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Abstract. By analysing Ohtsuki’s original work in which he produced a for-
mal power series invariant of rational homology 3-spheres, we obtain a simpli-
fied explicit formula for them, which may also be compared with Rozansky’s
integral expression. We further show their relation to the exact SO(3) Witten-
Reshetikhin-Turaev invariants at roots of unity in a stronger form than that given
in Ohtsuki’s original work.

1: INTRODUCTION

Suppose that M is a rational homology 3—sphere. For any integer r and root
of unity ¢ of order r, Reshetikhin and Turaev [RT] constructed an invariant 7,(M).
It is convenient to use the refined form, 7,(A), which was extracted by Kirby and
Melvin [KM] by the use of a symmetry principle; it is nothing other than the SO(3)
Witten-Reshetikhin-Turaev invariant of M, in which are included only terms of
(M) corresponding to ‘half’ of the representations. (See also [W].) It is known
that 7. (M) € Z|[qg| from [M1], so that one may write

(M) Z/\ (M)R?
3=0

where h = ¢ — 1 and A, , € Z, all but finitely many vanishing. The coefficients A; .
are not uniquely determined since the relation ¢,.(1 + h) = % = 0 holds.
In [O2], Ohtsuki constructed a power series invariant, 7(A/) € Q[[R]], of rational

homology spheres, multiplicative under connected sums, with the defining property

that for any odd prime, r, not dividing H = |H,(M;Z)|,

H
<—>)\j,r5/\j (mod r), for0 <5 < Tg,

r
where 7(M) = Z;io MR and \; € Q. Here (;) denotes the Jacobi symbol
describing quadratic residues modulo r.

For various special cases, much stronger results connecting 7 and 7, are known.

For all Seifert fibred 3-spheres, [LR] shows that
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(a) 7(M) € Z[][[1]];
(b) 7(M) converges r-adically to <%)T;(l\4) for all prime r not dividing H, that is
(M) — (F)m/(M) € ér(1 + 1) Z[3][[R]];

(¢) there is an explicitly presentable collection of holomorphic functions Z4(r) of
r, indexed by classes of flat connections whose sum, evaluated at integer r,

27

gives 7/ (M) at ¢ = e+ ;

(d) 7(M) can be viewed as an asymptotic expansion of Z°(M).

In this note we will refine the computations of [02] so as to produce an explicit
and useable formula for 7(M), in Theorem 3.1.4, which is also directly comparable
with values of 7,(M); see §4. Specific results are given in §3.4 for the first few
coefficients in the power series expansion. See also [LW], [L1], [L2], [R2] and [R4]
for related results. The method also gives rise to a formal reformulation of 7(M)
in a shape which is very similar to the Reshetikhin—-Turaev construction of 7,(M);

see §3.3.

2: REFORMULATION OF /(M)

2.1 Notation

We will deliberately use notation compatible with the papers [O1], [M2] and
[02], rather than more usual and simpler notation, so as to make comparisons easy.
Thus @ refers to the multiplicative inverse of a in Z/rZ, while expressions such
as binomial coefficients and powers with vector entries are defined multiplicatively
based on corresponding entries, for example xJ = I1. zJe. The g-numbers are defined

13 _k r—1 5
by k], = Z;_Z_g . Also G(q) denotes the Gauss sum kE q*" where ¢ = 1+ h is
- =0

a root of unity of order r. The notation [.];; will be used to denote the coefficient
of ' in the expression inside the square brackets, when expanded in increasing and
positive powers of ¢; sometimes we will have occasion to use expansions in more
than one variable. Also Z, will denote the intersection of the r-adic integers with
the rationals, that is, it consists of all rationals whose denominators are not divisible
by r.

