Witten-Reshetikhin-Turaev invariants of Seifert manifolds

Ruth Lawrence ! and Lev Rozansky

Abstract. For Seifert homology spheres, we derive a holomorphic function of
K whose value at integer K is the slo Witten-Reshetikhin-Turaev invariant, Zg,
at g=exp27i/K. This function is expressed as a sum of terms, which can be
naturally corresponded to the contributions of flat connections in the stationary
phase expansion of the Witten-Chern-Simons path integral. The trivial connec-
tion contribution is found to have an asymptotic expansion in powers of K !
which, for K an odd prime power, converges K—adically to the exact total value
of the invariant Zx at that root of unity. Evaluations at rational K are also dis-
cussed. Using similar techniques, an expression for the coloured Jones polynomial
of a torus knot is obtained, providing a trivial connection contribution which is
an analytic function of the colour. This demonstrates that the stationary phase
expansion of the Chern-Simons-Witten theory is exact for Seifert manifolds and
for torus knots in S3. The possibility of generalising such results is also discussed.

1. INTRODUCTION AND MAIN RESULTS

Suppose that M is a compact oriented 3-manifold without boundary. In [Wi],
Witten formally defined a topological invariant Zj e (M), dependent on some ad-
ditional data, namely a choice of a Lie algebra g (with dual Coxeter number ¢ég)
and of a level k& € Z, in the form of a functional integral,

Zk—l—ég (1\4) — / ei_]:r fM<A’d‘4+ 13[4, A]) dTDA, (11)
A/G

over a quotient of the space of G—connections on M by an appropriate gauge group,
G. For the integrand to be well-defined, that is invariant under G, one needs k
to be an integer. Although many attempts have been made to give a direct and
calculable meaning to this Feynman integral, it remains only a formal expression
from which valid results can be derived when the functional integral is manipulated
according to certain rules; see for example [A2], [AS1], [AS2], [B], [BN1], [R1], [R2]
and [R4]. The approaches which are closest in spirit to that of (1.1) employ the
notion of a topological field theory (see [Al]) whose definition is based on Segal’s
mathematical definition of conformal field theory. From this perspective, Zx (M)
should be viewed as a special case of invariants of pairs (L, M), of a link (coloured
by representations of GG) contained in a 3-manifold M, the associated form of (1.1)
containing additional factors, a Wilson loop corresponding to each component of
the link L. When M = S3, the invariant Zx(S*,L) is known as a quantum link
invariant and is usually considered as a polynomial in qi% where ¢ = e%i; they
can be obtained independently using the quantum group U,g.

In this paper, we consider only the cases G = SU(2) and G = SO(3); the

associated invariants will be denoted Zx and ZJ- respectively. Many alternative and
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completely rigorous formulations of Zx (M) have been obtained, primarily using the
description of a compact, connected, orientable 3—manifold M, without boundary,
as obtained by Dehn surgery around a suitable link Ly, in S®. Reshetikhin and
Turaev [RT] found Zx (M) as a combination of the quantum invariants of L obtained
from all possible choices of irreducible representations attached to the components
of L. This sum will only be finite when ¢ is a root of unity. It is still something of
a mystery that while quantum invariants of links in S® are defined for all values of
q, being polynomials, this happy state of affairs is not true of any of the definitions
so far known for Zx (M, L) when M # S®; however, see [L3].

From the formulation of [RT], it is seen that Zy (M, () can be defined for
all roots of unity ¢, rather than just those of the form e, Very few concrete
computations of Zx (M, ), as a function of the order, K, of the root of unity
q, have been carried out — see [FG], [J], [KL1], [KM1], [KM2] and [N] for some
such computations. It follows quickly from its definition that, for fixed order K,
Z (M, () can be written as an algebraic function of ¢, with rational coefficients.
In the normalisation for which the invariant for S3 is 1, denote the invariant for the
pair (M, (), as an algebraic function of ¢ at K*® roots of unity, by Zx(M). Kirby
and Melvin [KM2] derived a symmetry principle for terms in the sum arising in
Zi (M) and thereby obtained a slightly finer invariant, which is just the associated
SO(3)-invariant, Z-(M). We now describe some of the known results on the forms

of these functions of h = ¢ — 1.

Theorem ([M1], [M2], [O1], [O2], [O3]) Suppose that K is an odd prime and
M is an oriented Z/K'7~homology sphere. Let H = |H,(M,Z)|, so that K/‘/H.

(a) As a function of q, Z}-(M) € Z[h], so that for some an, (M) € Z, one has
Zp(M) =3 amx(M)R™. For 0 <m < K — 2, ay, k(M) is uniquely deter-
mined by this condition as an element of Z/KZ.

(b) There exist rational numbers A\, (M) € Z[%, %, . ﬁ, %] such that, for any

prime K > 2m +3, ay, (M) = (%) Am (M) as elements of Z/KZ, where (%)
denotes the quadratic residue while

No(M)=H™", M (M) =6H'\M),

where (M) denotes the Casson—Walker [Wa| invariant of M in Casson’s normali-

sation.
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As a result of part (b) of this Theorem, Ohtsuki defines a formal power series

Zoo(M) = i Am (M)R™ |

m=0

with rational coefficients, which is an invariant of rational homology 3—spheres, M.
The coefficients A, (M) in this series were computed explicitly in [L1] for the case
of arbitrary surgery around (2, n) torus knots, and found to be expressible in terms
of Bernoulli (or Euler) numbers. Furthermore, it was found in [L1] that this formal
power series can be viewed as the asymptotic expansion of a holomorphic function
of K, defined by an integral expression convergent on a half plane; see §4.8 for the
form of these integrals.

Theorem ([L1], [L2]) Suppose that M is a rational homology sphere obtained
by integer surgery around a (2,n) torus knot, with arbitrary framing and that K is
an odd prime power coprime to H = |H'(M,Z)| . Then

(a) Zos € Z[3, 7l[[1]];
(b) the formal power series Zoo(M) converges K -adically to IZVK(A/I); that is, there
is an equality between Zo(M) and Zy (M) as elements of Z}([[H]/(@((l + h)),

where Zg denote those rationals with denominators coprime to K, and ¢x(x)

denotes the K cyclotomic polynomial, [](, = (z — €*%°).

Similar results are conjectured to hold for arbitrary rational homology spheres.
In particular, they are known from [R6] for K prime whenever M is either a Seifert
manifold or obtained by surgery on S® around an arbitrary knot. The property
of K-adic convergence gives an infinite set of congruences modulo powers of K
satisfied by the terms A, (M), for each K, very much stronger than those given in
Ohtsuki’s result.

In the current paper we provide a complete and self-contained analysis of WRT
invariants of Seifert-fibred homology spheres (§4) and of torus knots in S* (see §5).
The basic notation used in the paper is introduced in §2, and the construction of
WRT invariants via both integer and rational surgery is summarised in §3. The
main technique used in this paper is the Lemma of §4.2, a simple consequence of
Cauchy’s residue theorem, which enables sums to be transformed into integrals,
thereby rewriting a sum only meaningful for integer values of some parameter in a
form analytically extendable.

For Seifert manifolds, the initial evaluation of Zx (M) in §4.1 is as a sum of
terms, the number of terms being proportional to K. This is tranformed into an
integral in §4.3 for the case of K € Z and in §4.4 for K € Q. The reformulation
of Zi (M) is now as a sum of terms, some integrals and some residues, and these
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are seen to be able to be corresponded with the contributions in a stationary phase
expansion of (1.1) from conjugacy classes of flat connections derived in [R3]. The
precise form of the terms is discussed in §4.5, the integral term corresponding to
the trivial connection and reducible connections, while the residue terms come from
irreducible connections. From the form of the terms, it is also seen that each can
be naturally extended to a holomorphic function of K.

