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Abstract. The usual Yang—Baxter equation may be viewed as a commutativity
relation on faces of a permutahedron. These polyhedra are related via extension
posets to certain arrangements of hyperplanes and their vertices are in 1-1 corre-
spondence with maximal chains in the Boolean poset B,. In this paper, similar
constructions are performed in one dimension higher, the associated algebraic re-
lations replacing the Yang—Baxter equation being similar to the permutahedron
equation. The geometric structure of the poset of maximal chainsin S,; X=X Sg,
is discussed in some detail, and cell types are found to be classified by a poset
of ‘partitions of partitions’ in much the same way as those for permutahedra are
classified by ordinary partitions.

0: INTRODUCTION

Suppose that A is a unital associative algebra. By the (constant quantum)
Yang-Baxter equation (YBE) is meant the relation,

R12R13R23 = R23R13R12 3

amongst elements of AQ A® A satisfied by R € A® A, where R;; denotes the element
of A® A® A defined by R in the ith and jth factor and 1 € A in the third. This
equation arises in many different areas of mathematics and physics, such as quantum
groups, two—dimensional exactly soluble models in statistical mechanics and knot
theory. Higher dimensional analogues are also known to have close connections with
physical problems.

In this paper we will concentrate on purely geometric and combinatorial con-
nections and their generalisations to higher dimensions. In particular, a solution
of the usual Yang-Baxter equation leads to representations of the braid groups and
is thereby related to the Bruhat order defined by the symmetric group. In §1, we
review some of these standard connections for S,,. Thus we give a hyperplane ar-
rangement, X'(n,a), of n hyperplanes in (n — 2)-dimensions and depending on
distinct, real parameters «;, for which the following five properties hold.

This paper contains an expanded version of work presented at the 3" Ann Arbor Conference on
Combinatorics and Algebra, held June 8-12, 1994.
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(1A) The intersection poset defining the incidence properties of X! is the part of
the Boolean poset C'!, of all subsets of {1,2,...,n} with rank > 2, in reverse
order.

(1B) The uniform extension poset, P!, defining the possible real pseudohyperplane
extensions of X! has elements in 1-1 correspondence with S,,, via an inversion-
set map.

(1C) P! is a ranked poset with unique minimal and maximal elements.

(1D) There is a geometric realisation of elements of P! as the vertices of a convex
polyhedron (permutahedron) whose faces are identified, up to translation, by
elements of the poset C? of partitions of {1,2,...,n}.

(1E) If a copy of a vector space, V, is placed at each vertex of the polyhedron of (1D)
and maps R;;: V — V are placed on the edges according to the type {i,j} € C?
of the edge, then the conditions for commutativity of all two-dimensional faces

of the polyhedron lead to the YBE,

RijRixRji = Rjpr R Ry
RijRy = R R;j .

The orientation here used on edges is induced, using (1B), by the partial order
on S, specified by the standard length function.

Considering S, as a poset of maximal chains on the n—dimensional hypercube
given by the Boolean poset P°(n) = {0,1}", (1B) tells us that elements of P'(n, a)
are in 1-1 correspondence with maximal chains in P°(rn). The aim in §2 is to
construct a poset PZ(n,oz,ﬁ), as an extension poset of an appropriate hyperplane
arrangement, X2, whose elements are in 1-1 correspondence with maximal chains
in P!'(n,a). Analogues of (1A)—(1E) are given in Propositions (2A)—(2E). It is seen
that no one form for P? suffices for all these statements, but rather that, for different
statements, it is necessary to use slightly different notions of extension poset.

The problem of constructing posets of maximal chains is very similar to that
of the categorification of algebraic structures. Indeed, the usual formal procedure
for categorising replaces sets by categories, equalities by the existence of morphisms
and relations amongst equalities by new equalities of appropriate compositions of
morphisms. In this sense, the result of categorising the type of algebraic structure
defined by a ranked poset, P, is the structure defined by the poset of maximal
chains on P.

In §2.1, the arrangement X?%(n, @, 3) is constructed so as to satisfy the higher
analogue of Proposition 1A. The usual definition of the uniform extension poset of
a hyperplane arrangement, X, is as the collection of subsets of the set of vertices
of X for which those elements on any line in X form an initial or final subset of
the vertices on that line. Appropriate notions of extensions poset are given in §2.2,
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generalising that of a uniform extension poset to one for which the order of vertices
on a line is only given by a partial order. Propositions 2B and 2C are proved in
§2.2. The analogue of the partition poset, C2, in (1D) is found to be a certain poset
of partitions of partitions; the relation between its combinatorics and that of cells
in a realisation of P? is discussed in §2.3, see Proposition 2.3.7. Those examples
which lead to maximal cells of dimension 3 are discussed in §2.4, and the associated
analogues of the YBE are given by Proposition 2.5.1 in §2.5.

1: THE USUAL YANG-BAXTER EQUATION

1.1 Hyperplane arrangements

Fix n € N. Suppose that a1, ..., a, are distinct real numbers. Let V' denote an
n—dimensional, real vector space with basis e;,..., e, and (v;) denote coordinates
with respect to this basis. Construct affine subspaces V5 and Wy of V, defined by,

7

VO:ZUZ‘:O

=1
n
Wli E a;U; = 1
=1

respectively. Let H; denote the hyperplane v; =0 in V.

Definition 1.1.1 The hyperplane arrangements {H; N Vp}7 and {H; N Vo N W, }7
will be denoted X!(n) and X'(n,a), while C'([n]) will denote the Boolean poset
of subsets of [n] with rank function py defined by p1(V') = |V|.

Thus X/ (n) is a central arrangement of n hyperplanes in the (n—1)-dimensional
space Vp and X'(n, @) is the associated affine arrangement, combinatorially equiva-
lent to an arrangement of n hyperplanes in (n — 2)—dimensions, in general position.
By the intersection poset of an affine arrangement is meant the collection of inter-
sections of hyperplanes in the arrangement, under reverse inclusion.

Proposition 1.1.2 (1A) The intersection poset of X'(n,a) is isomorphic to the
part of C'([n]) with rank py > 2, in reverse order. Under this correspondence, the
dimension of a subspace associated with v € C'([n]) is p1(u) — 2.

Indeed, an r—dimensional subspace in X'(n, @) is obtained as an intersection
of n — 2 — r hyperplanes. The complement, in [n], of the set of labels defines the
associated element of C''([n]).
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Figure 1: X'(4, a)

Example 1.1.3 X'(4,a) has the form shown in Figure 1.

