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Abstract. We prove that the Betti numbers of a negatively curved
orbifold are linearly bounded by its volume, generalizing a theorem
of Gromov which establishes this bound for manifolds. An imme-
diate corollary is that Betti numbers of a lattice in a rank-one Lie
group are linearly bounded by its co-volume.

1. Introduction

Let X be a Hadamard manifold, i.e. a connected, simply-connected,
complete Riemannian manifold of non-positive curvature normalized
such that −1 ≤ K ≤ 0. Let Γ be a discrete subgroup of Isom(X). If
Γ is torsion-free then X/Γ is a Riemannian manifold. If Γ has torsion
elements, then X/Γ has a structure of an orbifold. In both cases, the
Riemannian structure defines the volume of X/Γ.

An important special case is that of symmetric spaces X = K\G,
where G is a connected semisimple Lie group without center and with
no compact factors, and K is a maximal compact subgroup. Then X is
non-positively curved, and G is the connected component of Isom(X).
In this case, X/Γ has finite volume iff Γ is a lattice in G. The curvature
of X is non-positive if rank(G) ≥ 2, and is negative if rank(G) = 1.

In many cases, the volume of negatively curved manifold controls the
complexity of its topology. A manifestation of this phenomenon is the
celebrated theorem of Gromov [3, 10] stating that if X has sectional
curvature −1 ≤ K < 0 then

(1)
n∑

i=0

bi(X/Γ) ≤ Cn · vol(X/Γ),

where bi are Betti numbers w.r.t. to coefficients in any field, and Cn is
a constant depending only on n = dim(X). This inequality also holds
when −1 ≤ K ≤ 0 if X is analytic and has no Euclidean factors.
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It should be noted, that since X is a K(Γ, 1), the bi’s are the Betti
number of the homology of the group Γ.

In certain cases, volume imposes much stronger restriction on topol-
ogy. Namely, it was proved by Gelander [8] that if X is a symmetric
space of non-compact type and Γ is a non-uniform torsion-free arith-
metic lattice then X/Γ is homotopy-equivalent to a simplicial complex
whose complexity is restricted: the number of vertices in this complex
is bounded by a constant (depending on X) times the volume of X/Γ,
and the valence of each vertex is bounded by a constant depending
only on X. This equivalence immediately implies Gromov’s theorem.
By Margulis’s arithmeticity theorem, if rank(X) ≥ 2 then every lattice
Γ is arithmetic, and thus Gelander’s theorem holds for all such spaces.

Gelander has also proved that if Γ torsion-free, then Γ has a presen-
tation for which the number of generators and the total length of the
relations is bounded linearly by the volume of X/Γ (with constants de-
pending on X). Recently, Gelander [9] extended this result and proved
that even for lattices with torsion, the minimal number of generators
of Γ is bounded from above by a constant (depending on G) times the
volume of X/Γ. In particular, this provides a linear bound to the first
Betti number of Γ.

The main theorem proved in this paper is a generalization of Gro-
mov’s theorem to the case where Γ has torsion, in other words, to
orbifolds of the form X/Γ. We prove

Theorem 1.1. Let X be a Hadamard manifold of dimension n with
sectional curvature −1 ≤ K < 0. Then for every discrete group Γ <
Isom(X),

(2)
∑
i

rkHi(X/Γ, A) ≤ Cn · vol(X/Γ),

where the coefficient ring A is an integral domain of characteristic 0,
and Cn is a constant depending only on n.

There are several (co)-homology theories for orbifolds which aim at
capturing the homology of the space, as well as that of the group Γ.
Our technique is mainly geometric; we therefore treat X/Γ as a topo-
logical quotient space, and the homology is that of this space. Further-
more, the action of finite subgroups of Γ introduces torsion to homology
groups, which may depend on the structure of these finite groups. Since
we are not able to bound the size of finite groups by the orbifold vol-
ume, our result is restricted to homology with coefficients in an integral
domain with characteristic 0.
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The case A = Q is of particular importance. The homology of the
stabilizers in G of points of X is trivial, because stabilizers are finite
groups. It follows that Hi(X/Γ,Q) = Hi(Γ,Q) (see e.g. [6], p. 174).
Hence, we can restate (2) as a bound on Betti numbers (with rational
coefficients) of the group Γ:∑

i

bi(Γ,Q) ≤ Cn · vol(X/Γ).

Theorem 1.1 and Gromov’s theorem can be rephrased as an asymp-
totical statement: if Γn is a sequence of groups of isometries acting
discretely on X (with the appropriate assumptions) then the growth of
bi(Γn) is at most linear in vol(X/Γn).

A theorem of Lück [12] describes the asymptotic behavior of a nested
sequence (Γn)n≥1 of normal finite index subgroups of Γ, assuming that
X/Γ is compact and

∩
Γn = 1. In this case,

(3) lim
n→∞

bi(X/Γn)

vol(X/Γn)
= b

(2)
i (X; Γ),

where the right-hand-side is the L2-Betti number. Hence, the growth

is linear exactly when b
(2)
i (X; Γ) is non-zero. It was proved by Olbrich

[15] that if X is a symmetric space, then b
(2)
i is zero unless, perhaps,

i = dim(X)/2.
In a recent joint work with Abert, Bergeron, Biringer, Gelander,

Nikolov and Raimbault [1,2] we prove (3) holds for any sequence of uni-
form irreducible lattices (Γn)n≥1 (possibly with torsion) in a semisimple
Lie group G, assuming that vol(X/Γn) → ∞ and that G has property
(T) and rank ≥ 2. However, one cannot expect (3) to hold for rank-
one locally symmetric spaces (whether manifolds or orbifolds). For
instance, if Γ is a uniform lattice in Isom(Hn) that surjects on the free
group of rank 2, then finite index subgroups of Γ corresponding to sub-
groups of Z∗Z have first Betti numbers that grow linearly with volume,

whereas b
(2)
1 = 0.

Characteristic p. It is natural to whether Theorem 1.1 holds for co-
efficients with positive characteristic, and particularly for coefficients
in the field Fp. The author does not know of any counterexample in
this case. In fact, there is but a single place in the proof that relies on
the characteristic assumption, namely Proposition 4.11. Proving this
proposition for coefficients in Fp boils down to the problem of uniformly
bounding the Fp-Betti numbers of a spherical orbifold, as posed in the
following question:
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Does there exist a constant D depending on k (and pos-
sibly on p?) such that for every finite group G acting lin-
early on a sphere Sk, and for every i, bi(S

k/G,Fp) ≤ D?

More precisely, an affirmative answer to the question for spheres of
dimensions ≤ n − 1 would imply that Theorem 1.1 holds with coeffi-
cients in Fp for manifolds of dimension n. In particular, we can obtain
the following partial results:

(1) The theorem holds with Fp coefficients for manifolds of dimen-
sions 2 or 3 (with a constant Cn independent of p). This is be-
cause — up to homeomorphism — there are only finitely many
possible quotients of 1-spheres and 2-spheres by finite groups1.

(2) If p does not divide the order of any finite subgroup of Γ, then
the inequality (2) holds for A = Fp (with the constant Cn

of the characteristic 0 case). This follows from the fact that
bi(S

k/G,Fp) ≤ 1 whenever p is prime to the order of G (see
remark at the end of section 4).

Acknowledgments. It is my pleasure to thank Tsachik Gelander, my
Ph.D. advisor, for his support, encouragement and advice. I also thank
the referee for carefully reading the manuscript, and for his invaluable
suggestions for improving the exposition.

2. Preliminaries

2.1. Notation. Let X be an n-dimensional Hadamard manifold, i.e.
a connected, simply-connected complete Riemannian manifold of non-
positive sectional curvature. We assume that the curvature is bounded
and that the metric is normalized such that −1 ≤ K ≤ 0. If K < 0
we say the manifold is negatively curved. Most of our results apply to
this case.

2.1.1. We introduce notation and review some facts about isometries
of Hadamard spaces. A standard reference for this is [5, Ch. II.6] or
[3, §6].

Let γ be an isometry of X. The displacement function dγ : X →
R≥0, dγ(x) = d(γx, x), is a convex function in the sense that for every
geodesic c : R → X, dγ ◦ c is a convex function. The set of minimal
displacement is defined

Min(γ) = {x ∈ X : dγ(x) = inf dγ};

1The underlying space of a 1-dimensional spherical orbifold is 1-sphere or an
interval, and the underlying space of a 2-dimensional spherical orbifold is a 2-sphere,
a disc, or a projective plane.
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it is a closed and convex subset of X.
An isometry of X is elliptic if it fixes a point in X, hyperbolic if it

does not fix a point in X but dγ attains minimum in X, and parabolic
otherwise. The first two types are called semisimple. An isometry is
elliptic (resp. hyperbolic, parabolic) iff any a positive power of it is
elliptic (resp. hyperbolic, parabolic).

If γ is a non-trivial elliptic isometry then Min(γ) is a complete totally
geodesic submanifold of lower dimension in X. If γ is hyperbolic and
K < 0 then Min(γ) is a geodesic — the axis of γ — on which γ acts
by translations. If γ is a parabolic isometry then it fixes a point in
the boundary of points at infinity. Explicitly, there is a geodesic ray
c : R+ → X such that c and γ c are asymptotic, i.e., d(c(t), γ c(t)) is
uniformly bounded. If K < 0 then γ fixes a unique point at infinity.

Let C be a closed convex subset of X, and let x ∈ X. Since X
has non-positive curvature, there is a unique point πC(x) ∈ C that is
closest to x in C. This is called the projection to C. The projection is
distance decreasing, i.e. d(πC(x), πC(y)) ≤ d(x, y). Now suppose C is
γ-invariant. Then γπC(x) = πC(γx). It follows that dγ(πC(x)) ≤ dγ(x).
In particular, Min(γ) ∩ C is non-empty.

If γ0, γ1 are commuting semisimple isometries, then γi keeps Min(γ1−i)
invariant (i = 0, 1). It follows that Min(γ0) ∩ Min(γ1) is non-empty,
and kept invariant by both isometries. More generally, if A is a set of
commuting semisimple isometries then

∩
γ∈AMin(γ) is non-empty and

A-invariant. In particular, if K < 0 then two commuting isometries
have the same axis.

2.1.2. Let Γ be a group of isometries of X acting properly discontin-
uously, that is, a subgroup of Isom(X) which is discrete with respect
to the compact-open topology. If Γ is torsion-free, then X/Γ has a
structure of Riemannian manifold. More generally, Γ may have finite
point-stabilizers, and X/Γ is endowed a structure of a Riemannian
orbifold. An orbifold has an atlas of maps locally identifying it with a
quotient of an open set in X by a finite group of isometries. Orbifolds
were originally introduced and studied by Satake [17] who named them
V-manifolds.

