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This is part of exercise 5 question 4 in my calculus class Fall 2010:
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Here is the translation (and index change):

a0 = a b0 = b

an+1 =
an + bn

2
bn+1 =

√
anbn n = 0, 1, . . .

For a > b > 0 show that both sequences converge and calculate
their limits.
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Why do the limits exist ?

By the mean inequality:

a + b

2
≥
√

ab

Therefore
a1 ≥ b1

and by induction
an ≥ bn.

Also

an ≥ an + bn

2
= an+1 ≥ bn+1 =

√
anbn ≥ bn
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We have

a ≥ a1 ≥ . . . ≥ an ≥ an+1 ≥ bn+1 ≥ bn ≥ . . . ≥ b1 ≥ b

The sequence {an} is decreasing and bounded below by b, and the
sequence {bn} is increasing and bounded above by a. So both
sequences converge !

Actually, they converge to a common limit:

0 ≤ an+1 − bn+1 ≤ an+1 − bn =
an + bn

2
− bn =

an − bn

2

Inductively:

0 ≤ an − bn ≤ a− b

2n
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Define M(a, b) - the arithmetic geometric mean of a, b to be the
common limit of the sequences {an}, {bn}
Arithmetic geometric mean

M(a, b) = lim
n→∞

an = lim
n→∞

bn

Simple observations:

M(a, b) = M(a1, b1) = M(a2, b2) = . . .

M(λa, λb) = λM(a, b).

M(a, a) = a
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Ok then, what about calculating the limit ? Hmm...
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M(
√

2, 1) = 1.1981402347355922074 . . .

(accuracy to 19 decimal places).

All entries of the following table are rounded to 21 decimal places.

n an bn

0 1.414213562373905048802 1.000000000000000000000
1 1.207106781186547524401 1.189207115002721066717
2 1.198156948094634295559 1.198123521493120122607
3 1.198140234793877209083 1.198140234677307205798
4 1.198140234735592207441 1.198140234735592207439

Gauss calculated these himself !!! (This table appears in his
manuscript from 1800).

After 4 (!!!) iterations we get 19 digits accuracy, the
convergence is really really (really) fast. Much better than
b−a
2n ∼ 2

100 .
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Better calculation:

δn+1 = an+1 − bn+1 =
an + bn

2
−
√

anbn

=
1

2
(an + bn − 2

√
anbn) =

1

2
(
√

an −
√

bn)2

On the other hand

δn = an − bn = (
√

an −
√

bn)(
√

an +
√

bn)

So
δn+1

δ2
n

=
1

2(
√

an +
√

bn)2
−−−→
n→∞

1

8M(a, b)
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convergence rate

δn+1 ∼ Cδ2
n

Indeed, convergence rate is much better - it is quadratic: if at
stage n we have k digits accuracy, then at stage n + 1 our
accuracy is 2k digits.
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The story of the lemniscate

In 1691 - Jacob Bernoulli was working on the following problem:
A thin elastic rod is bent until the two ends are perpendicular to a
given line:
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Bernoulli showed that the upper half of the curve is given by an
equation of the form

y =

∫ x

0

z2

√
a4 − z4

dz

How is this related to the lemniscate?

Bernoulli sought ‘an algebraic curve whose rectification should
agree with the rectification of the elastic curve’
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In 1694 he found the lemniscate (Greek for ribbon):

x2 + y2 = a
√

x2 − y2
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1694 - Jacob’s younger brother, Johann independently discovered
the lemniscate !

Both papers appeared in Acta Eruditorum:
Jacob - September 1694
Johann -October 1694

Anyway, how is this related to agm ???
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Stirling (1730):

The length of 1/4 lemniscate:

A =

∫ 1

0

1√
1− z4

dz = 1.21102877714605987

and also:

B =

∫ 1

0

z2

√
1− z4

dz = .59907011736779611

Observe that
2 · B = 1.19814023473559222

Which agrees with M(
√

2, 1) to 16 decimal places !
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Carl Freidrich Gauss

M(
√

2, 1) = 2 · B =

∫ 1

0

z2

√
1− z4

dz
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In 1786 Euler showed

A · B =

∫ 1

0

1√
1− z4

dz ·
∫ 1

0

z2

√
1− z4

dz =
π

4
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Coupled with Eulers result we get

ω̃ = 2

∫ 1

0

1√
1− z4

dz =
π

M(
√

2, 1)
= length of 1/2 Lemniscate

This is a special notation of Gauss.

Compare with:

2

∫ 1

0

1√
1− z2

dz = π = length of 1/2 circle
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He gave a special name to the function: arclmnsin x

arclmnsin x =

∫ x

0

1√
1− z4

dz

Then 2 · arclmnsin1 = ω̃ = π
M(
√

2,1)
- the period of the lemniscate.

