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Denote by P the set of prime numbers P = {2, 3, 5, . . .}.

Let {ψi (~x)}ki=1 be k affine linear forms in n variables

ψi (~x) = ~ai · ~x + bi , ~ai ∈ Zn, bi ∈ Z

Question:

Are there ~x ∈ Zn such ψ1(~x), . . . , ψk(~x) ∈ P ?

Infinitely many such ~x? Asymptotics?
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ψ(x) = ax + b

k = n = 1: If a = 1, b = 0, then

ψ(x) = x .

Theorem (Euclid (∼ 300 BC) )

There are ∞ many primes.

Over 2000 years later ...

Theorem (Hadamard, de la Vallée-Poussin (1896))

π(N) = |{x ∈ P, x ≤ N}| ∼ N

logN
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More generally:
ψ(x) = ax + b

Theorem (Johann Peter Gustav Lejeune Dirichlet (1837))

There are ∞ many primes of the form ax + b
⇐⇒ (a, b) = 1 (no local obstructions)

Prime number theorem in arithemtic progression

Each legal arithmetic progression gets its fair share: if (a, b) = 1,
then

π(N, a, b) = |{x ∈ P, x ≤ N, x ≡ b mod a}| ∼ 1

φ(a)

N

logN
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k = 2, n = 1

ψ1(x) = x ψ2(x) = x + 2

This is the ”twin prime conjecture” !

News Flash: Peter Woit’s blog May 12: Yitang Zhang proved

ψ1(x) = x ψ2(x) = x + M M < 70, 000, 000 !!!
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arithmetic progressions

n = 2, k arbitrary

ψ1(x) = x , ψ2(x) = x + d , . . . , ψk(x) = x + (k − 1)d

This is an k-term arithmetic progression

Theorem (Green-Tao (2004))

The primes contain arbitrarily long arithmetic progressions.

The proof gives a lower bound of the correct order of magnitude
(C N2

(logN)k
).
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In 2006 Green-Tao proved the following conditional theorem:

Conditional Multidimentional Dirichlet

Let {ψi (~x)}ki=1 be k affine linear integer forms in n variables
Suppose no 2 forms are affinely dependent. Then

{ψi (~x)}ki=1 ⊂ P infinitely often ⇐⇒ No local obstructions

∣∣∣{~x ∈ [0,N]n, {ψi (~x)}ki=1 ⊂ P}
∣∣∣ ∼ S(~ψ)

Nn

(logN)k

Conditioned on 2 conjectures: MN(s), and GI (s).

No local obstructions:

mod p: for any prime p, there exists ~x ∈ Zn such that ψi (~x) is
coprime to p all i .

mod ∞: there exist infinitely many ~x ∈ Zn such that ψi (~x) is
positive.
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Remark: In solving linear equations in primes variables, the name
of the game is

# equations versus # variables

The more variables the easier the question is.

1 equation 2 variables, e.g x1 − x2 = 2. Twin primes.

1 equation 3 variables, e.g the Ternary Goldbach Theorem:
every odd number > 5 is a sum of 3 primes: proved by
Vinogradov (1937) for large enough numbers, very (very)
recently proved by Helfgott (13 May 2013) ! or x1 + x3 = 2x2
(3 term progressions) proved by Van der Corput (1939). Both
proved using the Hardy Littlewood Circle Method.

Some special cases of k equations f (k) variables - Balog
(1992) using the HL circle method.

2 equation 4 variables, e.g x1 + x3 = 2x2; x2 + x4 = 2x3. This
is 4 term progressions - Green-Tao (2006).

k equation n ≥ k + 2 variables - Conditional Multidimentional
Dirichlet. Best possible dependence excluding ”twin prime
case”.
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Conditional Multidimentional Dirichlet Theorem

Conditioned on MN(s), and GI (s), one can calculate the
asymptotic number of prime solutions to any system of k linear
equations with integer coefficients in at least k + 2 variables.

Remark: The method used by Green and Tao to show the
existence of arithmetic progressions in primes can not be used to
establish asymptotics or to handle non homogeneous equations,
since it relies on Szemeredi’s theorem which is invalid for non
homogeneous equations, and can’t provide asymptotics.
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MN(s)

What is MN(s)?

The Möbius Nilsequences conjecture.

Consider the Möbius function

µ(n) =

{
(−1)k if n = p1 · · · pk , where pi are distinct primes;
0 otherwise.

