilibrium of Am , observe that any buyer i with value

vi not winning in bm̃ is still not winning in bm and has no incentive to change his bid
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bm
i (vi ) (since bm

i (vi ) ≤ bm̃
i (vi ) and winning bids are the same). If bm̃

i (vi ) is winning
in bm̃ of Am̃ , then bm

i (vi ) = bm̃
i (vi ) ≥ m. Since winning bids are the same, there are

no profitable deviations from bm
i , since there are no profitable deviations from bm̃

i . We
conclude that bm is an equilibrium in Am , and as we proved before this implies that
bm ≈ bm̃ . Finally, since if m = m̃, then the same equilibrium would be standard and
non-standard—a contradiction. Thus, m > m̃. ��

Given a non-standard equilibrium bm̃ of Am̃ , let m(bm̃) be the minimum bid defined
in the proof of Proposition 4. Namely, m(bm̃) = supi,vi

{bm̃
i (vi ) : bm̃

i (vi ) > vi and
bm̃

i (vi ) ≥ m̃}. The following corollary states that bm̃
i is still a non-standard equilibrium

in any Am̂ with m̂ < m(bm̃).

Corollary 1 For any non-standard equilibrium bm̃ of Am̃, for any m̂ < m(bm̃),

bm̂ def= bm̃ is a non-standard equilibrium of Am̂ and bm̂ ≈ bm̃ .

Proof The arguments for why bm̂ is an equilibrium of Am̂ are similar to that of the
previous proposition. The equilibrium is non-standard since m̂ < m(bm̃) and by
the definition of m(bm̃) there is a buyer i with value vi where bm̂

i (vi ) > vi and
bm̂

i (vi ) > m̂}. ��
In the examples in the Introduction, the second equilibrium b̃ which is a non-

standard equilibrium of A0 (first-price auction with no minimum bid) is such that b4 def=
b̃ is a standard equilibrium of A4. Furthermore, these two equilibria are equivalent:

b̃ ≈ b4. Similarly, the third equilibrium b̂ is a non-standard equilibrium of A0, b̂
4 def=

b̂ is a non-standard equilibrium of A4, while b5 def= b̂ is a standard equilibrium in A5,

and all three equilibria are equivalent: b̂ ≈ b̂
4 ≈ b5.

We can use the above results to confirm the result in the literature that there are no
non-standard equilibria in symmetric auctions. In fact, we have the following stronger
result.

Corollary 2 In an asymmetric auction, with a common lower bound of the support,
that is, there exists a v such that v = vi for all i , there does not exist a non-standard
equilibrium. Consequently, in a symmetric auction, there does not exist a non-standard
equilibrium.

Proof By Proposition 2, there cannot be a non-standard equilibrium when the min-
imum bid m̃ > v. However, if m̃ = v, then there also cannot be a non-standard
equilibrium since then there would be a buyer bidding strictly above his value (and
thereby strictly above m̃). We would then have m(bm̃) > v. But by Corollary 1, there
would exist a non-standard equilibrium for v < m̂ < m(bm̃), in contradiction to
Proposition 2. If there are no non-standard equilibria for m̃ = v, then there are no
non-standard equilibria for m̃ < v. Since if m̃ < v, in equilibrium the infimum of the
winning bids must not be strictly less than v . (Otherwise, any buyer bidding close to
this infimum would have a profitable deviation.) Hence, any non-standard equilibrium
for m < v would also be a non-standard equilibrium for m = v. Under symmetry, we

have a v
def= vi for all i . ��
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Lebrun (2004) shows in Lemma A5.2-2 that in a first-price auction, in the region
where the minimum bid is binding, raising the minimum bid from m̃ to m, the bid
functions of the buyers in the standard Bayes–Nash equilibrium increase (pointwise
for v ≥ m). Combined with Proposition 4, we obtain the following Corollary.

Corollary 3 In a first-price auctions, if bm̃ is a standard equilibrium of Am̃ and b′m̃
is a non-standard equilibrium of Am̃, then the revenue from b′m̃ is strictly higher than
the revenue from bm̃ .

Proof By Proposition 4, b′m̃ is equivalent to a standard equilibrium bm in Am where
m > m̃ (and therefore yields the same revenue). Denote by Rev(bm) the expected
selling price with bid functions bm . It follows from (Lebrun 2004) that Rev(b′m̃) =
Rev(bm) > Rev(bm̃). ��

This means that from the perspective of the seller, the existence of a non-standard
equilibrium is in a way an indication that the minimum bid is not optimally set; it
can be raised to yield higher revenue. (Although the seller may be obligated to keep
a low minimum bid or the buyers may know each others’ values better than the seller
knows.)

3 Concluding remarks

Our main observation is that in an asymmetric first-price auction Am with a minimum
bid m, besides the unique standard equilibrium, there may be additional non-standard
equilibria where some buyers make acceptable bids above their values. In game theo-
retic terminology, this means that buyers are using weakly dominated strategies. This
is the issue that we focus on in this paper in the context of a first-price auction. We find
that this multiplicity is non-trivial in the sense that both revenue and the allocation of
the good can be different from those in the standard equilibrium. However, this can only
occur in asymmetric auctions, more precisely, only when mini vi < m ≤ maxi vi . We
characterize non-standard equilibria in four propositions. Our main result, Proposition
1, shows how a standard equilibrium can form the basis for a non-standard equilibrium
with a different (smaller) minimum bid. Propositions 2 and 3 provide sufficient condi-
tions under which there does not exist a non-standard equilibrium. Finally, Proposition
4 shows how a non-standard equilibrium can form the basis of a standard equilibrium
with a different (larger) minimum bid.

This paper fits into the small body of literature on multiple equilibria in auctions.
For first-price auctions (equivalent to Bertrand price competition with a unit demand),
(Baye and Morgan 1999) and (Kaplan and Wettstein 2000) show that there can be
additional equilibria with mixed strategies. These require that there is no lower bound
on the bids submitted. Also, in Bertrand price competition with asymmetric costs and
complete information, (Erlei 2002) finds additional equilibria. For the second-price
auction, (Blume and Heidhues 2004) and (Blume et al. 2009) show that there can be
additional equilibria if one relaxes the assumption that buyers never bid above their
values. We follow them by also allowing buyers in a first-price auction to bid above
their values and (weakly) above the minimum bid. This seems worth considering given
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the large body of experimental literature that shows that weakly dominated strategies
are not always eliminated (see Binmore 1999, for a discussion). We find that these
additional equilibria are particularly important in first-price asymmetric auctions since
they may be substantially different in both revenue and outcome.

Kagel and Levin (1993) find that in second-price auctions buyers bid strictly above
their values 67.5 % of the time, while (Garratt et al. 2012) find that seasoned e-Bay
participants still bid above their value in laboratory second-price auctions 37.5 % of the
time. However, experimental results show that in first-price auctions buyers seldom
bid above their values. (Kagel and Levin 1993) report 0.4 %. 3 Nevertheless, they
sometimes do. Buyers have simply to believe that other buyers may sometimes bid
about their value. Given the overbidding frequency in second-price auctions, this may
be reasonable particularly in that this belief may not be falsified. From the Seller’s
viewpoint, it may be worthwhile to try to maintain this belief by not to reveal losing
bids. We conclude that the widely used assumption that buyers do not bid above their
values, or more generally, do not use weakly dominated strategies should be taken
more carefully in asymmetric auctions.
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