When L is a (framed) link, |L| will denote the number of its components and
I3 will denote the cabling in which there are j, parallels in place of the ¢! com-
ponent, obtained using the framing on L. The Jones polynomial of L normalised
to be muliplicative under disjoint union is denoted <L>. Ohtsuki defines another
invariant / /
(L) = (~pFH=IFIp P lers
L'CL

which has the following properties (see [02])

() <L> =1 Spcr 2L
(ii) ®(LJ) is an element of HIT™axWZ[q].
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2.2 Computation of /(M)

Suppose that M is a rational homology 3-sphere. It is known (see [02]) that M,
or possibly a connected sum of M with some Lens spaces L(n, 1), can be expressed
as integer surgery of S* around an algebraically split link. Since all the invariants
considered are multiplicative under connected sums, and our results can be easily
checked for Lens spaces, we shall assume henceforth that M = S, where L is an
algebraically split link. Thus the linking matrix of L is diagonal, say with entry f.
corresponding to the framing on the ¢! component of the link. Also the value of

= |Hy(M;Z)| is just |[], fe|-
As in [02], we start with Murakami’s form for 7/(M) (see [M2]), as

- |L| 72
T 340—2 q—1 2_ —J—l o
(—1) q34 2|L| (G(q)> Z af(k 1) Z ( ><Lk 2j 1>’
k=1 =0

Here o is the signature of the link, o4 —o_, and 0 1s 04 or o according as r = 1 or
3 modulo 4, where o4 count the number of positive/negative elements in f. Thus

(=17 = (*52) TI(~ sen(fo))

c

Converting appearances of ®(IJ) into those of <L¥> for k < j yields

<%> (M) = 2; % ﬁl Q" (2.2.1)
where
%= C}/<£> % icﬁm [k]q[:iil)j (k _; - 1><k N 27] N 1) 2]k -2t

(2.2.2)

are functions of ¢ dependent on r, non-zero integer f (mod r) and non-negative
integer 1. The only non-zero terms in the sum for QET} are those with & > 7+ 1 and

r, we choose to write the expression in the above form for later

r—1
2

convenience. In particular, observe that QET} = 0 whenever ¢ > . Also, we have

set o .
C) = —sgu(f)g ¥

We first perform the sum over j,

2] | | e
(k=1 - k—2j - 2j—1__ i

SRR G R P M.

= 21+ 52— pf2ly) e
2]}

= e A
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where a decomposition into partial fractions was used in the last line, and a =

1 1 —_ . .
(1—pgz)', 3= (1—pg 2)7". Observe that a8 = ‘l_qqa, from which functions A4; ,
and B; ,, of ¢ can be found for which

i+1
(a = B)*! = 3 (Aina™ + Binf").

n=1

Substituting into the above and (2.2.2) as well as evaluating the coefficient of p*

gives
()

Observe that the product of the last two terms is just f,, (k) = ("tf;l), a polynomial
in k. Recalling the definition of [k],, it is seen that the inner sum is a linear
combination of ¢*, ¢=%

at most ¢, and as such, may be extended to a well-defined function for negative k.

r—1

Q(-’“}zc}(i) g+ 1" 5~ e
7 r in(q) k=1

i+1
k
[k]q(Aing? + Bing~
=1

NIES

7

and 1, whose coefficients are all polynomials in k& of degree

This function is even and its value at & = 0 is zero, so that by introducing a factor

of %, the sum may be extended over 1;7‘ <k< r;17 a complete residue class giving

(r) _ (g +1) & kYR (o= _
Q1) = O3 (i@ =) = Biala™ = 1) fulk)) . (223)

n=1

where the angle brackets denote the taking of an expectation value with respect
to the variable k£ thought of as an integer-valued random variable taking values

between 15’" and ’";1 with distribution qukQ (normalised). That is,

r—1

PORe
<flk)> = ==

T

1

IF

k=1=r

In (2.2.3), we have also used the fact that the denominator here is none other than
(£)6(a).

