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Abstract: We consider situations in which two statisticians are faced with a decision,
and the loss function of each of them depends also on the decision made by the
other one, namely, we consider situations in which two statisticians arc involved in
a gamne.

We are interested in models that may fit ‘real life’ situations. and in which both
statisticians may prefer to reject free information. This is in sharp contrast with the
usual “rule” 1n statistics that asserts that an additional observation in a samplc
cannot be harmiul.

After some general considerations on the problem, examples concerning Bayesian
hypothesis testing and prediction will be shown.

1. Introduction

The relation between mathematical statistics and game theory has been deeply
analyzed in the literature for about 50 years. Typically, a statistical decision
problem can be seen as a game played by the Statistician against Nature. For
example, a statistical decision problem with two actions and two states of nature
can be represented as a game in which, say. the Statistician chooses the row and
Nature chooses the column. Such a framework leads naturally to the notion of
minimax estimators. For a review of the relationship between statistics and
game theory, see Schwarz (1994) and references therein.

This approach was popular in the 1950s, but then it was neglected, mainly
due to the conceptual difficulty in seeing Nature as an agent playing strategically
against the Statistician. It is not even clear what the payoff for Nature in such a
game should be. However, minimax estimators have drawn renewed attention in
the recent years. See for instance Donoho and Johnstone (1994), (1996), (1998).
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It is significant that the only game theoretical concept pertaining in Statistics
is that of minimax. This concept which captures the idea of ‘security level® or
‘the worst scenario’, depends neither on Nature's payoffs nor on Nature’s ‘strategic
behavior’. It simply assumes that Nature acts so as to increase the Statistician’s
losses.

In Bayesian decision problems Nature does not play strategically, but it chooses
among possible actions with a probability which is in general not fully known to
the Statistician. For example, the two-actions-two-states case can be modeled as
follows. Call s,, 5, the two states, and let (€, ) be a measurable space, on
which the following random variables are defined: §: Q — {5, 57} amd ©: Q —
[0, 1]. We may think of @ €8 as a pure strategy for nature. The choice of w &
Q will induce a choice of a state 5; = S(w) and of 8 = ©(®). The value 8 will be
interpreted as the probability with which s is chosen. Therefore a mixed strategy
for Nature is a probability [P on (€, F') which satisfies the following constraints:

P({w: Sw)=5}/0(w)y=0)=0 a.s, Be [01]

Let 7 denote the law of ©. It follows that

1
P(S=s,)= I O(w)P(dw) = J‘ 8 m(d9).
Q 0
A sequence of random observations X, X,,... will be defined on (Q, F, P). This
will allow to define the conditional probabilities P(.| X}, ... , X,)), n € N, which
in turn will induce what in game theoretical terminology may be called the
updated beliefs of the Statistician about the values © (@) and S(@) chosen by
Nature. In problems of hypothesis testing or estimation, what is relevant for the
Statistician is ©, whereas in binary prediction problems what is relevant is §.

In this note we deal with decision problems that involve two interacting
statisticians. These models can be conveniently described by a game where
Nature chooses we € (thus selecting a state), and each of the two statisticians
chooses an action. The payoff (= — loss) of a statistician depends not only on the
state of nature, but also on the action of the other statistician.

Some real life situations may be described by the above model. For example,
think of a commercial transaction consisting in the sale of a large quantity of
items. The sale is going to be carried out only if the statisticians of both the seller
and the buyer approve the quality of the items, relying on possibly separate
samples. In this case, which reduces to a hypothesis testing problem for each of
the statisticians, there are other relevant issues besides making the ‘correct’
decision. For example, if the items are not of good quality, but they are declared
acceptable by the buyer, the seller might have a higher payoff by declaring the
items acceptable as well, even if a second-type error is being made. Other
situations where two or more statisticians are involved are the so-called inspection
games. See Avenhaus, von Stengel and Zamir (1995).

In these interactive statistical decisions problems, the usual criteria for selecting
among decision rules must be replaced by interactive criteria, such as playing a
Nash equilibrium. (A Nash equilibrium is a strategy profile such that no player
can profit from unilaterally deviating from his strategy in the profile.)
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Thus, well-established concepts such as sufficient statistic loose part of their
relevance, and ‘paradoxical’ phenomena may happen. For example, it might be
possible that playing the unique Nash equilibrium, or the Nash equilibrium most
advantageous to both players, involves making a decision which is not based on
a sufficient statistic. Of course, there is nothing paradoxical in this, since interactive
criteria must replace the usual ones. We use the word ‘paradoxical’ in order to
stress the difference with the usual rules.