The form of the trivial connection contribution, Z%.(M), as a simple integral
enables an asymptotic expansion in powers of h = g—1 to be carried out, leading to
direct verification of the integrality properties of the coefficients, some new formulae
for the second and third order coefficients and new conjectures concerning their
divisibility properties in general (see §4.6). It also enables a new proof of K-adic
convergence in §4.7. Some numerical data is given for the contributions from various
connections in §4.9, both for the case of primitive roots of unity (K € Z) and other
roots of unity (rational K'). Finally, the same techniques are applied to torus knots
and some more general conjectures are given in §6.

2. NOTATION

2.1 Some elementary number theory

Suppose that M and N are integers with M odd. We use the Jacobi symbol
(%) When M is prime it is defined to be 0, —1 or 1 according as N is divisible by
M, is not a quadratic residue modulo M, or otherwise. It is extended to arbitrary
integers M by multiplicativity with respect to M, with (%) = (-1)N.

Throughout this paper, whenever K is an integer, all expressions are to be un-
derstood algebraically as functions of ¢ = exp %, that is, as representing elements
of Q[A], where A = exp 5% is a fourth root of ¢, which is chosen so that it has order
precisely 4K . By this means, all the expressions take on a meaning in Q[A], when

_ 2mme
q = exp F
this, we will use a (consistent) notation in which some expressions will not at first

, where m is an integer coprime to 4K, now not necessarily 1. Despite

sight appear to be elements of Q[A]. In particular,

i = AKX,

.ot 1 o . )
Slnﬁ:Z(A A7) fora€Z,
=
K= —— A
2(1+414) ;

This notation is strictly valid, when evaluated in C only when m = 1 and in other
cases signs may be introduced; for the particular expressions just discussed these
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signs are given below.

i — (=1)"T
. ™ ( 1)7712—1 . Tmo
—) J—
oK oK

K — <I_‘> K
m

Observe in particular that the scaling factor in the transformation of v K is multi-
plicative in K.

In the normalisation of manifold invariants discussed in the next section, the
quantities Gg, G4+ and G_ will enter, where

B 2 07
Golzwlfsmf,

A & 2 (—i)Ke ™/ K2
= - —A s —=
G+ 2(A2 — A-2) ;( ) A3sin & ’

and G_ is given by exactly the same form as G, except that A is everywhere

2rims?

replaced by A™. Also denote by G the Gauss sum EZ:_OI e =
Suppose that P and @ are coprime integers. The Dedekind sum is defined by

1 j xPj
S(P, Q) — @ Z cot <a> cot <7> )
1=1

for @ > 0, with s(P,—Q) = —s(P, Q). For any matrix A = (
the Rademacher function is defined by

P R

0 5) € SL(2,7),

B(A) = PTM _125(P,Q) € Z:

when @ = 0, one sets ®(A) = %.

2.2 Manifold notation

Suppose that L is a (framed) link, embedded in three manifold M, whose
components are labelled with elements of SL(2,Z), providing a string of matrices
A = (Ay,...,A,). This data enables one to construct another 3-manifold, denoted
Mrp, A, by rational Dehn surgery. That is, My, a is obtained as the result of gluing
N, a disjoint union of tubular neighbourhoods N; of the components L; of L, to
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M\N with the identification described by A. The j* components of the common
¥ Rj)
Qi S;)
of the mapping class group of the torus. That is, the gluing identifies the meridian
on ON; to the curve on the j component of OM\N homotopic to, P; times a
meridian plus (); times a longitude, and similarly for the longitude. The resulting
manifold depends only on P; and @;, but it will be convenient to specify A;. Let

ZCID )—30(L),

boundary are identified according to A; = considered as an element

where o(L) denotes the signature of the link L, that is, the signature of the linking

: . . P;
matrix of L whose diagonal entries are =-.
J

There is a (K — 1)-dimensional representation, px, of PSL(2,Z) in which the

standard generators S = <(1) _(1)> and T = <(1) 1) map to

2 . T«
() 0y = 50 T

('OK(T))a,ﬁ = e%Aa25a:ﬁ .

This representation has matrix entries lying in Q[A], when K is even, but only
Q[VA] when K is odd. Let d® denote the matrix element (pK(A))a , and let d?

th component is d2. In the phenomenology of topological

field theory, at level K — 2, the vector space associated with a torus has dimension
K — 1 and pg gives the action of the mapping class group of the torus. In this
sense, d® is interpreted as the vector associated with a solid torus whose boundary
has been twisted by A. The following explicit formula was obtained in [J], for

P R
AZ(Q S) when @ # 0,

denote the vector whose o

o i.sign@ o i®(A)/4 Z Z ea (Pa®-202Kn+m)atsS2Kntn)?)

} V2I|Q n=0 pu==41

In the case of A = S, one finds that

dS A2a _ A—Za

o= o T

the quantum dimension of the a-dimensional representation of U,sl;.
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3. WITTEN-RESHETIKHIN-TURAEV INVARIANTS

3.1 Integer surgery presentation

Suppose that M is a 3—manifold obtained by surgery around the framed link
L in S3. Represent L by a link diagram, D, with the blackboard framing. The sl,
Witten-Reshetikhin-Turaev invariant of the empty link in M, at the root of unity
g, will be denoted Zy (M). It can be computed generally as a suitably normalised
version of the partition function of a certain state model, whose states are allowed
assignments of an element of {0,1,..., K — 2} to each of the components of L, as
well as to each of the regions into which D divides the plane. Such an assignment
is said to be allowed if the infinite region is labelled 0 and, for each edge of D, the
triple of integers assigned to the two adjacent regions and the component containing
the edge, form a g—admissible triple, that is, they have form (a,b,¢) satisfying the
Clebsch-Gordon conditions

a+b+ce2Z, la —b| <e<a+b, a+b+c<2(K-2).

The weight, Wp, assigned to a state, o, is defined as the product of local weights
assoclated with each vertex, edge, face and component of D, each of which is, up
to sign and powers of ¢, a sum of certain ratios of products of g-factorials, namely
quantum dimensions, theta nets and quantum 65 symbols.

The invariant Zx (M) is now obtained from the partition function of this state
model by renormalisation, so that

Zr(M)=G{"G" Y Wplo),

states o

where ny and n_ are the numbers of positive and negative eigenvalues, respectively,
of the linking matrix defined by the framed link L. Also G4 and G_ denote the
partition function evaluations on an unknot with framings 1 and —1 respectively;
they take the form of Gauss sums.

The WRT invariant can be alternatively computed from the generalised Jones
polynomial of a link presentation. Whenever a link L is coloured by placing non-
negative integers (ozj)jzl = a, one on each component of L, one may compute the
coloured Jones polynomial Ja(L), as a polynomial in A? and A%, where we use
the normalisation in which the value on the unlink is H]- do;. Suppose now that M
is a three-manifold obtained by integer Dehn surgery around a framed link L. Then
the Witten-Reshetikhin-Turaev invariant, normalised to be 1 for S? is computed by

|L|
Z(M) = GGGy Y Ja(L) [] do, - (3.1)
a j=1
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where the sum is over a for which 1 < a; < K — 1 for all j and ng is the rank of
H,(M,Z). Indeed Ja(L) is nothing but the state sum in the state model mentioned
above, over a restricted set of states constrained by the condition that the label on
the ;! component is a; and the local contributions to the weight come from edges,
regions and vertices, omitting components. When L is an unknot, this gives

K-—1

Zr(8? x 81 =Gp™ Z a2 =

3.2 Rational surgery presentation

In this section we assume that M is presented as rational surgery around a link
L, with surgery data given by a string A of matrices in SL(2,Z).

