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Green-Tao-Z Theorem

Let {ψi (~x)}ki=1 be k affine linear integer forms in n variables
Suppose no 2 forms are affinely dependent. Then∣∣∣{~x ∈ [0,N]n,{ψi (~x)}ki=1 ⊂ P}

∣∣∣∼S(~ψ)
Nn

(logN)k

Key ingredient: Inverse Theorem for Gowers Uk [N].

Goal: Describe developments in ergodic theory and arithmetic
combinatorics leading to this theorem, as well a some of the ideas
in the proof.
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Szemerédi’s Theorem (1975)

Let E ⊂ N of positive density, then E contains arbitrarily long
arithmetic progressions.

d∗(E ) = limsup
|E ∩ [1,N]|

N
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Klaus Roth’s Theorem (1953)

Let E ⊂ N be of positive density, then E contains a three term
progression.

Idea of proof: Suppose |E |= δN.

Either E has roughly δ 3N2 three-term progressions - the same
number as a random set in density δ .
Or E has increased density δ + c(δ ) on a sub-progression of
size N1/3.
Iterate ! when the density reaches 1 we are done !

Fourier analysis: show 1E −δ has a large Fourier coefficient.
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Furstenberg correspondence principle (1977)

Let E ⊂ N be of positive density.

∃ probability space (X ,B,µ),
T : X → X , T∗µ = µ ,
A distinguished set A ∈B with µ(A) > 0
If

µ(A∩T−nA∩ . . .∩T−knA) > 0,

then
E ∩ (E −n)∩ . . .∩ (E −kn) 6= /0
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New problem: Given a (ergodic) probability measure preserving
system (m.p.s.) X = (X ,B,µ,T ), and a set A ∈B such that
µ(A) > 0, find n > 0 such that

µ(A∩T−nA∩ . . .∩T−knA) > 0.

Furstenberg multiple recurrence theorem (1977)

liminf
N→∞

1
N

N

∑
n=1

µ(A∩T−nA∩ . . .∩T−knA) > 0

Idea: study the m.p.s. X via morphisms to simpler m.p.s.
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Furstenberg’s proof of Roth theorem

There exists π : X→ Z(X) such that

Z(X) = (Z ,D ,ν ,S) is a Krönecker system Z : compact Abelian gp

ν : Haar measure

Sz = z + α, α ∈ Z

Universal property: if Y is Krönecker

X

Z(X) Y

πZ
πY

∃
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Furstenberg’s proof of Roth theorem

Let π : X→ Z(X). For all f ∈ L∞(X)

1
N

N

∑
n=1

∫
f (x)f (T nx)f (T 2nx)dµ

is asymptotically the same as

1
N

N

∑
n=1

∫
π∗f (z)π∗f (z +nα)π∗f (z +2nα)dν

Key point:

f ≥ 0 =⇒ π∗f ≥ 0
∫

f dµ =
∫

π∗f dν .

Take f = 1A. Easy to verify

lim
1
N

N

∑
n=1

∫
π∗f (z)π∗f (z +nα)π∗f (z +2nα)dν > 0
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Z(X) is called the Kröncker factor of X.

Z(X) is constructed via the eigenfunctions of X:

ψ(Tx) = λψ(x).

Any (normalized) eigenfunction gives a morphism to a circle
rotation system

ψ : X→ (S1,Haar, ·λ )

X X

S1 S1

ψ

T

ψ

·λ
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If X has no non-trivial eigenfunctions, then Z(X) is trivial (a point)
and X is weakly mixing.

In this case π∗f =
∫

f dµ , and then

1
N

N

∑
n=1

∫
f (x)f (T nx)f (T 2nx) dµ →

(∫
f dµ

)3

If x ,T nx ,T 2nx are not asymptotically
independent on average - then the
obstruction lies in an Abelian group
rotation factor.

X

Z
z

z +nα z +2nα

x

Tnx

T2nx

Converse clear: in Abelian groups z ,z +nα determine z +2nα
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Definition (k characteristic factor)

π : X→ Y is k-characteristic if

1
N

N

∑
n=1

∫
f0(x)f1(T n

Xx) . . . fk(T kn
X x)dµX

is asymptotically the same as

1
N

N

∑
n=1

∫
π∗f0(y)π∗f1(T n

Yy) . . .π∗fk(T kn
Y y)dµY

X is k-characteristic for all k .
The trivial system is 1-characteristic: π∗f (x) =

∫
f (x)dµX

1
N

N

∑
n=1

∫
f (x)f (T n

Xx)dµX ∼
(∫

fdµX

)2

(Ergodic Theorem)

The Kronecker factor Z(X) is 2-characteristic (Furstenberg).
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Furstenberg’s proof of Roth’s Theorem:

Either X is weakly mixing
Or there is a morphism from X to a non trivial group rotation
system.