In this note, we present two examples of what we may call ‘information
paradox’: It is possible that both statisticians ignore (or refuse to acquire, if
given the choice) an additional, free observation.

It is well known that information refusal cannot happen in usual statistical
decision problems. In fact, consider a Bayesian Parametric problem, and assume
for simplicity that only two actions are available, say ay and a,. Let © be the
(random) parameter about which inference is to be made and let W (a, 6) denote
the loss function. Let X,, X5, ... be observations whose law depends on O,
and let

pla, x,) = E(W(a, ©) |X, =x,)

be the (posterior) expected loss after an n-sample x,, is observed. Clearly, for j
{0.1}, we have that n — p(a;, X,) is a martingale. For each x,, consider the

Bayes action a;'(n defined implicitly by
ol a;ﬁ,, . X,;) = min {Kag, X,), Plar, X,) 1,

and consider Bayes rule &, givenby &,(x,) = ax, . Clearly,n — p( 8, (X,), X,))
is a supermartingale, being the minimum of two martingales. It follows that the
Bayes risk associated to the Bayes rule &,

rl 82) = E(W(8,(X,). ©) = E(p(8; (X,). X))

is decreasing in n. Hence the Statistician wants as many observations as possible
Similar arguments apply also in Bayesian prediction problems (see Section 3
below).

The previous argument shows that the positive role of information in usual
Bayesian statistical decision problems is a consequence of the fact that the
Statistician chooses the action that minimizes the expected posterior loss. In
interactive decision problems, this is no longer true, since the Statistician is
concerned also by the decisions of the other statisticians and may thus choose
for instance an action which is compatible with a Nash equilibrium. In such
situations, there is no guarantee that the Statistician desires as much information
as possible. Thus, the two examples below, a Bayesian hypothesis testing problem
and a Bayesian prediction one, in which we see this phenomenon of information
refusal, should not be considered surprising, although they are counterintuitive
at first glance.

Games in which Nature chooses a state with a random probability are considered
in Bassan, Scarsini and Zamir (1998), where the relation between uniqueness of
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Pareto optima and positive role of information is investigated. Other references
related to the information paradox can be found in the above paper.

2. Bayesian Testing
Let © be a (discrete) random variable taking values in the space {6, 6,}. We
want to test the simple hypothesis

H{): 0= 90 VEersus Hl 8= 61.
Consider the following bimatrices of payoffs:
a ag a) 2y

a|-1,-1|-1,-1| if®=6; a| 0.0 [-1,-1]|if@=86,. (1)
gy *—I.-l 0.0 ap —l,—l '—1._‘1

The above matrices might arise in the following context: a seller and a buyer
send each a statistician to inspect some items being sold. Unless both statisticians
make the right decision each of the parties incurs in a unit loss (since either a bad
item is being sold or the transaction is canceled.)

For convenience, we add 1 to every entry in (1). Thus, we work with

a ay ay ap
a| 0,0 0,0 if@=0; a| 1,1 0,0 | ifO=6. (2
Qg 0, 0 I, 1 ag 0‘ 0 0.. 0

From now on, assume that 8, = % and 6, = % Assume also that the prior law

of ©, agreed upon by both players, is specified by

] s 2 e T 3143 _
oo=t)=mrms o{o=1]-B=1-m
Assume that, given © = 0, the random variables X;, Xy, Y are i.i.d. Bernoulli with
parameter 0. The game is as follows:

1. Each statistician first takes privately a sample of size 1 (X; and X,
respectively).

2. A sample of size 1, namely Y, is observed by both players.

3. Each statistician chooses his action.

In the first step, although the information received by each of the statisticians
is private, it is common knowledge that it has been acquired. Namely it is
common knowledge that Statistician I observed the value of X, and Statistician
II observed the value of Xj;. Thus, using the jargon common in game theory
(after Harsanyi (1967/1968)), we will say that player I can be of two types: I,
if X; =0, and /,, if X; = 1. Similarly for player 1. We write [P, (.) for P'(.|X; =
0), etc.
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The above procedure involving the types might be seen as a way to model the
fact that the statisticians possess different, private information. Notice that private
information plays a crucial role in this example. In fact, it is proved in Bassan,
Scarsini and Zamir (1998) that in games with a payoff structure like the one in
(2), if the players have the same information they want as much information as
possible about ©.