. i P, ;
Suppose now that we are given a representation of each A; = (Q] fSi] ) as a
i R

word in S and T; equivalently, pick a continued fraction expansion of . One can

construct a framed link L(A) by adjoining to each component of L a snnply linked
chain of unknots, the length of each chain being the length of the corresponding
continued fraction and the framing on the components being determined by the
terms in the expansion. Then L(A) has the property that M = S%,A is equivalently
expressed as integer surgery S%(A). One may now compute Zg (M) from (3.1) with
L(A) in place of L. In [J], the following formula was derived for Zx (M), directly
in terms of L and A,

|L]|
Go ' Zi (M) = e T (LA Zja (L,K) l_IdA (3.2)

where the sum is over a for which 1 < o; < K —1 for all ;.

Consider a Hopf link L. Perform rational g surgery around L; on the com-
P R

Q S
resulting surgery operation is equivalent to twisting the boundary of Ny by SA,
which has ratio —%. In the process a 2-framing correction is acquired, so that

plement of a neighbourhood, N3, of Ly. Choose A = ( ) € SL(2,Z). The

K-—1

K 2 K—2
ﬂ S(L,A A ﬂ—‘b Lo,A) jJSA
I ( ) E PA ﬂ ada — T 2(L2 )dﬂ ,

where A = (S, A). Since o(L) = 0, this reduces to

K-—1

%I( 2‘1’(/\) Z dA 77055 IX— mi K— 2<¢(SA)+3SlgHQ>dSA (33)

_e4

K 2

This formula will be used later.
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4. SEIFERT MANIFOLDS

Suppose that P; and @);, for j = 1,..., N, are non-zero integers for which P;
is coprime to @); for all j, while the P;’s are pairwise coprime. Construct a link,
L, with (N 4+ 1) components obtained by adjoining to an N—component unlink, a
single unknotted component (which we count as the 0! component) whose linking

number with each of the components of the unlink is one. Let A denote rational
surgery data on L whose ratios are g for each of the components of the unlink
J

and 0 on the final component. Then 527 A 1s the N-fibred Seifert manifold which

is usually denoted X(%, cee 5—;), and which we shall denote by M. Throughout
this section we put

N N
Q;

— = |H{(X,Z
P‘ |1( ? )|7

J

~
I
—
-
S
1|U
N

so that H and P are coprime integers. The signature of the link L can be calculated

0= S 2) s,

J=1

using

Also, it will be convenient to introduce

SigIlP e%isign( %) )
44/|P]|

The quantity ¢ is related to the Casson—Walker invariant (in Casson’s normalisa-

tion) A\(M) by

P _
—24\(M) = ¢ + E(N—Q—ZPj 2y, (4.1)
j
4.1 Computation of invariants

Using (3.2), the invariant Zx (M) may be computed. By [Wi],

Tha;
K

N
S111
=1

Ja(L) = A — .
(sin %) (sin %) '
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Thus, by (3.2),

dS N K-1

Zr(M) = e T T oL, A)Z T H Z d 7sin ——= 778&]
(sin %) <sm e > j=1a;=1

Applying (3.3) to evaluate the sums over «;’s for j # 0, and recalling the definition
of (L, A) and the form of o(L), one obtains

i K—2 . " o K1 < )N/2 dS N
Zr(M) = o 172 (3sign(£)+ 3 @(s1)) o 2 SA;

8
B=1 (Sm ”ﬁ) j=1

_ signP 321 K22 Gon(2) /2 (Sln 1) < —ZE Y B(SA; )) D
V| P| K K

by substituting for d?, where
- AN T B2=2(2Kn;+1;) B+ R (2K +1;)?)
_ : 2KP - Snjtp; G (28m5 4 pu
o=3 (03) TIIE 5 X me |
B=1 1= an—O p,J_

N
Observe that ¥ may be considered as a sum over 5 € [1,K — 1], n € [[[0,P; — 1]
j=1
and p € {—1,1}", of a signed exponential which may be considered as the product
of N terms. The j*! term is invariant under the two changes

(1) (B,nj,p5) — (B +2K,n; + Qj, 1t5)
(i) (B,mj,p5) — (B,nj + Py, p15)

Therefore, for each jp, the complete summand is invariant under the change of
variables,

P Q,, P
B — B+ 2K , n; — n; + 2§
Pj, ’ ’ Pj,

j=jos M.

Since P; is coprime to @), for each j while all the P;’s are coprime to each other,
it 1s possible to perform the sum over n and 3, for fixed g, by fixing n = 0 and
letting ( range over

{c+2Kd|1<c<K-10<d<P}.

Performing the sum over g one now obtains,
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where the sum is over the set of (K — 1)P values in [0,2K P — 1] just described.
Since the summand is now an even function of 4 which is periodic with period 2K P,
by the addition of a factor of %, the range of summation may be replaced by all
integers in [— K P, K P] which are not divisible by K. Putting this form for ¥ back
into the above expression for Zx (M) now leaves the result,

N TS _ mip
P H e kP, _ o KP;

ZK(M):BI(,;O et Y e HFI
"\

B=—PK
Ky

||l
(¢
3
(2.
A2
|
(¢
3
P
I
~——
=z
(3]

4.2 Integral representations of sums

The aim of this section is to reformulate the sum of (4.2) into the form of a
holomorphic function; in particular it will take the form of a sum of two terms,
one an integral whose integrand is similar to the summand in (4.2), and the other
term being a sum of a number of rational functions of exponentials, the number
of terms being independent of K. For large K, such an expression is more easily
computable than the sum of 2P(K — 1) terms in (4.2), while its behaviour and
asymptotic expansions can be more easily determined.

We start by defining functions hy (8, z) and fn(8,z) by

_mi EBQ 2rife f
e 2k PP e K N ﬁ T
hN(ﬁv‘T): 7iB i B = ( : )

(e — e~ T )N-2(1 — e~2mif) 1— e ?mF"

Let C denote a contour in the complex plane which follows a line through the origin
from (=14 ¢)oo to (1 — i)oo, except for a deviation close to the origin around a
clockwise semicircle below the line. If % is negative, then we modify the definition
of C by rotating it through 7/2 in a clockwise direction. Set

On(e) = [ hn(p.x)ds.

Observe that

(i) hn(B+2PK,z) = hy(3,2 — HK) e*™ P,
(i1) hn(B,2) — 0 exponentially quickly as 3 — oo on C + z for any = € R;
(iii) hn(B, ) has poles at integer points on the real line;
)

(iv Res(hN(ﬁ,x),ﬁ = n) = (2mi) ' fn(n,z) when n ¢ KZ.
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We deduce that

Ox(a) = [ hn(B.2) 3
C
2PK-1
= hn(B,2)d3 + 2m Z Res(hN(ﬁ,:z;),ﬁ:n)
C+2PK o
‘ 2P—1 2PK—1
= On(z — HK)e*™P" 4 oxj Z Res(hN(ﬁ,a:),ﬁ = mI& —|— Z fn(n,x)
m=0 K}/n
and therefore that when 2Pz € Z,
2PK—1 2P—1
Y fy(n,2)=On(z)-On(z—HK)-2ri Y Res(hn(B,2),8 =mK). (4.3)
n=0 m=0

Kfn

Since fny(n,z) is a periodic function of n with period 2P K, the sum on the left hand
side of this equation may be replaced by one over any other period. The difference
of the two values of O can be written as a single integral,

On(z) —On(z — HK) = /ch(ﬂ’x)(l 4oe72mB 4 e—2mﬂ(H—1)) &
:/C<fN(ﬂa$)‘|’""|‘fN(ﬁ,£C—(H—1) ()) d3,

the integrand being a sum of H terms. Note that the left hand side of (4.3) is
unaltered under the replacement + — x 4+ K, whereas all terms in the right hand
side will change. The end result is the following.

