Patterns in primes and dynamics on nilmanifolds

Tamar Ziegler

Technion/Hebrew University

EMS Lecture Series

Green-Tao-Z Theorem

Let $\{\psi_i(\vec{x})\}_{i=1}^k$ be k affine linear integer forms in n variables Suppose no 2 forms are affinely dependent. Then

$$\left| \left\{ \vec{x} \in [0, N]^n, \left\{ \psi_i(\vec{x}) \right\}_{i=1}^k \subset \mathbb{P} \right\} \right| \sim \mathfrak{S}(\vec{\psi}) \frac{N^n}{(\log N)^k}$$

Green-Tao-Z Theorem

Let $\{\psi_i(\vec{x})\}_{i=1}^k$ be k affine linear integer forms in n variables Suppose no 2 forms are affinely dependent. Then

$$\left| \left\{ \vec{x} \in [0, N]^n, \left\{ \psi_i(\vec{x}) \right\}_{i=1}^k \subset \mathbb{P} \right\} \right| \sim \mathfrak{S}(\vec{\psi}) \frac{N^n}{(\log N)^k}$$

Key ingredient: Inverse Theorem for Gowers $U_k[N]$.

Green-Tao-Z Theorem

Let $\{\psi_i(\vec{x})\}_{i=1}^k$ be k affine linear integer forms in n variables Suppose no 2 forms are affinely dependent. Then

$$\left| \left\{ \vec{x} \in [0, N]^n, \left\{ \psi_i(\vec{x}) \right\}_{i=1}^k \subset \mathbb{P} \right\} \right| \sim \mathfrak{S}(\vec{\psi}) \frac{N^n}{(\log N)^k}$$

Key ingredient: Inverse Theorem for Gowers $U_k[N]$.

Goal: Describe developments in ergodic theory and arithmetic combinatorics leading to this theorem, as well a some of the ideas in the proof.

Szemerédi's Theorem (1975)

Let $E \subset \mathbb{N}$ of positive density, then E contains arbitrarily long arithmetic progressions.

$$d^*(E) = \limsup \frac{|E \cap [1, N]|}{N}$$

Let $E \subset \mathbb{N}$ be of positive density, then E contains a three term progression.

Let $E \subset \mathbb{N}$ be of positive density, then E contains a three term progression.

Idea of proof: Suppose $|E| = \delta N$.

• Either E has roughly $\delta^3 N^2$ three-term progressions - the same number as a random set in density δ .

Let $E \subset \mathbb{N}$ be of positive density, then E contains a three term progression.

- Either E has roughly $\delta^3 N^2$ three-term progressions the same number as a random set in density δ .
- Or E has increased density $\delta + c(\delta)$ on a sub-progression of size $N^{1/3}$.

Let $E \subset \mathbb{N}$ be of positive density, then E contains a three term progression.

- Either E has roughly $\delta^3 N^2$ three-term progressions the same number as a random set in density δ .
- Or E has increased density $\delta + c(\delta)$ on a sub-progression of size $N^{1/3}$.
- Iterate!

Let $E \subset \mathbb{N}$ be of positive density, then E contains a three term progression.

- Either E has roughly $\delta^3 N^2$ three-term progressions the same number as a random set in density δ .
- Or E has increased density $\delta + c(\delta)$ on a sub-progression of size $N^{1/3}$.
- Iterate! when the density reaches 1 we are done!

Let $E \subset \mathbb{N}$ be of positive density, then E contains a three term progression.

Idea of proof: Suppose $|E| = \delta N$.

- Either E has roughly $\delta^3 N^2$ three-term progressions the same number as a random set in density δ .
- Or *E* has increased density $\delta + c(\delta)$ on a sub-progression of size $N^{1/3}$.
- Iterate! when the density reaches 1 we are done!

Fourier analysis: show $1_E - \delta$ has a large Fourier coefficient.

Furstenberg correspondence principle (1977)

Furstenberg correspondence principle (1977)

Let $E \subset \mathbb{N}$ be of positive density.

• \exists probability space (X, \mathcal{B}, μ) ,

- \exists probability space (X, \mathcal{B}, μ) ,
- $\bullet \ \ T:X\to X,\ T_*\mu=\mu,$

- \exists probability space (X, \mathcal{B}, μ) ,
- $T: X \to X$, $T_*\mu = \mu$,
- A distinguished set $A \in \mathcal{B}$ with $\mu(A) > 0$

Furstenberg correspondence principle (1977)

- \exists probability space (X, \mathcal{B}, μ) ,
- $T: X \to X$, $T_*\mu = \mu$,
- A distinguished set $A \in \mathcal{B}$ with $\mu(A) > 0$
- If

$$\mu(A\cap T^{-n}A\cap\ldots\cap T^{-kn}A)>0,$$

Furstenberg correspondence principle (1977)

Let $E \subset \mathbb{N}$ be of positive density.