1.2 Extension posets

The vertices of X' (n,a) are labelled by elements of C3([n]), the rank 2 part of
C'([n]). The vertex p;;, associated with {7,7} € CJ([n]) is defined by Mesei ;(Hr N
Vo N W) and therefore has

v, =0 Vk#£1,y
vi—l—ijO

;v + a;v; = 1

so that v; = —v; = (a; — ozj)_l. The points p;j, pir and pji are collinear and their
order is determined by the order of a;, o; and o in R.

Recall that if X is a hyperplane arrangement then the uniform extension poset
U(X) of X, consists of all subsets U of the vertex set of X such that, for all lines
[ € X, UnNIis an initial or final subset of the vertices on I. The order on U(X) is
single-step inclusion; that is, U < T, for U,T € U(X) <= TUy,...,Ur € U(X),
such that,

U=UCULC---CU =T

with |U;| = |Uia|+1 for 1 <4 < k. The elements of #(X) label combinatorially
distinct extensions of X by an oriented pseudo-hyperplane (see [BLSWZ], [SZ]).
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Notation 1.2.1 a; denotes a real number and a is the associated element of V*.
a stands for the sequence (a;), up to order preserving maps on R, and [a] denotes
the sequence («;), up to an equivalence defined by monotonic maps on R. That is
[@] denotes the order of {a;} up to reversal. Similar notation will be used later in
this paper for 8, A and pu.

Definition 1.2.2 P'(n,[a]) will denote the uniform extension poset of X! (n,a).

Example 1.2.3 Pl(4,[a]) is illustrated in Figure 2.
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Figure 2: P'(4,[a])

Proposition 1.2.4 (1B) There is a bijection between S,, the set of maximal
chains in B, and the vertices of P'(n,[a]) defined by,

Inve: S, — Pl(nv [a])
o — Inva(o) = {ij € Cy([n]) | @i < aj, aguy > agiy} -
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If U covers T in P'(n,[a]) with U\T = {i,j} then ¢ = Inv_'(U) and 7 =
Inv.'(T) are related by ¢ = 70(ij). By Proposition 1.2.4, the posets P'(n,[a]) are
all isomorphic, as [@] ranges over all possible orders, up to reversal, on {1,2,... n},

for fixed n.

Proposition 1.2.5 (1C) P'(n,[a]) is a ranked poset with rank function |U|. It
has a unique minimal element 0 = () and maximal element 1 = CJ([n]).

1.3 Geometric realisation

Consider a as defining an element of V*. Put e;; = (ei — ej)/a(el- — €;), 80
that e;; is the position vector of the vertex of X' (n,a) labelled by ij. Define,

6: P'(n,[a]) — V

The image of P'(n,[a]) under 6, forms the vertices of an n— 1-dimensional per-
mutahedron, edges joining points associated with covering elements of P'(n, [a]).
That is, these vertices are obtained as the image, under a suitable affine transfor-
mation, of a generic orbit of the action of the symmetric group, 5,,, on R" given
by permutating coordinates. Let C*([n]) denote the partition lattice,

U {(Ul,...,UT) ‘ the U; are disjoint subsets of [n], |U;| > 2}
reN

with rank function po(Uy, ..., Ur) =D, (pl(Ul-) — 1).

Proposition 1.3.1 (1D) 6 defines a realisation of the poset P'(n,[a]) as a convex
polyhedron, in which elements and covering pairs correspond to vertices and edges
of the polyhedron. The k-dimensional faces of G(Pl ) are identified, up to
translation, by elementsu = (Uy,...,U,) € Ci([n]) and are geometrlca]]y equivalent
to the polyhedra P'(|Uy|,[a]y,) x -+ x PY(|U,|,[@]v,). (Here @]y, denotes the
restriction of [a] to U;.)

For example, there are two types of 2-dimensional face in P'(n, [@]), namely,
squares and hexagons, labelled by elements i5; kl and ijk of C3([n]), respectively.
The edges of P! are labelled by ij € C#([n]). This polyhedron defines a groupoid,
G'(n,[a]) whose elements are the vertices of the polyhedron and whose arrows are
labelled by {ij}, going from a vertex v to a vertex v + e;;.
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Proposition 1.3.2 (1E) A representation of G (n,[a]), in an algebra A, is deter-
mined by elements R;; € A for which,

RijRy = RuRyj ,
Ri]‘RikR]‘k = R]‘kRikRi]‘ , for o < oaj <og .
For any = € C?, say z = (x1,...,2,), let [@] denote a choice on each set z;, of

an order up to reversal. Define P'(z,[a]) to be the product poset, P'(zy,[a]1) x
.-+ x PY(z,,[a],) where [a]; denotes the restriction of [a] to z;. By Proposition 1C
this poset is ranked, with rank function,

Uy Uﬂ<zi>‘:|U|,

and has unique minimal element 0 and maximal element 1 = U, (g’)

2: MAXIMAL CHAINS IN P!

In this section our aim is to give a geometric realisation of the set of maximal
chains in P'(n,[a]) and more generally, in faces of this poset, while generating
structures which enable analogues of Propositions 1A-1E to hold. Recall that in
Proposition 1.2.4, P(n,[a]) is given as the set of maximal chains in B,,. This latter
poset can be re-interpreted in line with the discussion of §1 as follows. Let W,
denote the hyperplane Y. v; = 1.

Definition 2.0.1 X%(n) = {H; N Wy}}, X (n) = {H,}}.

The uniform extension poset of X°(n) is seen to be B,,, and will be denoted by
P°(n). Thus Proposition 1.2.4 puts maximal chains in P°(n) in bijective correspon-
dence with vertices of P(n, [@]). The analogue of Proposition 1.2.4, namely 2.2.12,
will put maximal chains in P'(n, [@]) in bijective correspondence with vertices of a
suitable poset P?(n, [a], [A]). Throughout this section, = = (z1,...,2,) will denote
a fixed element of C*([n]) and C?(z) will denote the interval [0, 2] of C*([n]). There
is a natural injection C} — C7 | under which U +— (U); elements in the image of
this map will henceforth be identified with associated element of C}.
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2.1 Hyperplane arrangements

Let Vi denote the hyperplane Y , a;v; = 0. Choose real numbers (5;)}
and let W, denote the hyperplane Y., 3jv; = 1. Recall that X!(n) is a central
arrangement of hyperplanes, { H; N V5 }, in which each ij € C;([n]) labels a line H;;.
For any y € C?*([n]), define,

H, = (span of lines H;; for 17 <y) C Vy.