2.1.3. We have the canonical projection π : X → X/Γ. Let inj-rad(x),
x ∈ X/Γ, be the local injectivity radius at x. Let us denote dΓ(x) =
infγ∈Γ\{1} dγ(x). We recall that inj-rad(x) = 1

2
dΓ(x̃), with π(x̃) = x.

The ε-thick part of X/Γ is defined

(X/Γ)≥ε = {x ∈ X/Γ : inj-rad(x) ≥ ε

2
}.
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It is the image of the set {x ∈ X : dΓ(x) ≥ ε} under the canonical
projection.

We remark that if X is a point, its injectivity radius is infinity.

2.1.4. We will make all volume calculations using discrete estimates.
Say a set N ⊂ X is δ-discrete if d(x, y) ≥ δ for x ̸= y ∈ N . For ε > 0

we define ε− ess-vol(X/Γ) as the supremal cardinality of a 2ε-discrete
set of points N in the 2ε-thick part of X/Γ. This is the supremum of
the number of disjoint injected balls of radius ε. It is reasonable to set
ε − ess-vol(point) = 1; this is consistent with definitions for positive
dimension. This definition is introduced in [3, §10.4].

Clearly, ε − ess-vol(X/Γ) is non-decreasing as ε decreases. In the
case dimX > 0, it is easy to verify the useful inequality

k · ε− ess-vol(X/Γ) ≤ ε

k
− ess-vol(X/Γ).

Since curvature is non-positive, a ball of radius ε in X has volume
≥ V (ε, n) — the volume of a ball of radius ε in Euclidean n-space.
Thus we have

ε− ess-vol(X/Γ) ≤ V (ε, n)−1 · vol(X/Γ).

We will utilize these two inequalities freely without further reference.

2.1.5. For a point x ∈ X, let Γx be the stabilizer of x in Γ. A subgroup
of Γ is finite if and only if it is contained in Γx, for some x ∈ X.

For a submanifold Y ⊆ X, we denote

ΓY = {γ ∈ Γ : γY = Y }, and Γ1
Y = {γ ∈ ΓY : γ|Y = 1}.

The latter is a finite group.
If Γ1

Y is not trivial, then ΓY cannot be identified as a subgroup of
Isom(Y ). However, the action of ΓY on Y factors through ΓY /Γ

1
Y . In

this case, the terms Y/ΓY and dΓY
, and consequentially inj-rad and

ε − ess-vol(Y/ΓY ), will refer to — by abuse of notation — the action
ΓY /Γ

1
Y on Y .

2.2. Margulis lemma. We denote ∆ε(x) = {γ ∈ Γ : dγ(x) < ε} and
Γε(x) = ⟨∆ε(x)⟩. The following statement about groups generated by
“small motions” is an amalgamation of the Margulis Lemma [3] and
the Jordan Theorem [11].

Theorem 2.1. Let X be a Hadamard manifold of dimension n with
−1 ≤ K ≤ 0. There are constants depending only on n, εn > 0 and
mn ∈ N such that for every discrete subgroup Γ < Isom(X) and every
x ∈ X, Γεn(x) contains a normal nilpotent subgroup N of index ≤ mn.
If Γεn(x) is finite, N is in fact abelian.
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We henceforth refer to the nilpotent subgroup stipulated by this
theorem as “the normal nilpotent subgroup of Γε(x)”.

Remark. The proof of the Margulis Lemma (cf. [3, §8.3]) is based on
the fact that there are generators of N in a neighborhood of identity
in which commutators are contracting with respect to some norm. It
follows from this that for every δ > 0 there is K = K(δ, n) such that if γ
is a k-fold commutator of these generators with k ≥ K then dγ(x) < δ.

The following lemma is proved in [3, Lemma 7.4].

Lemma 2.2. Let N be a nilpotent group of isometries acting on a
closed convex subset of X. Let Ns be the set of semisimple isometries
in N . Then Ns is a normal subgroup of N , and

∩
γ∈N Min(γ) is a

non-empty N-invariant set.

Lemma 2.3. Let 0 < ε < εn, and let N be the normal nilpotent
subgroup of index ≤ mn in Γε(x). Then N is generated by elements in
∆2mnε(x). If Γε(x) is infinite then there is an element of infinite order
in N ∩ ∆2mnε(x). Furthermore, if Γε(x) contains parabolic elements
then this element can be taken to be parabolic.

Proof. Recall that if G is a group generated by a set of elements S,
and H ≤ G is a subgroup of index r, then H is generated by words
of length < 2r in the generators S. Indeed, if T = {t1, . . . , tr} is a
transversal (i.e. a set of representatives of right cosets) of H in G, then
H is generated by TST−1 ∩H. Moreover, if T is a Schreier transversal
(w.r.t. the generating set S) then its elements have length at most r−1
(for the last two statements see e.g. [13, §2.3]). Hence, H is generated
by words of length 2(r − 1) + 1 < 2r.

Let N be the normal nilpotent subgroup of Γε(x). Since [G : N ] ≤
mn, N is generated by words of length < 2mn with respect to the
generators of Γε(x). Hence it is generated by elements in ∆2mnε(x).

Let Ns be the set of semisimple elements in N . By 2.2, Ns is a sub-
group, and K =

∩
γ∈Ns

Min(γ) is non-empty convex and N -invariant.
Notice that every elliptic element in N fixes K. Since N is infinite, it
cannot fix K pointwise, and thus cannot be generated by elliptic ele-
ments. Thus, at least one element in N ∩∆2mnε(x) has infinite order.
If Γε(x) contains a parabolic element, then so does N . In this case, at
least one element in N ∩∆2mnε(x) is parabolic, otherwise N = Ns.

2.3. Elliptic isometries. For an elliptic isometry γ we write Fix(γ)
for Min(γ). Let Γ be a group of isometries acting discretely on X. We
say Y is a singular submanifold if it equals

∩
γ∈A Fix(γ) for a set A ⊂ Γ

of elliptic elements. We do not exclude the trivial case Y = X.
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Let Y, Y ′ be two totally geodesic submanifolds in X. If there exists
γ ∈ Γ such that Y = γY ′ we say that Y, Y ′ are conjugate. Clearly, if
Y is conjugate to a singular submanifold, then Y itself is a singular
submanifold.

Definition 2.4. An isometry g ∈ G = SO(n) of Rn is s-stable (s ∈ N)
if CG(g

i) = CG(g) (centralizer in G) and Fix(g) = Fix(gi) for i =
1, . . . , s. An elliptic isometry γ ∈ Isom(X) is s-stable if the isometry
induced on the tangent bundle of a fixed point is s-stable.

A singular submanifold Y is s-stable (w.r.t. to Γ) if there exists a
subset A ⊂ Γ, such that every γ ∈ A is elliptic s-stable, and Y =∩

γ∈A Fix(γ).

It is clear that the definition of an s-stable elliptic element does not
depend on the choice of fixed point. Also, if γ is an elliptic s-stable
isometry then Fix(γ) = Fix(γi), and for every elliptic isometry γ′, γ′

commutes with γ iff it commutes with γi. This is easily seen by looking
at a point fixed by both commuting isometries.

The notion of stability was originally introduced in [3, §12.4] for
hyperbolic isometries. There, a hyperbolic element γ is called s-stable
if Min(γi) = Min(γ) for i = 1, . . . , s (there is no requirement that
centralizers are equal). Although our requirement is stronger, we still
have the following “stabilization” property which is established in [3,
§12.5] for hyperbolic elements:

Proposition 2.5. For every s ∈ N there exists s∗ = s∗(s, n) such that
for every isometry γ of X there is some j ≤ s∗ such that γi is s-stable.

Proof. Clearly, it suffices to prove the analog statement for g ∈ SO(n).
Let us view SO(n) as a group of matrices over C. An element h ∈ SO(n)
commutes with g iff there is a basis whose vectors are eigenvectors of
both g and h.

It is easy to see that if all eigenvalues of g have argument < π
s
then

i-th (i ≤ s) powers of distinct eigenvalues remain distinct, thus every
eigenvector of gi is an eigenvector of g. Hence, g commutes with h iff
gi commutes with h. Also, under this assumption, the eigenspace of
eigenvalue 1 is the same for g and for gi, and hence Fix(g) = Fix(gi).

Now, partition T = {z ∈ C : |z| = 1} into 2s intervals Uk =
{eπx/s : k ≤ x < k + 1} for k = 0, . . . , 2s − 1, and endow this to a
partition of T n into (2s)n parts. By a pigeonhole principal argument, if
(z1, . . . , zn) ∈ T n then there exists 1 ≤ i ≤ (2s)n + 1 such that zij ∈ U0

for all 1 ≤ j ≤ n. We set s∗ = (2s)n + 1.
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Considering g ∈ SO(n) again, we identify its eigenvalues as a tuple
in T n. Then there exists 1 ≤ i ≤ s∗ such that all eigenvalues of g have
argument < π

s
, and we are done.

3. Bounding the thin part

In the classical study of manifolds of non-positive curvature, it is
usually beneficial to decompose a manifold into its “thick” and “thin”
parts, i.e. parts with injectivity radius bounded from below, and from
above, respectively.

Roughly speaking, the topology of thin part can be complicated and
is somewhat controlled by the Margulis lemma. When Γ contains el-
liptic elements, the thin part contains all singular submanifolds, and
its complexity is even greater. However, the Margulis Lemma can still
be used to show that sufficiently stable singular submanifolds are more
“well-behaved” than general singular submanifolds. The following two
theorems make use of this general idea to make a quantitative state-
ment.

With the exception of Theorem 3.5, the statements of this section
hold whenever X is a Hadamard manifold with sectional curvature
normalized such that −1 ≤ K ≤ 0. We will not restate this assumption
in any of the statements. Theorem 3.5 holds with the assumption that
−1 ≤ K < 0.

We will make use of the following proposition, which is proved in
[3, p. 128].

Proposition 3.1. For every ε > 0 and k ∈ N there is a δ > 0 such
that if |Γε(x)| ≤ k then there is a point y ∈ X, d(x, y) < ε/4, and
dΓ(y) ≥ δ.

The following theorem is motivated by the analogous Theorem 12.11
of [3]. The proof of the latter deals with (stable) minimal translation
sets of hyperbolic elements in non-positively curved, and overcomes
difficulties that arise from the fact that they may have Euclidean fac-
tors. It relies on the assumption that the group acts freely. In our
setting, the curvature is negative, however elliptic elements create a
new difficulty.

Theorem 3.2. Let m = mn be the constant of the Margulis lemma,
and let Σ be a set of non-conjugate singular m-stable submanifolds in
X. For every ε1 > 0 there is an ε2 = ε2(ε1, n) > 0 such that

(4)
∑
Y ∈Σ

ε1 − ess-vol(Y/ΓY ) ≤ ε2 − ess-vol(X/Γ).
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Corollary 3.3. With the notation of the theorem: If ε2−ess-vol(X/Γ)
is finite then there are only finitely many non-conjugate m-stable sin-
gular submanifolds with a non-empty ε1-thick part.