- \exists probability space (X, \mathcal{B}, μ) ,
- $T: X \to X$, $T_*\mu = \mu$,
- A distinguished set $A \in \mathcal{B}$ with $\mu(A) > 0$
- If

$$\mu(A\cap T^{-n}A\cap\ldots\cap T^{-kn}A)>0,$$

then

$$E \cap (E-n) \cap \ldots \cap (E-kn) \neq \emptyset$$

New problem: Given a (ergodic) probability measure preserving system (m.p.s.) $\mathbf{X} = (X, \mathcal{B}, \mu, T)$, and a set $A \in \mathcal{B}$ such that $\mu(A) > 0$, find n > 0 such that

$$\mu(A\cap T^{-n}A\cap\ldots\cap T^{-kn}A)>0.$$

New problem: Given a (ergodic) probability measure preserving system (m.p.s.) $\mathbf{X} = (X, \mathcal{B}, \mu, T)$, and a set $A \in \mathcal{B}$ such that $\mu(A) > 0$, find n > 0 such that

$$\mu(A\cap T^{-n}A\cap\ldots\cap T^{-kn}A)>0.$$

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap\ldots\cap T^{-kn}A)>0$$

New problem: Given a (ergodic) probability measure preserving system (m.p.s.) $\mathbf{X} = (X, \mathcal{B}, \mu, T)$, and a set $A \in \mathcal{B}$ such that $\mu(A) > 0$, find n > 0 such that

$$\mu(A\cap T^{-n}A\cap\ldots\cap T^{-kn}A)>0.$$

Furstenberg multiple recurrence theorem (1977)

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap\ldots\cap T^{-kn}A)>0$$

Idea: study the m.p.s. X via morphisms to simpler m.p.s.

There exists $\pi: X \to Z(X)$ such that

There exists $\pi: X \to Z(X)$ such that

$$\mathbf{Z}(\mathbf{X}) = (Z, \mathcal{D}, \mathbf{v}, S)$$
 is a Krönecker system

There exists $\pi: \mathbf{X} \to \mathbf{Z}(\mathbf{X})$ such that

$$\mathbf{Z}(\mathbf{X}) = (Z, \mathcal{D}, \mathbf{v}, S)$$
 is a Krönecker system

Z : compact Abelian gp

There exists $\pi: X \to Z(X)$ such that

$$\mathbf{Z}(\mathbf{X}) = (Z, \mathcal{D}, \mathbf{v}, S)$$
 is a Krönecker system

- 🕽 Z : compact Abelian gp
- v : Haar measure

There exists $\pi: X \to Z(X)$ such that

$$\mathbf{Z}(\mathbf{X}) = (Z, \mathcal{D}, \mathbf{v}, S)$$
 is a Krönecker system

- Z : compact Abelian gp
- v : Haar measure

There exists $\pi: X \to Z(X)$ such that

$$\mathbf{Z}(\mathbf{X}) = (Z, \mathcal{D}, \mathbf{v}, S)$$
 is a Krönecker system

Universal property: if Y is Krönecker

- Z : compact Abelian gp
- v : Haar measure

Let
$$\pi: X \to Z(X)$$
. For all $f \in L^{\infty}(X)$

$$\frac{1}{N}\sum_{n=1}^{N}\int f(x)f(T^{n}x)f(T^{2n}x)d\mu$$

Let $\pi: X \to Z(X)$. For all $f \in L^{\infty}(X)$

$$\frac{1}{N}\sum_{n=1}^{N}\int f(x)f(T^{n}x)f(T^{2n}x)d\mu$$

is asymptotically the same as

$$\frac{1}{N}\sum_{n=1}^{N}\int \pi_* f(z)\pi_* f(z+n\alpha)\pi_* f(z+2n\alpha)dv$$

Let $\pi: X \to Z(X)$. For all $f \in L^{\infty}(X)$

$$\frac{1}{N}\sum_{n=1}^{N}\int f(x)f(T^{n}x)f(T^{2n}x)d\mu$$

is asymptotically the same as

$$\frac{1}{N}\sum_{n=1}^{N}\int \pi_* f(z)\pi_* f(z+n\alpha)\pi_* f(z+2n\alpha)dv$$

Key point:

$$f \geq 0 \implies \pi_* f \geq 0$$
 $\int f \ d\mu = \int \pi_* f \ d\nu.$

Let $\pi: X \to Z(X)$. For all $f \in L^{\infty}(X)$

$$\frac{1}{N}\sum_{n=1}^{N}\int f(x)f(T^{n}x)f(T^{2n}x)d\mu$$

is asymptotically the same as

$$\frac{1}{N}\sum_{n=1}^{N}\int \pi_* f(z)\pi_* f(z+n\alpha)\pi_* f(z+2n\alpha)dv$$

Key point:

$$f \ge 0 \implies \pi_* f \ge 0$$
 $\int f \ d\mu = \int \pi_* f \ d\nu$.

Take $f = 1_A$.

Let $\pi: X \to Z(X)$. For all $f \in L^{\infty}(X)$

$$\frac{1}{N}\sum_{n=1}^{N}\int f(x)f(T^{n}x)f(T^{2n}x)d\mu$$

is asymptotically the same as

$$\frac{1}{N}\sum_{n=1}^{N}\int \pi_*f(z)\pi_*f(z+n\alpha)\pi_*f(z+2n\alpha)dv$$

Key point:

$$f \geq 0 \implies \pi_* f \geq 0$$
 $\int f \ d\mu = \int \pi_* f \ d\nu.$

Take $f = 1_A$. Easy to verify

$$\lim \frac{1}{N} \sum_{n=1}^{N} \int \pi_* f(z) \pi_* f(z + n\alpha) \pi_* f(z + 2n\alpha) d\nu > 0$$

Z(X) is called the Kröncker factor of X.

Z(X) is called the Kröncker factor of X.

Z(X) is constructed via the eigenfunctions of X:

Z(X) is called the Kröncker factor of X.