Lemma  Sums and integrals of fy are related by

PK 2P-1

Z fn(n, ) + 2m Z Res < f_Nﬁ_’%)lﬂ,ﬂ )

n=—PK

. (4.4)
= / fN(B,CU)<1 + e—2mﬂ 4+ -+ e—Zmﬂ(H_l)) d,@
c

whenever 2Px € Z.
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4.3 Holomorphic representation of invariants

To apply the result of the previous section to the computation of the sum in
(4.2), observe that the summand is a combination of terms of the form of fn (43, ).
Indeed, the sum may be written as

2PK—-1

> (H e(j)) fn(B,e),

B=0 _ 1N =1
o ee{+,—} J

N

where z, = %

. Since 2Pz, € Z for all €, thus (4.4), being a relation linear
in fy also holds When fn (8, x) is replaced by the summand, f(3), in (4.2).

Theorem 1 For an arbitrary Seifert manifold M = X(% Q—N) the sl WRT

invariants at the K" root of unity is given by

2P—1
ZK(_Z-\J) BGy ( / f e 2mitp d3 — 2mi Z Res(%’ﬁ = mI{))

I&q4 0
(4.5)
Hp2 8 8

s 2-N N , 5 -
where f(8) = ¢~ 7 (qi — q_§> 11 (q”ﬂ' —q 2Pi> and C is a diagonal line
j=t
contour through the origin, passing from (—1 4 i)oo to (1 — i)oc for % > 0, or

rotated clockwise through 3 for % < 0.

Special case of N = 3

In the special case of 3-fibred Seifert homology spheres, one has N = 3 and
the residues appearing in (4.5) may be explicitly evaluated. Indeed the residue at
B =mK in (4.5) is

) 3
2 . m _HExi 2 [ m 1 1 1 m . ™m
Rm:;HI&(—l) e oF F—E—I—Hr g - cot —— Hsm—.

Meanwhile, let S;;, denote the corresponding residue of the integrand appearing in
the first term of (4.5),

1 — e—27riH,H

Sm = Res(f(ﬂ) : ]__e—_zﬂ-ilgvﬁ = mK>

4 R m  _HEmi 2 .oTm
— —;HI&(—l) e 2P Hsm?j.
J
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It is fairly easy to see, from explicit calculations, that

A )V—HK(m 1
Rmtp = (—1)P(1+2 A - §8m+P ;

Smip = (_1)P(1+Z P—j)—HK(m-}-P/z)Sm |

while R_,, = Ry — H'S,, and S_,,, = —S,, from which it follows that

when P is even. When P is odd, this holds when HK = 2 modulo 4, but not in
general otherwise.

Thus, for the particular case of 3-fibred Seifert homology 3-spheres with P; = 2,
1— e—27'riH,6‘

1— e—2m:fB as

(4.5) may be rewritten solely in terms of the integrand g(3) = f(3) -

Zr(M) = BG;) (/Cg(ﬁ)dB — 7 Z_: Res(g(ﬁ),ﬁ = mK)) = BGo /Dg(ﬂ)dﬁ

Kqx I{q%

where the contour D consists of a union of line segments, being identical to C' above
the real axis, a translated version C' + PK below the real axis, along with P open
line segments along the real axis joining points j K to (j+1)K for j =0,1,...,P—1.
That is, Zx (M) is, up to a simple factor, the principal value of the integral of g(/3)
over a Z-shaped contour. To remove the dependence on K of the contour, one may
rescale the variables, leading to the following theorem.

Theorem 2 Consider a three-fibred Seifert manifold M = X(%, %, %) Let
H = |H'(M,Z)|, P = PP, P; while ¢ and B are as defined at the start of §4,
all constants dependent only on the manifold M. In either of the cases P; = 2 or
HEK =2 (4), the S? x S'-normalised Witten-Reshetikhin-Turaev invariant of M at

the K root of unity, may be expressed as an integral

H-1
BG 7 2 e ) —
sutan - 2oyt 5 f i
t=0

(F o)

where the integral is the principal value of that taken around a Z-shaped contour
running diagonally across the y-plane, from —(1 +1)oc into the origin, then up the
imaginary axis to 2mi P and finally out to (1 £ i)oo, the sign being that of P.
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4.4 Rational K

All the calculations so far in this paper have assumed that K is an integer,
since they have used the interpretation in terms of braiding and fusing matrices
from conformal field theory which only directly makes sense in this case. However
Zrg(M) € Zlg], so that Zxg(M) = fr(q ) for some polynomial fr with integer

coeflicients dependent on K, where ¢ = e & . One may therefore define

Z:(M) = f. ()

whenever r,s € Z are coprime, to extend Zx(M) to rational values of K. In-
deed the formulation of Zx (M) in terms of representations of quantum groups (see
Reshetlkhm Turaev [RT] and Kauffman-Lins [KL2]) is really in terms of a parame-
ter ¢ = e s (which need only be a root of unity) rather than as a function of K.
In this section we will derive an analogous integral expression for Zy (M) to that
found for the case of integer K in the previous section, to give the values of the
invariant at these other roots of unity.

In (4.2), the right-hand side contains expressions which all lie in Q[z] where

t = e7kF is a 4K P root of unity and a 4P root of ¢. Indeed, it can be rewritten
as

N P
] PK I1 (51/’ i—x T
. _ Z —Hﬁ” !
Zrg(M) = —5

2,/2K|P| z** . 22PB _ g;—ZPﬁ)N_Q ’

KYp

“U|“@

|
5
N———

(4.6)

where it may be noted that P¢ is an integer and € = e* “signF g an eighth root

of unity. Since it is known that the left-hand side has the form fx(gq) for some
polynomial fx with integer coefficients, the values at other K" roots of unity may
be computed by transforming the right hand side by the Galois action. Indeed, if
z is replaced by another primitive 4K P** root of unity, e2x? , where s is coprime
to 4K P, then by §2.1, the extra scaling introduced can be computed. For any s
coprime to K, it is possible to choose to replace s by another element of its residue
class modulo K, in such a way that it remain coprime to 4K P while having residue
1 mod 4. In this case, the scaling factor in (4.6) will come only from the square-root

and €, namely the sign (—1)% (ﬁ) Thus, for rational K = , the expression

for Zx (M) is exactly as in (4.2), except for the insertion of an extra factor and a

change in limits,
N TS mif
H eXPj _ o EPj

s—1 Pr
(_1) 4 S BGO _ s (b _ e £ﬂ2 ]:1
7 c M) = 2K 2K P
x(M) v/s \2rp|) K °© > e

TS _ mig N-2
B=—Pr e K —e K

rys
(4.7)
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Note that in this expression Gy is the function of K defined in §2.1, and not the
ratio of the values of the invariant of S x S§? and of S3, at the particular root of
unity described by K. The argument of §4.2 that changes a sum into an integral as
used in §4.3 for integer K, works in the same way here, with the translation now
being # — 3 + 2Pr. There are now poles of the function at points in Z U KZ.
Those integers not in K'Z are precisely those not divisible by r and this leaves

Hs—1 2Ps—1
w00 =05 [ orertvar2n S w1 o).

where D is the term appearing before the sum in (4.7).