The dimension of the subspace Hy of Vj is p2(y).

Definition 2.1.1 For z € C?*([n]), X?(z,a) will denote the hyperplane arrange-
ment {H, NV |y < x in C? ([n])} € Hy N'Vy while X*(z,a,B) denotes the

U p2(z)—1
restriction to Ws.

Proposition 2.1.2 (2A) For generic a and 3, the intersection poset of X*(z, a, 3)
contains the part of C*(z) with rank p, > 2, in reverse order. Under this corre-
spondence the dimension of the subspace associated with v € C?*(z) is p2(u) — 2.

PRrOOF: For any u € C?%(z), H, is a subspace of V of dimension py(u). The
dimension of H, N Vi N W, is therefore pa(u) — 2, assuming that the o’s and 3’s are
generic. The result follows since H, C H, when y < z in C?(x). [ |

Ifu=(Uy,...,U,) € C?*(z), then H, is defined by,
Z v; =0 1< <r
jeU;
v; =0 Vye(Uin---nU,)
The condition for the dimension of H, N Vi NW; to be >0 (|U;] — 1) — 2 is that

the coeflicient matrix of the associated system,

Z v; =0 1< <r
JjEU;

Zajvj =0

el

> Bjvj=1

JeU Y,

has rank r + 2. This is ensured by,

{/\ij = 51 _ j‘

o; — aj

zygx}
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forming a distinct set of real numbers. In this case a vertex in X?(z, e, 8) is specified
by an element of C3(z), that is, it has a label of the form ij; kl or ijk.

Lemma 2.1.3 The vertices of X*(z,a, ) associated with elements of C3(x) are
all distinct so long as

(1) for all 1, oj (j € x;) are distinct;
(ii) \ij (ij € C}(x)) are distinct;
(iii) a; + a; # a; + ay whenever ijkl € C*(z).

PrROOF: Observe first that the non-zero coordinates of the vertices labelled by
ijk and 1j;kl are precisely those indexed by elements of {7, 7, k} and {i,7,k,1},
respectively. Hence the only vertices which might be coincident are those associated
with ij; kl and ik; 51 for some 4, j,k,1 € [n]. This requires ijkl € C*(z). However,
the values of vl_l at these two vertices are,

(ai = aj)(Aij = Arr) and (i — ar)(Aik = Aji)

respectively. Their difference is (o; — o+ —ar) (A —Aji). Note that this can only
vanish if a; and a; are the smallest and largest (in some order) of {a;, o, ag, a;}. 1

The conditions of Lemma 2.1.3 on (e, 8) € R*" define a subset of R*" within each
connected component of which, the order of appearance of vertices along each line
in the arrangement, is fixed (see Lemma 2.2.1).

Example 2.1.4 1=123;45;67. X?(z,a,B) is shown in Figure 3.

Figure 3: X?(123;45;67,a,f)
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34;56

14;23 195 19% 1524 U234 104 234
Figure 4: X?%(1234;56, a, B)

Example 2.1.5 1=1234;56. X?(z,a, ) is shown in Figure 4. This is a case in
which the order of points on the lines is not entirely determined by [a] and [A].

Define e;;, as in §1, by €;; = (ei — ej)/a(ei —ej), for ij € Ci(z). If p,q €
C?(z) are distinct, let p A ¢ denote the join of p and ¢ in C}(z), and, when it causes
no confusion, we may shorten this to pq. For p,q € C}(z), define {e, | u € C3(z)}
by setting,

€pq = (ep — eq)/ﬂ(ep —eq)-
Note that for u’s of the form ij; kl only one pair {p, ¢} satisfies u = pq. For u = ijk,

p and ¢ may be chosen as any two elements of {i7,ik, jk}. That e, is well defined
follows from the fact that e;;, e;x and ej; are collinear. Observe that B(e;;) = Aij,

so that e, = (&p — eq)/(/\p —Ag)-

Lemma 2.1.6 The vertex of X?(z, a, 3) with label u € C(x) appears at e,.

2.2 Extension posets

Let o and A denote the orders of {a;} and {\;;}, respectively. That is, a
defines an element of S|, | X -+ x S}, |; while A defines an element of SE (=)

Denote by [a], the class of «, up to the action of Z%, the i*" factor reversing
the order of {e; | 7 € z;}, and by [A], the class of A, up to the action of Z,,
reversing the entire order. Let €;; 11 = sgn(o; + a; — ap — ay). Note that since
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(i — aj)Nij + (o — o)Ak = (o — ag)Aik, the order of {A;j, Ak, A\jr} in R is
determined, up to reversal, by that of {e;, o, a)} while [A] determines [a].

The lines in X?(z,a, ) are labelled by the elements of CZ(z) and thus have
type 17; kl;mn, i5k;Im or 15kl.

Lemma 2.2.1 The order of vertices {e, | u € C3(y)} on a line labelled by
y € Ci(z) in X*(z,a,B) depends only upon [A], for y &€ Cj(z) while for y = ijkl
with o; < aj < ay < oy, it depends only upon [A] and €,k

PROOF: Observe that for all distinct p,q and r € C¥(z),
(Ap = Aglepg + (Ag — ArJeqr = (Ap — Ar)epr
while for distinct p,q,r,s € Ci(z) for which p = ij, ¢ = jk and r = ik, we have,
(ai = aj)(Ap = As)eps + (o — ar)(Ag — As)egs = (ai — ar)(Ar — As)ers .