Z(X) is constructed via the eigenfunctions of X:

$$\psi(Tx) = \lambda \psi(x).$$

- Z(X) is called the Kröncker factor of X.
- Z(X) is constructed via the eigenfunctions of X:

$$\psi(Tx) = \lambda \psi(x).$$

Any (normalized) eigenfunction gives a morphism to a circle rotation system

$$\psi: \mathbf{X} \to (S^1, \operatorname{Haar}, \lambda)$$

- Z(X) is called the Kröncker factor of X.
- Z(X) is constructed via the eigenfunctions of X:

$$\psi(Tx) = \lambda \psi(x).$$

Any (normalized) eigenfunction gives a morphism to a circle rotation system

$$\psi: \mathbf{X} \to (S^1, \operatorname{Haar}, \lambda)$$

$$\begin{array}{ccc}
\mathsf{X} & \xrightarrow{\mathcal{T}} & \mathsf{X} \\
\psi \middle| & & \psi \middle| \\
\mathsf{S}^1 & \xrightarrow{\cdot \lambda} & \mathsf{S}^1
\end{array}$$

In this case $\pi_* f = \int f \ d\mu$, and then

In this case $\pi_* f = \int f \ d\mu$, and then

$$\frac{1}{N}\sum_{n=1}^{N}\int f(x)f(T^{n}x)f(T^{2n}x)\ d\mu\to\left(\int f\ d\mu\right)^{3}$$

In this case $\pi_* f = \int f \ d\mu$, and then

$$\frac{1}{N}\sum_{n=1}^{N}\int f(x)f(T^{n}x)f(T^{2n}x)\ d\mu\to\left(\int f\ d\mu\right)^{3}$$

If x, T^nx , $T^{2n}x$ are not asymptotically independent on average - then the obstruction lies in an Abelian group rotation factor.

In this case $\pi_* f = \int f \ d\mu$, and then

$$\frac{1}{N}\sum_{n=1}^{N}\int f(x)f(T^{n}x)f(T^{2n}x)\ d\mu\to\left(\int f\ d\mu\right)^{3}$$

If x, $T^n x$, $T^{2n} x$ are not asymptotically independent on average - then the obstruction lies in an Abelian group rotation factor.

In this case $\pi_* f = \int f \ d\mu$, and then

$$\frac{1}{N}\sum_{n=1}^{N}\int f(x)f(T^{n}x)f(T^{2n}x)\ d\mu\to\left(\int f\ d\mu\right)^{3}$$

If x, T^nx , $T^{2n}x$ are not asymptotically independent on average - then the obstruction lies in an Abelian group rotation factor.

Converse clear: in Abelian groups $z, z + n\alpha$ determine $z + 2n\alpha$

 $\pi: X \to Y$ is k-characteristic if

$$\frac{1}{N}\sum_{n=1}^{N}\int f_0(x)f_1(T_{\mathbf{X}}^nx)\dots f_k(T_{\mathbf{X}}^{kn}x)d\mu_{\mathbf{X}}$$

is asymptotically the same as

$$\frac{1}{N}\sum_{n=1}^{N}\int \pi_* f_0(y)\pi_* f_1(T_{\mathbf{Y}}^n y)\dots \pi_* f_k(T_{\mathbf{Y}}^{kn} y)d\mu_{\mathbf{Y}}$$

 $\pi: X \to Y$ is k-characteristic if

$$\frac{1}{N}\sum_{n=1}^{N}\int f_0(x)f_1(T_{\mathbf{X}}^nx)\dots f_k(T_{\mathbf{X}}^{kn}x)d\mu_{\mathbf{X}}$$

is asymptotically the same as

$$\frac{1}{N}\sum_{n=1}^{N}\int \pi_* f_0(y)\pi_* f_1(T_{\mathbf{Y}}^n y)\dots \pi_* f_k(T_{\mathbf{Y}}^{kn} y)d\mu_{\mathbf{Y}}$$

• X is k-characteristic for all k.

 $\pi: X \to Y$ is k-characteristic if

$$\frac{1}{N}\sum_{n=1}^{N}\int f_0(x)f_1(T_{\mathbf{X}}^nx)\dots f_k(T_{\mathbf{X}}^{kn}x)d\mu_{\mathbf{X}}$$

is asymptotically the same as

$$\frac{1}{N}\sum_{n=1}^{N}\int \pi_* f_0(y)\pi_* f_1(T_{\mathbf{Y}}^n y)\dots \pi_* f_k(T_{\mathbf{Y}}^{kn} y)d\mu_{\mathbf{Y}}$$

- X is k-characteristic for all k.
- The trivial system is 1-characteristic: $\pi_* f(x) = \int f(x) d\mu_{\mathbf{X}}$

 $\pi: X \to Y$ is k-characteristic if

$$\frac{1}{N}\sum_{n=1}^{N}\int f_0(x)f_1(T_{\mathbf{X}}^nx)\dots f_k(T_{\mathbf{X}}^{kn}x)d\mu_{\mathbf{X}}$$

is asymptotically the same as

$$\frac{1}{N}\sum_{n=1}^{N}\int \pi_* f_0(y)\pi_* f_1(T_{\mathbf{Y}}^n y)\dots \pi_* f_k(T_{\mathbf{Y}}^{kn} y)d\mu_{\mathbf{Y}}$$