We first prove

Lemma 3.4. For δ > 0, there is some ε > 0 such that the following
holds: Let Y ⊆ X be an m-stable singular submanifold (m = mn), and
let A ⊂ Γ be a set of elliptic elements such that Y =

∩
α∈A Fix(α). Let

x ∈ X be a point having the following property:

(1) For every γ ∈ ΓY , if dγ(x) < δ then γ fixes Y pointwise.
(2) A ⊆ Γε(x).

Then Γε(x) is finite, and
∩

γ∈Γε(x)
Fix(γ) = Y .

Proof. Let k = k(δ, n) be the constant introduced in the remark fol-
lowing the Margulis Lemma (Theorem 2.1). Take ε = min(εn,

δ
2m4k

).
Let N be the normal nilpotent subgroup of Γε(x) of index i ≤ m.

We claim that for every j, there are generators of N such that every
j-fold iterated commutator γ in those generators has dγ(x) < δ. Indeed,
for j ≥ k take those “commutator contracted” generators used to define
k. For j < k, by Lemma 2.3, N is generated by elements with dγ(x) <
2mε. Thus if γ is a j-fold iterated commutator of these generators,
then dγ(x) < 2m4kε = δ.

We have A ⊂ Γε(x), and thus B = {αi : α ∈ A} is contained in N .
Stability of the elements of A implies that Y =

∩
β∈B Fix(β).

We claim that N fixes Y pointwise, and in particular, is finite. De-
note by N (j) the j-th term in the lower central series of N . The proof is
by reverse induction. Suppose N (j+1) fixes Y . As we have noted, there
are generators of N such that if γ is a j-fold iterated commutator of
these generators then dγ(x) < δ. For each β ∈ B, [γ, β] ∈ N (j+1) fixes
Y . It follows that γY ⊆ Fix(β). Therefore, γ keeps Y invariant. But
since dγ(x) < δ, it follows by our assumptions that γ fixes Y pointwise.
Finally, recall that N (j) is generated by j-fold iterated commutators of
(any set of) generators of N modulo N (j+1). It follows that N (j) fixes
Y pointwise.

Since N fixes Y pointwise and B ⊆ N , we have that
∩

γ∈N Fix(γ) =

Y . Normality of N implies that Y is Γε(x)-invariant. It follows by the
same argument as above, that Γε(x) fixes Y pointwise.

Remark. The proof brings into mind an interesting question: Is there
a uniform bound on the nilpotency degree of a discrete nilpotent group
of isometries of X? This is easily seen to be true if X is a symmetric
space, in which case the group is linear. The answer is also positive if
Γ is torsion-free; this follows from [18] together with [16, Lemma 2.19].
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Before proving Theorem 3.2, let us explain the situation in which
the previous lemma will be used. In the proof of the theorem, we will
have a point y ∈ Y which is in the 2δ-thick part of Y/ΓY , and a point
x ∈ X with d(πY (x), y) < δ/2 (x = y being a special case). Then x
satisfies the first assumption because if dγ(x) < δ then dγ(πY (x)) < δ
and consequentially dγ(y) < 2δ. Our choice of y implies that if γ ∈ ΓY

then γ fixes Y pointwise.

Proof of 3.2. Let us first note that it suffices to prove the theorem
assuming X ̸∈ Σ. Indeed, if ε2 < ε1 is a constant for which (4) holds
whenever X ̸∈ Σ, then (4) holds for all sets Σ with ε2

2
instead of ε2,

because

ε1 − ess-vol(X/ΓX) + ε2 − ess-vol(X/Γ) ≤ ε2
2
− ess-vol(X/Γ).

We will also assume that Σ is finite. Clearly, if (4) holds whenever Σ
is finite, it also holds when Σ is infinite.

We proceed by induction on dimension. Suppose that the theorem
holds for manifolds of dimension < n. Then for every d < n there

exists ε
(d)
2 > 0, such that (4) holds (with ε

(d)
2 for ε2) for manifolds of

dimension d. Take ε3 = min{ε(d)2 : d < n}. Clearly, (4) still holds if we
replace ε

(d)
2 by ε3.

Let Z be an m-stable singular submanifold in X. Denote by ΣZ ⊆ Σ
the set of m-stable singular submanifolds that are properly contained
in Z. Suppose Y ∈ ΣZ , and let AY (resp. AZ) be the set of all m-stable
elliptic isometries fixing Y (resp. Z) pointwise. Thus

∩
γ∈AY

Fix(γ) =

Y and
∩

γ∈AZ
Fix(γ) = Z. Clearly, AZ ( AY . Pick any y ∈ Y . Then Γy

has a normal abelian subgroup of index i < m and clearly AY ⊆ Γy. We
deduce that for every γ1, γ2 ∈ AY , γ

i
1, γ

i
2 commute, and by the stability

condition, γ1, γ2 commute. It follows that every element of AY keeps
Z invariant. Thus, Y can be considered an m-stable submanifold of Z,
with respect to the group of isometries ΓZ .

Furthermore, the Margulis constant mn is increasing with the di-
mension n. Hence Y is also md-stable, d = dim(Z). By the induction
hypothesis we have∑

Y ∈ΣZ

ε1 − ess-vol(Y/ΓY,Z) ≤ ε3 − ess-vol(Z/ΓZ),

where ΓY,Z is short for ΓY ∩ ΓZ .
Since our inequality involves ε1 − ess-vol(Y/ΓY ), we have to bound

this number by ε1 − ess-vol(Y/ΓY,Z). To this end, let y1, . . . , yk be
points in Y whose projection to Y/ΓY is a 2ε1-discrete set, and assume
dΓY

(yi) > 2ε1. Since ΓY,Z ≤ ΓY , we have dΓY,Z
(yi) > 2ε1. Also,
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the projection of these points to Y/ΓY,Z(x) is 2ε1-discrete, because
the group acting on Y is smaller. Hence ε1 − ess-vol(Y/ΓY ) ≤ ε1 −
ess-vol(Y/ΓY,Z).

Let Σ′ ⊆ Σ be the set of m-stable submanifolds which are maximal
in Σ \ {X} with respect to inclusion. Then we have∑

Y ∈Σ\{X}

ε1 − ess-vol(Y/ΓY ) ≤
∑
Z∈Σ′

∑
Z⊇Y ∈Σ

ε1 − ess-vol(Y/ΓY )

≤
∑
Z∈Σ′

∑
Z⊇Y ∈Σ

ε1 − ess-vol(Y/ΓY,Z) ≤
∑
Z∈Σ′

ε3 − ess-vol(Z/ΓZ),

and our problem is reduced to the case of maximal submanifolds.
We will henceforth assume Σ is a set of maximal non-trivial m-stable

submanifolds, and prove that there exists ε2 for which (4) holds.

Here is the strategy of the proof: To a point on the 2ε1-thick part of a
stable singular submanifold we assign a ball of radius ε2 in the 2ε2-thick
part of X/Γ. We then show that for a collection of points realizing the
sum of ε1 − ess-vol of all relevant submanifolds, the assigned balls are
pairwise disjoint in X/Γ.

Take ε3 given by Lemma 3.4 for δ = 2ε1. Note that ε3 < ε1
2
. Set

ε4 =
ε3

4mm∗ , where m∗ is the constant of Proposition 2.5.
Let Z ∈ Σ′, and let z ∈ Z be a point whose image in Z/ΓZ is in

the 2ε1-thick part. Let AZ be the set of all m-stable elements fixing
Z. Since Z is not properly contained in any other m-stable singular
submanifold, we have that Fix(γ) = Z for every γ ∈ AZ . By Lemma
3.4, Γε3(z) is finite and every γ ∈ Γε3(z) fixes Z, and z in particular.

Let c : [0,∞) → X be a geodesic ray with c(0) = z and c′(0) ⊥ Z.
For every γ ∈ AZ , dγ is not constant along c, and by convexity it is
hence strictly increasing. We fix y = c(t0), t0 > 0, such that dγ(y) ≥
ε3/2 for all γ ∈ AZ , and dα(y) = ε3/2 for some α ∈ AZ .

Since α ∈ Γε3(y), and πZ(y) = z, Lemma 3.4 applies again. We
deduce that Γε3(y) is finite, and its elements fix Z pointwise. This is
a fortiori true for Γε4(y). Let N be the normal abelian subgroup of
Γε4(y), of index i ≤ m. Let γ ∈ N with dγ(y) < 2mε4 (recall that N is
generated by such elements). By Lemma 2.5, γj is m-stable, for some
j ≤ m∗. Since Fix(γj) ⊇ Z, and Z is maximal, either γj is trivial, or
γj ∈ AZ . But the latter is impossible, because dγj(y) ≤ j · dγ(y) <
m∗ · 2mε4 = ε3/2. Therefore, N is generated by elements of order
≤ m∗. Since N is abelian, every element of it has order ≤ m∗!. But
N is an abelian subgroup of SO(n), hence it is generated by at most n
elements (not necessarily those taken before), hence |N | ≤ (m∗!)n and
|Γε4(y)| ≤ m(m∗!)n.
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Now, we fix a constant ε2 by 3.1, such that there exist x ∈ X with
d(x, y) < ε4/4 and dΓ(x) ≥ 2ε2. We may assume ε2 ≤ min( ε1

4
, ε3

8
).

Note that ε2 depends on ε4 and on m(m∗!)n, thus it depends only on
ε1 and n.

Let B(z) be the ball of radius ε2 centered at x. We claim that every
point w ∈ B(z) has the following properties:

(a) d(z, πZ(w)) < ε1, and
(b) Γε3(w) is finite and

∩
γ∈Γε3(w) Fix(γ) = Z.

Property (a) is immediate, because

d(z, πZ(w)) = d(πZ(y), πZ(w)) ≤ d(y, w) ≤ ε2 + ε4/4 < ε1.

Since dα(y) = ε3/2, and d(w, y) ≤ ε2 + ε4/2, we have

dα(w) ≤ dα(y) + 2d(w, y) < ε3/2 + 2ε2 + ε4 < ε3.

Thus α ∈ Γε3(w), and in light of (a), it follows from Lemma 3.4 that
property (b) holds.

To complete the proof, let Σ′ = {Z1, . . . , Zs} and for each 1 ≤ i ≤ s
choose a set of points {zi,1, . . . , zi,ti} in Zi whose projections to Zi/ΓZi

are a 2ε1-discrete set in the 2ε1-thick part, and such that ti = ε1 −
ess-vol(Zi/ΓZi

).
Consider the collection of balls {B(zi,j) : 1 ≤ i ≤ s, 1 ≤ j ≤ ti},

and their projections B̃(zi,j) to X/Γ. Recall that B(zi,j) is centered
around a point in the 2ε2-thick part of X/Γ. We claim that these balls
are pairwise disjoint.