Thus the orders of {e;} and {);;} determine the relative positions of triples of
vertices on a line, with labels of the form {pq, pr,qr} or {ps,gs,rs}. This suffices
to fix, up to reversal, the order of points on lines labelled by elements of C%(x) of
the form 25; kl; mn or 15k;Im. To fix the order of the vertices on a line with label
17kl, note that,

(ar—ag)(Nij—Ari)eijiki+(aj—a)(Nik—Aj1)€i i = (i+ar—aj—ag)(Nij—Nik)€ijk -

Remark 2.2.2 Observe from this proof that the value of €;;; only affects the
relative order of e;;.z; and e;r;;;. The relation used in this proof enables one to
determine those orders [A] for which the vertices on the line 7jk! have maximal and
minimal elements both of the form *x; *x, a property which will be important in the
proof of Lemma 2.2.13. Indeed, assuming ¢, 7, k and [ are in the order determined
by a, such maximal and minimal elements must be e;;;5; and ek ;;. [For, if not,
say ;1,5 and e;j;x; were maximal and minimal. Then e;;; and e;; would both lie
between e;;.;x and e;j;x;. However,

(ak — aj) (it — Ajr)eijr + (ar — ag)(Nij — Akr)eiji = (ai + ax — aj — ar)e;ji
(ej —ar)(Ni = Ajp)eije + (@i — aj) (A — Aij)eii = (@ + a1 — a; — ak)eik
and the coefficients of e;;,;; in these two relations have opposite signs, while those
of €;;.x1 have the same signs. A similar argument works for e;;,;x and e;,j;.] This
can only occur if, up to reversal, the order [A] restricted to subsets of {1, 7, k,}
is, ij —kl—il—jl—ik—jk or kl—ij—il—ik—jl—jk. An order on C}(x) which
restricts, on some element of C} to one of the above orders, will be said to be

singular.
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Example 2.2.3 On the line 15; kl; mn, the order of the vertices is i7;kl, 17; mn,
El; mn, where A\g; lies between \;; and Ap,p.

Example 2.2.4 For y = 17k;lm, assume a; lies between a; and ar. Up to
reversal of order and/or interchange of ¢ and k, there are two possible order types
for [A], namely,

/\ij <A\ < /\jk < ANim

/\ij < Aim < A < )\jk .

The order of vertices on 7k;Im 1is,
1k, 1g;lm, ik lm, gk;lm
and 27;lm, 15k, tk;lm, jk;lm,

in these two cases.

Example 2.2.5 For y = ikl with a; < a; < ap < «j, assume further that
{Aij} appear in anti-lexicographic order, A;; < Aix < Ajr < Ait < Aji < Agg (up to
reversal). Then the order of the vertices on the line labelled by y is,
iy gk, gkl ikl iy kL ok gl gl igk
or l;gk, jkl, ikl, ik; g1, 155kl 151, 15k,
according as a; + ag 2 a; + aj.

In order to define a uniform extension poset, it is necessary to know, for each
line in the arrangement, the order of the vertices up to reversal. We now weaken
this notion slightly, to deal with only partial orders on the set of vertices.

Definition 2.2.6 Suppose X is a set. By a total r-order on X is meant a map,

J: <X> — X
3
such that

(i) for all T € (é(), o(T) eT;

(ii) for all U € (i(), as T ranges over (g), §(T) takes on just two values, each
twice.
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Lemma 2.2.7 The specification of a total r—order on a set X (|X| > 2) is equiv-
alent to the specification of a total order up to reversal.

PROOF: If < is a total order on X, define a total r—order by defining §(7") to be
the element of T' lying between the other two in the order <, for T' € (é() Reversal
of < clearly leaves d unchanged.

Conversely, suppose 6 is a total r—order. Pick zg,x7; € X. This subdivides
X\{zo,z1} into three disjoint sets.,

on{:L' 5({;1;,;1;0,:1;1}):.1:0}
Xlz{;r: 5({x,$0,x1}):x1}
X01:{;r: 5<{$,$0,x1}):$}.

Define a total order in which elements of X are less than those in Xy, which are in
turn less than those in X5, while two elements of the same set are compared using,

r <yin Xg iff 5<{$,y,$0}) =y
x < yin Xq or Xoy iff 5<{$,y,$0}) =x.

Transitivity follows from the constraints on 4. [ |

By a partial r—order is meant the restriction of a total r—order to a subset of (?) We

say that Y C X is convex with respect to § iff Vo, y € Y, (5({1‘, Y, z}) =z=z€ Y>.
Any partial order defines a partial r—order, but not all partial r—orders arise in this
way. If §; and 4, are partial r—orders on a set X, their intersection is defined on
the subset of (é() on which §; = 4, and is specified by the common map defined
there. It is clear that the set of partial r—orders on X is closed under the taking of
intersections.

Definition 2.2.8 For any y € Ci(z), let Q*(y,[A]) denote the partial r—order
which 1is the intersection of all total r—orders on the vertices lying on the line
X?%(y,a,B) obtained, as @ and 3 vary over all values compatible with [].

In fact the partial r—order Q*(y, [A]) always arises from an appropriate partial
order which, up to reversal, will be denoted by the same symbol.
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Example 2.2.9 When y = 1234 and,
A = (12—13—14—23—24—34) |
the partial order Q?%(y, [A]) is,

12; 34
/ AN
14;23——123——124 134——234.

AN /
13;24

Note that Q? need not have unique maximal and minimal elements. For example,
[A] = (12—34—14—13—24—23) gives rise to the partial order Q*(y, [A]) as shown
below,

12; 34
AN

/
13;24

124——123—14;23——234——134.

Q*(1234,[A]) is a total order precisely when [A] is singular (see Remark 2.2.2).

Definition 2.2.10 PZ(z,[A]) denotes the set of all subsets U C C3(x) for which
U N C3(y), or its complement in C3(y), is an order ideal in Q*(y,[A]), for all
y € C%(z), under single step inclusion.

Equivalently, U € P? (:1:, [)\]) precisely when both UNC%(y) and C3(y)\U are convex
with respect to the partial r—order Q*(y,[A]) on CZ(y).

Definition 2.2.11 P?(z,[\]) denotes the poset of all subsets U C C3(z) for which
both UNC3(y) and C3(y)\U are convex with respect to triples in C3(y) of the form
{pVag,pVr.qVr}, (p,g,r € C¥(y)) or {ijV s,ik Vs, jkV s}, for ally € C%(x). The
partial order imposed is that of single step inclusion.

It is apparent that PZ?(z,[A]) is a subset of P?(z,[A]). Note that for fixed
[a], a maximal 0—1 chain in P! (z,[a]) is specified by a total order on C{(z) by
Proposition 1.2.5. Those orders which arise are precisely those for which ik lies
between ij and jk whenever j lies between ¢ and k in [a]. Let O%([a]) denote the
set of such total orders. Thus there is a bijection,

{maximal 0—1 chains in P" (z, [a])} — 0*([a]) .
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Let 52<[a]) be the quotient of O*([a]) by the operation of reversal of the order.
Let O2,([a]) denote the subset of O%([a]) consisting of non-singular orders (see
Remark 2.2.2).