- X is k-characteristic for all k.
- The trivial system is 1-characteristic: $\pi_* f(x) = \int f(x) d\mu_{\mathbf{X}}$

$$\frac{1}{N} \sum_{n=1}^{N} \int f(x) f(T_{\mathbf{X}}^{n} x) d\mu_{\mathbf{X}} \sim \left(\int f d\mu_{\mathbf{X}} \right)^{2} \quad \text{(Ergodic Theorem)}$$

 $\pi: X \to Y$ is k-characteristic if

$$\frac{1}{N}\sum_{n=1}^{N}\int f_0(x)f_1(T_{\mathbf{X}}^nx)\dots f_k(T_{\mathbf{X}}^{kn}x)d\mu_{\mathbf{X}}$$

is asymptotically the same as

$$\frac{1}{N}\sum_{n=1}^{N}\int \pi_* f_0(y)\pi_* f_1(T_{\mathbf{Y}}^n y)\dots \pi_* f_k(T_{\mathbf{Y}}^{kn} y)d\mu_{\mathbf{Y}}$$

- X is k-characteristic for all k.
- The trivial system is 1-characteristic: $\pi_* f(x) = \int f(x) d\mu_{\mathbf{X}}$

$$\frac{1}{N} \sum_{n=1}^{N} \int f(x) f(T_{\mathbf{X}}^{n} x) d\mu_{\mathbf{X}} \sim \left(\int f d\mu_{\mathbf{X}} \right)^{2} \quad \text{(Ergodic Theorem)}$$

ullet The Kronecker factor $\mathbf{Z}(\mathbf{X})$ is 2-characteristic (Furstenberg).

• Either X is weakly mixing

- Either X is weakly mixing
- Or there is a morphism from X to a non trivial group rotation system.

- Either X is weakly mixing
- Or there is a morphism from X to a non trivial group rotation system.

Furstenberg Structure theorem - relativize this

$$\mathsf{X} o \ldots o \mathsf{Z}_k(\mathsf{X}) o \mathsf{Z}_{k-1}(\mathsf{X}) o \ldots o \mathsf{Z}_1(\mathsf{X}) o \star$$

- Either X is weakly mixing
- Or there is a morphism from X to a non trivial group rotation system.

Furstenberg Structure theorem - relativize this

Construct a universal sequence of factors

$$X \rightarrow \ldots \rightarrow Z_k(X) \rightarrow Z_{k-1}(X) \rightarrow \ldots \rightarrow Z_1(X) \rightarrow \star$$

• Either $X \to Z_k(X)$ is relatively weakly mixing

- Either X is weakly mixing
- Or there is a morphism from X to a non trivial group rotation system.

Furstenberg Structure theorem - relativize this

$$X \to \ldots \to Z_k(X) \to Z_{k-1}(X) \to \ldots \to Z_1(X) \to \star$$

- Either $X \to Z_k(X)$ is relatively weakly mixing
- Or there is a morphism from X to a non trivial isometric extension of $Z_k(X)$.

- Either X is weakly mixing
- Or there is a morphism from X to a non trivial group rotation system.

Furstenberg Structure theorem - relativize this

$$\mathsf{X} \to \ldots \to \mathsf{Z}_k(\mathsf{X}) \to \mathsf{Z}_{k-1}(\mathsf{X}) \to \ldots \to \mathsf{Z}_1(\mathsf{X}) \to \star$$

- Either $X \to Z_k(X)$ is relatively weakly mixing
- Or there is a morphism from X to a non trivial isometric extension of $Z_k(X)$.
 - $Z_0(X) = \star$ is the trivial system,

- Either X is weakly mixing
- Or there is a morphism from X to a non trivial group rotation system.

Furstenberg Structure theorem - relativize this

$$\mathsf{X} o \ldots o \mathsf{Z}_k(\mathsf{X}) o \mathsf{Z}_{k-1}(\mathsf{X}) o \ldots o \mathsf{Z}_1(\mathsf{X}) o \star$$

- Either $X \to Z_k(X)$ is relatively weakly mixing
- Or there is a morphism from X to a non trivial isometric extension of $Z_k(X)$.
 - $Z_0(X) = \star$ is the trivial system, $Z_1(X)$ is the Kronecker factor.

- Either X is weakly mixing
- Or there is a morphism from X to a non trivial group rotation system.

Furstenberg Structure theorem - relativize this

$$\mathsf{X} o \ldots o \mathsf{Z}_k(\mathsf{X}) o \mathsf{Z}_{k-1}(\mathsf{X}) o \ldots o \mathsf{Z}_1(\mathsf{X}) o \star$$

- Either $X \to Z_k(X)$ is relatively weakly mixing
- Or there is a morphism from X to a non trivial isometric extension of $Z_k(X)$.
 - $Z_0(X) = \star$ is the trivial system, $Z_1(X)$ is the Kronecker factor.
 - The factors $Z_k(X)$ are (k+1)-characteristic.

- Either X is weakly mixing
- Or there is a morphism from X to a non trivial group rotation system.

Furstenberg Structure theorem - relativize this

$$\mathsf{X} o \ldots o \mathsf{Z}_k(\mathsf{X}) o \mathsf{Z}_{k-1}(\mathsf{X}) o \ldots o \mathsf{Z}_1(\mathsf{X}) o \star$$

- Either $X \to Z_k(X)$ is relatively weakly mixing
- Or there is a morphism from X to a non trivial isometric extension of $Z_k(X)$.
 - $Z_0(X) = \star$ is the trivial system, $Z_1(X)$ is the Kronecker factor.
 - The factors $Z_k(X)$ are (k+1)-characteristic.
 - This gives sufficient structure for proving Szemerédi's theorem.