Furstenberg Structure theorem - relativize this
Construct a universal sequence of factors

X→ . . .→ Zk(X)→ Zk−1(X)→ . . .→ Z1(X)→ ?

• Either X→ Zk(X) is relatively weakly mixing
• Or there is a morphism from X to a non trivial isometric

extension of Zk(X).

Z0(X) = ? is the trivial system, Z1(X) is the Kronecker factor.
The factors Zk(X) are (k +1)-characteristic.
This gives sufficient structure for proving Szemerédi’s theorem.
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The Kroncker factor Z1(X) = Z(X) is also a universal
2-characteristic factor :

If Y is 2-characteristic then

X

Y Z(X)

πY
πZ

∃

The Zk(X) constructed by Furstenberg are not universal
(k +1)-characteristic for k > 1.

Problem: Classify the universal (k +1)-characteristic factors Zk(X ).

What are the obstructions on x ,T nx , . . . ,T (k+1)nx preventing them
from roming about freely in X ?
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New obstruction: Y = (T×T,Borel,Haar,S)

Sy = S(z ,w) = (z + α,w +2z + α)

Then Sny = Sn(z ,w) = (z +nα,w +2nz +n2
α)

y = 3Sny −3S2ny +S3ny
Y

T z

z +nα

z +2nα

z +3nα

y

Sny

S2ny

S3ny

If there is a morphism X→ Y, these new obstructions will surface.
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Turns out these are not the only obstructions:

Y = (N/Γ,Borel,Haar,S), where N/Γ a 2-step nilmanifold

S : gΓ→ agΓ a ∈ N.

Y is called a 2-step nilsystem.

Y =
(

1 R R
0 1 R
0 0 1

)/(
1 Z Z
0 1 Z
0 0 1

)
a =

(1 α 0
0 1 β

0 0 1

)
Y

T2 z

z +n(α,β)

z +2n(α,β)

z +3n(α,β)

gΓ

angΓ

a2ngΓ

a3ngΓ

gΓ is determined by angΓ,a2ngΓ,a3ngΓ.
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Theorem (Conze-Lesigne, Furstenberg-Weiss 90’)

Obstructions to 4-term progressions come from 2-step nilsystems

More precisely: There exists a morphism π : X→ Y a 2-step
nilsystem, and Y is a universal 3-characteristic factor

1
N

N

∑
n=1

∫
f (x)f (T n

Xx)f (T 2n
X x)f (T 3n

X x)dµX

is asymptotically the same as

1
N

N

∑
n=1

∫
π∗f (y)π∗f (T n

Yy)π∗f (T 2n
Y y)π∗f (T 3n

Y y)dµY

(relatively) Easy to verify that for f = 1A the limit is positive,
Cheat: Y is an inverse limit of 2-step nilsystems - a
pro-nilsystem.
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Gower proof of Szemerédi’s Theorem

Gowers new proof of Szemerédi’s theorem (1998)

For f : Z/NZ→ C define

∆hf (x) = f (x +h)f (x)

Gowers norms

‖f ‖2k

Uk [N] = Ex ,h1,...hk ∆h1 . . .∆hk f (x)

If f (x) = e2π iq(x) where q is a polynomial of degree < k then
‖f ‖Uk [N] = 1.
If f is random then ‖f ‖Uk [N] = o(1).
If ‖f −g‖Uk [N] is small, then they have approx. same number
of k +1 term progressions.
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Gower proof of Szemerédi’s Theorem

Idea: |E |= δN.

Either number of (k +1)-term progressions is as expected in
random set
Or ‖1E −δ‖Uk � 1.

When is ‖f ‖Uk � 1 ???

Local inverse theorem for Gower norms

‖f ‖Uk [N]� 1 =⇒ Ex∈P f (x)e2π iq(x)

for many progressions |P|= Nt , for some small t, q(x) polynomial
of degree k−1.

Get increased density on a sub progression of size Ns (like Roth).
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‖f ‖Uk [N]� 1 =⇒ Ex∈P f (x)e2π iq(x)

for many progressions |P|= Nt , for some small t, q(x) polynomial
of degree k−1.

Get increased density on a sub progression of size Ns (like Roth).
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Classification of universal k-characteristic factors

1
N ∑

n≤N

∫
f (x)f (T nx)f (T 2nx) . . . f (T knx)dµ

The universal 4-characteristic factor is 3-step pro-nilsystem
(Host-Kra (01), Z (02) ), methods extend to all k :

Theorem (Host-Kra 02, Z 04)

The universal k-characteristic factor Yk(X) is a (k−1)-step
pro-nilsystem.

Zk(X) · · · Z2(X)

X Z1(X) ?