Compare to

arcsin x =

∫ x

0

1√
1− z2

dz

with 2 · arcsin 1 = π - the period of the circle.
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Theorem [Gauss]

M(a, b) ·
∫ π

2

0

1√
a2(cosφ)2 + b2(sinφ)2

dφ =
π

2

(exercise: write the equation of the lemniscare in polar coordinates,
then write down the expression for its arclength)

Proof: Denote

I (a, b) =

∫ π
2

0

1√
a2(cosφ)2 + b2(sinφ)2

dφ

Key step: Show that

I (a, b) = I (a1, b1)

where

a1 =
a + b

2
b1 =

√
ab
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If we do that, we are done, for then

I (a, b) = I (a1, b1) = I (a2, b2) = . . .

Therefore

I (a, b) = lim
n→∞

I (an, bn) = lim

∫ π
2

0

1√
a2
n(cosφ)2 + b2

n(sinφ)2
dφ

The integrand converges uniformly in φ to∫ π
2

0

1√
M(a, b)2(cosφ)2 + M(a, b)2(sinφ)2

dφ =
1

M(a, b)
· π

2
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How do we show the key step I (a, b) = I (a1.b1)?

Ingenious change of variables !

sinφ =
2a sinφ′

a + b + (a− b)(sinφ′)2

The range 0 ≤ φ′ ≤ π
2 corresponds to 0 ≤ φ ≤ π

2 .

Gauss then writes ’after the development has been made correctly,
it will be seen that’

1√
a2(cosφ)2 + b2(sinφ)2

dφ =
1√

a2
1(cosφ′)2 + b2

1(sinφ′)2
dφ′

(Challenge - try to fill in the details ...)
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How the **** did Gauss come up with this substitution ???

Lets go back to the integral we are trying to compute:

2

∫ 1

0

1√
1− z4

dz

Why is it hard to compute?

Try all you like, the integral

2

∫ x

0

1√
1− z4

dz

can not be expressed using elementary functions: polynomials,
sin, cos, exp and their inverses.
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Compare to

2

∫ x

0

1√
1− z2

dz

After a change of variables z = sin t we get

2

∫ arcsin x

0

cos t

cos t
dt = 2

∫ arcsin x

0
1dt = 2 arcsin x

For x = 1 we get a period of the function sin x - namely π.
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In fact we can calculate all integral of the form∫
P(sin t, cos t)

Q(sin t, cos t)
dt

for any polynomials in two variables P,Q like∫
1dt which is what we got before

but also ∫
(sin t)2(cos t)5 + sin t

(cos t)16 + (sin t)7(cos t)13
dt

HOW SO?
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Stereographic projection provides of variables that turns the
integral to an integral of a rational function p(s)/q(s) where

p(s), q(s) are polynomials (this is the tan s
2 substitution).
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Back to ∫ 1

0

1√
1− z4

dz =

∫ 1

0

1√
(1 + z2)(1− z)(1 + z)

dz

Making a change of variable z = 1− 1/x we get∫ 0

−∞

1√
(x2 − 2x + 2)(2x − 1)

dx

Consider the equation

y2 = (x2 − 2x + 2)(2x − 1)

This is a special case of

y2 = ax3 + bx2 + cx + d
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The graph describing the solutions to an equation of this type
called an elliptic curve, and an integral∫

dx

y(x)

is called an elliptic integral (of the first kind).
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If all the roots of P are real, then the curve looks like this.

There is no good ’stereographic projection’ here (we can only get a
map that is 2 : 1)
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Equations behave much better when we look at them over the
complex numbers C.

Recall our equation was

y2 = ax3 + bx2 + cx + d

and we now think of y , x as taking complex values.
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We take one more step - we projectivize. We first make the
equation homogeneous:(y

z

)2
= a

(x

z

)3
+ b

(x

z

)2
+ c

(x

z

)
+ d

multiplying by z3 we get

y2z = ax3 + bx2z + cxz2 + dz3

(If we substitute z = 1 we get our original equation).
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equation homogeneous:(y

z

)2
= a

(x

z

)3
+ b

(x

z

)2
+ c
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We now look at all triples (x , y , z) satisfying the equation,

y2z = ax3 + bx2z + cxz2 + dz3

but we identify two triples

(x , y , z) ∼ λ(x , y , z) λ ∈ C, λ 6= 0

The set of all triple (x , y , z) ∈ C3 with this identification is denoted
PC3 (or P2C). This is a way to make the set of solutions compact.

DON’T GET LOST JUST YET !
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Now we can allow ourselves to take linear transformations of PC3

(möbius transformations), and actually assume that our elliptic
curve has 3 real roots e1 ≥ e2 ≥ e3 and we are looking at the
integral ∫ e2

e3

1√
(x − e1)(x − e2)(x − e3)

dx

Remember the picture:

e3 e2 e1

At last we are ready to describe what the agm substitution does:

At last we are ready to describe what the agm substitution does:

Tamar Ziegler Agm



Each time we apply the ingenious substitution of Gauss, we change
the elliptic curve in the in integral. What happens to the geometric
picture?