Proposition 2.2.12 (2B) There is a bijection between the set of maximal chains
in P'(z,[a]) and the vertices of P?(x,[X]), given whenever A € O?([a]), by,

Invy(o) = {u € C3(x) ‘ orders of elements of C#(u) in \ and o are reversed} )
Furthermore P?(x,[A]) may be replaced by P?(z,[A]) when X\ € O ([a]).

To prove this proposition we must first verify that the map is well-defined.

Lemma 2.2.13 Suppose \,oc € O?([a]). Then Invy(c) € P*(z,[A]). If ) €
02,(la]), then Invy(o) € P2(x,[A]).

PROOF: Suppose y € C2(z). Then we wish to show that Invy(c)NC?(y) = S and
its complement, are convex in Q? (y, [)\]) with respect to suitable triples. However,
if & denotes the reverse order on C{(z) to that defined by o, then & € O? ([a]), while
InvA(7) N C3(y) = C3(y)\S. Thus it suffices to show that S is convex in Q?(y, [A])
for all o and y. Since S is affected only by the restriction of ¢ to y, without loss of
generality, we may assume z = y. In this case, any \ € O? ([a]) may be realised by
appropriate a@ and 3.

Lemma 2.2.14 Suppose u = pq, v = qr, w = pr and u,v € S with w between u
and v in Q? (y, [)\]) Then w € S.

PROOF: For all @ and B compatible with [A], e,, e, and e,, are collinear, with e,,
between e, and e,. Since (A, — Aj)ey + (g — Ar)ey = (Ap — Ar)ey, thus A lies
between A, and A,. Since u,v € S,

P<sq <= p>rq
qg<gl' <= q>)\T.

Thus ¢ lies between p and r in the order ¢ and so p and r appear in opposite orders
in A\ and o. Hence pr € S. [ |
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Lemma 2.2.15 Suppose u = ps, v = gs and w = rs, where {p,q,r} = Ci(a),
some a € C3(x) and p, q, r and s are distinct. Suppose further that u,v € S and w
lies between u and v in Q* (y, [)\]) Then w € S.

PrROOF: Put a =15k with p =1y, ¢ = jk and r = 1k, say. Since,
(ai —aj)(Ap = As)eu + (aj — ar)(Ag — As)es = (i — ar)(Ar — As)ew .

and e, lies between e, and e,, hence (a; — a;)(A, — As) and (a; — ag)(Ag — As)
have the same sign.

(a) If o; — o; and a; — o have the same sign, then «; lies between «; and oy,
while A, and A\, are on the same side of Ay as each other. Since u,v € 5, thus

(P<os <= A >A), ((<o5 <= A > A).

Finally, r lies between p and ¢ in both the A and ¢ orders, from which it follows
that (r <, s <= A, > \;), so that w € S.

(b) If a; — a; and «j — ay have opposite signs, then g lies between A, and A,.
Suppose, without loss of generality, that aj lies between o; and aj. Then,
since \,0 € 02<[a]), hence p lies between ¢ and r in both A and o. Since
u,v € S, o, lies between op, and o,. The relative order of p, ¢, r and s is
therefore ¢—s—p—r, in both A and o, with the absolute orders opposite in A
and . Hence rs =w € S. [

These two lemmas show that S and S¢ are convex with respect to triples of
the two types {pq, pr,qr} and {ps,qs,rs}. Hence Inv,(c) € P? (a:, [z\])

Next assume that A\ € Ofw([a]). The above lemmas deal with all triples of
vertices appearing on lines y € C'?f(x) of form ij5;kl;mn or 15k;Im. So suppose
y = igkl, with a; < aj < ap < «j, say. Lemmas A and B ensure convexity in
respect of triples of vertices containing at most one of the form *x;**. The only
case remaining is where u and v are both of the form #x*;+* and lie in S, while w
lies between them in Q? ([)\]) Repeated use of Lemmas A and B shows that w € S.
(For, suppose otherwise that w ¢ S. Let @ be the part of Q2<[A]) consisting of
elements comparable with u and v; it has order 6. By the lemmas, S and 5S¢ are
convex in both Q\u and Q\v. Hence all elements of @ outside the interval between
v and v lie in S. By Remark 2.2.2 and since [A] is non-singular, the set of vertices in
the interval between v and v is non-empty, say containing ¢ on the opposite side of
v to u. Convexity of Q\v gives a contradiction since u,t € S, while w lies between
v and v and hence also between u and t.) Hence Invy(o) € P2(x,[A]). |

When A € 0% ([a]) the above proof shows that P%(z,[A]) = P2(z,[A]). In
fact the case when the restriction of [A] to {7, 7, k,[} is singular is precisely that in
which Q?(ijkl, [A]) is a total r—order. In this case P?\P? contains those vertex sets
whose restriction to some line ijkl consists of one of {ij;kl}, or {ik;jl}, or their
complements.
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PROOF OF PROPOSITION 2.2.12: By Lemma 2.2.13, it remains only to verify
bijectivity. Suppose that U € P2 (x, [)\]), so that U C C%(z). For any p,q € C¥(z),
say that p <, ¢ if, and only if,

either (A, < A\, and pg ¢ U)

or (Ap > Ay and pg € U).
This defines the only possible order, o, for which Invy(c) = U. Injectivity of Invy

is immediate. For surjectivity we must verify that <, defines an order and that it
lies in 02([0]). Assume that p <, g and g <, r.

CASE (A): p2(pqr) = 3. Suppose otherwise that r <, p. Since there is cyclic
symmetry, without loss of generality the vertex with label pr lies between those with
labels pg and ¢r on the line pgr. Hence A, lies between A\, and A,.. If A, < Ay < A,
then p <, q, ¢ <, r and r <, p implies that pg,qr € U and pr € U, while if
Ap > Ag > Ay, it imples that pg,qr € U and pr ¢ U. Both contradict the fact that
U N C%(pgr) and its complement, are convex with respect to {pq, pr, qr}.

CASE (B): p2(pqr) = 2, so that p = iy, ¢ = 1k and r = jk, say. If ijk € U
then A\, > A\, > A, while if ijk ¢ U then A\, < A\, < \,.. Either way, p <, r. Also,
since \ € 0? ([a]), a; must lie between «; and aj. Since ¢ lies between p and r this

verifies that o € O?([a]). |

In terms of the bijection of Proposition 2.2.12, an order ¢ covers an order 7 (in
the poset P? (:z:, [A])) if, and only if, there exists u € C3(z) such that,
(i) C%(u) are adjacent in o;

(ii) 7 can be obtained from & by reversing the chain formed by C?(u) C C%(z).