To this end, suppose B̃(zi,j) and B̃(zi′,j′) have non-empty intersec-
tion. Then there exists w ∈ B(zi,j) and γ ∈ Γ such that γw ∈ B(zi′,j′).
By property (b), we deduce that γZi′ = Zi. By our assumption on
Σ, we deduce that i = i′ and γ ∈ ΓZi

. Now property (a) implies
that the images of zi,j and zi′,j′ in Zi/ΓZi

have distance < 2ε1. Thus
zi,j = zi′,j′ .

A second type of minimal sets that arises in the thin part are “short
geodesics”. These are the images of axes of hyperbolic isometries in Γ
with translation length less than εn/2 (the Margulis constant). In the
torsion-free setting, bounding the number short geodesics is a straight-
forward consequence of the Margulis lemma (e.g., [3, Lemma 10.4]).
The presence of finite order elements introduces new difficulties that
are dealt with in the proof of the following theorem.

Theorem 3.5. Assume that −1 ≤ K < 0. Let ε = εn, and C be a set
of non-conjugate geodesics in X, such that for each c ∈ C there exists
a hyperbolic element α ∈ Γ with C = Min(α), and min dα < ε/2. Then
|C| ≤ µ− ess-vol(X/Γ), where µ is a constant depending on n.
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Proof. Let C ∈ C, and let α be a hyperbolic element with axis C
and min dα < ε/2. Pick x ∈ C, and let N be the nilpotent normal
subgroup of Γε(x). Denote by Ns the set of semisimple elements in N .
Then, by Lemma 2.2, K =

∩
γ∈Ns

Min(γ) is a non-empty convex and
N -invariant. Now, some power of α is in N , hence in Ns. Therefore,
K is contained in C and is α-invariant. It follows that K = C. Thus
Γε(x) keeps C invariant.

Let Y be an m-stable (m = mn) singular manifold containing C
which is minimal w.r.t. inclusion (this exists because X itself is m-
stable). Let AY be the set of all elliptic m-stable elements fixing Y , and
AC be the set of all elliptic m-stable elements fixing C. The minimality
of Y implies that for every γ ∈ AC \AY , Fix(γ)∩Y = C. Also, let HC

be the set of hyperbolic elements with axis C.
Take a geodesic ray c : [0,∞) → Y with c(0) = x and c′(0) ⊥ C. If

γ ∈ AC \AY or γ ∈ HC then γ keeps C invariant, and c is not contained
in Min(γ). Thus, dγ is strictly increasing along c. Fix y = c(t0) such
that dγ(y) ≥ ε/2 for all γ ∈ (AC \AY )∪HC and dα(y) = ε/2 for some
α ∈ (AC \ AY ) ∪HC .

Claim. Let z ∈ Y and d(z, y) < ε/4. If Γε(z) is infinite then it
contains a hyperbolic element and every hyperbolic element γ ∈ Γε(z)
has Min(γ) = C. If Γε(z) is finite then

∩
γ∈Γε(z)

Fix(γ) ⊆ C. In either

case, Γε(z) keeps C invariant.

Proof. First note that AY ⊂ Γε(z) because z ∈ Y . Also, α ∈ Γε(z)
because dα(y) < ε/2 and d(y, z) < ε/4. Let N be the normal nilpotent
subgroup of Γε(z) with index i ≤ m.

Suppose Γε(z) is infinite. Then N is a finitely generated infinite
nilpotent group, and thus contains a central element β of infinite order
(cf. [4]). For every γ ∈ AY ∪ {α} we have γi ∈ N . Since β commutes
with γi, β keeps Min(γi) = Min(γ) invariant (note that the latter
equation holds whether γ = α is hyperbolic or elliptic, in which case
it is m-stable). Hence, β keeps C = Y ∩ Min(α) invariant. Since C
is a line, β is hyperbolic with axis C. It follows that Γε(z) keeps C
invariant, and that any hyperbolic element in Γε(z) has axis C.

Suppose now that Γε(z) is finite. In this case, α ∈ AC \ AY , be-
cause it is not hyperbolic. Since AY ∪ {α} ⊂ Γε(z), we have that∩

γ∈Γε(z)
Fix(γ) ⊆ Y ∩Fix(α) = C. To see that Γε(z) keeps C invariant,

pick z′ ∈
∩

γ∈Γε(z)
Fix(γ). Then Γε(z) ≤ Γε(z

′). Since Γε(z
′) contains a

hyperbolic element with axis C, all its elements keep C invariant, and
thus the same is true for Γε(z).
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We return to the proof of the theorem. Let ε1 = ε/4m∗ (m∗ is the
constant of 2.5). By the claim, all elements of Γε1(y) keep C invariant.
We prove that Γε1(y) is finite. Suppose by contradiction that it is
infinite. Then a fortiori Γε(y) is infinite. Now, by Lemma 2.3, Γε1(y)
contains an element γ of infinite order and dγ(y) < 2mε1 < ε/2. Since
γ keeps C invariant, it must be hyperbolic with axis C. But this is
impossible by the choice of y.

Let N be the normal abelian subgroup of Γε1(y) ∩ ΓY . Let γ ∈ N .
Since γ is elliptic and keeps the line C invariant, γ2 fixes C pointwise.
For some j ≤ m∗, γ2j is m-stable, thus γ2j ∈ AC . But since dγ2j(y) <
2m∗ε1 = ε/2 we deduce that γ2j ∈ AY , hence γ ∈ Γ1

Y . This means
that every element in N/(N ∩ Γ1

Y ) has order ≤ 2m∗, and since this
group is generated at most n elements, |N/N ∩ Γ1

Y | ≤ (2m∗)n, and
|Γε1(y) ∩ ΓY /Γ

1
Y | ≤ m(2m∗)n.

We now apply 3.1 to Γε1(y) ∩ ΓY /Γ
1
Y , regarding it as a subgroup of

isometries of Y . There is a constant ε2 > 0 and a point z ∈ Y with
d(y, z) < ε1/4 and dΓY

(z) > 2ε2. We denote by B(C) the ball of radius
ε2 inside Y centered at z.

Now suppose C,C ′ ∈ C, C ̸= C ′. Then either B(C), B(C ′) are
contained in non-conjugate m-stable submanifolds, or we may assume
they are contained in the same m-stable submanifold Y . In the latter
case, their images in Y/ΓY are disjoint. Indeed, if they are not, then we
may assume (by conjugation with an element of ΓY ) that B(C) meets
B(C ′), and this easily leads to a contradiction by the above claim. The
argument is similar to that of the proof of the previous theorem.

We thus have

|C| ≤
∑
Y ∈Σ

ε2 − ess-vol(Y/ΓY ) ≤ µ− ess-vol(X/Γ)

where Σ is a set of non-conjugate m-stable submanifolds that contain
the geodesics in C, and µ is a constant obtained by Theorem 3.2.

4. Bounding the quasi-thick part

We now turn to study the “thick” part. The topology of the “thick”
part of a manifold with finite volume can be understood, to some ex-
tent, by means of a good cover of balls whose number is bounded by
the volume of the manifold. This is useful if the “thin” part can be
analyzed separately. Yet, in the previous section we have restricted
our attention to a certain part of the “thin” part, namely, the stable
singular submanifolds. To compensate for this shortcoming, we need
to extend the standard notion of the ε-thick part.
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In this section, X is an n-dimensional Hadamard manifold with non-
positive sectional curvature normalized such that −1 ≤ K ≤ 0. As
always, Γ is a discrete subgroup of Isom(X). Here we denote by O =
X/Γ the quotient orbifold.

Definition 4.1. For ε > 0 and m ∈ N we define

X≥ε,m = {x ∈ X : |Γε(x)| ≤ m}.

Since this set is Γ-invariant, we can define the (ε,m)-quasi-thick part
of O as O≥ε,m = X≥ε,m/Γ.

Our goal is to show that (ε,m)-quasi-thick part of O can be covered
by a collection of sets with contractible intersections, such that the
volume controls the size of the covers and the degree of intersections.
We remark that by “cover” we mean that the union of the sets contains
the quasi-thick part, and may be strictly larger. In precise terms:

Theorem 4.2. There are positive constants δ and r depending on ε, n
and m, such that O≤ε,m admits a finite open cover B with the following
properties:

(1) The elements of B are metric balls in O of radius ≤ ε/4.
(2) A non-empty intersection of balls in B is contractible.
(3) The cardinality of B is bounded from above by δ − ess-vol(O).
(4) Each ball in B intersects at most r balls in B.

Note that δ and r depend on the dimension n. However, since any
smaller δ and larger r will do, we may well choose constants that are
good for orbifolds of dimension ≤ n (for given ε and m).

Corollary 4.3. If δ − ess-vol(O) < ∞ then O≥ε,m is compact. .

To prove this theorem, we begin by studying the geometry of singular
sets — sets of points fixed by finite subgroups of Γ.

4.1. Singular sets. We introduce some ad hoc notations for describing
the singular sets of groups of isometries. For a finite group of isometries
G < Isom(X) we denote F (G) = ∩g∈G Fix(g). For a group of isometries
∆ < Isom(X) we define

Σ(∆) = {F (G) : G < ∆ finite},
Σi(∆) = {Y ∈ Σ(∆) : dim(Y ) = i}, and

Σ<i(∆) = {Y ∈ Σ(∆) : dim(Y ) < i}.

We set Si(∆) =
∪

Y ∈Σi
Y and similarly S<i(∆). We omit reference to

the group ∆ where there is no ambiguity. It should be emphasized that
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in these notations we do not exclude the trivial element, or the trivial
group. Thus X ∈ Σ(∆) for group ∆.

Note that Σ and Σ<i are all closed under intersection.

We study some basic properties of singular sets in the context of the
(ε,m)-quasi-thick part. All constants stipulated by these proposition
may depend on n (the dimension ofX) andm, but not on any particular
group of isometries. We also assume all “ε” constants are smaller that
half of the constant of the Margulis lemma.

Proposition 4.4. Let Y1, Y2 ∈ Σ(Γ), and yj ∈ Yj∩X≥ε,m (j = 1, 2). If
d(y1, y2) <

ε
2
then there exists G < Γ, |G| ≤ m such that Y1, Y2 ∈ Σ(G)

(in particular, Y1 ∩ Y2 ̸= ∅).

Proof. Take G = Γε(y2). Trivially, Γy2 < G and by the hypothesis,
also Γy1 < G. Since Yj ∈ Σ(Γ), we have that F (Γ1

Yj
) = Yj, and as

Γ1
Yj

≤ Γyj ≤ G, it follows that Yj ∈ Σ(G).

Proposition 4.5. For ε1 > 0 there exists ε2 = ε2(ε1) > 0 so that the
following holds: Let G < Isom(X) be a finite group, |G| ≤ m, and let
Y1, Y2 ∈ Σ(G) such that Y1 ̸⊆ Y2 and Y2 ̸⊆ Y1. If y1 ∈ Y1 and y2 ∈ Y2

and d(y1, y2) < ε2 then d(yi, Y1 ∩ Y2) < ε1 for i = 1, 2.