The Kroncker factor $Z_1(X) = Z(X)$ is also a universal 2-characteristic factor :

The $Z_k(X)$ constructed by Furstenberg are not universal (k+1)-characteristic for k>1.

The $Z_k(X)$ constructed by Furstenberg are not universal (k+1)-characteristic for k>1.

Problem: Classify the universal (k+1)-characteristic factors $Z_k(X)$.

The $Z_k(X)$ constructed by Furstenberg are not universal (k+1)-characteristic for k > 1.

Problem: Classify the universal (k+1)-characteristic factors $Z_k(X)$.

What are the obstructions on $x, T^n x, ..., T^{(k+1)n} x$ preventing them from roming about freely in X?

$$Sy = S(z, w) = (z + \alpha, w + 2z + \alpha)$$

New obstruction:
$$\mathbf{Y} = (\mathbb{T} \times \mathbb{T}, \text{Borel}, \text{Haar}, S)$$

$$Sy = S(z, w) = (z + \alpha, w + 2z + \alpha)$$

Then
$$S^{n}y = S^{n}(z, w) = (z + n\alpha, w + 2nz + n^{2}\alpha)$$

$$Sy = S(z, w) = (z + \alpha, w + 2z + \alpha)$$

Then
$$S^{n}y = S^{n}(z, w) = (z + n\alpha, w + 2nz + n^{2}\alpha)$$

$$y = 3S^n y - 3S^{2n} y + S^{3n} y$$

$$Sy = S(z, w) = (z + \alpha, w + 2z + \alpha)$$
 Then
$$S^{n}y = S^{n}(z, w) = (z + n\alpha, w + 2nz + n^{2}\alpha)$$

$$y = 3S^n y - 3S^{2n} y + S^{3n} y$$

$$Sy = S(z, w) = (z + \alpha, w + 2z + \alpha)$$
 Then
$$S^n y = S^n(z, w) = (z + n\alpha, w + 2nz + n^2\alpha)$$

$$y = 3S^{n}y - 3S^{2n}y + S^{3n}y$$

$$\mathbb{T}$$

$$z = x + 2n\alpha$$

$$x + n\alpha$$

$$x + 3n\alpha$$

If there is a morphism $X \rightarrow Y$, these new obstructions will surface.

$$\mathbf{Y}=(N/\Gamma, \mathrm{Borel}, \mathrm{Haar}, S),$$
 where N/Γ a 2-step nilmanifold
$$S: g\Gamma \to ag\Gamma \qquad a \in N.$$

$$\mathbf{Y}=(N/\Gamma,\mathrm{Borel},\mathrm{Haar},S),$$
 where N/Γ a 2-step nilmanifold
$$S:g\Gamma\to ag\Gamma\qquad a\in N.$$

Y is called a 2-step nilsystem.

 $\mathbf{Y} = (N/\Gamma, \text{Borel}, \text{Haar}, S)$, where N/Γ a 2-step nilmanifold

$$S: g\Gamma \rightarrow ag\Gamma$$
 $a \in N$.

Y is called a 2-step nilsystem.

$$Y = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix} / \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix} \quad a = \begin{pmatrix} 1 & \alpha & 0 \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix}$$

 $\mathbf{Y} = (N/\Gamma, \text{Borel}, \text{Haar}, S)$, where N/Γ a 2-step nilmanifold

$$S: g\Gamma \rightarrow ag\Gamma$$
 $a \in N$.

Y is called a 2-step nilsystem.

$$Y = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix} / \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix} \quad a = \begin{pmatrix} 1 & \alpha & 0 \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix}$$

 $g\Gamma$ is determined by $a^ng\Gamma$, $a^{2n}g\Gamma$, $a^{3n}g\Gamma$.

Obstructions to 4-term progressions come from 2-step nilsystems

Obstructions to 4-term progressions come from 2-step nilsystems

More precisely: There exists a morphism $\pi: X \to Y$ a 2-step nilsystem, and Y is a universal 3-characteristic factor

Obstructions to 4-term progressions come from 2-step nilsystems

More precisely: There exists a morphism $\pi: X \to Y$ a 2-step nilsystem, and Y is a universal 3-characteristic factor

$$\frac{1}{N} \sum_{n=1}^{N} \int f(x) f(T_{\mathbf{X}}^{n} x) f(T_{\mathbf{X}}^{2n} x) f(T_{\mathbf{X}}^{3n} x) d\mu_{\mathbf{X}}$$

is asymptotically the same as

$$\frac{1}{N} \sum_{n=1}^{N} \int \pi_* f(y) \pi_* f(T_{\mathbf{Y}}^n y) \pi_* f(T_{\mathbf{Y}}^{2n} y) \pi_* f(T_{\mathbf{Y}}^{3n} y) d\mu_{\mathbf{Y}}$$

Obstructions to 4-term progressions come from 2-step nilsystems

More precisely: There exists a morphism $\pi: X \to Y$ a 2-step nilsystem, and Y is a universal 3-characteristic factor

$$\frac{1}{N} \sum_{n=1}^{N} \int f(x) f(T_{\mathbf{X}}^{n} x) f(T_{\mathbf{X}}^{2n} x) f(T_{\mathbf{X}}^{3n} x) d\mu_{\mathbf{X}}$$

is asymptotically the same as

$$\frac{1}{N} \sum_{n=1}^{N} \int \pi_* f(y) \pi_* f(T_{\mathbf{Y}}^n y) \pi_* f(T_{\mathbf{Y}}^{2n} y) \pi_* f(T_{\mathbf{Y}}^{3n} y) d\mu_{\mathbf{Y}}$$