Next we perform the sum over n in (2.2.3). From the definitions of A;, and
B, , one can find that A; ;41 = 1 while for n <7,

A== Y () (2.2.4)

NS VAN 2.
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from which Zi—H Ai nfn(k) can be computed to be

(RS >{ ) (S ol (i N [Tl

where we have interchanged the order of summation of n and p. The sum over n
may be expressed as the coefficient of 27 in (14 z)7?(1 — hz)~*71, and then the
sum over p may be performed, giving

Note that interchanging ¢ and ¢~ will interchange A; n and (—1)i+1Bi7n, so that

i+1 _ i
‘ 1 =i (1+(1—qg )+

Substituting these results into the formula for Qgr} gives

SRR (e R e
i, f

k
2hit1 (1+2)i (4 _1)} -

ol r

Suppose now that = and y are related by * — qy — hazy = 0. This provides a
transformation from x to y which fixes both 0 and —1. A power series in = thus
transforms to one in y, and it can be shown that whenever the series f and ¢ are

related by f(z) = g(y) then

() ] - G,

This transformation may be applied to the second term in the expression for Qg?

above, and will reduce it to the first term with y replacing =, since 1 + (1 —¢™')z =
(1 — hy)™. Thus the two terms are equal and

1) (<o he) M o2,

(r) _ vt
Qi =Cr L (2.2.5)

Note that none of the reasoning up to this point depends on ¢ lying in the range
0<::< T;?’, but would equally well hold for any non-negative integer ¢. On the

r—1
5 -

other hand, from the initial definition of QET} we know that it vanishes for ¢ >
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2.3 Integrality of QET}

In this section we show that Qgr), which is naturally an element of Q[q], actually

lies in Z[g]. This is trivial when ¢ > rgl, as then QE? = 0, so we assume that

1 < r;3. Note that by (2.2.2), the inner sum over j is an element of Z[q] for

each integer value of k. However, hiE G(q) is an invertible element of Z[q], as

follows from the fact that G(q) = H,E(q%_l — ¢'72%). As a result, we know that
r} € Z[q]. This is enough to guarantee that QET} € Z[q], once it is known

that QET} € Z.[q).

From (2.2.4), observe that A; , € h"_i_1Z[h], with a similar statement for

B; . In the n'" term of the sum for Q( given by (2.2.3), the ¢* term may be
transformed by completing the square in the exponent of g and shifting k. so as to
obtain the expectation value of a polynomial in & of degree n — 1 with coefficients
in Z,. (Note that this shift does affect the result, but not the integrality properties
discussed; see also §3.1.) By Lemma 8.2 in [O1], h™<k?™>, € Z.[h] and thus

the n'" term in the right hand side of (2.2.3) contributes to QET} terms lying in
h~*151Z,[h]. We conclude that h’QET} € Z,[h] and thus that h’QET} € Z[q].

The stronger result that QET} € Z[q] is an immediate consequence of (7.3) in
[O1].

Thus we have

o0

<H> (M) Z (L) HQEj?fC, (2.3.1)

i=0

where the first term of the product, h7i®(L), lies in h™*WZ[R]. Meanwhile,
QE:)fC € Z[h], from which Murakami’s result (see [M2]) that 7/(A) lies in Z[q] is
clear. An infinite sum has been used to stress the natural independence on r of this

part of the computation of 7/(A), but in reality this is a finite sum since the QET;
r—1
>

terms vanish for ¢ >

3: A FORMULA FOR 7(M)

3.1 Computation of 7(M)

The only dependence upon r in (2.3.1) is in the terms QET), and from (2.2.5)
this dependence is limited to the process of taking the expectation value <->, and

the form for C}.

In the previous section, the discussion was of elements of the cyclotomic ring
Z[q] generated by an r'! root of unity, ¢, for a specific value of . In this section we
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shift to power series in h = ¢ — 1. When comparing these two, the strongest form
of equivalence in Z,[[h]] is up to the ideal generated by ¢,.(1 + h).

Lemma 3.1.1 Ifa,b € Z, then ¢" — ¢" € ¢.(1 + h)Z,[[h]] whenever a — b € rZ,.

Thus in this sense, C’} € Z[q] is equivalent to

1_JL438geq
C = —sgn(f)gz1tasenlf)

an invertible element of Z[;—f][[h]], independent of r. We are left with removing the

r-dependence from the evaluation of the expectation value in (2.2.5).