Proof. Suppose that d(y1, Y1∩Y2) ≥ ε1. We will prove that there exists
ε2 = ε2(ε1) such that d(y1, y2) ≥ ε2.

Let x be the projection of y1 onto Y1 ∩ Y2. By our assumption,
d(y1, x) ≥ ε1, and we may proceed with the assumption that x ̸= y2.
Consider the geodesic triangle with vertices x, y1, y2, and let α be the
angle at x. By replacing y2 with a point in Y2 which is closer to y1 (e.g.
the projection of y1 to Y2), we may assume α ≤ π

2
. By comparison to a

Euclidean triangle with sides of length d(x, y1), d(x, y2) with an angle
α between them, we deduce that d(y1, y2) ≥ ε1 sinα. Our goal is to
show that the right-hand side can be replaced by a function of ε1 that
does not depend on α.

Let Y1,Y2 ⊂ Tx(X) be the tangent subspaces of Y1, Y2, respectively.
Let a be the geodesic segment [x, y1], and b be the geodesic segment
[x, y2], and let A,B be the (unit) tangent vectors at x of a, b, respec-
tively. Since x is the projection of y1 to Y1 ∩ Y2, a is perpendicular to
Y1∩Y2, and therefore A is orthogonal to Y1∩Y2. But since B ∈ Y2, the
inner product of A and B is bounded away from 1. Hence, the angle
α is bounded from below by a constant α0 = α0(Y1, Y2).

By definition of Σ(G), there are subgroups H1, H2 < G such that
Yi = F (Hi), i = 1, 2. Since both H1 and H2 fix x, we may identify
them as subgroups of SO(n) via their induced action on the tangent
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plane Tx(X). Since α0(Y1, Y2) was determined by the action on the
tangent space, it actually depends only on the embedding of H1, H2

in SO(n). Thus, we may write α0(H1, H2) for α0(Y1, Y2). Moreover,
α0(H1, H2) is invariant under (simultaneous) conjugation of H1 and
H2 in SO(n).

Observe that, up to conjugation, there are finitely many pairs of sub-
groups H1, H2 in SO(n) that generate a group of size ≤ m. Therefore,
we may fix α1 > 0 to be the minimum of α0(H1, H2) over all possible
pairs H1, H2 < SO(n) with F (H1) ̸⊆ F (H2) and F (H2) ̸⊆ F (H1) (here,
F (Hi) is the fixed set w.r.t. the linear action). By setting ε2 = ε1 sinα1,
we are done.

Let us state explicitly an immediate consequence. In what follows,
we adapt the convention that d(x, ∅) = ∞, thus d(x, S<0(Γ)) > c for
every c > 0. Hence, the following propositions are meaningful when
i = 0, and in this case assumptions such as d(x, S<i(Γ)) > ε1 are
superfluous.

Proposition 4.6. Let ε2 = ε2(ε1) as in Proposition 4.5. Let Y1, Y2 ∈
Σ(Γ), with i = dim(Y2) ≤ dim(Y1). Let yj ∈ Yj ∩ X≥ε,m, j = 1, 2.
Suppose that d(y1, S<i(Γ)) ≥ ε1 or d(y2, S<i(Γ)) ≥ ε1. If d(y1, y2) < ε2
then Y2 ⊆ Y1.

Proof. Suppose contrarily that Y2 ̸⊆ Y1. Then by considering dimen-
sions, also Y1 ̸⊆ Y2. Since d(y1, y2) < ε2 < ε

2
, there is, by Proposition

4.4, some finite subgroupG < Γ such that Y1, Y2 ∈ Σ(G), with |G| ≤ m.
Therefore, Y1 ∩ Y2 is non-empty, and by Proposition 4.5, we have that
d(yi, Y1 ∩ Y2) < ε1 for both i = 1 and i = 2. But this contradicts our
assumption, since Y1 ∩ Y2 ⊆ S<i(Γ).

Proposition 4.7. Let Y ∈ Σ(Γ), y ∈ Y ∩ X≥ε,m, and i = dim(Y ).
There exists ε3 = ε3(ε1) such that if d(y, S<i(Γ)) > ε1 then every ele-
ment of Γε3(y) fixes Y pointwise.

Proof. Take ε2 = ε2(ε1) given in Proposition 4.5; we may assume ε2 <
ε1. Fix ε3 = 2 sin(π/m)ε2. Note that ε3 < ε, hence G = Γε3(y) is a
finite group of order ≤ m, by the hypothesis.

Assume by contradiction that there are elements in G that do not
fix Y pointwise. Then certainly there is such element g ∈ G with
dg(y) < ε3. First, we claim that d(y,Fix(g)) ≥ ε2. We distinguish
between two cases:

(1) Fix(g) ( Y . Then Fix(g) ∈ Σ<i(Γ) and this claim follows from
the assumption d(y, S<i(Γ)) > ε1.

(2) Fix(g) ̸⊆ Y . Suppose that d(y,Fix(g)) < ε2. Take y′ ∈
Fix(g) with d(y, y′) = d(y,Fix(g)). Applying Proposition 4.5
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to the group G and the sets Y and Fix(g), we derive that
d(y, Y ∩ Fix(g)) < ε1, a contradiction to our assumption that
d(y, S<i(Γ)) > ε1.

Now, combining the facts that the order of g is ≤ m and that
d(y,Fix(g)) ≥ ε2 yields that dg(y) ≥ 2 sin(π/m)ε2 = ε3 (cf. [3, §12.2]),
a contradiction.

4.2. Foldable sets.

Definition 4.8. Let U ⊂ X be a an open set, and Y ⊂ X be a totally
geodesic submanifold. We say U is Y -foldable if it has the following
properties:

• U is convex and precisely invariant, i.e., for every γ ∈ Γ if
γU ∩ U ̸= ∅ then γU = U .

• Y is fixed by ΓU .
• πY (U) ⊆ U , πY being the projection to the closest point in Y .
• The image of U ∩ Y in X/Γ is convex.

If U is Y -foldable for some Y , we say it is foldable. If U is Y -foldable,
we say its image π(U) is a folded set.

Remark. If U is Y -foldable then U ∩ Y injects to X/Γ. This follows
from the assumption that Y is fixed by ΓU .

The notable property of folded sets is

Proposition 4.9. Folded sets are contractible.

Proof. Let U ⊂ X be a foldable set. Since U is convex, and πY (U) ⊆ U ,
there is a deformation retract of U to U ∩ Y , defined by the flow
along the geodesics of the projection to Y . Since ΓU fixes Y , this
retraction can be taken to be ΓU -equivariant, and as U is precisely
invariant, it induces a retraction of π(U) to π(U ∩ Y ), which in turn is
contractible.

Foldable sets appear naturally in certain neighborhoods of singular
submanifolds. Let Y ∈ Σi (i ≤ n) and y ∈ Y \ S<i. Observe that this
implies that Γy fixes Y . Indeed, since Y ∈ Σ, we have that Y = F (Γ1

Y ).
Now, Γ1

Y ≤ Γy, and had this inclusion been proper, F (Γy) would have
dimension less than i, contradicting the choice of y. Thus, Γ1

Y = Γy.
Choose µ sufficiently small so that Γ4µ(y) fixes Y . Let U = B(y, µ).

Then U is convex and open. It is precisely invariant, because if γU
intersects U then dγ(y) < 2µ, and thus γy = y and γU = U . It
remains to check whether U ∩Y injects to a convex set in X/Γ. To this
end, we observe that inj-radY (y) ≥ 2µ and recall that the convexity



BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS 20

radius is half of the injectivity radius. All foldable balls mentioned
henceforth are assumed to be constructed in this manner.

We will also want to consider intersections of such foldable balls.
Let B1 be a Y -foldable ball centered at a point in Y . Suppose that
B2, . . . , Bk are foldable balls centered at points in Y , and that U =∩

Bi ̸= ∅. Note that we do not require these balls to be Y -foldable.
The intersection of precisely invariant sets is itself precisely invariant.
Moreover, ΓU is a subgroup of ΓB1 , so it fixes Y . For every x ∈ U ,
πY (x) ∈ U , because the projection to Y does not increase distances to
the centers of the balls (which are in Y ). Now, U ∩Y is convex because
all balls are centered at points of Y . Since the image of U ∩ Y in X/Γ
is contained in the convex image of B1 ∩ Y , it follows that the image
of U ∩ Y is convex. This shows that U is Y -foldable.

Moreover, we claim that π(U) =
∩
π(Bi), hence the intersection of

these folded sets is itself folded and thus contractible. This is corollary
of the following proposition.

Proposition 4.10. Let x1, . . . , xr ∈ X and µ1, . . . , µr > 0, such that
Γ4µi

(xi) fixes xi for all i. Suppose the intersection of the balls Bi =
B(xi, µi) is non-empty. Then π(

∩
Bi) =

∩
π(Bi).

Proof. The preimage of
∩
π(Bi) is the union of intersections of the form∩

γiBi, γi ∈ Γ. It therefore suffices to show that any such non-empty
intersection is a translate of

∩
Bi by an element of Γ.

Let us assume µ1 ≤ µi for all i > 1. Also, by translating the inter-
section with γ−1

1 , we may assume γ1 = 1.
For every i ≥ 2, B1 intersects γiBi. Thus d(γixi, x1) < µ1+µi ≤ 2µi.

Since also d(xi, x1) < 2µi we obtain dγi(xi) < 4µi. By our assumption
γi fixes xi and thus leaves Bi invariant. Thus

∩
γiBi =

∩
Bi.

Proof of 4.2. Our cover of the (ε,m)-quasi-thick part will consist of
folded balls centered at maximal discrete subsets of the (ε/2,m)-quasi-
thick part. We denote O′ = O≥ ε

2
,m.

We fix a sequence µ0 > µ1 > · · · > µn by taking µ−1 = ε/2 and

µi+1 = min(
1

6
ε2(µi),

1

12
ε3(µi),

1

2
µi),

ε2 and ε3 being the constants stipulated in Propositions 4.6 and 4.7,
respectively.

Let D0 be a maximal µ0-discrete set in O′ ∩ π(S0). For every i >
0, let Di be a maximal µi-discrete set in O′ ∩ π(Si) \

∪
j<i(π(Sj))µj

(inductively). Here, (π(Sj))µj
denotes the set of points with distance

< µj of π(Sj). Take D =
∪

Di. We claim that the collection of balls
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B = {B(x, 3µi) : x ∈ Di} has the desired properties. This is proved
in the following series of claims:

1) The balls in B cover O≥ε,m, and their centers constitute a µn-discrete
set.
The discreteness is obvious. We show that the balls cover O≥ε,m.
First, let us note that if x ∈ O≥ε,m and d(x, y) < ε/4 then y ∈ O′.