We will see that the statisticians may or may not want that further information
be released, depending on their type.

A strategy profile in this game is a string of 8 actions: the first two are the
actions taken by [y if Y= 0 and Y = 1, respectively, and so on. Several equilibria
emerge; among these:

1. Each player chooses a if he thinks that 8, is more likely than 6, given
the information available, including ¥; this yields

(o) (&) (M) (1)
apgdy @ a;aoy aya; 3

2. The same as above, but not taking into account Y; this yields

(dp) () () (1)
aa a @ a)aa,a (4)

In the following subsection we will show that:
(A) Each of the above strategy profiles is a Nash cquilibrium-
(B) The payoffs for [ are F if (3) is played. and ;2 < 35, if (4) is played.

Hence, if given the choice, player Iy would prefer that the additional
information Y be revea[ed'

(C) The payoffs for I, are 'ﬁ if (3) 1s played, and 3 4, > ;23 if (4) is played.

Hence, if given the choice, player /; would prefer that the additional
information ¥ not be revealed.

2.1 Computations

First observe that

P(@=9|)P(X1 =0r’®=91)
P(X,=0)

[FDIO (@=91)=

_ (1 - ) (1 - 6)) 13
Tl -mg) (1 - 6)) + me{l —68y) 227

Similarly, one finds Py, (©@ =0,) = % Furthermore.
[pl[ @=6/r=0=P@®=6,/X;,=0,Y=0)
(1 —mo) (1 - 6)? _ 13

T (U -7) (1-0,)F +mo(l - 6g)F 40

Similarly, one finds

Py (@=6/=1)=P, (0=6/Y=0=1



38 BASSAN ET AL

and P, ©=6/Y=1)=1}
Let us compute now the expected payoff of Iy if (3) is played:
P, (©=0p,Xy=0,Y=0)=P, (®=6,,Y=1)
=Py, (©=60)Py, (Xg =0,Y=00 = 6))
+ P, (@=0) P, (Y=10=0)

237

2 I3
60) s 93 = 352

= i
=35 (1
If I unilaterally deviates from (3) and plays @;a; (other moves are clearly not
advantageous), then his payoff becomes
Ipl() (@= 81,Y=0,X" = l)+|p10 (®= 91, Y= 1)

1B 195
= 2[91(1 8)+6,]= 35

Hence, I has no interest in deviating from (3).
Now, we repeat the same computations for player {,. If (3) is played, then his
expected payoff is

PI] (@=6]'XII = 1,Y=O)+P[l (@=61,Y= }.)

i T _ 195
= 2[91(1 91)"'91]—224

If 1, deviates and plays aga;, then his payoff becomes
P[l (@= Go,X" = 0, Y= 0)+ Pll (@= 91. ¥= 1)

165
=224

Thus, (3) is a Nash equilibrium. It remains only to compute the payoffs in the
_equilibrium (4). The payoff for I, is

=%(1 90)2"‘ 5 61

Py, (0=06)=43 < 21,
whereas the payoff of I; is
Ph (@=Ql)=%>%

3. Bayesian Prediction

In this section we consider an example in which two statisticians have to predict
the outcome of the next observation. After some preliminaries, we review why
a single statistician faced with a Bayesian prediction problem always wants as
many observations as possible. Then we consider the case involving two
statisticians. The resulting game has some similarities with the one concerning
Bayesian hypothesis testing, and in particular the matrices of payoffs are the



Role of Information in the Interaction of Two Statisticians 39

same. Here, though, we don’t confine ourselves to the dichotomy zero-observations/
one-observation, but we consider also partial signaling. This means that a random
variable is revealed to the players, and this random variable may have an arbitrary
correlation coefficient, ranging from 0 to I, with a random variable exchangeable
with the one 1o be predicted. Thus a family of games emerges, indexed by the
correlation coefficient. For each of these games, we will consider several equilibria,
and we will see that, among these equilibria, the most advantageous for the
players involves ignoring the signal, no matter what its intensity is.