Next let <->,, denote the expectation value taken where k is considered as a
2
continuous real-valued random variable whose distribution is proportional to ¢/* /4,
so that
0 182
o k) dk
— 7 .

2

<f(k)>_ —
ST

As written, this only makes sense (giving convergent integrals) if |¢| < 1 and f > 0
or |g| > 1 and f < 0. However, in the general case, we interpret the integral to be
a complex contour integral taken along a line through the origin in the direction of
steepest descent.

Lemma 3.1.2 For any odd prime r, <(1 — hm)k>r = <(1- h;r;)k>oo modulo
h'T 25 . In this statement, the left hand side is considered as a formal power

series in @ whose coefficients lie in Q[h]/(¢+(1 + h)), while the right hand side
is considered as a formal power series in x whose coefficients lie in Q[[h]]. The
statement is thus that for any non-negative integer j < r;17 these coefficients,
which lie in different rings, agree as elements of the common quotient by the ideal

generated by hE

This follows immediately from the fact that A™ <k?™>, = h™<k?™ > modulo
h* = for m < =L which is Lemma 8.2 of [O1].

2
Define

o (q+1)' [<(1 - ha) k(g% - 1)>__
Ql,f - Cf hi+1 (1 —I— $)l—|—1 ) 9 (313)

Tt

for any non-zero integer f and non-negative integer 1. As a corollary of the previous

lemma, we have
r—1

WQiy=hQ!)  moduloh
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for i < =1, where the left hand side is in Q[[?]] and the right hand side in
Zr[h]/<¢r(1 + h)) To see this, first note that the ¢* term in the expectation value
can be transformed by completing the square in the exponent of g and then shifting
k accordingly. This procedure is valid with respect to <->, while it introduces an
extra term which is a multiple of h='rG(q)™" in the case of <->, due to the fact
that the functions of k involved in the expectation value are not invariant under
E — k 4 r. This process results in identical expressions from @); s and QE’T), apart
from the term <(1 — hz)~%> which must still be interpreted in the two different
ways. The last lemma then completes the proof when it is noted that the only
relevant coefficients of powers of z are those up to z'.

From the definition (3.1.3), it is seen that h‘Ql f € QI[A]]. Howevel we know
that QEZZ € Z,[q] and from above h' Ql f =R Q f modulo h = together they
imply that Qi € Q[[R]]
follows immediately from (2.3.1) that ( ) I(M) is congruent modulo h = to an

It now

expression obtained by replacing QET} by Qs everywhere.

Theorem 3.1.4 Ohtsuki’s invariant of the 3-manifold, M, obtained by integer
surgery around the algebraically split link L whose components, L., have framing

numbers f, is,
|L]

(M) fj 2(L) Hch,fc, (3.1.5)
c=1

i=0

as an element of Q[[h]], where Q; s € QI[h]] is given by (3.1.3). Note that since
Ri®(LY) € hmax(Z[R], the coefficients of powers of h in the sum for (M) above

are finite combinations.

3.2 Properties of ;¢

By completing the square and shifting %, one obtains that <¢**>__ = q_“Q/f.
Applying this separately to the two expontials in k appearing in (3.1.3), it follows
that

2 _lnz(l—hz)
T(1—ha)? —1)e™" 7ms : (3.2.1)

rt

+1 1 — hz)
Q Cf (th_H) ((1 + ;L’)H)'l (

where all exponentials are evaluated in terms of power series. It follows from this
form that @); s is a polynomial in ﬁ of degree [%], whose coefficients are rational

functions of q%. Indeed the coefficients in h'Q; ; are of the form P(h) + Q(h)q™ 7
where P, Q € Q[h].
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Putting Q; 5 = qu_% (%—Lll)l_i’f, explicit computations yield,

— h? ‘ 1 2 h
Qz,f:< _h2_6h_6>(q?—1)—|-< +§>h2—|-6—'

Flng 2 f o
Q= (o g = 1)) + (0 + 120 + 30k £ 20)(¢7 — 1)
2T Fig \ f ! ’

4 4 11 8 20 20
N ==t =+ = h3—<——|——)hZ——h.
<3f3 f? 3f) VA f
It is always true that C_¢(¢7') = —¢'Cy(q) and Q; —¢(¢7") = (—q)7'Q; ¢(q). The

same transformation laws hold for €% and QE’T}, while @i7_f(q_1) = q_i@i7f(q).