Indeed, choose preimages x̃, ỹ ∈ X such that d(x̃, ỹ) < ε/4. Then
Γε/2(ỹ) ≤ Γε(x̃), whence we deduce ỹ ∈ X≥ε/2,m and y ∈ O′.
Let x ∈ O≥ε,m. Take minimal i such that d(x, π(Si)) < 2µi (such

i exists because x ∈ π(Sn)). Now pick y ∈ π(Si) such that d(x, y) <
2µi.
We claim that y ∈ π(Si) \

∪
k<i(π(Sk))µk

. Indeed, if there is some
k < i and z ∈ π(Sk) with d(y, z) < µk then d(x, z) < 2µi+µk ≤ 2µk,
contradicting the minimality of i. Now, since d(x, y) < 2µi ≤ ε/4,
we have noted that y ∈ O′. Therefore, there is some z ∈ Di such
that d(y, z) < µi. Hence x ∈ B(z, 3µi).

2) Each ball in B is folded; it is the image of a foldable ball.
Let x ∈ Di, and choose a preimage x̃ ∈ X≥ε/2,m of x. Let Y ∈

Σi be the singular submanifold containing x̃. As d(x, π(S<i)) >
µi−1, also d(x̃, S<i) > µi−1. Bearing in mind that 12µi ≤ ε3(µi−1),
we deduce by Proposition 4.7 that every element of Γ12µi

(x̃) fixes
Y pointwise. Thus the ball B(x̃, 3µi) is Y -foldable, and its image
B(x, 3µi) is folded.

3) A non-empty intersection of balls in B is folded, and thus con-
tractible.
Let x1, . . . , xk ∈ D, such that xi ∈ Dni

and suppose that the
balls B(xi, 3µni

) have a non-empty intersection. We may assume
n1 = max{nj}.
Choose lifts x̃1, . . . , x̃k ∈ X≥ε/2,m such that d(x̃1, x̃j) < 6µnj

, and
let Yj ∈ Σnj

the singular submanifold containing x̃j.
Fix j ≥ 2. Then d(x̃1, S<nj

) ≥ µnj−1 and d(x̃j, S<nj
) ≥ µnj−1.

Since d(x̃1, x̃j) < 6µnj
≤ ε2(µj−1), we may apply Proposition 4.6,

and deduce that Yj ⊆ Y1 and hence xj ∈ Y1.
The results discussed before this proof all apply to this situa-

tion. Namely, the intersection of the balls B(x̃i, 3µni
) is Y1-foldable,

because they are all centered in points on Y1, and B(x̃1, 3µn1) is
Y1-foldable. Also, the intersection of the folded balls B(xi, 3µn1) is
folded, and thus contractible.

4) The cardinality of B is bounded by δ− ess-vol, where δ = δ(ε,m, n).
By Proposition 3.1, there exists δ such that if |Γµn(x)| ≤ m then

there exists a point y with d(x, y) < µn/4 and dΓ(y) ≥ 2δ. Note
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that µn depends only on ε, m and n, hence δ depends only on those
constants. We may assume δ ≤ 4µn.
Let x ∈ Di and let x̃ ∈ X be a lift. Since x̃ ∈ O′, we have that

|Γµn(x̃)| ≤ |Γµi
(x̃)| ≤ m. Thus there exists ỹ, d(ỹ, x̃) < µn/4 and

dΓ(ỹ) ≥ 2δ. The projection of ỹ is a point in the δ-thick part of O,
which we denote yx.
Since the set D is µn-discrete, if x, x

′ ∈ D then the corresponding
points yx, yx′ have d(yx, yx′) ≥ µn/2 ≥ 2δ. The set {yx : x ∈ D}
is therefore 2δ-discrete in the δ-thick part. We deduce that |B| =
|D| ≤ δ − ess-vol(O).

5) Each ball of B intersects at most r balls, where r = r(ε,m, n).
Let x ∈ Di, and suppose B(x, 3µi) intersects the balls B(yj, 3µij),

j = 1, . . . , k. Lift the center points to x̃, ỹj such that d(x̃, ỹj) ≤ 6µ0.
The ball B(x̃, 9µ0) contains the pairwise disjoint balls B(ỹj, µn/2).
Thus the existence of the constant r follows from a standard volume
estimate.

We conclude this section with a proposition about homology of a
(orbifold) fibration over the cover given by Theorem 4.2 (for definitions,
see [20] p. 318). The precedent to this proposition is Lemma 12.12 in
[3], that states the analogous result for a cover, rather than a fibration
over it.

Proposition 4.11. Let B be the cover of O≥ε,m obtained in Theorem
4.2, and let r and δ be the constants defined there. Let U =

∪
B∈B B,

and let E be a fibration over U with fiber F being a sphere or vector
space. There is a function h(r) (depending only on r), such that for
coefficients in an integral domain A of characteristic 0,

rkAHj(E,A) ≤ h(r) · |B| ≤ h(r) · δ − ess-vol(O).

Proof. Let V be a non-empty intersection of balls in B. Recall that, by
the proof of Theorem 4.2, V is folded; moreover, it is a quotient of a
contractible set in X by a finite group of order ≤ m. Let Ṽ ⊂ X be a
precisely invariant contractible set such that V = Ṽ /ΓṼ , and |ΓṼ | ≤ m.

By the definition of a fibration over U , there is a fiber bundle Ẽ|Ṽ
with fiber F over Ṽ , and an action of ΓṼ on ẼṼ which is compatible

with the action on Ṽ , such that E|V ≃ Ẽ|Ṽ /ΓṼ .

Since Ṽ is contractible, Ẽ|Ṽ is trivial (cf. [19]). Moreover, by the

proof of Proposition 4.9, there is a ΓṼ -invariant contraction of Ṽ to a

fixed point of ΓṼ . Hence, the deformation retract of Ẽ|Ṽ to F induces
a deformation retract of E|V to F/ΓṼ , with the action given by the

action of the group on the fiber over a fixed point in Ṽ .
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If F is a vector space, we conclude that E|V is contractible. If F is
a sphere, we will resort to the following claim, which is a consequence
of the transfer homomorphism [7]:

Claim. If G is a finite group acting on F then

(5) rkHj(F/G,A) ≤ rkHj(F,A).

Either way, we conclude that rkHj(E|V ) ≤ 1. Thus, E is a union
of k open sets, such that each set intersects at most r other sets, and
every intersection has a homology of rank bounded by 1.

The existence (and explicit calculation) of the function h(r) now
follows as in the proof of Lemma 12.12 in [3]; it is assumed there that a
non-empty intersection of sets is diffeomorphic to Rn, but this is used
only to imply that the rank of homology is bounded by 1.

Remark. As noted in the introduction, this proposition is the only
place throughout this work where the assumption on characteristic is
required. If the coefficients are in, say Fp, then the claim cited in the
proof is not valid. Nonetheless, the claim still holds if the order of the
finite group is prime to p. It follows at once, that the proposition holds
whenever the orders of the finite subgroups of Γ are all prime to p.

In the general setting, we may still hope for a uniform bound (i.e.
independent of G) on the homology of the quotient in lieu of (5). This
leads to the question posed in the introduction, asking whether there
exists a constant D depending on k (and possibly on p) such that for
every finite group G acting linearly on a sphere Sk, and for every i, we
have bi(S

k/G,Fp) ≤ D.
The fibrations to which this proposition is applied (p. 31) arise from

the action of Γ on the tangent space ofX. The fibers we are considering
are vector spaces and spheres of dimension ≤ n− 1, and the action of
the finite group on these fibers can be assumed to be linear. Therefore,
an affirmative answer to the question above for k ≤ n− 1 would suffice
to prove Theorem 1.1 for spaces of dimension ≤ n.

5. Betti Numbers

We can now prove Theorem 1.1. We will prove the following detailed
version:

Theorem 5.1. Let X be an n-dimensional Hadamard manifold with
negative sectional curvature normalized such that −1 ≤ K < 0. Let Γ
be a discrete subgroup of Isom(X), such that ε− ess-vol(X/Γ) is finite
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for every ε > 0. There exists ν = ν(n) > 0 such that∑
i

rkHi(X/Γ, A) ≤ ν − ess-vol(X/Γ).

where the coefficient ring A is an integral domain of characteristic 0.
For orbifolds of finite volume, it follows that∑

i

rkHi(X/Γ, A) ≤ C(n) · vol(X/Γ).

The proof follows closely the steps of Gromov in [3, §13]. Namely,
homology is bounded by using an intricately defined Morse function,
studying its critical points, defining deformation retracts between its
sublevel sets and relying on bounds of the type of Theorem 3.2. Some
arguments are identical to those of Gromov, and are brought here in
full for completeness. Others are streamlined for our setting. This is
true, in particular, for claims 2–5 and for arguments concerning the
retracts defined using the Morse function. The reader is advised to
compare these to Gromov’s original work.

The novelty of our proof is the approach used to deal with elliptic
elements. We adapt the Morse function to these elements in a way
that takes into account their orders. This allows us to use the results
of section 4 to prove that the function is proper. Furthermore, this
assures that sets of critical points are either short geodesics, or are
contained in the quasi-thick parts of certain singular submanifolds.
Using again the results of section 4, we can bound the contribution of
the latter sets to homology. The number of these sets is bounded using
Theorems 3.2 and 3.5 (replacing the bound of Theorem 12.11 in [3]).

We will make use of the following lemma, proved in [3, §12.6].

Lemma 5.2. There are constants δ > 0 and M1 ∈ N such that for
every x, y ∈ X, if d(x, y) < 2εn and γ ∈ Isom(X) with dγ(x) ≤ δ then
dγi(y) ≤ εn for some i ≤ M1.

Proof of 5.1. We fix some constants, all of which depend only on n:
ε = εn, m = mn, the constants of the Margulis Lemma.
M1 and δ, the constants stipulated in Lemma 5.2. M2 = mM1.
J = M∗

2 (following the notation of Proposition 2.5).

Our first step in the proof, is to define a smooth function on X/Γ
through which we will study the topology of X/Γ.

We begin by fixing smooth functions

gn : R≥0 → R≥0 (n ≥ 2), and g∞ : R>0 → R≥0

with the following properties:
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• strictly decreasing on (0, ε),
• identically zero on [ε,∞),
• gn(0) = n and gn(δ) = 1 for n ≥ 2,
• limx→0 g∞(x) = ∞ and g∞(δ) = 1.

We also require g∞(ε/2) and gn(ε/2) to be smaller than some constant
(computed later) that depends on Γ. We note that this will not effect
any of the constants later defined (which do not depend on Γ).

For 1 ̸= γ ∈ Γ, let o(γ) ∈ N ∪ {∞} be the order of γ. We set
gγ = go(γ).

We set

∆ = {1 ̸= γ ∈ Γ : inf dγ < δ and γ is M2-stable if it is elliptic},

and define

F (x) =
∑
γ∈∆

M1∑
i=0

gγ(dγi(x)).