Proposition 2.2.16 (2C) P?(z,[A]) and PZ(z,[A]) are symmetric ranked posets

with rank function |U|. They have a (not necessarily unique) minimal element 0=¢
and maximal element 1 = C3(z).

PROOF: By the definition of P? (:L', [x\]), with single-step inclusion defining the
order, the result follows immediately. The map U — C3%(z)\U defines an involution
on P2 (:L', [x\]) Using the correspondence given in Proposition 2.2.12, U € P? (:L', [x\])
is minimal if, and only if, the order o on C}(z) for which Invye = U is such that
for all u € U C CZ%(z), the elements of C#(u) are not adjacent in o.

An example for which P?(z,[A]) = PZ?(z,[A]) has no unique minimal element
is provided by x = 123;456 with A\ = (45 < 12 < 13 < 46 < 56 < 23). When
o= (56 <23 <13 <46 <45<12),

Invao = {123, 12;46, 12;56, 13;45, 13;56, 23;45, 23;46, 456)
is minimal in P2 (:1:, [A]) Similarly, its complement, {12;45, 13;46, 23;56} is max-
imal in P*(z,[A]). |
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Example 2.2.17 A simpler example, for which P? has no unique minimal element,
is obtained from z = 1234 and A = (34 < 12 < 14 < 13 < 24 < 23), a singular
order. In this case Q? (.TL‘, [)\]) is the total r—order,

12;34—134—234—14;23—123—124—13; 24.

Calling these elements A, B, ..., G in order, the posets P? and P? are shown below.

ABCDEFG ABCDEFG
/ AN / AN
ABCDEF BCDEFG ABCDEF BCDEFG
N N | |
ABCDE  BCDEF CDEFG  ABCDE CDEFG
| | | |
ABCD DEFG ABCD DEFG
| | | |
ABC EFG ABC EFG
| | | |
AB AG FG AB FG
- N | |
A G A G
N / N /
0) 0)

2.3 Geometric realisation
Given particular values of @ and 3, define e, for p € C{(z), and e, for u €
C2(z), as in §2.1. Then,
Bley) = Ay, Vp € C(z);
Ble) =1, Yu € C3(x).

In a way similar to §1.3, the map,

defines a geometric realisation of P2 (:x, [A]). However, as can be seen from Ex-
ample 2.2.17, Im (8) need not form the vertices of a convex polyhedron; indeed the
example concluding the proof of Proposition 2.2.16 shows that this is still true when
6 is restricted to PZ. The rank function is 3.
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Definition 2.3.1 Let P?(z,a, ) denote the set of extensions of X*(z,a, ) by an
oriented real hyperplane, two extensions being considered equivalent if the vertex
sets determined by the positive sides of the hyperplanes are equivalent. Define a

partial order on P} by single step inclusion. It is clear that P?(z,a, ) is a subposet
of P?(z,[A]).

Proposition 2.3.2 Under the bijection of Proposition 2.2.12, the set P*(z,a, f3)
maps to the subset of O* ([a]), consisting of orders on C}(z) defined by sequences
Vi =%

ij = ——2L where ; are real numbers for which the entries in the sequence are
i J

distinct.

PROOF: By definition, U € P?(z,a,f) if, and only if, there exists v € V* and
¢ € R, such that,
U={ueCj)|vie) <c}.

Using the construction of e,,

vie —Vvie
Uz{p\/q‘p,qecf(l’),—( i)—A( d <C}
p q

—{pva|pae Cal < Au (viep) = Ape) > (vien) = Are)}

Under the bijection of Propsition 2.2.12, U is associated with some o € 02 ([a])
for which Invyoc = U. It is clear that, p <, ¢ if, and only if, (V(ep) - /\pc) <
(V(eq) - /\qc), so that o is given by the order of p — v(e,) — Apc. However, for
p=1j € C%(T)v
Vi
M= 1T
v(ep) p€ ai—a;’
where v; = v(e;) — ¢f;. Conversely, given any order determined by such +;’s, v and
¢ may be appropriately chosen. [ |

Corollary 2.3.3 The geometric form of P?(z,a,[3) is independent of 3.
Fix z € C?, say with * = (21,...,2,) and Y |z;| = n. For ij € C}(z), let

©;i; € V* be defined by,

U, — Uy

pij(V) = ——.
? J

Define hyperplanes, m,, for u € C%(z) by, mpq: ¢p(v) = @4(v). Then, by Propo-
sition 2.3.2, elements of P?(z,a,f) are in 1-1 correspondence with the connected

components of
R\ ] (7).
u€C3(x)
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Definition 2.3.4 For z € C?, define C®(z) to consist of all unordered sequences
(z1,...,x,) with z; € C*(z), p2(zi) > 2 and

T

pa(zi Ao AN xy) = Z(pg(l’l)) .

=1

Say that (z1,...,2,) < (y1,...,ys) <= Vi € [r]|, Iy € [s] such that z; < y;. The
element (x1,...,x,) will be denoted x1]|--- |z,.

Then C?(z) is a ranked poset and pz(xq|---|z,) = 2:21{,02(:1;1‘) — 1} defines
the rank function. For all # € C?%, z defines an element of C3(z), namely, the unique
maximal element in C?(z), of rank pa(x) — 1.

Example 2.3.5 Take z = 123;456. Then 123, 123|456 and 12;45|13;56 are
elements of C3(z) of ranks 1,2 and 2, respectively. Also, 12;45|13;46|23;56 ¢ C?(z),
since, p2(12;45) = p2(13;46) = p(23;56) = 2, while 12;45 A 13;46 A 23;56 =
123;456 in C?, which has rank 4 < 24 2 + 2.

Proposition 2.3.6 The intersection poset of the arrangement {m, | u € C3(z)}
is isomorphic to C*(z).

PROOF: Suppose y1|--- |y, € C*(z). For each k € [r], pick a maximal acyclic
graph Gy on [n] such that for any edge ij in Gy we have 1§ < yi. The number of
edges in Gy is p2(yx). Since p2(y1 A---Ayr) = p2(yx ), the union, T, of the graphs
G1,...,G, is acyclic. The edges of T are coloured by elements of [r] according to
the graph, G from which the edge came. Let k(e) denote the colour on the edge
e € T. Now consider my, N---Nm, . This consists of v € V for which ¢.(v) = a(),
for all e € T, some ay,...,a,. Pick a root on each component of T' and orient T
away from these roots. On an edge ¢j, oriented away from 2, the above constraint
supplies v; from v; by,
v; = v; —I—CLk(ij)(Ozj — ai) .