Let ©® be a random variable distributed according to a Beta (&, ), and
assume that X|, X, X5 ... is a sequence of Bernoulli random variables, i.i.d.
conditionally on @, with P(X,,, = /0 =0) = 0.

3.1 One Statistician

A statistician has to predict X, after observing X, ... , X,. The space of
actions is formed by two points only, == {ag, a; }. The utility (= —loss) function
is

Lif X, =/,
ulaj, Xou1) =4 - ,
0if X, #J.

Let us compute expected utilities:

Eulay. X,u)| Xpv oo s X) = P(Xpey = 1] Xy .. LX)
= E (P(Xpay = 1Xps oo X, ©) [ Xy o.. , X,)
= E(@ | X], ey Xn).

Similarly, one shows that

E (wlag, Xpr Xy, - . X)) =E(1 - O | X, ..., X))
Hence, a rational decision maker, by taking n observations, achieves
M oe=max {E@|X, X)) ELQ-0X, ¥y — —

Since n — E(®[X, ..., X)) is a martingale, we see that n — M, is a submartingale.
Hence n — E(M,) is increasing. It follows that a single decision maker, faced
with this Bayesian prediction problem, wants as many observations as possible.

3.2 Two Statisticians

Assume that two statisticians must predict X,. Assume that the reward to each
statistician is 1 if both statisticians predict correctly the outcome of X,, and 0
otherwise. Thus, the payoff matrices are as in (2), namely:

a) ay a) ay
o[ 00 ]00] ifx,=0; a[L1 |00 |ifx,=0. (5
ay| 0.0 1,1 ap | 0,0 0,0

We assume that each of the statisticians has a private information: It is common
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knowledge that Statistician / observed the value of X and Statistician 11 observed
the value of Xy, where X;. Xy X, are exchangeable random variables. Thus,
Statistician I can be of two types: Iy, if X; = 0, and /;, if X; = 1. Similar for
Statistician II.

Assume that, in addition to the private observations, a public signal & is
revealed to the players before they formulate their prediction. In order to describe
this signal, consider first three independent Bernoulli random variables ¥, W, Z
such that

e Y, X|, Xjj, X| are exchangeable;
e W is independent of X, Xy, X; and P(W = 1) = p;
o Zis independent of Xj, X;, X, and P (Z=1)= §.

Both players learn the value of a Bernoulli random variable &, described as
follows: the coin W is tossed by a referee; if W = 1, then the value of Y is
revealed, otherwise the fair coin Z is tossed and the result of the toss is revealed.
Thus

; Y ifW=1,
= 6
Z ifW=0, ©

(E=k}={W=1Y=klu{W=0,Z=1k}, ke (0, I}

This mechanism i1s common knowledge, but the players don’t know the outcome
of W. They are only told the value of £ Observe that relevant information is
given only when W = |, which happens with probability p. If p = 1, then the
players have an additional observation (exchangeable with X)) before predicting
X,. If p =0, then the additional information available (¥) is completely withheld.
We may think of p as the intensity of the signal revealed. For each value of p we
have a game, say G,. We will consider different equilibria for G, and compare
their payoffs.

A strategy profile is described by a string of 8 actions. The first two are the
actions taken by Iy when & = 0 and € = [, respectively, and so forth. Several
equilibria emerge. Among these:

1. The strategy profile that emerges when each player plays a, if he thinks
that {X, = 1} is more likely than { X, = 0}, and @, otherwise, conditionally
on the information available, including the signal £.

2. The same as above, but not taking into account the signal &.

For the remaining part of this section, we will assume that the parameters of the
Beta prior law of @ are o= 2.5 and = 1. We will show that:
(A) In case 1, the following strategy profiles emerge:

(o) () () (th)
aga a,a,agayaya; whenp > 11/19; (7)

(lo) (I o)y (M)
ayayaq @ ayayaya; when p < 11/19. (8)
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These strategy profiles actually yield Nash equilibria, for the specified values
of p.

(B) In case 2, instead, the strategy profile (8) emerges for all values of p.

(C) Equilibrium (8) is more favorable to the players than (7) when p > 11/19.