• (relatively) Easy to verify that for $f = 1_A$ the limit is positive,

Obstructions to 4-term progressions come from 2-step nilsystems

More precisely: There exists a morphism $\pi: X \to Y$ a 2-step nilsystem, and Y is a universal 3-characteristic factor

$$\frac{1}{N} \sum_{n=1}^{N} \int f(x) f(T_{\mathbf{X}}^{n} x) f(T_{\mathbf{X}}^{2n} x) f(T_{\mathbf{X}}^{3n} x) d\mu_{\mathbf{X}}$$

is asymptotically the same as

$$\frac{1}{N} \sum_{n=1}^{N} \int \pi_* f(y) \pi_* f(T_{\mathbf{Y}}^n y) \pi_* f(T_{\mathbf{Y}}^{2n} y) \pi_* f(T_{\mathbf{Y}}^{3n} y) d\mu_{\mathbf{Y}}$$

- (relatively) Easy to verify that for $f = 1_A$ the limit is positive,
- Cheat: Y is an inverse limit of 2-step nilsystems a pro-nilsystem.

Gowers new proof of Szemerédi's theorem (1998)

Gowers new proof of Szemerédi's theorem (1998)

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$ define

$$\Delta_h f(x) = f(x+h)\overline{f(x)}$$

Gowers new proof of Szemerédi's theorem (1998)

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$ define

$$\Delta_h f(x) = f(x+h)\overline{f(x)}$$

Gowers norms

$$||f||_{U_k[N]}^{2^k} = \mathbb{E}_{x,h_1,\dots h_k} \Delta_{h_1} \dots \Delta_{h_k} f(x)$$

Gowers new proof of Szemerédi's theorem (1998)

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$ define

$$\Delta_h f(x) = f(x+h)\overline{f(x)}$$

Gowers norms

$$||f||_{U_k[N]}^{2^k} = \mathbb{E}_{x,h_1,\dots h_k} \Delta_{h_1} \dots \Delta_{h_k} f(x)$$

• If $f(x) = e^{2\pi i q(x)}$ where q is a polynomial of degree < k then $||f||_{U_k[N]} = 1$.

Gowers new proof of Szemerédi's theorem (1998)

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$ define

$$\Delta_h f(x) = f(x+h)\overline{f(x)}$$

Gowers norms

$$||f||_{U_k[N]}^{2^k} = \mathbb{E}_{x,h_1,\dots h_k} \Delta_{h_1} \dots \Delta_{h_k} f(x)$$

- If $f(x) = e^{2\pi i q(x)}$ where q is a polynomial of degree < k then $||f||_{U_k[N]} = 1$.
- If f is random then $||f||_{U_k[N]} = o(1)$.

Gowers new proof of Szemerédi's theorem (1998)

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$ define

$$\Delta_h f(x) = f(x+h)\overline{f(x)}$$

Gowers norms

$$||f||_{U_k[N]}^{2^k} = \mathbb{E}_{x,h_1,\dots h_k} \Delta_{h_1} \dots \Delta_{h_k} f(x)$$

- If $f(x) = e^{2\pi i q(x)}$ where q is a polynomial of degree < k then $\|f\|_{U_k[N]} = 1$.
- If f is random then $||f||_{U_k[N]} = o(1)$.
- If $||f g||_{U_k[N]}$ is small, then they have approx. same number of k+1 term progressions.

Idea: $|E| = \delta N$.

Idea:
$$|E| = \delta N$$
.

• Either number of (k+1)-term progressions is as expected in random set

Idea: $|E| = \delta N$.

- Either number of (k+1)-term progressions is as expected in random set
- $\bullet \ \operatorname{Or} \ \| \mathbf{1}_{\mathit{E}} \delta \|_{\mathit{U}_{\mathit{k}}} \gg 1.$

Idea: $|E| = \delta N$.

- Either number of (k+1)-term progressions is as expected in random set
- Or $||1_E \delta||_{U_k} \gg 1$.

When is $||f||_{U_k} \gg 1$???

Idea: $|E| = \delta N$.

- Either number of (k+1)-term progressions is as expected in random set
- Or $||1_E \delta||_{U_k} \gg 1$.

When is $||f||_{U_{\mathbf{k}}} \gg 1$???

Local inverse theorem for Gower norms

$$||f||_{U_{\mathbf{k}}[N]} \gg 1 \implies \mathbb{E}_{x \in P} f(x) e^{2\pi i q(x)}$$

for many progressions $|P| = N^t$, for some small t, q(x) polynomial of degree k-1.

Idea: $|E| = \delta N$.

- Either number of (k+1)-term progressions is as expected in random set
- Or $||1_E \delta||_{U_k} \gg 1$.

When is $||f||_{U_k} \gg 1$???

Local inverse theorem for Gower norms

$$||f||_{U_{\mathbf{k}}[N]} \gg 1 \implies \mathbb{E}_{x \in P} f(x) e^{2\pi i q(x)}$$

for many progressions $|P| = N^t$, for some small t, q(x) polynomial of degree k-1.