Since T is acyclic a point in m,, N---Nm,, is specified by the independent parameters
{a1,...,a,} along with values of v; at the roots of the components of T (including
any singleton elements of [n]). The codimension of m,, N---Nm,, in R is therefore,

(# edgesin T) —r = > (pa(ye) = 1) = palyr | - | yr).

It is clear that the order on C?3(z) corresponds to reverse inclusion under the
map yi | - | yr = my, NNy, u
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Proposition 2.3.7 (2D) 6 defines a realisation of P*(z,a,f) as a convex
polyhedron with rank function defined by B € V*. The k—dimensional faces of
9(Pf(a:,a,,3)) are identified, up to translation, by elements uq | --- | u, € C3(x)
and are geometrically equivalent to the polyhedra P%(uy,e,B) x -+ x P*(u,, a,f3).

This follows from Proposition 2.3.6 since the interval [6, y1 | -+ | yr] in C3(2)
is C?(y1) x -+ x C3(y,).

2.4 Examples

T

five types coresponding to 12;34; 56; 78, 123;45; 67, 123; 456, 1234; 56 and 12345. By
the discussion above, the shape of P? is independent of the choice of the parameters
B. The number of vertices in P? for these five polyhedra is given below. Note that
the number of vertices in P? is given by Stanley’s formula [S] to be,

The only 3-dimensional polyhedra P?(z) arise from z € C}. There are thus

(= (5h):

k=1

ro|re|-1

[T I (2 1)l

k=1 j=1

Table of numbers of vertices
vertices vertices )
x ﬁ P2(£L’) ﬁ Pf(;z;) Extra cells in PZ(ZL')

12;34;56;78 24 24 —
123;45;67 40 40 —
123;456 80 76 P2(12;45) X P2(13;46) X P2(23; 56)
1234;56 112 98 P2(13; 24;56) x P2(12; 34)
12345 768 392 *

By Proposition 2.3.6, the number of vertices in P?(z) is given in terms of the
s(x
Mobius function, p of C3(x), as Pz(:) > u(y) |. For the case of v = 12345,
1=0 yECf(z)
the poset C?(z) is schematically represented in Fig. 5. The elements shown are
orbit representatives under the action of S5, the number in parenthesis giving the
size of the orbit, while the value of the Mobius function on the orbit is given in

square brackets. The number placed against an edge joining vertices labelled u and
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v, where u covers v, gives the number of elements in the orbit of v covered by a
representative of u. The number of vertices in P?(12345) may be computed in this
case to be,

14(15-1410-1) 4+ (60-14+60-1+15-1+10-3+5-6) + 171 = 392

12345 (1) [-171]

60 5
% 15N

12.34 12.34 123 ,
13;25(60)[1] e GO - (191 12345(10)[3] 1234 (5)[6]

2
1 3
1/

12:34 (15)[-1] 123 (10)[-1]

5 1

O D[]
Figure 5

Since the polytopes P? are centrally symmetric, their structure may be de-
scribed by an appropriate subdivision of a polygon into polygons, all of even size
and such that opposite edges are parallel. Such subdivisions, for the principal cells

in the five 3-dimensional polytopes, P?(z), are given in Figures 6-10.

34,56 12,78

12,56 34,78
12;34 56,78

Figure 6: P?(12;34;56; 78)
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12;45

123

123

14;23

Figure 8: Principal cell in P?(1234;56)

23



24

Ruth Lawrence

Figure 10: Principal cell in P?(12345)
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The hyperplane configuration {H, |y € C’ZQ(I)_I(;L')} for x = 12345 is shown

in Figure 11; it is a configuration of lines in P?, which has been pictured with 1234
chosen as the line at infinity. Observe that, for z = [n], this contains the configu-
ration {H, | y € C}_,(z)}, which generates the Bruhat order B(n,2) (see [MS 1],
[MS 2]). This inclusion defines a map,

P? ([n], a, ,3) — B(n,2)

in which U — UNC! ([n]) Compare the diagram of the principal cell in P%(12345)
in Figure 10 with the 62—vertex diagram of B(5,2) in Figure 12.

Figure 11: Hyperplane configuration X?(12345)

At this point it may be observed that P2 <£L’, [)\]) (see Definition 2.2.10) has the
following geometric description. Let N = |CF(z)| and construct a 2N—gon, I'(z),
with edges labelled by the elements of C?(z) in the order described by [A] and
such that opposite edges have the same label. This polygon has two distinguished
vertices, say p and p’ and the two paths v and 4 from p to p’, around the polygon
may be named in such a way that they enumerate C?(z) in the order described by
[A] and its reverse, respectively. A maximal chain in P?(z,[A]) gives a sequence of
paths v0 =~,71,...,Ym = 7', each from p to p’ and contained in the polygon I'(z),
such that,

(i) each v; contains N line segments, parallel to the appropriate segments in
the path ~;

(ii) i lies in the interior (including the boundary) of the polygon defined by
the paths 4; and +/;

(iii) the interior of the polygon defined by ~; and 71 is connected and is
equivalent to I'(y) for some y € C3(z).
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124

123

Figure 12: B(5,2)

Thus maximal chains in P2 (;L’, [A]) may be represented by numbered subdivisions
of () into polygons I'(y) with y € C2(x). The number of polygons (each either a
square or a hexagon), M, in any such subdivision is |C3(z)|. A particular maximal
chain, ¢? in P2 (;L’, [A]) may be obtained by an algorithm in which the polygon T,
adjoined to v; to give viq, is the one that minimises the distance from p to the
closest point of T';. For P2 (123;456, [12 < 13 <45 <46 <23 < 56]) the result of
the application of this algorithm is shown in Figure 13.