For three-fibred Seifert homology spheres under the same conditions as in the
previous section, the part of the residue sum contributed by those terms with m €
sZ is precisely half the sum of residues of the integrand above at § = mr for
0 < m < P. These terms are therefore included in the integral by modifying the
integral to be the principal value around a contour obtained from C' by shifting the
part in the lower half-plane by Pr and inserting the line segment from the origin to
Pr. The remaining terms, when m is not divisible by s, have a zero sum in this case,
there being an antisymmetry in the summand under m — m + Ps. This leaves
the following expression for Zy (M) for a three-fibred Seifert manifold at K = £,
that is the WRT invariant of M at the root of unity ¢ = e?™'r,

_B_ __B_
) q2PJ_q 2Pj
7Bq 4 —2mHs,8j:1< _ Hp?

QQ_(Z 92 —q

e

where the sign is that found in (4.7), and s = 1 modulo 4 is chosen to be coprime
to 4Pr. The conditions required are that either P be even, or Hr = 2 modulo 4.
The path of integration is a Z-shaped curve, as in the previous section, with middle
segment from 0 to Pr and with outer segments pointing in the direction of +1 — 1.

At first sight it may seem that the expression just given for Zx (M) when K is
rational (not integer) depends on r in an essential way, and not only on K. In fact,
the specific expression for K as a rational, that is in terms of r or s individually,

enters thrice, once by the factor \/g, the second time via the contour of integration,

and finally via the exponent of s in the integrand. However, we claim these are all
‘natural’ in the following sense. Introduce a new parameter N, considered as a large

integer. Then
N

1 a2 1
Tm — Y (=1)%¢T ~ 4] —
Wiy 20T~y

up to multiplication by an eighth root of unity, while the integral over a Z-shaped
contour with centre section from 0 to N P, will take the same value as for N = r, for
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any odd multiple N of s. Finally, since the value of the integral is unchanged under a
translation of the contour through 2 Pr, one may equivalently change variables § —
B + 2Pr which brings an extra factor of e 27738 into the integrand; this shows
that the integral will scale by a factor of N whenever such a factor is introduced
into the exponent in the numerator of the first term in the integrand. Combining
these facts gives Z= (M) as a limit as N — oo amongst odd multiples of s, of an
expression identical to that given above except that

(a) the appearance of s in the integrand is replaced by N;

(b) the contour is chosen to have the same Z-shaped form, with centre piece from

0to NKP;

NK 2
(c) the term f is replaced by the reciprocal of Y (—1)%¢'T.

a=0

4.5 Asymptotic expansions

In all the discussions so far, K has been either an integer or rational, and indeed
the WRT invariant which we were initially computing is only defined at roots of
unity. We now consider the formula (4.5) to define a function of a complex-valued
parameter K. Some care must be taken, however, since the shape of the residue
terms changes abruptly when K becomes non-integer; indeed, we do not want to
continue using a sum of residues away from integer K, but rather use the (unique)
‘simple’ holomorphic function of K which agrees with these values at integers. It
is also necessary to choose the contour C' appropriately. The existence of such a
holomorphic function is demonstrated by the first approach below, where an explicit
computation of the residues is performed.

Since the asymptotic behaviour of a holomorphic function possessing an asymp-
totic series is entirely defined by its behaviour at integer values, it is unnecessary
in this section to compute with any non-integer values. In the followmg, we will
equivalently consider Zx (M) as a (multi-valued) function of ¢ = e & =1+ h.

Analytic structure

We will first discuss the analytic behaviour of Zg (M), for which it is most

convenient to transform the variable in (4.5) from (3 to y = 27;?, leaving the result
H-1 2P—1
BGO 1 Kg:(y) I\ go(y) )
Zk(M) = 2 Sy tz:; /C' (y)e dy — Z Res ek YT 2mim
(4.8)
y y\2—N N £ -4 i H 2 .
WhereF(y):<e5— e 2) H<e2pi—e 2PJ’> and g¢(y) = 55 —ty, C' =:C.
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We proceed to discuss the form of the two terms in (4.8). The second may be
explicitly evaluated. Start by defining generalised Bernoulli-type numbers, B}, by
their generating function

= z
n _m __
ZBWZ o (e% e—%)n

m=0 o

so that By =1, B{ = 0 and By = —3%. By expanding F(y) into a sum of terms

we may calculate the residue in (4.8) to be

F KGo(y) i ) 0 miHI 2
Rea (EL28 0 = i) = Yoy o B
N-— iH \t 7-s4t— . N\ N—2—r—s—2t
Z B} ’B, (W) LS 1_|_ Z @ _ mHE )

N =-2—r—s—2t)! \2 2P; 2P

r,s,t>0
r4+s4+2t<N—-2

It may be checked that the coefficient of K™ in this expression always vanishes, so
that the dependence of the contribution of the residues to Zx (M) upon K has the
form

2P—1
Zi (M) =Gog™ 7 Y e "5 KH, (K) (4.9)
m=1

where H,,(K) is a polynomial in K of degree at most N — 3. There is therefore
res

defined an extension of Z, (M) to a holomorphic function of K away from the

origin, only using combinations of rational and exponential functions.

For the first term in (4.8), it is sufficient to note that its integrand is an analytic
function of y and K away from K = 0 and from y € Z, with a double zero at PZ.
In order to keep the integrand convergent, with Gaussian type behaviour along the

contour of integration, we choose this contour to be a line through the origin in
1P
holomorphic function of K, away from the origin, whose value at integers coincides

with the WRT invariant.

the direction of Combining the two terms, we now obtain a (double-valued)
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Flat connection contributions

From the physical perspective with respect to the Feynman path integral for-
mulation of Zx (M) in (1.1), it is expected that a stationary phase expansion will
yield an asymptotic expansion for large K consisting of a sum of contributions
labelled by equivalence classes of flat connections.

Starting from (4.8), and translating the contours in the individual terms so as
to form paths of steepest descent, we pick up extra residues,

H—
B 1 Z 1
q+ ' =1 oH

2P1 eKago(y)

F( o1 [%7] 7
— Z Res( v) oKy 7y—2mm> Z Re ( Agt(y)7y=—2m'm>]7

t=1 m=1

where C] is a contour parallel to C’ and passing through the stationary phase
point of the integrand, namely y = —47T’i§t. The first term, denoted Z9- (M) in
what follows, is the trivial connection contribution. The second term is a sum of
contributions from reducible flat connections, while the sum of the last two terms
give the contribution from irreducible flat connections.

In the notation of [R3], the reducible connections are labelled by integers m;

(0<j<N) With()gmj§Pj—1f0rwhich0<ﬁst5211‘_}]3 (mo—z%j><K.

The precise correspondence with the contributions to the second term above labelled
by integers t with 1 <t < H — 1 is

=2y
=pste,
where s € Z and |c| < &5 making ¢ = 37 5L — mg and m; = —sQ; mod P;. (It

may be noted that the normalisation used in [R3] differs from that here by a factor
of Gy, since here we normalise with respect to S?, rather than S' x $2.)

The irreducible connections in [R3] are labelled by (m;,!) with [ = 0,1 and
0<m; < % while m; € Z + %le for 1 < 5 < N. The correspondence with the
labels m and (m,t) in the last two terms in the above expression for Zg (M) is via
m = [ mod 2, while

H :
t—%:—mo—l—Zi%,forsomemoEZ,

for the last term, the same expression being used with ¢ omitted for the third term.
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Observe that this makes the trivial connection contribution to Zx (M), namely

B __B
2P, 3P
zyon = o0 [ ‘ZfH(q — j>d8 (4.10)
KV K gol cq (qg — q—g)N—2 ’ ’

into a holomorphic single-valued function of K away from the origin, there being
two occurrences of a choice of square-root, one in GGy and the other in the direction
of the contour. For the case of rational K, a similar shifting of contours may be
carried out, so as to pass through the relevant stationary phase points, and then
the first term will, up to sign, have exactly the same analytic expression Z9 (M) as

for integer K, where Gy is now defined by G5’ = \/gsin T

Theorem 3 For Seifert manifolds, there is a natural (double-valued) holomorphic
function of K, defined away from the origin, whose value at integers coincides with
the WRT invariant. It is a sum of polynomial multiples of exponential functions
(residues) and integrals, obtained from the expression in Theorem 1 by translating
contours so as to pass through stationary points. The terms can be identified
with the contributions from all flat connections (trivial, reducible and irreducible)
appearing from a stationary phase expansion of (1.1). Up to correct accounting of
signs, the holomorphic extension, Z9-(M), of the trivial connection contribution is
also valid for rational K.