Get increased density on a sub progression of size N^s (like Roth).

$$\frac{1}{N} \sum_{n \le N} \int f(x) f(T^n x) f(T^{2n} x) \dots f(T^{kn} x) d\mu$$

$$\frac{1}{N} \sum_{n \le N} \int f(x) f(T^n x) f(T^{2n} x) \dots f(T^{kn} x) d\mu$$

The universal 4-characteristic factor is 3-step pro-nilsystem (Host-Kra (01), Z (02)), methods extend to all k:

$$\frac{1}{N} \sum_{n \le N} \int f(x) f(T^n x) f(T^{2n} x) \dots f(T^{kn} x) d\mu$$

The universal 4-characteristic factor is 3-step pro-nilsystem (Host-Kra (01), Z (02)), methods extend to all k:

Theorem (Host-Kra 02, Z 04)

The universal k-characteristic factor $\mathbf{Y_k}(\mathbf{X})$ is a (k-1)-step pro-nilsystem.

$$\frac{1}{N} \sum_{n \le N} \int f(x) f(T^n x) f(T^{2n} x) \dots f(T^{kn} x) d\mu$$

The universal 4-characteristic factor is 3-step pro-nilsystem (Host-Kra (01), Z (02)), methods extend to all k:

Theorem (Host-Kra 02, Z 04),

The universal k-characteristic factor $\mathbf{Y_k}(\mathbf{X})$ is a (k-1)-step pro-nilsystem.

$$\frac{1}{N} \sum_{n \le N} \int f(x) f(T^n x) f(T^{2n} x) \dots f(T^{kn} x) d\mu$$

The universal 4-characteristic factor is 3-step pro-nilsystem (Host-Kra (01), Z (02)), methods extend to all k:

Theorem (Host-Kra 02, Z 04),

The universal k-characteristic factor $\mathbf{Y_k}(\mathbf{X})$ is a (k-1)-step pro-nilsystem.

Prime Szemerédi Theorem (Green-Tao 2004)

Prime Szemerédi Theorem (Green-Tao 2004)

Let $E \subset \mathbb{P}$ of positive relative density, then E contains long arithmetic progressions.

 Introduce combinatorial notions of (approximate) factor and projection onto a factor.

Prime Szemerédi Theorem (Green-Tao 2004)

- Introduce combinatorial notions of (approximate) factor and projection onto a factor.
- Find a convenient combinatorial "k-characteristic factor".

Prime Szemerédi Theorem (Green-Tao 2004)

- Introduce combinatorial notions of (approximate) factor and projection onto a factor.
- Find a convenient combinatorial "k-characteristic factor". GT construct a characteristic factor of bounded functions.

Prime Szemerédi Theorem (Green-Tao 2004)

- Introduce combinatorial notions of (approximate) factor and projection onto a factor.
- Find a convenient combinatorial "k-characteristic factor". GT construct a characteristic factor of bounded functions.
- Let $\tilde{1}_E(n) = (\log n)1_E(n)$ (not bounded !!!).

Prime Szemerédi Theorem (Green-Tao 2004)

- Introduce combinatorial notions of (approximate) factor and projection onto a factor.
- Find a convenient combinatorial "k-characteristic factor". GT construct a characteristic factor of bounded functions.
- Let $\tilde{1}_E(n) = (\log n) 1_E(n)$ (not bounded !!!). Let $\pi_*(\tilde{1}_E)$ be the projection on the factor.

Prime Szemerédi Theorem (Green-Tao 2004)

- Introduce combinatorial notions of (approximate) factor and projection onto a factor.
- Find a convenient combinatorial "k-characteristic factor". GT construct a characteristic factor of bounded functions.
- Let $\tilde{1}_E(n) = (\log n) 1_E(n)$ (not bounded !!!). Let $\pi_*(\tilde{1}_E)$ be the projection on the factor. Show $\|\tilde{1}_E \pi_*(\tilde{1}_E)\|_{U_k}$ is small,

Prime Szemerédi Theorem (Green-Tao 2004)

Let $E \subset \mathbb{P}$ of positive relative density, then E contains long arithmetic progressions.

- Introduce combinatorial notions of (approximate) factor and projection onto a factor.
- Find a convenient combinatorial "k-characteristic factor". GT construct a characteristic factor of bounded functions.
- Let $\tilde{1}_E(n) = (\log n) 1_E(n)$ (not bounded !!!). Let $\pi_*(\tilde{1}_E)$ be the projection on the factor. Show $\|\tilde{1}_E \pi_*(\tilde{1}_E)\|_{U_k}$ is small,

$$\mathbb{E}_{x,d}\tilde{1}_E(x)\dots 1_E(x+kd)$$

is approximately the same as

$$\mathbb{E}_{x,d}\pi_*(\tilde{1}_E)(x)\ldots\pi_*(\tilde{1}_E)(x+kd).$$

Prime Szemerédi Theorem (Green-Tao 2004)

Let $E \subset \mathbb{P}$ of positive relative density, then E contains long arithmetic progressions.

- Introduce combinatorial notions of (approximate) factor and projection onto a factor.
- Find a convenient combinatorial "k-characteristic factor". GT construct a characteristic factor of bounded functions.
- Let $\tilde{1}_E(n) = (\log n) 1_E(n)$ (not bounded !!!). Let $\pi_*(\tilde{1}_E)$ be the projection on the factor. Show $\|\tilde{1}_E \pi_*(\tilde{1}_E)\|_{U_k}$ is small,

$$\mathbb{E}_{x,d}\tilde{1}_E(x)\dots 1_E(x+kd)$$

is approximately the same as

$$\mathbb{E}_{x,d}\pi_*(\tilde{1}_E)(x)\ldots\pi_*(\tilde{1}_E)(x+kd).$$

Apply Szemerédi's Theorem.