When f = 41, as occurs when we are considering only integer homology
spheres, these formulae simplify considerably. In particular, Cy = —gand C_; =1
giving

Qo,y =1;
Qur=—flg+1)=—f2+h);
11 7.2 1
= 2 (14— —)=24-h+h2+—Rm+---;
Q2.1 (q+)<+h mq) +ght ShT Eh

These results will be used in the next section. Note that the coefficients in the
expression for (); ;1 in terms of Inq and h are not necessarily integers, as can be
checked by computing Q4 1.

Re-writing (3.2.1) by introducing the parameter y = —log (1 — hz), which
agrees with z to first order in h, gives the simpler-looking form,
_w+1)? _v
|,y q ! —dq !
Qiy=Cr(l+4q)|q I (3.2.2)

Proposition 3.2.3 For an arbitrary non-zero integer f and non-negative integer
i, we have Q; 5 € Q[(Ing)™, h,h™"]. Furthermore, Q; s is an entire function of In ¢,
so that it may be considered as an element of Q[[h]].
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Since the forms for QET} and @); s are identical except for the occurrence of a
different expectation value, we may reverse the logic that led from (2.2.2) to (2.2.5),
and then starting from (3.1.3) this will lead to

(¢+ 1) 7o k], "5 Gk, q) dk

Qiy=Cy ; 5 ;
247 JZ T
it+1
where G;(k,q) = Y, (Ai’nq% + Bimq_%)("if;l) is a function of & which is a sum
n=1

of polynomials times exponentials. Considering G;(k, q) now as a function of ¢, it
may be expanded in powers of [2], = gz +q° 2 (around ¢ = —1) and this enables
Qi 5 to be written as

hC J [Floa ™ Z () (21 H, (k)
Qi f = % = _

where Hj(k) = ( i_ )sin (Z(k — 7)) are the coefficients of [k], when expanded in
powers of [2],.

3.3 Formal interpretation of 7(A/) as an expectation value

Putting the form just found for @; ; into the expression for 7(M), (3.1.5) gives

2 .
( thc) JIKl, g™ 352, Hi(k)<Ii> dk
(M) =[] ol
. 2q f g+ &k
where the integrals here are over variables k., one for each component of the link
and the usual multi-index notation is being used. We have here interchanged the
summations over i and j, there being for each j only a finite number of relevant
i’s and the associated contributions from ®(L!) collapsing to give <I3>. This
interchange thus results in a purely formal expression, whose form is very close
to that for 7/, in which a sum, over colours k on components, is replaced by an
integral. Note that for integral k, the sum over j appearing in the last expression
for 7(M) is finite and gives nothing but the evaluation of the bracket on L with
colour k, where we use the dimension of the representation as the colour label
(see [KL] for combinatorial realisations of this bracket). When k is not integer, it
should be compared with Jo, appearing in [R1], [R2] and [LR]. The meaning of such
expressions as analytic functions of ¢ will be investigated further in [L3].
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3.4 Computation of some coefficients in 7(M)

In this section we compute the coefficients, 7;(M), of h* in 7(M) for i = 0,1,2
and 3 and verify some divisibility conjectures about them in the case of integer
homology spheres, where f. = +1.

For general f,

1 (3 self)  se(f)
Qs = g+ (3 = 557 - 5 ) 00

Q1 = —stf‘;?(f) L o)

From (3.1.5), the only term contributing to 7o(A/) is that with i = 0, which
gives

1 1
TO(A/I) = Hm = E .