The Möbius function is related to the normalized prime counting
function Λ(n) via an identity arising from the möbius inversion
formula.

∣∣∣∣∣
N∑

n=1

µ(n)

∣∣∣∣∣�A N(logN)−A
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What is MN(s)? The Möbius Nilsequences conjecture.

Consider the Möbius function
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MN(s)

Theorem (Davenport (1930s))

For any α ∈ [0, 1]∣∣∣∣∣
N∑

n=1

µ(n)e2πinα

∣∣∣∣∣�A N(logN)−A

By the same method: for any polynomial P∣∣∣∣∣
N∑

n=1

µ(n)e2πiP(n)

∣∣∣∣∣�A N(logN)−A
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We will see soon, that for our purposes, we need similar estimates
for bracket polynomials. Examples:

n2α, nα{nβ}, nα{n2β}, nα{{nβ}nγ}

Möbius Nilsequence Conjecture (MN(s))
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µ does not correlate with bracket polynomial phase functions !

Who is s ? How is this related to nilsequences (what are they)?

Theorem (Green-Tao (2007))

Möbius Nilsequence Conjecture is true.
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GI (s)

What is GI (s) ? The Inverse Conjecture for the Us+1[N] Gowers
norm.

What are Gowers norms? Let ZN = Z/NZ, and let f : ZN → D.

Discrete differentiation

Let h ∈ ZN , define the derivative in direction h to be

∆hf (n) := f (n + h)f (n)

Examples:

∆hf (n) ≡ 1 for all h ∈ ZN if and only if f (n) ≡ C .

∆h2∆h1f (n) ≡ 1 for all h1, h2 ∈ ZN if and only if f is a linear
phase polynomial, i.e. f (n) = e2πiP(n), where P is a linear
polynomial.
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GI (s)

Define the Gowers uniformity norms as follows: Let f : ZN → D.

Gowers norms

‖f ‖2sUs [N] =
1

Ns+1

∑
n,h1,...,hs∈ZN

∆hs · · ·∆h1f (n)

For s > 1 this is a norm.
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‖f ‖2sUs [N] =
1

Ns+1

∑
n,h1,...,hs∈ZN

∆hs · · ·∆h1f (n)

Remarks:

If ‖f ‖Us [N] = 1 then ∆hs · · ·∆h1f (n) ≡ 1 for all
h1, . . . , hk ∈ ZN thus f is a phase polynomial of degree < s.

Conversely, if f is a phase polynomial of degree < s, then
‖f ‖Us [N] = 1.

If f correlates with a polynomial phase function of degree < s
then ‖f ‖Us [N] �δ 1.

If f is a random function then ‖f ‖Us [N] = o(1).
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Recall:

If f correlates with a polynomial phase function of degree < s
then ‖f ‖Us [N] �δ 1.

If f is a random function then ‖f ‖Us [N] = o(1).

The inverse question

What can we say about f if ‖f ‖Us [N] �δ 1 ? Does f correlate with
a polynomial phase function?

We will get back to this question soon ...
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Why are Gowers norms important?

Consider the case of 3 term progressions: Let E ⊂ ZN be of size
δN for some δ > 0. Let’s try to count 3 term progressions in E .
Let 1E (x) be the characteristic function of the set E .

Here is a counting expression∑
x ,d∈ZN

1E (x)1E (x + d)1E (x + 2d)

An observation of Gowers: If ‖1E − δ‖U2[N] is small then

∑
x ,d∈ZN

1E (x)1E (x + d)1E (x + 2d) ∼ δ3N2

This is the number of 3 term progressions we expect to find in a
random subset of ZN of size δN !
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Why are Gowers norms important?

‖1E − δ‖U2[N] small implies that the number of 3 term progressions
is as in a random set.

There is a similar relation between Us [N] and s + 1 term
progressions.

‖1E − δ‖Us [N] small implies that the number of s+1 term
progressions is as in a random set.∑

x ,d∈ZN

1E (x)1E (x + h) . . . 1E (x + sh) ∼ δs+1N2

Tamar Ziegler Patterns in primes



Why are Gowers norms important?

‖1E − δ‖U2[N] small implies that the number of 3 term progressions
is as in a random set.

There is a similar relation between Us [N] and s + 1 term
progressions.

‖1E − δ‖Us [N] small implies that the number of s+1 term
progressions is as in a random set.∑

x ,d∈ZN

1E (x)1E (x + h) . . . 1E (x + sh) ∼ δs+1N2

Tamar Ziegler Patterns in primes



Why are Gowers norms important?