Want an optimal combinatorial factor with $\|\tilde{1}_E - \pi_*(\tilde{1}_E)\|_{U_k}$ is small. Back the inverse question !

Want an optimal combinatorial factor with $\|\tilde{1}_E - \pi_*(\tilde{1}_E)\|_{U_k}$ is small. Back the inverse question !

When is $||f||_{U_k}$ large ???

Want an optimal combinatorial factor with $\|\tilde{1}_E - \pi_*(\tilde{1}_E)\|_{U_k}$ is small. Back the inverse question !

When is $||f||_{U_k}$ large ???

The role of (pro)-nilsystems in the study of progressions in ergodic theory motivated Green-Tao to conjecture:

Inverse Conjecture for the Gowers norms

Global obstruction (scale N) to Gowers uniformity come from sequences arising from nilsystems.

Want an optimal combinatorial factor with $\|\tilde{1}_E - \pi_*(\tilde{1}_E)\|_{U_k}$ is small. Back the inverse question !

When is $||f||_{U_k}$ large ???

The role of (pro)-nilsystems in the study of progressions in ergodic theory motivated Green-Tao to conjecture:

Inverse Conjecture for the Gowers norms

Global obstruction (scale N) to Gowers uniformity come from sequences arising from nilsystems.

Compare with

Local theorem for the Gowers norms (Gowers)

Local obstructions (scale N^t) to Gowers U_{k+1} uniformity come from phase polynomials of degree k.

Nilsequence: N/Γ is a k-step nilmanifold. $F: N/\Gamma \to \mathbb{D}$ is a "nice" function. $a \in N$.

$$g(n) = F(a^n\Gamma)$$

is a *k*-step nilsequence.

Nilsequence: N/Γ is a k-step nilmanifold. $F: N/\Gamma \to \mathbb{D}$ is a "nice" function. $a \in N$.

$$g(n) = F(a^n\Gamma)$$

is a k-step nilsequence.

Inverse Conjecture for the Gowers norms

$$||f||_{U_{k+1}(N)} \gg 1 \implies |\mathbb{E}_{x \leq N} f(x) \overline{g(x)}| \gg 1$$

for g(n) a "bounded complexity" k-step nilsequence.

• Inverse Theorem for Gowers $U_3[N]$ norms (Green-Tao 05).

- Inverse Theorem for Gowers $U_3[N]$ norms (Green-Tao 05).
- Inverse Theorem for Gowers $U_3[\mathbb{F}_p^n]$ norms (Green-Tao 05, Samorodniski 06).

- Inverse Theorem for Gowers $U_3[N]$ norms (Green-Tao 05).
- Inverse Theorem for Gowers $U_3[\mathbb{F}_p^n]$ norms (Green-Tao 05, Samorodniski 06).
- Inverse Conjecture for Gowers $U_4[\mathbb{F}_2^n]$ norms is False! (Green-Tao, Lovett-Meshulam-Samorodniski 07).

- Inverse Theorem for Gowers $U_3[N]$ norms (Green-Tao 05).
- Inverse Theorem for Gowers $U_3[\mathbb{F}_p^n]$ norms (Green-Tao 05, Samorodniski 06).
- Inverse Conjecture for Gowers $U_4[\mathbb{F}_2^n]$ norms is False! (Green-Tao, Lovett-Meshulam-Samorodniski 07).
- (modified) Inverse Conjecture for the Gowers norms $U_k[\mathbb{F}_p^n]$ is True! (Bergelson-Tao-Z (10), Tao-Z (10,12)).

- Inverse Theorem for Gowers $U_3[N]$ norms (Green-Tao 05).
- Inverse Theorem for Gowers $U_3[\mathbb{F}_p^n]$ norms (Green-Tao 05, Samorodniski 06).
- Inverse Conjecture for Gowers $U_4[\mathbb{F}_2^n]$ norms is False! (Green-Tao, Lovett-Meshulam-Samorodniski 07).
- (modified) Inverse Conjecture for the Gowers norms $U_k[\mathbb{F}_p^n]$ is True! (Bergelson-Tao-Z (10), Tao-Z (10,12)).

Theorem (Green-Tao-Z 2012)

Inverse Conjecture for the Gowers $U_k[N]$ norms is true!

Szemerédi (1975)

Arithemtic progressions in sets of integers of positive denisty

Sz 75

Furstenberg 1977

Ergodic thoeretic proof of Szemeredi's theorem

Sz 75

Furstenberg-Weiss, Conze-Lesigne (1990')

Ergodic context: role of 2-step nilpotency in 4 term progressions

FW, CL 90'

F 77

Sz 75

Gowers (1998)

New proof of Szemerédi's theorem: introduction of U_k norms

Host-Kra (2002), Z (2004)

Ergodic context: role of nilpotency in k-term progressions

Green-Tao (2005)

Szemerédi Theorem for Primes

Green-Tao (2005), Samorodniski (2006) U_3 inverse theorem for \mathbb{Z}_N and \mathbb{F}_p^n

Green-Tao, Lovett-Meshulam-Samorodniski (2007) COUNTER EXAMPLE for U_4 inverse theorem in \mathbb{F}_n^n

Thank you!