Thus the stationary phase approzimation is exact for Seifert manifolds, giving
exactly the value of Zx (M), not just asymptotically for large K, but also exactly
for small (finite) K.

Asymptotic structure of trivial connection contribution

To find the asymptotic expansion of the trivial and reducible connection con-
tributions in (4.8), one deforms the contour in each individual integral, so as to pass
through the stationary point of g, namely y = y; = %t. Now applying Laplace’s
method gives a contribution from the #'" term (for 0 < ¢ < H) of

() . oo
2Bq™ = 1P P2 1
Zj (M) = —— THEE N a4 T (An + 5 ) K0 (4.11)
q2 —q~ 2 mH nzzjl 2

where ay, ; are the coefficients in an asymptotic expansion of F(y) about y = y,

F(gf_l (gt(yt) — l’)) ~ Z an,tl)\"’t )
n=1
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Here, for each ¢, the sequence {), ;} must be strictly increasing, with Ao ; > —1.
For t = 0, F(y) has a double zero at the origin and thus A, = n, while for
t # 0, A,y = n— 1. When the imaginary part of K has the same sign as %,
the reducible connection contribution will be exponentially smaller than that of the
trivial connection. The trivial connection contribution is

o) . oo . n
2Bq™ 7 1P F2™(0) (2miP
Z9 (M) ~ ] — g .
(M) ¢ —q i VH n! HK

n=1

This result may be compared with equation (2.28) in [R6]. However, F(z) is a
meromorphic function with poles at 2wim for m € Z\{0}, so we may write

FCm(0) = —(2n)! )~ Res@ﬂ_j{; z= 27Tim> :

meZ\{0}

The ratio of coefficients of (%)n and (%)n_l (or equivalently, of h"™ and A"~ 1)
in the expansion of Zx (M), is thus asymptotically for n large,

P(2n—|—1)(2n—|—2)< 1 >2N P

H 2mi TRH

H n+1

4.6 Computing coefficients and integrality properties

In order to obtain more precise properties of the coeflicients appearing in the
asymptotic expansion of the trivial connection contribution, Z9-(M), in powers of
h = q — 1, rather than K™, one may return to (4.10). Expand

N 1 1
i (quj iy 2pj> _
]_(ql S =) emh™, (4.12)

m=2

observing that the function on the left hand side has a double zero at ¢ = 1. Then

we compute
N [ gy
/wa)dﬁ—m§:2: o [ ).

Expanding the integrand into a sum of m + 1 Gaussians, we may evaluate them,
obtaining, as an asymptotic series

BGy “ meof(m\ [2KP p.2
Zie(M) ~ =3 3 em ) (1) <3> ig
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Let ZOO(JW) = H%q_GA(M)Z%(JW) be a normalised version of the trivial connection
contribution, so that

~ Hq% 6>‘(M) Ps2
Zoo(M) = o Z Cm Z < )QT (4.13)

considered as a formal power series in h. To see that this makes sense, the coefficient
of each h™ in Zo (M) being a finite sum of terms, observe that

(M) =

s=0

(ez_l)mv

r=0

which therefore vanishes for a < m. Hence, for a fixed value of m, the coefficient of
h™ in the contribution to Z (M) will vanlsh for 2(n +1) < m. The expansion

so( M) ZL M)R" = Hg~ M N "\, (M)R"
n=0

therefore defines invariants Ln(AW ) closely related to the invariants Ax(M) whose
existence was shown by Ohtsuki in [O3]; however, it will be seen that L,, obey more
natural properties than do A,,.
The coefficient of h® comes only from the term m = 2 and is
H 2P

Lo(l\l) H/\O = 562 q =1

since ¢; = P7'. The coefficient of h' in IZVOO(JW) can be computed to be

H[P (TP ¢ p?

using (4.1) with ¢ = P!, c3 = —P7" and ¢4 = ﬁ (Z] Pj_2 424 — N), which is
in accordance with the work of Murakami who showed that \; (M) = 6H ' \(M).

Later coefficients have more complicated forms and may be computed using Math-
ematica [Wo.

Theorem 4 The normalisation ZOO(JW) = q_GA(M)H%Z%(JW) of the trivial con-
nection contribution has an asymptotic expansion in powers of h = q—1, Zoo(M) =

S0 o Ln(M)R™ in which Lo(M) = 1 and Ly;(M) = 0, while for Seifert manifolds,

n=0
L(M)——i—l— Y PPPP4+(2-N ZP + _N
? 24H? | = ’
J

P? ) . _
Lo(M) + La(M) = =z > (P72 = 1)(P72 = 1)(P* —1).
1<g<k
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Observe that the denominator of Ly (M) is a divisor of a power of 2H. When
H =1 so that we have an integer homology sphere, it is also possible to check that
A2(M) is an integer divisible by 3, in agreement with [LW].

Corollary  For any integer homology sphere M appearing as a Seifert fibred
manifold, Ly(M) € 6Z and Ly(M) + L3(M) € 48Z.

Also note that when M is replaced by its mirror image M, the effect on Z s (M)
is to replace ¢ by ¢, and this has non-trivial effects on the coefficients \,,(M) and
L, (M), so that

M (T) = M (M) |
)\2(1\/1) = )\1 (1\4) + )\2(1\/1) ,
Na(FT) = = Ay (M) = 20o(M) = \s(M) .

while in terms of L, we have that Li(M) = 0 for all M, with Ly(M) = Ly(M) and
Ly(M) + Ls(M) reversing sign under change of orientation. This may be explicitly
verified in this case. For computations of higher order Ohtsuki invariants, see [L1]
and [R6], the latter for surgeries around the knots 4; and 6;. On the basis of these
computations we make the following conjecture. In terms of the Ohtsuki invariants,

Conjecture L,(M) € 6Z and Ly(M) + Ls(M) € 48Z for any integer homology
sphere M.

Integrality properties
The coefficients ¢, in (4.12) lie in Z[ 7). Thus, looking at (4.13), it may be
seen that A\, (M) € Z[5p7]. We now use a Varlant of the argument of [R5] to show

that in fact Zo € Z[+][[R]]. Just as we computed the expansion for Zx (M) in
(4.13) by integrating Gaussian terms coming from the expansion (4.12), one may
start from an expansion of the same product with one less term, say the i*", with

J71 ! pm
N = Z c,h™ .
(q 1) m=2
Now observe that f(3) is an even function and thus [ f(3)d3 can be computed

as —2 [ gi(ﬁ)q_%i d3 where g;(3) is obtained from f(3) by removing the 7*" term.
Thus

/cf(ﬁ)dﬂz—QZ o [T g g .
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which may be integrated as a sum of Gaussians and leads to an expression similar

o (4.13),
~ _ H & ' < m—s {1 E(s—1+lE(l—P,—l))Q—ﬁ—GA(MH-l
ZOO(M)_—%ZcmZ(—l) qT 2 i V) T 2.