Contributions to 7 (M) come from all i < 1, giving

HTl(A/_f):Z<3Sg:(f) —g— 2f> +; hm+1H<—%> :

c c€l

as obtained in [M2] and identified there as 6A(A) where A\(M) is the Casson-Walker

invariant of M (see [Wa]) in the normalisation of Casson.

In order to simplify the formulae, we now restrict to integral homology spheres,
although it should be noted that the computations are no harder in the general case.
Then we get, using the computations of @; ¢ from §3.2,

To(j\f) =1
ri(M) =Y (=2f)"¢(lh)

L

(M) = 3 (~2f)12 (1, 1) +Z'“ (—2f) (1)

l1,l2

, 13
n(M)= ) (=2f)h2" (—%) URREY

11712713
_I_Z 2fl1212<|1|_|_z 1+ L ) l1712)
l1,l2

Here all the sums are over disjoint sublinks /;, while ¢(l1,...,l,) denotes the co-
efficient of ™22l ip Ol U--- U], the & polynomial evaluated on the link
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obtained from L by selectively cabling components. An expression of the form !
denotes the product of evaluations of & over each component of the link /. As noted
in [M1] (Proposition 3.1), ¢(L) is just 6(—2)"IXl times the coefficient of z/*I*1 in
the Conway polynomial of L. The formula for 75(M) is also obtained in [LW].

In the case of surgery around a knot, the coefficients in 7(M) reduce to com-
binations of a; ; = [®(L')];i. When L is replaced by its mirror image, ®(L*)
transforms according to ¢ — ¢™'. To obtain coefficients «; ; which multiply by

(—1)7 under the taking of the mirror image, it is necessary to add to the a; ; certain
combinations of lower order terms,

Q12 = a2, a13 = a3+ aypz, 1,4 = a1 4 + 3kay 3,

Q24 = 424, Qg5 = azs + 2G2,4, Q36 = 036-

As in [LR], we consider the normalised version of 7(M) in which the coefficient
of h vanishes, namely ¢~ M)z (M). This has coefficients L;, with Lo(M) = 1,
Li(M) =0 and

LQ(.Z\/I) = —2f0é1’3 + 20274 — 20[%72 ,
Ly(M) + Ls(M) = =301 2f(207 5 + 1) — 4o 2(a1 3 + fasa) — 2far
+ Vsf(az s —4dase) + 205 .

with the property that L, is invariant while L, + L3 changes sign, under reversal
of orientation on M.

The coefficient a; ; is an integer-valued Vassiliev invariant of order j, considered
as an invariant of the knot L. In order to understand the divisibility properties
better, it is convenient to shift from o; ; to dm, n, the coefficients in the Melvin-
Morton-Rozansky expansion of the coloured Jones polynomial,

<Lk> =gy Y dmal(L)(a® — g #)*"h",

n=0m=1

where <L, k> denotes the evaluation of the coloured Jones polynomial of the knot L
in which the colour label k is the dimension of the representation. It is conjectured
[R3] that dy, n(L), which are always Vassiliev invariants of L of order 2m + n,
are actually always integer-valued. In terms of these coefficients, the a; ; may be
computed,

a2 = 3dy o, ag 4 = 3dy o + 30d3 o,
ar3 = 3dy 1, a5 = 3dy 1+ 30ds 1,
= —1hdi o+ 3hkdi 1 + 3di 2 + 15ds o, asz s = 3di o+ 1230d2 0 + 630d3 0.

Qaq .4
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In terms of these coefficients, 71(M) = —6fdy o, that is —dy (L) is the Casson
invariant of the homology sphere obtained by surgery around the knot L. Further-
more,

Ly = —6fdy 1 + 6dy,0 4 60dz 0 — 1847 ,,
Ly + L; = —6fd1,0(12d%70 +6d10+ 1+ 6fdy 1+ 60d20)
— 180 fdao — 840fds o + 60ds 1 — 6} , + 6dy 1 ,

where we have here introduced d’172 =di2+ %dLl, as a more natural invariant than
dy 2, in the sense that under the operation of taking the mirror image, dy ; and ds ;
change sign, while d; o, d2 g, d3,0 and d'172 all remain invariant.