‖1E − δ‖U2[N] small implies that the number of 3 term progressions
is as in a random set.

There is a similar relation between Us [N] and s + 1 term
progressions.

‖1E − δ‖Us [N] small implies that the number of s+1 term
progressions is as in a random set.

∑
x ,d∈ZN

1E (x)1E (x + h) . . . 1E (x + sh) ∼ δs+1N2

Tamar Ziegler Patterns in primes



Why are Gowers norms important?

‖1E − δ‖U2[N] small implies that the number of 3 term progressions
is as in a random set.

There is a similar relation between Us [N] and s + 1 term
progressions.

‖1E − δ‖Us [N] small implies that the number of s+1 term
progressions is as in a random set.∑

x ,d∈ZN

1E (x)1E (x + h) . . . 1E (x + sh) ∼ δs+1N2

Tamar Ziegler Patterns in primes



Why are Gowers norms important?

Even more generally: Let {ψi (~x)}ki=1 be k affine linear integer
forms in n variables Suppose no 2 forms are affinely dependent.

Then there is some integer s such that if ‖1E − δ‖Us [N] small then

∑
~x∈Zn

N

1E (ψ1(~x))1E (ψ2(~x)) . . . 1E (ψk(~x)) ∼ δkNn

So it is REALLY important to find a good way to test whether
‖f ‖Us is small.
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The inverse question

Well ... this brings us back to the inverse question:

The inverse question (GI (s))

What can we say about f , if ‖f ‖Us+1[N] �δ 1 ?

Suppose ‖f ‖Us+1[N] �δ 1

s = 0: f correlates with a constant function, trivial.

s = 1: f correlates with a character (a linear phase function),
by discrete Fourier analysis.

You might be tempted to think inductively, that If ‖f ‖Us+1 �δ 1
then f correlates with a degree ≤ s phase polynomial (recall that
the converse is true). This turns out to be false ...
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A counter example (essentially due to Furstenberg and Weiss): Let

G =
(

1 R R
0 1 R
0 0 1

)
Γ =

(
1 Z Z
0 1 Z
0 0 1

)

G is a 2-step nilpotent Lie Group: [[G ,G ],G ] = {1}.
Γ is a lattice in G , and G/Γ is a nilmanifold.

Let x =
(

1 x z
0 1 y
0 0 1

)
Γ ∈ G/Γ. Consider the function

F (x) = e2πi(z−{x}y)

F is well defined on G/Γ.
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Let a =
(

1 α 0
0 1 β
0 0 1

)
∈ G .

Consider the function g : Z→ D

g(n) = F (anΓ) = e2πi({nα}nβ+(n2)αβ)

Then
‖g‖U3[N] � 1

But if α, β are irrational then, g does not correlate with any
quadratic phase function e2πin

2γ !
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Inverse U s+1[N]

g(n) = F (anΓ) is an example of a 2-step nilsequence.

In general, if G is an s-step nilpotent Lie group , Γ a lattice, F a
”nice function”, and a ∈ G then g(n) = F (anΓ) is an s-step
nilsequence.

The inverse conjecture for the Gowers norm asserts that
nilsequences are the only obstructions to uniformity:

The Inverse Conjecture for the Gowers Norms GI (s)

Let f : ZN → D. Then ‖f ‖Us+1 � 1 if and only if f correlates with
a bounded complexity s-step nilsequence.

Polynomial phase functions of degree ≤ s are only a small subset
of the set of degree ≤ s nilsequences !
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GI (s)

Supporting evidence:

s = 2; Green-Tao (2005).

If ‖f ‖Us+1[N] is sufficiently close to 1, then the conjecture is
true; Alon-Kaufman-Krivelevich-Litsyn and Ron (2005).

Related ergodic results are true; Host-Kra (2002), Z (2004).

What about the finite field analogue for Us+1[Fn
p] ?

s = 2; Green-Tao p > 2, Samorodnitsky p = 2 (2005).

For s > 2, a COUNTER EXAMPLE was given by Green-Tao,
and independently by Lovett-Meshulam-Samorodnistky
(2007).
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GI (s)

Theorem (Green-Tao-Z (2010))

The Inverse Conjecture for the Gowers Norms is true.