This is a picture of 2 iterations (recall that 2 iterations of the
agm give us 4 decimal point precision).
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the elliptic curve in the in integral. What happens to the geometric
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Lets zoom in: e1, e2 are getting really close ...
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In the limit we end up with
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Why is this good?

’Stereographic projection’ - provides a rationalization!!!
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At the integral level - this is providing a sequence of
approximations ending with something of the form∫ e′2

e′3

1√
(x − e ′2)2(x − e ′3)

dx

(these are not the original e2, e3 we stated out with)
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HOW?

It turns out that a miracle happens and the set of solutions to the
equation

y2z = ax3 + bx2z + cxz2 + dz3

form a group, and this group is isomorphic to C/Λ where

Λ = Z + ωZ

is a lattice.
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Here is what the group operation looks like on the subset of real
solutions:

p

r
q

p ⊕ q
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Where were we ...

F : C/(Z + ωZ) ↪→ PC3

z 7−→ [℘(z) : ℘′(z) : 1]

0 7−→ [0 : 1 : 0]

The image of F is an elliptic curve E . (The map from
C/(Z + ωZ) onto its image is a homomorphism of (abelian)
groups).

x = ℘(z); dx = ℘′(z)dz = ydz

Thus ∫ e2

e3

dx

y
=

∫
F−1([e3,e2])

1dz
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What happens with agm? division of fundamental domain by 2 !

i

i

i

1

2

4
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Who is ℘ ? This is the Weierstrass function, it is defined as follows:

Weierstrass ℘ function

℘(z ,Λ) =
1

z2
+
∑
w∈Λ

1

(z − w)2
− 1

w2

Recall the map

F : C/Λ ↪→ PC3

z 7−→ [℘(z ,Λ) : ℘′(z ,Λ) : 1]
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Example 0

This is the zero iteration of agm:

Λ0 = Z + iZ ↔ y0 = (x − e)x(x + e)

℘(0,Λ0) =∞; ℘(
1

2
,Λ0) = e; ℘(

1

2
+ i

1

2
,Λ0) = 0; ℘(

1

2
i ,Λ0) = −e;
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Example 1

This is first iteration of agm:

Λ1 = 2Z + iZ ↔ y1 = (x − e1)(x − e2)(x − e3);

∞ = ℘(0,Λ1); e1 = ℘(1,Λ1); e2 = ℘(1+
1

2
i ,Λ1); e3 = ℘(

1

2
i ,Λ1)
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i

i

i

1

2

4
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The connection between a > b of agm and the roots e1 > e2 > e3

of the elliptic curve :

∫ π
2

0

1√
a2(cosφ)2 + b2(sinφ2)

dφ =

∫ e2

e3

1√
(x − e1)(x − e2)(x − e3)

Where

e1 + e2 + e3 = 0; e1 − e3 = a; e2 − e3 = b
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Complex case

If a, b are no longer positive real numbers, but two complex
numbers then we have a problem ! There is no obvious choice for

bn+1 =
√

anbn.

We have two choices for each n ≥ 0, so we get uncountably many
possible sequences {an}.{bn} given a, b.

It turns out all these sequences converge, but only countably many
have a non zero limit !
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All possible limit values are related !

Theorem (Gauss)

There are special values µ, λ such that all possible limit values µ′

are given by
1

µ′
=

d

µ
+

ic

λ

where d , c are relatively prime and d ≡ 1 mod 4, c ≡ 0 mod 4.
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Let h = {τ ∈ C : =τ > 0} and set q = eπiτ

p(τ) = 1 + 2
∞∑

n=1

qn2
= Θ3(τ, 0)

This is a holomorphic function of τ . It is one of the Jacobi theta
functions.

The set of possible values{
p(γτ0)2

a
: γ ∈ Γ

}
i.e. the function p(x)2

a evaluated on the orbit of the point τ0 under
the group Γ.

Γ = {γ ∈ SL2(Z); d ≡ 1(4), c ≡ 0(4)}
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Encryption

How is the agm used for encryption?

We can look at an elliptic curve E over a finite field Fq instead of
over the complex field C. We denote this curve E (Fq). It is
important in this case to know the exact number of points on the
curve #E (Fq) (this number is q + O(

√
q)), that is the number of

x , y ∈ Fq satisfying the equation

y2 = ax3 + bx2 + cx + d .

For cryptographic purposes, it is essential to find an elliptic curve
E where the number #E (Fq) has a large prime factor, so an
estimate on its size is not good enough. The agm provides a quick
way to evaluate #E (Fq) (via a series of approximations to the
(canonical lift of the) elliptic curve E ).
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Some links:

Cox, David A. The arithmetic-geometric mean of Gauss.. Enseign.
Math. (2) 30 (1984), no. 3-4.

Ritzenthaler, Christophe AGM for elliptic curves.
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http://retro.seals.ch/cntmng?type=pdf&rid=ensmat-001:1984:30::87&subp=hires
http://iml.univ-mrs.fr/~ritzenth/cours/AGM-ec.pdf