The message is that, no matter what the intensity of the signal is, the players

achieve more by just ignoring it. Additional information correlated to the random
variable to be predicted has no value for them.

3.3 Computations

Let us show, for example, what leads /, to the choices specified above when
£ = 0. We have

Plo (§= O): P]O(WZl,Y=O)+|P[O(W=0,Z=O)
B+1

_ e sk
_‘Dc>ar+13+l+(1 p)z’

and

. B+l B+2 1_B+1
Pm{xl—o'f—m_pa+ﬁ+la+ﬁ+2+“_‘p)2a+ﬁ+1

Hence,

B+1 B+2 1
a+[3+l{pa+ﬁ+2+(l_‘o)§}
B+1

o+ A+ 1

Py, (X, = 0/ = 0)

p +(J—p)%

L, +2
gF "3
It is obvious that the strategy profile (8) yields a Nash equilibrium of G, for all

values of p. We now show that the strategy profile (7) yields an equilibrium of
G, for every p > 11/19.

Let p > 11/19. The payoff of /; in G, if (7) is played is
P, (£=0.Xy=0.X=00+P, (£=1,X=1) (9)

Py, (W=0,Z=0,Xy =0,X, =0)

+P, (W=1,Y=0X3=0,X, =0+ P, (£=1X, =1
=l—p f+1 B+2 . B+ 1 B+2 B+3
2 qg+B+la+pf+2 o+ B+l a+pB+2 a+ f+3
+ P, (E=1L X1 =1)

L . B - _
—33+143P+P10(§-—1.X1-—1)
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whereas if she unilaterally deviates from (7) and plays a,a, (obviously she has
no interest in playing a,aq or apag) her payoff becomes

P, (€=0Xy=1LX,=0D+P,(=1X1=1 (10)

l-p « a+l B+1 a o+l
2 a+fB+la+f+2 pa+ﬁ+la+ﬁ+’) a+ f+3

+P, (E=1.X=1)
=%_ 2157754!)'.‘@{0 (§= I,XI zl)

Hence, for p > 11/19 and with the specified values of & and 3, (9) is greater
than (10). Similar computations show that player [; always prefers to stick to (7)
rather than unilaterally deviating and playing aga,, no matter what the value of
pis.

Thus, for p> 11/19, both (7) and (8) yield an equilibrium of G,. We now want
to compare their payoff vectors. It is clear that it is actually enough to compare
the payoffs to . His payoff if (8) is played is

PIG (XI =1)=
In order to compare this value with (9), observe that

%:[P’lo (X, =D =P, (E=0,X, =D+ Py (E=1,X = 1)

and
Py, (£=0X=1)=P,,(W=0.Z=0,X, =1)
+P, (W=1,Y=0.X,=1)

l1-p o & B+1 o
2 a+pB+1 pa+ﬁ+la+ﬁ+2

5 5 4 11
5GP 3 T TP E{19 }
Hence, we see that the equilibrium (8) is the only one emerging according to the

indicated criteria when p < 11/19, and is more favourable to the players than (7)
when p > 11/19.

References

Avenhaus, R., Von Stengel, B. and Zamir, S. (1995). Inspection games, preprint.

Bassan, B., Scarsini, M. and Zamir, S. (1998). Uniqueness of Pareto optima, coordination
games and positive value of information, preprint.

Bernardo, J. and Smith, A. (1994). Bayesian Theory, John Wiley & Sons, Chichester.



Role of Information in the Interaction of Two Statisticians 43

Donoho, D.L. and Johnstone, .M. (1996). Neo-classical, minimax problems, thresholding
and adaptive function estimation, Bernoulli 2, 39-62.

Donoho, D.L. and Johnstone, LM. (1998). Minimax estimation via wavelet shrinkage.
Annals of Statistics 26, 879-921.

Donoho, D.L. and Johnstone, 1.M. (1994). Minimax risk over /,-balls for [ -error, Probability
Theory and Related Fields 99. 277-303.

Harsanyi, J.C. (1967/68). Games with incomplete information played by ‘Bayesian’ players,
Parts I, I, and 111, Management Science 14, 159-182, 320-334, and 486-502.

Schwarz, G. (1994). Game theory and statistics, in Handbook of Game Theory, Volume
2, Edited by R.J. Aumann and S. Hart, Elsevier.