The factor P; does not appear in the denominators of ¢/, and can only appear in
Zoo(M) from the expansions of power of ¢ appearing in this last equation. However,
by (4.1), —Q + %ﬁ does not contain powers of P; in its denominator. Thus

Zoo (M) € Z[55, P] Furthermore, using (4.1) it can be seen that for H odd there

will be no factors of 2 in the denominator of the exponent of ¢ in Zoo(j\l). Since

v2e (u/v) € Z whenever u € Z and v,a € N, thus we deduce that ZOO(J\J) €

a

Z[ %, Z][[R]]. Since this holds for any choice of i, we deduce the following result.

Theorem 5 If M is a Seifert fibred manifold then Z.(M) € Z[ 5 1[[R]].

4.7 K-adic convergence

We now assume that K € Z is an odd prime power, say K = p”, coprime to
H. Since the P; are coprime, X must be coprime to all but at most one of the P;’s,
which we denote P;. In a similar way to the previous section, perform an expansion

]TVI q%—q 2 o0
fi(h) = f:1< = ) — Z mh™ (4.14)

so that the coeflicients d,, are rationals with denominators coprime to K, that is,
dm S ZR’-

Observing that G_1 4px = 2(1 — i)V PK, the SO(3)-invariant Zj (M) is now
given, from (4.2), by

_¢ PK
4

G_ < - 7 s
G L (M) = k(M) = i Y a (¢ =) Sl ).
G_14pPK G_14PK

=

B=—PK
Kys

By [03], Z}.(M) € Z[h]. Meanwhile, from (4.10),

1 ¢
374 1H _ 6
VHZ (M) 2h \/ZAP/ R G )fi(qﬁ_ 1)df
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This last expression has a unique asymptotic expansion around ¢ = 1, which may
be obtained by substituting the expansion (4.14) for fi(¢® — 1), and the result will
be an element of Zx[[h]], by Theorem 5.

As complex numbers, rather than algebraic numbers,

p PK-1 P " 1 "
B £ _ (H*—H ) * 2, ePsH
T HPZ HEZ -+s03 7 ( PH" s+ £55—
Z q i QQPZ dp =q*" q " G-papPK ,
f=—PK
s 2 ePs
2: IL’E,QQQP +Sﬁdﬁ _ q%—i—Hi’j
2KP ’

for e = +1, where H* denotes the inverse of H mod K. Let As denote the term
on the right hand side of either of the last two expressions, where in the first case
the factor G_pg apx is omitted. Then A defines an element of Zx[[R]], and the
two possible choices of 4, will give identical elements in R = Z|[[R]]/(¢x(1 + 1)),
using ¢® = ¢® in R whenever b — a € KZ. Next observe that the combination

Y Yy () 4

s+-F

1
on?

will give Zy (M) or VHZY(M), respectively, as elements of R, according to the

choice of A,. For the first case, we can ignore contributions from 3 € KZ since then

¢® —1 =0in R. The innermost sum is an element of ™R, while all the coefficients
¢

in this combination lie in Zx since 7 € ﬁ + Zg, by (4.1).

Theorem 6 (See also [L1], [L2], [R6].) For Seifert manifolds M and odd
prime powers K coprime to P, the asymptotic expansion of \/FZ%(A/I) in powers
of h = ¢ — 1 converges K—-adically to Z}-(q) € Z|q|, in the sense that they agree
when considered as elements of Z[55 ][[h]]/(th(l + h)), where ¢ (q) is the K

cyclotomic polynomial.

Note that the factor of v/H which appears in the comparison of the trivial
connection contribution to Zx (M) and the K—adic series for Z-(M) appears in the
above calculation as the result of the ratio of a Gaussian sum and the associated
Gaussian integral. It should also be pointed out that our version of the SO(3)-
invariant, Z - (M), differs by a sign from the Kirby-Melvin normalisation [KM2].
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4.8 Comparison of integrals

In §4.3, an integral expression was found for Z., for Seifert manifolds. How-
ever, in [L1], another such expression was found for the case of the manifold M, ,
obtained by integer surgery around a (2,n) torus knot with ¢ additional twists.
That is, for a two parameter family of manifolds indexed by the odd integer n and
the integer ¢, with ‘Hl (i\lmt,Z)‘ = |n + t|. Another description of M, ; is as a

three-fibred Seifert manifold X (_ll, w7 t_T"), see [Mos]. The formula of [L1]

18

_D\tgE T gAiin) _ Aa(iz)
7. — ,(=1)' / ¢ q i
1— q—5 e2mz + e 27z
where . .
2(t + n)Aqy(z) =4n(t — n):1:2 + dtx — Zn(t +n)— 3
1 9
2(t +n)Ay(x) = 4n(t — n):1:2 +4(t — 2n)z — Zn(t +n)— 3

In this case, P = 2n(t —n), H =t + n and N = 3. The integral coming from
Theorem 2 is

H-1 . _y - 4y
BGO _ @ (t-|—n)I(iy2_ - eé2n — @ 2n ez2(t—n) — @ 2(t—n)
Z}((.Z\/I) e - q 4 5 elGTrn(t—n) T’Ay < )£< — ) dy )
2m e ef 4 e 7

Both integrals share the same asymptotic expansion, and when the contours are
suitably turned and shifted so as to follow paths of steepest descent, both give the
same numerical results. However, it should be noted that they are distinct!

4.9 Example
For the Poincaré homology sphere (opposite orientation), p = (2,3,5), at K =

11 we have P=30, H =1, A= —1 and ¢ = %, giving values

Z11(M) = 2.49611 + 1.29639i,

res

Zyy (M) = 2.54609 + 1.75882i,
int

Zyy (M) = —0.04998 — 0.462431,

where the integral was evaluated on the standard contour €' which is a line in the
direction 1 —:. The contributions of flat connections are thus,

79, (M) = —0.04998 — 0.462431,
Z{3H (M) = —2.45952 4 1.87797i,
Z{2(M) = 5.00562 — 0.119164,
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there being two irreducible flat connections providing non-trivial contributions,
aside from the trivial connection, on the Poincaré homology sphere. In terms of

the sum over m running from 1 to 2P — 1 = 59 which makes up eris, these two
connections come from the terms with m-values in {1,11,19,29,31,41,49,59} and
{7,13,17,23,37,43,47,53}, respectively. In terms of the labelling of connections by
[ and mj, these connections both have = 1 while m = (%, %, %) and (%, %, %), all
the other connections providing trivial contributions. Their contributions are

A I{‘ e+ _181m: ]ﬂ- _mQTriI(
Z (M) =—\| ———€ K sin*—e~ 0
5 sin 7= 5

as also computed in [FG]. Note however that we here have an ezact accounting of
all of Z11(M), even for a relatively small value of K, whereas in [FG], only the
irreducible (non-trivial) connection contributions were used, and they thus only
gave a good approximation for numerically large K.

To work out the value of the invariant at the second 11*" root of unity, we use
s = 13, seeing that it is congruent to 1 mod 4, and coprime to P = 30. The sign
appearing in the expression for Z1s (M) in the evaluation (4.7) for rational I, is

)= ()

The value of the WRT invariant of the Poincaré sphere at ¢ = et is thus
—Z%(AM) = 1.55773 — 0.08019: .