This sum is locally finite because Γ is discrete, and thus the set
{γ ∈ Γ : dγ(x) < 2ε} is finite for every x ∈ X. Therefore, F is a
smooth function. Clearly, it is Γ-invariant, and thus descends to a
smooth function (in the orbifold sense) f on X/Γ.

It will be convenient to have a notation for elements in Γ that con-
tribute positive values to the sum defining F at a given point. For
x ∈ X this is the set

∆x = {γi : γ ∈ ∆, 1 ≤ i ≤ M1, dγi(x) < ε}.

Note that if γ′ ∈ ∆x and γ′ = γi with γ ∈ ∆, i ≤ M1, then Min(γ) =
Min(γ′). Moreover, by the choice of M2, every elliptic element of ∆x is
m-stable.

Claim 1. f is a proper map.

Proof. We show that f≤r is compact for every r > 0. Fix r > 0. Let
x ∈ X with F (x) ≤ r. Suppose we have γ ∈ Γ with dγ(x) < δ. If γ is
not elliptic then γ ∈ ∆x, and F (x) ≤ r implies dγ(x) ≥ g−1

∞ (r). Thus,
if γ has infinite order then dγ(x) ≥ min(δ, g−1

∞ (r)) = µ1.
Set µ2 = µ1

2mJ
. We claim that Γµ2(x) is finite. Indeed, if it is not

then by Lemma 2.3, it would contain an element γ of infinite order
such that dγ(x) < 2mµ2 < µ1, a contradiction.

Moreover, we may bound the order of Γµ2(x) by a constant depending
on r. Let N be the normal abelian subgroup of Γµ2(x). Let γ be a
generator of N with dγ(x) < 2mµ2. By the choice of J , there is some
j < J for which γj is M2-stable. Then dγj(x) ≤ Jdγ(x) < J ·2mµ2 ≤ δ.
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Now, since F (x) ≤ r, we have by the definitions of F and of gγ that

ord(γj) = gγj(δ) ≤ gγj(dγj(x)) ≤ r,

and thus ord(γ) ≤ Jr.
Therefore, the generators of N have order bounded by Jr, and since

N is abelian, the order of any element in N is bounded by (Jr)!. Since
N is an abelian finite subgroup of SO(n), it is generated by at most n
elements (not necessarily those taken before), and hence |N | ≤ ((Jr)!)n

and |Γµ2(x)| ≤ m((Jr)!)n.
Our discussion shows that f≤r is contained in the (m((Jr)!)n, µ2)-

quasi-thick part of X/Γ. By the assumption of finite essential volume
ofX/Γ, it follows by Corollary 4.3 that this quasi-thick part is compact.

Claim 2. A point x ∈ X is a critical point of F iff x ∈
∩

γ∈∆x
Min(γ)

(in particular, if x is critical then ∆x consists of semisimple elements).
Moreover, if x is not critical, and A ⊂ ∆x is a set such that x ∈ Min(γ)
for each γ ∈ A, then gradF is not perpendicular to

∩
γ∈A Min(γ).

Proof. Assume x ∈
∩

γ∈∆x
Min(γ). Let γ ∈ ∆, and 1 ≤ i ≤ M1.

If γi ∈ ∆x then x ∈ Min(γi) and hence ∇dγi(x) = 0. Otherwise,
dγi(x) ≥ ε and g′γ(dγi(x)) = 0. Hence, x is critical because

(6) ∇F (x) =
∑
γ∈∆

M1∑
i=0

g′γ(dγi(x))∇dγi(x) = 0.

To prove the converse, suppose x ̸∈
∩

γ∈∆x
Min(γ). We shall find a

geodesic ray c : [0,∞) → X with c(0) = x such that d
dt
dγ(c(t))|t=0 ≤ 0

for every γ ∈ ∆x and such that d
dt
dγ(c(t))|t=0 < 0 for at least one

γ ∈ ∆x. Once such a geodesic is found, we derive by equation (6)
that d

dt
F (a(t))|t=0 > 0 (recall gn,g∞ are strictly decreasing on (0, ε)),

whence we deduce ∇F (x) ̸= 0. This will conclude the proof.
Let Γ(x) = ⟨∆x⟩. Recall that elliptic elements of ∆x are m-stable.

Let N(x) be the normal nilpotent subgroup of index i ≤ m in Γ(x).
Suppose first that N(x) does not contain parabolic elements. In this

case, take K =
∩

γ∈N(x)Min(γ). This is a convex Γ(x)-invariant set,
and by Lemma 2.2, it is non-empty. By our assumption, there exists
γ ∈ ∆x such that x ̸∈ Min(γ). Now, γ is hyperbolic or elliptic and
m-stable, and in either case, Min(γ) = Min(γi). Since γi ∈ N(x), we
deduce that x ̸∈ K. Let c be the geodesic ray with c(0) = x and
c(1) = πK(x). Clearly, dγ(c(1)) < dγ(c(0)) and since dγ is convex, it
follows that d

dt
dγ(c(t))|t=0 < 0. On the other hand, any other γ ∈ ∆x
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keeps K invariant, and thus dγ(c(1)) ≤ dγ(c(0)) and by convexity of
dγ,

d
dt
dγ(c(t))|t=0 ≤ 0.

If N(x) does contain a parabolic, we claim that it contains a central
parabolic. Indeed, since N(x) is infinite, it has an infinite center, and
thus has a central element of infinite order. But this element cannot
be hyperbolic, otherwise we would have a parabolic element keeping
a geodesic invariant (the axis of the central hyperbolic). Thus, all
parabolic central elements in N(x) fix a unique point ξ ∈ ∂X, the
boundary of points at infinity. It follows that every element of Γ(x)
fixes ξ. Let c be the geodesic ray with c(0) = x, c(∞) = ξ. Each
γ ∈ ∆x keeps ξ fixed, hence dγ is bounded on c, and by convexity,
d
dt
dγ(c(t))|t=0 ≤ 0. We claim that for at least one γ ∈ ∆x this inequality

is strict. Otherwise, dγ is constant on c for all γ ∈ ∆x. This implies
that γc||c, which is only possible if γ fixes c. This contradicts the
assumption that there exists γ ∈ ∆x for which x ̸∈ Min(γ).

To prove the last assertion in the claim, suppose x is not critical, and
A ⊂ ∆x is a set such that x ∈ Min(γ) for each γ ∈ A. The geodesic
we defined above has the property that d

dt
dγ(c(t))|t=0 ≤ 0 for every

γ ∈ ∆x. Thus, c is contained in Min(γ) for every γ ∈ A. Hence gradF
is not perpendicular to

∩
γ∈AMin(γ).

Let x be a critical point of F . We denote

Yx =
∩

γ∈∆x

Min(γ), and Cx = {y ∈ Yx : ∆y = ∆x}.

By Claim 2, x ∈ Cx, and Cx consist of critical points of F . Clearly,
F (x) is the minimum of F on Yx, and Cx = F−1(F (x))∩Yx. Note, also,
that if y ∈ Cx then Yy = Yx and Cy = Cx. We call (Yx, Cx) a critical
pair. It follows from the above, that the critical pair is independent
of a choice of critical point within the critical set. For a critical pair
(Y,C), we denote ∆C = ∆x for some (hence any) x ∈ C.

Claim 3. Let (Y,C) be a critical pair, and let x ∈ X.

(i) If x is a critical point, and d(C, x) < 2ε then Yx = Y and x ∈ C.
(ii) If d(x,C) < ε/2 and d(αx,C) < 3ε/2 for some α ∈ Γ then α

keeps Y invariant.
(iii) If d(x,C) < ε/2 then Γε(x) keeps Y invariant.

Proof. (i) Take y ∈ C with d(x, y) < 2ε. Let γi ∈ ∆y, with γ ∈ ∆
and 1 ≤ i ≤ M1. Then y ∈ Min(γi) = Min(γ) (stability is used if γ is
elliptic), hence dγ(y) < δ. By Lemma 5.2, dγj(x) < ε for some j ≤ M1,
and thus γj ∈ ∆x. Since x is critical, we have x ∈ Min(γj) = Min(γi).
Thus dγi(x) < ε and γi ∈ ∆x. We have proved ∆y ⊆ ∆x. The
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situation is symmetric to exchanging x and y, and so ∆x = ∆y. Hence
Yx = Yy = Y and x ∈ C.

To prove (ii), take y ∈ C with d(x, y) < ε/2. Since d(αx,C) < 3ε/2,
we have that d(αy, C) < 2ε. Since αy is critical, we derive that αY =
Yαy = Y by (i).

(iii) follows from (ii). Indeed, if γ ∈ Γε(x) is a generator with dγ(x) <
ε then d(γx, C) < 3ε/2.

Let us state an immediate corollary of this claim. Set

C ′ = {y ∈ Y : d(y, C) < ε/2}.
Note that C ′ is ΓY -invariant. By Claim 3 (ii), if x ∈ C ′ and γx ∈ C ′

for some γ ∈ Γ then γ ∈ ΓY . Hence,

Claim 4. C ′/ΓY injects into X/Γ.

Claim 5. For every x ∈ Y , x is a critical point of F if and only if it
is a critical point of F |Y .

Proof. Let x ∈ Y . It is trivial that if x is a critical point of F it is a
critical point of F |Y . If x is not a critical point of F , then by Claim 2,
gradF is not perpendicular to Y =

∩
γ∈∆C

Min(γ). Hence, x is not a

critical point of F |Y .

Claim 6. Let x ∈ C ′ and let c : [0,∞) be a geodesic ray emanating
from x perpendicularly to Y . Then F (c(t)) is strictly decreasing for t
close to 0.

Proof. By Claim 3 (iii), elements of ∆x keep Y invariant, and thus
for every γ ∈ ∆x,

d
dt
dγ(c(t))|t=0 ≥ 0. It follows that d

dt
F (c(t))|t=0 ≤

0. Since c is not contained in Y , there exists γ ∈ ∆C for which
d
dt
dγ(c(t))|t=0 > 0. Hence d

dt
F (c(t))|t=0 < 0 for t close to 0.

At this stage, let us introduce some additional constant (all of which
depend only on n):

δ2 =
δ

2mJ+2
.

δ3 the constant given by Theorem 4.2 for the (δ2,m(J !)n)-quasi-thick
part of an orbifold of dimension ≤ n (cf. the remark following the
theorem).

δ4 the constant given by Theorem 3.2 for δ3.
M3 = m(J !)n.