Yk(X) · · · Y2(X)
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Szemerédi theorem for the primes

Prime Szemerédi Theorem (Green-Tao 2004)

Let E ⊂ P of positive relative density, then E contains long
arithmetic progressions.

Introduce combinatorial notions of (approximate) factor and
projection onto a factor.
Find a convenient combinatorial "k-characteristic factor". GT
construct a characteristic factor of bounded functions.
Let 1̃E (n) = (logn)1E (n) (not bounded !!!). Let π∗(1̃E ) be the
projection on the factor. Show ‖1̃E −π∗(1̃E )‖Uk is small,

Ex ,d 1̃E (x) . . .1E (x +kd)

is approximately the same as

Ex ,dπ∗(1̃E )(x) . . .π∗(1̃E )(x +kd).

Apply Szemerédi’s Theorem.
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We want more structure on π∗(1̃E ), bounded is not good enough.

Want an optimal combinatorial factor with ‖1̃E −π∗(1̃E )‖Uk is
small. Back the inverse question !

When is ‖f ‖Uk large ???

The role of (pro)-nilsystems in the study of progressions in ergodic
theory motivated Green-Tao to conjecture:

Inverse Conjecture for the Gowers norms

Global obstruction (scale N) to Gowers uniformity come from
sequences arising from nilsystems.

Compare with

Local theorem for the Gowers norms (Gowers)

Local obstructions (scale Nt) to Gowers Uk+1 uniformity come
from phase polynomials of degree k .
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Nilsequence: N/Γ is a k-step nilmanifold. F : N/Γ→ D is a "nice"
function. a ∈ N.

g(n) = F (anΓ)

is a k-step nilsequence.

Inverse Conjecture for the Gowers norms

‖f ‖Uk+1(N)� 1 =⇒ |Ex≤N f (x)g(x)| � 1

for g(n) a "bounded complexity" k-step nilsequence.
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Progress:

Inverse Theorem for Gowers U3[N] norms (Green-Tao 05).
Inverse Theorem for Gowers U3[Fn

p] norms (Green-Tao 05,
Samorodniski 06).
Inverse Conjecture for Gowers U4[Fn

2] norms is False !
(Green-Tao, Lovett-Meshulam-Samorodniski 07).
(modified) Inverse Conjecture for the Gowers norms Uk [Fn

p] is
True ! (Bergelson-Tao-Z (10), Tao-Z (10,12)).

Theorem (Green-Tao-Z 2012)

Inverse Conjecture for the Gowers Uk [N] norms is true !
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Szemerédi (1975)

Arithemtic progressions in sets of integers of positive denisty

Sz 75
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Sz 75

Furstenberg 1977

Ergodic thoeretic proof of Szemeredi’s theorem

F 77
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Sz 75

F 77

Furstenberg-Weiss, Conze-Lesigne (1990’)

Ergodic context: role of 2-step nilpotency in 4 term progressions

FW, CL 90’FW, CL 90’
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Sz 75

F 77

FW, CL 90’FW, CL 90’

Gowers (1998)

New proof of Szemerédi’s theorem: introduction of Uk norms

Go 98
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Sz 75

F 77

FW, CL 90’FW, CL 90’
Go 98

Host-Kra (2002), Z (2004)

Ergodic context: role of nilpotency in k-term progressions

HK 02, Z 04
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Sz 75

F 77

FW, CL 90’FW, CL 90’
Go 98

HK 02, Z 04

Green-Tao (2005)

Szemerédi Theorem for Primes

GT 05
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Sz 75

F 77

FW, CL 90’FW, CL 90’
Go 98

HK 02, Z 04 GT 05

Green-Tao (2005), Samorodniski (2006)

U3 inverse theorem for ZN and Fn
p

GT 05, S 06
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Sz 75

F 77

FW, CL 90’FW, CL 90’
Go 98

HK 02, Z 04 GT 05

GT 05, S 06

Green-Tao, Lovett-Meshulam-Samorodniski (2007)

COUNTER EXAMPLE for U4 inverse theorem in Fn
p

GT, LMS 07
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Sz 75

F 77

FW, CL 90’FW, CL 90’
Go 98

HK 02, Z 04 GT 05

GT 05, S 06

GT, LMS 07

Bergelson-Tao-Z (2010) Tao-Z (2010, 2012)

Uk inverse theorem in Fn
p via ergodic theory

BTZ 10 TZ 10,12
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Sz 75

F 77

FW, CL 90’FW, CL 90’
Go 98

HK 02, Z 04 GT 05

GT 05, S 06

GT, LMS 07

BTZ 10 TZ 10,12

Green-Tao-Z (2012)

Uk inverse theorem in ZN
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Thank you !
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