This value may be obtained from the polynomial for the 11*" roots of unity, namely
Zyu(M)=14q—4q",

by substituting the particular value of gq. From the alternative description as a
holomorphic function involving a sum of integrals and residues, the individual terms
contributing are

int
Zvs (M) = 0.49086 + 0.10697i ,

stat

Z1s (M) = —2.03617 — 2.63598; ,

res

Zs (M) = —0.01242 + 2.60918i ,

int
whose sum can be seen to agree with the value of Z1s (M) given above. Here, Z" s

the sum of the integrals with contours shifted so as to pass through stationary points,
stat |

Z is the sum of residues acquired in the process of this shifting of contours and
res

Z  is the sum of residues acquired in the process of converting sums into integrals
in §4.4. Meanwhile the trivial connection contribution, given by the term with ¢ = 0

alone, is Z% (M) = —0.136139 — 0.0296678i

1
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5. TORUS KNOTS

For coprime integers P and @, let Kp g denote a torus knot of type (P, Q).
Choose integers R and S so that PS — QR = 1. Consider a four component link
Lol Ly I L, I Ly in which the last three components form an unlink, the first
component having linking number 1 with them. Observe that rational surgery
on S® around the three components Lo, L; and L, with framings 0, —% and %
reproduces the 3-sphere while transforming the unknot labelled o to Kpg C S°.
The Jones polynomial of Kp g may therefore be described as a combination of
invariants on the 4-link in S*, or equivalently, by doing the S-surgery around Lo,
as a combination of invariants on the three-link in S* x S?. The sum is over labels
(3, a1 and a3 on the three components of the link on which surgery is carried out,

leaving

K-—1 K-—1

3 ey Zi K241, A) Ay Ao - whay . ﬂ'ﬁozg . ﬂ'ﬁoz
Z(5%, Kpq)=e Zsm 75 2 daidal sin g sin = K

K aj,as=1

- sin

Here Ay = ( _PR _g> and Ay = <g :2) describe the two non-zero surg-

eries. As in §4.1, we apply (3.3) to evaluate the sums over ay and as and include
the appropriate framing correction, giving (see [R5]),

K-1 .
Jo(Kpg) = Goe~ 7% PQ(a”-1) Z S A dSAldSAz
ﬂ 1 SlIl A

L(PQUI—a®)-5 %)
— e2K e451gnPQ Dy

2isin -4/ 2K|PQ)|

by a substitution of the formula for dg from §2.2, where

2
nip® —TL 2K (5 "_2)]—1—“—14_“_2]—27”‘("1#1Q+n2u2P+ ?D" _|_KP"2)

. maf _ mig?
3KPQ Q P Q P Q
Y = E — K _pe
]
S111 <~
K

The sumisover Il < <K —-1,0<n <P-1,0<n, <Q—-1, p; ==+1 and
p = p1p2. Observe that the summand is invariant under the change of variables,

(n17n27;u17:u27ﬁ) - (nl +a,ng —I_bv/llv/l%/g - (QCLQ —I_QbP)I() 3

for any integers a and b, while it is periodic in ny; and ny of periods P and @,
respectively. Thus one may carry out the sum equivalently by keeping ny = ny =0
and letting 3 range over

{c+2Kd|1<c<K-1, 0<d<PQ}.
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Performing the sum over g and noting that the resulting expression is symmetric
under  — —[3, one now obtains,

2PQK—1

Y=-2 Z fa(ﬁ)

K5

where

waf 2
sin ™ ™ miB
B si ’8 1 ’8 T3IKPQ |,

fa (6) - sin —ﬂ - I{P IXQ

This is a sum of exactly the same form as (4.2) and therefore can be transformed
into the sum of an integral and a sum of residues, as was done in (4.5) in §4.3. In

2ms

this case, one obtains as a function of ¢ = e&

) qT—m—% e 451gnPQ 2 _ PQaZ res
Ja(KRQ) = 1 Eq 4 </ fa(ﬁ)dﬁ + 1 >
C

using the fact that fo(3 +2PQK) = fo(3)e 2™, The contour C here is a line
through the origin in the direction 1 — 1, while

2PQ—1
I =-2m Z Res( = (_ﬂgmﬂ,ﬁ )

2PQ—1 )
Vixe4 wm Tm _miKm
- K Z (—1)™etD) gin —— sin — e~ "2PQ
K — P Q

Asymptotic behaviour

Considering o to be of the same order as K, by putting ¢ = % and doing

a stationary phase expansion for large K with a staying finite, one finds that the
integrand f,(3) splits into two parts, with distinct (symmetric) stationary phase
points at # = £+ PQ Ka. Shifting the contour so as to pass through the stationary
phase points one obtains

g2 SN ( + ﬂ'Qa) sin ( + ﬂ'Pa) stat
/ fa — ﬂzPQAa /2 /e 2PC3K KP KQ d/8—|—l
C sin (% + TPQCL)

where the residues acquired are

stat - . _TriI(m2 . wm . wm
I = 2K g (=1)™e™™e” 2PQ gin —— sin —— .

P Q
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t
When the parameter a is sufficiently small, a < Pl—Q, the term I completely dis-
appears. This gives the entire asymptotic behaviour of J,(Kp g) and in particular

Ja(Kpg) =T, K)+J  (a,K),

where JY is the trivial connection contribution and is an analytic function of the

. - res | . .
two variables ¢ = & and K. The term JJ  is a sum of two sets of residues, coming

K
. . res stat
from a combination of I and [

6. GENERALISATIONS

In this paper we have carried out a precise analysis of the invariants of Witten
and Reshetikhin-Turaev associated with sl;, in the case of Seifert fibred manifolds
and of coloured torus knots in $3. In both cases, it has been seen how, by trans-
forming a sum into an integral with additional residue contributions, the various
terms can be identified with contributions which arise from a stationary phase ex-
pansion of the corresponding Chern-Simons-Witten path integral. This technique
also allows these invariants to be naturally extended to holomorphic functions. In
the case of the invariants of 3-manifolds, the new function is a holomorphic func-
tion of the parameter K which usually defines the order of the root of unity, and in
the case of the coloured Jones polynomial for torus knots, it is the colour variable
which has been extended to non-integer values. In both cases, the stationary phase
expansion was exact, for finite K. The trivial connection contribution has been
seen to play a major role, providing the complete invariant at a K-adic level.

It is conjectured that similar results hold in general, for all WRT invariants of
pairs of links contained in 3-manifolds.

Conjecture Let M be a rational homology sphere with H = |H'(M,Z)|.

(a) The stationary phase expansion, Y., Zi(M), of the Chern-Simons-Witten
path integral (1.1) for Z i (M), decomposed into terms labelled by conjugacy
classes, A, of flat connections, is exact.

(b) There is an integral expression for the trivial connection contribution Z9- (M)
which is also valid (up to signs) for rational K.

(¢) The normalised trivial connection contribution ZOO(J\/I) = q_GA(M)H%Z%(JW)
has an asymptotic expansion in h = q — 1 which lies in Z[4][[h]].

(d) For any odd prime power K coprime to H, VHZ%(M) has an asymptotic
expansion in powers of h = g — 1 which converges K-adically to Z-(M).
(e) The coefficient L, (M) in the expansion of (¢) is a finite type invariant (see [G],

[Le] and [LMO)) of order n, with Lo(M) = 1, L1(M) = 0 (by [M1]). Furthermore,
Ly(M) € 6Z and Lo(M) + Ls(M) € 48Z, if M is an integer homology sphere.
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The reader is referred to [L3] for a construction of a holomorphic invariant of
3-manifolds for general rational homology spheres. It is hoped that just as there
is a perfect and calculable correspondence (see [BN2]| and [K]) between Feynman
diagrams coming from a perturbative expansion of (1.1) and contributions to the
quantum invariants of links labelled by chord diagrams, the same will come to hold
for invariants in general 3—manifolds. The better understanding of the decomposi-
tion of the invariants into terms Z# (M) and of their behaviour away from integer
values of K is a step in this programme.
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