It follows that the (non degenerate) Multidimentional Dirichlet
Theorem is true unconditionally !
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Möbius Nilsequence Theorem - equivalent formulation MN(s)

The Möbius function µ does not correlate with bounded
complexity nilsequences:

1

N

∑
n≤N

µ(n)F (anΓ)�A
1

(logN)A

Inverse Theorem for the Gowers Norms GI (s)

Let f : ZN → D. Then ‖f ‖Us+1 � 1 if and only if f correlates with
a bounded complexity s-step nilsequence.

Corollary: ‖µ‖Us+1[N] = o(1).

e.g .
1

N2

∑
n,d≤N

µ(n)µ(n + d)µ(n + 2d)µ(n + 3d) = o(1)
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The Möbius function µ does not correlate with bounded
complexity nilsequences:

1

N

∑
n≤N

µ(n)F (anΓ)�A
1

(logN)A

Inverse Theorem for the Gowers Norms GI (s)

Let f : ZN → D. Then ‖f ‖Us+1 � 1 if and only if f correlates with
a bounded complexity s-step nilsequence.

Corollary: ‖µ‖Us+1[N] = o(1).

e.g .
1

N2

∑
n,d≤N

µ(n)µ(n + d)µ(n + 2d)µ(n + 3d) = o(1)

Tamar Ziegler Patterns in primes
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Sketch of proof of multidimensional Dirichlet:

Consider the von-Mangoldt function

Λ(n) =

{
log p if n = pk for some prime p and k > 0;
0 otherwise.

Recall that we are counting prime values of {ψi (~x)}ki=1 It would be
great if we could show that ‖Λ− 1‖Us+1[N] = o(1). For then we
would have ∑

~x∈[N]n

Λ(ψ1(~x)) · · ·Λ(ψk(~x)) ∼ Nn,

which is what one would expect if one were counting solutions for
a random von-Mangold function.

This is unfortunately FALSE (small primes are problematic).
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But ...

there is a chance if one looks at Λ along arithmetic
progressions with slowly increasing gap:

Λb,W (n) =
φ(W )

W
Λ(Wn + b),

where W =
∏

p≤w p and we take w = w(N) to be a sufficiently
slowly increasing function of N. (The normalizations is so that
1
N

∑
n≤N Λb,W (n) ∼ 1).

Strategy: show that if (b,W ) = 1 then for any s

‖Λb,W − 1‖Us+1[N] → 0

We then get: ∑
~x∈[N]n

Λb,W (ψ1(~x)) · · ·Λb,W (ψk(~x)) ∼ Nn
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By the Inverse Theorem for the Gowers Norms it suffices to show
that

Λb,W − 1

does not correlate with nilsequences, but this follows from the
Möbius Nilsequence Theorem.

(Not so small) Cheat: Inverse theorem applies to bounded
function, Λb,W isn’t bounded !

To the rescue comes the Green-Tao transference principle, which
allows us to push the inverse theorem from bounded functions to
function bounded by a pseudorandom function (this is a whole
different story ...).
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Don’t miss the next lecture:

Intertwining developments in ergodic theory and arithmetic
combinatorics leading to the multidimensional Dirichlet theorem.

Thank you !
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The Inverse Theorem for the Gowers Norms GI (s)

Let f : ZN → D. Then ‖f ‖Us+1[N] � 1 if and only if f correlates
with a bounded complexity s-step nilsequence.

Inductively for many h, ‖∆hf ‖Us [N] � 1 =⇒ for many h,
∆hf correlates with an (s − 1)-step nilsequence Fh(anhGh/Γh)
of bounded complexity.

Clever CS: For many h1 + h2 = h3 + h4 the orbit of
ah1 × ah2 × ah3 × ah4 is not equidtributed in the nilmanifold
Gh1/Γh1 × Gh2/Γh2 × Gh3/Γh3 × Gh4/Γh4 .

Orbit closures in nilmanifolds are algebraic. Use to find some
form of an algebraic relation between the ah (for many h).

Use additive combinatorics to obtain bracket linearity in the
parameter h (for many h)

Use the fact that ∆h∆k f = ∆k∆hf (and quantitative
equidistribution) to obtain some symmetry in n, h

Integrate (construction: guess a solution).
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U s in finite field geometry

The finite field analogue Us+1[Fn
p] is true in the high

characteristic case p ≥ s; Bergelson-Tao-Z, Tao-Z (2008)

The ”correct” analogue is true in low characteristic Tao-Z
(2011).
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