When the procedure just outlined is applied one dimension lower, N and M
are replaced by |C](z)| and |C3(z)|, respectively, where z € C' and X is replaced
by [a]. The result is a correspondence of maximal chains in the permutahedron
poset P! (:x, [a]), or equivalently elements of P? <.TL‘, [a]), with subdivisions of I'!(z)
into parallelograms. The element ¢! is identified with a minimal element of P2. By
analogy, one may wish to view ¢? as the minimal element of a suitable poset P? of
maximal chains in P2,

In higher dimensions, the algorithm for the construction of v may fail, e.g., 3
for x = 12345. The face labels in Figs 6-9 indicate the chain p® for those elements
of C? for which it is defined. The reader is referred to [E] for a development of
connections between zonotopal subdivisions and representation theory.

2.5 Commutativity relations

There are four geometrically distinct types of 2-dimensional face in P?(z, [A]),
namely squares, hexagons, octagons and 14—gons. These are labelled by elements
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45 46

:i

Figure 13: A maximal chain in P?(123;456)

of C3(xz), giving,

squares : ulv with u,v € C3(x) and pa(u Vo) =4
hexagons : 175 kl; mn
octagons : 17k Ilm

14—gons : 1kl .

The edges are labelled by elements of C3(z). Let G*(z,a, ) denote the groupoid
associated with the polyhedron P? (:1;, [)\]), defined by analogy with G in §1.3.

Proposition 2.5.1 (2E) A representation of the groupoid G*(z, a, ) in an algebra
A is determined by elements R, € A for u € C3(z), such that,

R,R, = RyR, whenever ulv € 03(:1:) \
R, R,rRyr = RyrRyrRyy whenever p,q,r € 012(?:) are disjoint and A, < Ay < A,

along with two further relations giving the equality of a product with its reverse, the
terms {Rijk, Rijiim, Rikiim, Rjk;im } and {Rijk, Riji, Rjkt, Rixt, Rijivt, Rikyjt, Rjksir}
being in orders determined by that of the associated collections of vertices along

the lines labelled ijk;lm and ijkl, respectively, in X?*(z, a, B).



28 Ruth Lawrence

Remark 2.5.2  Following [MS 2] one may consider the nilpotent completion of the
fundamental group of the complement of the complexification of the hyperplanes
{T('u ‘ u € 022(:10)} of §2.3. This is found to be generated by degree 1 elements

{su ‘ u € C3(r)} with,

[Su,Sp] =0 for pa(u V) =4
[Sijikts Sijimn + Skismn] =0
[Sijk> Sijiim + Sikim + Sjksim] =0
(S jkitm s Sijk + Sijitm + Siksim] = 0
[SijksSijk + Siki + ikt + Sijikt + Siksji + Sityjr] =0
[Sijikts Sijk + Siji + Sikl + Sjkt + Siksji + Sitjr] = 0.
A representation in VOV (N = |C}(z)]) is obtained with s;;x + Sijik x and

Sigikl Tij,kl SO 10Ilg as,
(T2, Tis + T2s]

0
[S123,T34] = 0
[§123,§145 + So46 + §356] 0

where S = S1935 — T1a — Ti3 — Ths. The first and third relations here are infinitesimal
forms of the Yang-Baxter and Zamalodchikov equations (see [K]). The last relation
mentioned in Proposition 2.5.1 is a form of the permutahedron relation (see [L],
[KV]). Just as the Yang-Baxter equation plays a central role in knot theory in
3—manifolds, the permutahedron type equations seem to arise from generators of
equivalences of ‘braid movies’ for knots in four dimensions (see [Kh|, [CS], [F] and

[KT]).

3: PROBLEMS AND GENERALISATIONS

In the process of generalisation of Propositions 1.1.2-1.3.2 to the next dimen-
sion up, it was seen in §2 that various complications arise. In particular, three
different posets, P?, P? and P? were considered, with P> C P? C P?. The larger

T

poset consists of maximal chains in P!, while P? is spherical and arises in connec-

tion with C3, a higher version of the partition lattice. The poset P? comes as a
form of extension poset in which points on a line are only partially ordered, with
P? = P? for non-singular orders [A] on C2(z). However, even P? does not generally
possess unique minimal and maximal elements. This contrasts with the situation
for higher Bruhat orders B(n, k), which may be obtained using the usual uniform
extension poset construction for a cyclic hyperplane arrangement. In [Z] it was

shown that for n —k <2 or k = 2, B(n, k) is spherical.
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Conjecture 3.0.1 O}(n) = {A] ‘ P?(z,[A]) has a unique minimal element} con-
tains both the lexicographic and anti-lexicographic orders [A] on C#(x) (with respect
to [a])

Indeed, it is reasonable to suppose that O;(a:) may be defined by a set of
‘local’ constraints on [A] similar to the non-singularity constraint defining OZ (z)
(see Remark 2.2.2 and Proposition 2.2.12). As observed in §2.4, P? is in general a
proper subset of P?. The map 6 of §2.3 realises P? as a set of points whose convex

hull is the polytope defined by P?.

Conjecture 3.0.2 P?(z) may be expressed as a union of cells of the form P?(y;) x
.-+ x P?(y,) where y1,---,y, € C*(z) and {C’f(yl)} are disjoint, but y; | -+ |y, &
C3(z).

Thus, for * = 123;456, there are five cells, namely, P?(123;456) along with
two copies of P%(12;45) x P?(13;46) x P?(23;56) and two copies of P?(12;56) x
P?(13;46) x P?(23;45) all these being of dimension 3. Note that maximal cells
in P?(z) may have dimension greater than the dimension, p3(z), of the ‘big cell’
P2?(z). For example,

P2(12;34) x P%(13;25) x P?(14;35) x P?(15;24) x P?(23;45)
is a b—dimensional cell in P?(12345) based at,
[34<12<14 <35 <15 <24 <13 <25<45< 23] € 0% (12345) ,

the big cell being P?(12345), of dimension 3.

Some of the constructions of §2 may be recursively extended to higher orders.
This gives a configuration of hyperplanes X*(z,a™, a® ... a®) for z € C’k<[n])
and @V, ... a®) € R", whose intersection poset contains a part of C*(z). The
vertices so defined are labelled by elements of C§(z) and appear at,

epq = (&0 — eq)/a(k)(ep —e,) forpgc Gy~ (x) = Cf(a).

The appropriate definitions of P¥ and PF are not clear, but P is defined as the set
of real hyperplane extensions of X*. Analogues of Propositions 2.3.2, 2.3.3, 2.3.6
and 2.3.7 hold. Here C*(z), for z € C*7, is defined in a way analogous to Defini-
tion 2.3.4. However, the complications arising from the choice of the appropriate

notion of extension poset become more severe.
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