Claim 7. If ∆C contains a hyperbolic element then C = Y and Y is a
geodesic. Otherwise, Y is an m-stable singular submanifold and there
exists a ΓY -invariant neighborhood C ′′ ⊂ C ′ of C in Y such that C ′′/ΓY

is contained in the (δ2,M3)-quasi-thick part of Y/ΓY .
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Proof. Suppose first that ∆C contains a hyperbolic element α, with a
geodesic axis a. Pick x ∈ Y (not necessarily in C). Then α ∈ ∆x, and
thus

∩
γ∈∆x

⊆ a. Let Γ(x) = ⟨∆x⟩ and let N be the normal nilpotent

subgroup of Γ(x) of index i < m. Let H be the set of semisimple ele-
ments in N . Then H is a normal subgroup of N and Z =

∩
γ∈H Min(γ)

is non-empty, convex and is kept invariant by H. Since αi ∈ H, we
deduce that Z ⊆ a, and since Z is αi-invariant, this is only possible
if Z = a. On the other hand, for every γ ∈ ∆x, γ is semisimple and
γi ∈ N , thus γi ∈ H. Hence a ⊇

∩
γ∈∆x

Min(γ) =
∩

γ∈∆x
Min(γi) ⊇ Z.

We deduce that
∩

γ∈∆x
Min(γ) = a. Since this is true for every x ∈ Y ,

it follows that C = Y = a.

Suppose now that ∆C consists only of elliptic elements. Since ele-
ments of ∆C are m-stable, Y is an m-stable singular submanifold. We
take

C ′′ = {y ∈ Y : d(y, C) < δ2}.

Let y ∈ C ′′ and pick x ∈ C such that d(x, y) < δ2.
We first prove that Γδ2(y) is finite. Suppose not. Then by Lemma

2.3, there is an element γ ∈ Γδ2(y) of infinite order with dγ(y) < 2mδ2.
But then dγ(x) < (2m+ 2)δ2 < δ and hence γ ∈ ∆x, contradicting our
assumption on ∆C = ∆x.

Since Γδ2(y) is finite, it has a normal abelian subgroup N of index
i < m. Let γ be a generator of N with dγ(y) < 2mδ2. There exists
some j < J such that γj is M2-stable, by Proposition 2.5. But dγj(y) <
2mJδ2, and thus dγj(x) < (2mJ + 2)δ2 = δ. Thus γj = 1 or else
γj ∈ ∆x. In either case, γj fixes Y pointwise. Hence, for every such
generator of N we have γJ ! ∈ N ∩ Γ1

Y . Since N is abelian, we have
that γJ ! ∈ N ∩ Γ1

Y for all γ ∈ N . Since N is finite and abelian, it
is generated by at most n elements, and thus [N : N ∩ ΓY

1 ] < (J !)n.
Therefore Γδ2(y) has at most m(J !)n = M3 elements.

We turn now to the critical points of f . Every critical point of f
has a preimage in X which is a critical point of F . Hence, we may
choose a maximal collection of non-conjugate critical pairs {(Yi, Ci)}
such that each critical point of f is in exactly one projection π(Ci).
A consequence of Claim 7 is that there are only finitely many non-
conjugate critical pairs, hence finitely many critical values of f . Indeed,
Theorem 3.5 bounds the number of pairs (Y,C) for which ∆C contains
a hyperbolic element. On the other hand, if (Y,C) is a critical pair
with ∆C consisting of elliptic elements, then by Theorem 4.2, δ3 −
ess-vol(Y/ΓY ) ≥ 1. Thus by Theorem 3.2, the number of such pairs is
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bounded by δ4 − ess-vol(X), and is finite, in particular. By 4.3, each
of the sets π(Ci) — hence their union — is compact.

We wish to bound the values of F in a neighborhood of C. Let y ∈ Y
with d(y, C) ≤ ε/4. Pick x ∈ C such that d(x, y) < ε/4. Recall that
∆x ⊆ ∆y, and that the restriction of F to Y attains its minimum in x.
Consider γ ∈ ∆y. If γ ∈ ∆x then dγ(y) = dγ(x). Otherwise, dγ(x) ≥ ε,
and hence dγ(y) ≥ ε/2. Therefore,

F (y)− F (x) ≤ K · |∆y \∆x|,

whereK = max{gi(ε/2)} (recall the definition of the functions gi). The
set of points of distance ≤ ε/4 from union of the sets π(Ci) is compact.
Let B be a compact preimage of this union in X. By compactness,
there is a uniform upper bound (depending on Γ) on the size of ∆y for
every y ∈ B. Hence, we may require gi(ε/2) to be sufficiently small so
that

(7) F (y)− F (x) ≤ 1

2
,

for every x ∈ C and y ∈ X with d(y, C) < ε/4.

Let 0 = c1 < c2 < · · · < ck be the distinct critical values of f . Let µ
be small enough such that for every critical value c, c is the only critical
value in the interval [c − µ, c + µ], and such that these intervals are
disjoint for distinct critical values. Since f is a proper map, a standard
argument of Morse theory [14] shows that the flow along gradient lines
defines a deformation retract of X/Γ onto f≤ck+µ and of f≤ci+1−µ onto
f≤ci+µ. Thus, since the rank of homology is subadditive for triples of
spaces, we have

(8) rkHj(X/Γ) ≤
k∑

i=1

rkHj(f≤ci+µ, f≤ci−µ).

We will bound the rank of relative homology groups on the right-
hand side of this inequality. Let c be a critical value. Regarding c as
a critical value of F , it may be the case that there are several non-
conjugate critical pairs corresponding to this value. However, since
distinct critical sets are disjoint (by Claim 3), and since our analysis is
local, we will assume (Y,C) is a unique (up to conjugacy) critical pair
with this critical value.

Denote V = f≤c+µ∩π(Y ). We assume µ is sufficiently small such that
V is contained in π(C ′′). To bound rkHj(f≤c+µ, f≤c−µ), we consider
the triple

(9) f≤c−µ ⊆ (f≤c+µ \ V ) ⊆ f≤c+µ.
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By Claim 6, the flow along −(grad f) near π(C ′′) does not approach
π(Y ), thus a flow along −(grad f) starting from a point in f≤c+µ \ V
does not reach π(C ′′). Since there are no critical points in this domain,
this flow defines a deformation retract of f≤c+µ\V to f≤c−µ. Therefore,

Hj(f≤c+µ \ V, f≤c−µ) = 0.

By the long exact sequence associated to the triple (9),Hj(f≤c+µ, f≤c−µ)
is thus isomorphic to Hj(f≤c+µ, f≤c+µ \ V ). Now, by excision,

Hj(f≤c+µ, f≤c+µ \ V ) ≃ Hj(U,U \ V ),

where U is some neighborhood of V in f≤c+µ. By the tubular neigh-
borhood lemma, N(V ) — the (orbifold) normal bundle of V in X/Γ —
is diffeomorphic to a neighborhood of V in f≤c+µ. Thus we conclude
that

Hj(fc+µ, fc−µ) ≃ Hj(N(V ), N(V ) \N0(V )),

where N0 is the zero section of N .

The remaining of our analysis will be inside Y . Let us denote the
restriction of F to Y by F̃ , and the restriction of f to Y/Γ by f̃ . We
are only interested in the behavior of these functions in C ′′ and C ′′/ΓY ,
correspondingly. Recall that we have chosen µ such that V ⊆ π(C ′′).
Also, recall that by Claim 4, C ′′/ΓY injects into X/Γ. We can therefore
consider V as a subset of Y/ΓY . By Claim 7 there are two possibilities:
(1) V = Y/ΓY is one-dimensional or (2) V is contained in the (δ2,M3)-
quasi-thick part of Y/ΓY .

If V is one-dimensional then it is either contractible, or is a circle.
Either way, rkHj(N(V )) ≤ 1, and rkHj(N(V ) \N0(V )) ≤ 2. Thus

rkHj(N(V ), N(V ) \N0(V )) ≤ 3.

Otherwise, by Theorem 4.2, we can cover V with a good cover of
balls of radius ≤ δ2, where the number of balls does not exceed δ3 −
ess-vol(Y/ΓY ). Let U be the union of these balls. Since N(U) \N0(U)
is homotopy equivalent to a sphere bundle over U , Proposition 4.11
states that

rkHj(N(U)) ≤ h(r) · δ3 − ess-vol(Y/ΓY ),

and
rkHj(N(U) \N0(U)) ≤ h(r) · δ3 − ess-vol(Y/ΓY ).

where r is the bound on the number of balls with non-empty intersec-
tion in the cover of V .

Since each ball in the cover has radius ≤ δ2, it follows that U ⊂ C ′.
Thus, by (7), U ⊆ f̃≤c+ 1

2
. We claim that f̃ , and equivalently F̃ , has

no critical values between c+ µ and c+ 1
2
. Suppose y ∈ Y is a critical



BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS 32

point of F̃ , with f(y) ≥ c + µ. Then there exists some γ′ ∈ ∆x \∆C ,
and γ′ = γi for some γ ∈ ∆ and 1 ≤ i ≤ M1. By Claim 5, y is
also a critical point of F , hence by Claim 2, x ∈ Min(γ′), and by
stability, x ∈ Min(γ). It follows that dγ(x) < δ, and thus gγ(dγ(x)) > 1.
Therefore, F (x) ≥ c+ 1 and the claim follows.

We conclude that V = f̃≤c+µ ⊆ U ⊆ f̃≤c+ 1
2
. Since there are no

critical values between c+ 1
2
and c+ µ, f̃≤c+µ is a deformation retract

of f̃≤c+ 1
2
, and induces an isomorphism on homology. Thus the inclusion

induces maps

Hj(V ) → Hj(U) → Hj(f̃≤c+ 1
2
)

whose composition is an isomorphism. Hence, rk(Hj(V )) ≤ rk(Hj(U)),
and similarly, rk(Hj(N(V ) \N0(V ))) ≤ rk(Hj(N(U) \N0(U))). Thus,

rkHj(N(V ), N(V ) \N0(V )) ≤ 2h(r) · δ3 − ess-vol(Y/ΓY ).

Let δ5 be the constant stipulated in Theorem 3.5, used to bound the
number of “short geodesics”. Then pairs (Y,C) such that ∆C contains
a hyperbolic element contribute at most δ5 − ess-vol(X/Γ) terms to
the sum in (8). Each such term is ≤ 3. The remaining of the terms
correspond to non-conjugate m-stable singular manifolds. Each such
term contributes 2h(r) · δ3 − ess-vol(Y/ΓY ). Hence, by Theorem 3.2,
all these terms contribute

≤ 2h(r)
∑
Y ∈Σ

δ3 − ess-vol(Y/ΓY ) ≤ 2h(r) · δ4 − ess-vol(X/Γ),

where Σ is a set of non-conjugate m-stable singular submanifolds.
Thus, (8) yields

rkHj(X/Γ) ≤ 3 · δ5 − ess-vol(X/Γ) + 2h(r) · δ4 − ess-vol(X/Γ)

≤ (3 + 2h(r))(min(δ5, δ5))− ess-vol(X/Γ)

≤ 3 + 2h(r)

min(δ5, δ5)
− ess-vol(X/Γ).

We take ν = 3+2h(r)
(n+1)min(δ4,δ5)

. One easily verifies that all constants

depend only on n. We have

n∑
i=0

rkHi(X/Γ) ≤ (n+1)·((n+1)ν)−ess-vol(X/Γ) ≤ ν−ess-vol(X/Γ).
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