It follows that Ly € 6Z; see also [LW], where it was shown that (M) € 3Z.
Furthermore, assuming d} , is integer and of the same parity as dy o, Lz + L3 is
divisible by 12. One way of verifying the conjecture of [LR] that Ly + L3 € 48Z,
at least for the case of surgery around a knot, it to explicitly compute the weight
system for this Vassiliev invariant of order 6.

4: RELATIONS BETWEEN 7/(M) AND 7(M)

For Seifert manifolds [LR]| and manifolds obtained by surgery around a knot
[R2], it is known that 7(M) € Z [4] [[#]] and that its value is (£)7/(M) € Z[q], in
the sense of r-adic convergence. Since we have not shown in general that 7(M) €

1

Z [+] [[R]], it is impossible to talk of such r-adic convergence. However, it is still

possible to give a very tight relation between (M) and 7. (M).

Fix a prime r (odd and not dividing f in our case). Consider the A = Q[[R]] as a
module over the ring Z = Z,[[h]]. Let Al denote the submodule of the Laurant series
in h with rational coefficients generated by {(h Ing)™" ‘ n > 0}. Put A, = A N A;
this is the submodule of A generated by @; s for all «. Also let B, be the quotient
of A by the ideal generated by ¢,(1 + h); this contains the cyclotomic ring as a
subring. Then there is a unique linear map defined by

0,.A, — B,
Qiy— Q).

This map may be thought of as a restriction of a map A/ —— B! defined by
mapping <k?'>_, —— <k?'>,, where B’ is the Laurant series analogue of B,. By
the constructionof 6,, we deduce the following.

Theorem 4.0.1 If M is obtained as surgery around an algebraically split link L
in S%, and r is an odd prime not dividing H = |H'(M,Z)|, then

<£>T,{(M) = 60,(7(M)) .

r
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Since H, 7 and 7] are multiplicative invariants under connected sum, and any
rational homology sphere, when taken in a connected sum with a suitable collection
of Lens spaces L(n, 1) , can be expressed as surgery around an ASL, the theorem also
holds for all QHS. Here we use the fact that, although 6, is not a homomorphism,

0 (zy) = 8, (x)0-(y)

whenever © € Z,[[h]] as is true for the value of 7(L(n,1)); see [J]. Whenever inte-
grality of 7(M) is known, meaning that 7(M) € Z, this gives r-adic convergence.

5: SUMMARY

In this note, we have seen that the SU(2) Witten—Reshetikhin—Turaev invari-
ant, 7/, at roots of unity, and the Ohtsuki power series invariant, 7, may be written
in comparable forms,

r—3

|L|

H\ , 2L (L) ,
<7> (M) = Z W H Qgc?fc ’
i=0 c=1
and
(M) = i (L) lﬁ Q;
N i=0 (g = 1) e=1 el

The quantities );  and QET} are functions of ¢ independent of the manifold under
consideration, and may themselves be written in identical forms, as the expection
value of a certain function of a parameter k&, which is viewed in one case as being
an integer-valued random variable and in the other case as a continuous random
variable, but in both cases with a Gaussian distribution. This observation allows
the comparison of 7,.(M) and 7(M), as well as concrete computations of 7(M) to
be carried out.

Another consequence of the closeness of the shapes of expressions for 7/ (M)
and 7(M) is that interpretations of the WRT invariants should have analogues for
7(M). In particular, 7/(M) has a formulation as the partition function of a state
model (see for example [KL]), or as a weighted sum of bracket polynomials of a link
with varying colours (representations of SU(2)) on the components. The analogue
for 7(M) would seem to be a weighted integral with the colour variable now being
allowed to vary continuously, and the integrand being an analogue of the coloured
bracket polynomial extended to non-integer colours; see §3.3. Such extensions to
non-integral colours have been observed previously in special cases (see [R1], [R2]
and [LR]), and would seem to indicate the underlying presence of a representation

theory other than that of SU(2), namely that of SL(2;R), see [L3].
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