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Abstract. We give a procedure which it is conjectured will construct an in-
variant, ZO(M), of rational homology 3-spheres, M, which is defined as a holo-
morphic function of a parameter g. It is defined in a way similar to the sly
Witten-Reshetikhin-Turaev invariant, Zx (M), an invariant defined only at roots
of unity, ¢ with ¢® =1. Tt is believed that Z°(M) is related to the trivial connec-
tion contribution to the stationary phase expansion of the Feynman integral form
for Zx (M) and that they share many other properties, which will be investigated
further in a forthcoming paper.

1: INTRODUCTION

Suppose that M is a compact oriented 3—manifold without boundary. For any
Lie algebra, g, and integral level, k, there is defined an invariant, Zy4s, (M, L), of
embeddings of links L in M, known as the Witten-Reshetikhin-Turaev invariant
(see [W], [RT)). It is known that for links in S3, Zx(S3,L) is a polynomial in
q = exp Z%i, namely the generalised Jones polynomial of the link L.

Now assume that M is a rational homology sphere, with H = |[H'(M,Z)|. In
the normalisation for which the invariant for S is 1, denote the invariant for the
pair (M, (), as an algebraic function of ¢ at K*® roots of unity, by Zx(M). For a
rational homology sphere M, the SU(2)-invariant Zj (M) (see [KM2]) lies in Z[q]
by [M1], so that for some a,, k(M) € Z, one has

Zg(M) =" amx(M)E™
m=0
where ¢ = 1 + h. Although the a,, x are not uniquely determined, if K is prime
then by [O1] and [M2], there exist rational numbers Ay, (M) such that,
am, k(M) = A (M)

as elements of Z g for all K > 2m+3, while A\g(M) = H™ and A\ (M) = 6HX\(M)
where A(M) denotes the (SU(2)-)Casson-Walker invariant of M in Casson’s nor-
malisation. As a result, one may define a formal power series

Zoo(M) = i AmB™ |
m=0
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with rational coefficients, which is an invariant of integral homology 3—spheres, M,
and is expected to be the asymptotic expansion of the trivial connection contribution
to Z K (M ) .

In previous work of the author with L. Rozansky [LR1] (see also [L1], [L2]), it
has been seen that for Seifert fibred manifolds, Zx (M) can be written as a sum of
terms, each of which define holomorphic functions of ¢. One of these terms has an
asymptotic expansion which is Z., (M), and which converges K-adically to Zx (M)
at K" roots of unity. The present paper aims to define a function Z°(M) of ¢, for
general rational homology spheres, which is an invariant and which it is hoped will
satisfy similar properties relating it to Zx (M) as for the case of Seifert manifolds.
This will be investigated further in [LR2].

An outline of the present paper is as follows. In §2.1, the basic notation of
g-numbers, g-factorials, g6j-symbols and ¢-Clebsch Gordon consraints is given for
q a root of unity. The theory of g-gamma functions, both at and away from roots
of unity, is developed in §2.3 and §2.4. This leads in §2.5 to a function I'(z; K) of
two variables, which is an extension of the g-gamma function defined for rational
K, obtained for non-real K as a quotient of two ¢g-gamma functions. This function
provides appropriate generalisations of g-symbols for arbitrary ¢ and non-integer
arguments. In §3, a reformulation of the Reshetikhin-Turaev state model for Zx (M)
is given in which all weights involve only products of ¢-factorials; a version of the
Symmetry Principle of [KM2] is also easily derived. Finally in §4, the extended
g-symbols are applied to give invariants defined away from roots of unity.

2: g-NUMBERS AND GAMMA FUNCTIONS

2.1 The ¢-symbols at roots of unity

Throughout this paper, ¢ = e% . In the discussion of ‘traditional’ Witten-
Reshetikhin-Turaev invariants of 3-manifolds of §3.1, K will be a positive integer
so that ¢ is a root of unity, while our aim is to produce a formulation valid away
from roots of unity. This section contains notation used in §3.1, which is valid only
for K € N, while in §2.5, much of it will be extended to the case of arbitrary K,
using the properties of the g-gamma function. See also [KL2].

Set I = {0,1,...,K —2}. Let A = ¢'/* be a 4K*® root of unity. Define the

g—numbers by
A2n _ A—2n
Il =g

The g-factorials are defined by [n]ly = [],[i];- The g-versions of multinomial

k
coefficients are defined by ( " ) = [l where Y n; = n. A
q i=1

niy na...Nng [nl]!q[n2]!q...[nk]!q

triple of non-negative integers (a, b, ¢) will be said to be g—admissible when b+ c— a,
ct+a—b,a+b—cand 2K —4 —a — b — ¢ are all positive and even.



Holomorphic invariants of 3-manifolds and g-gamma functions. 3

If a is a non-negative integer, set A, = (—1)?[a+1],. If (a, b, ¢) is a g-admissible
triple, set
)\g,b — (_1)(a+b—c)/2A[a(a+2)+b(b+2)—c(c+2)]/2 7

2T+ 1]l[x — allylx — b]ly[x — ]!y
[a]!q[0]!q[c]lq 7

where 22 = a + b+ c. The latter expression is known as a 6—net.

O(a,b,c) = (—1)

Figure 2: Tetrahedral net

Suppose that {a;}$_; are non-negative integers such that (a;,a;j,ar) is a ¢—
admissible triple for each (i, j, k) € S where S = {(1, 2, 3), (1,4,5),(2,4,6),(3,5,6)}.
If the edges of a tetrahedron are numbered 1 to 6 as shown in Figure 2 then the
elements of S are precisely those triples of numbers whose associated edges share
a common vertex; that is, the elements of S index the vertices of the tetrahedron.
Considering the integer a; to be placed on the it edge, it is given that those triples
of integers on edges emerging from any vertex form a g—admissible triple. Define
the associated tetrahedral net (a variant of the quantum 6j-symbol) to be

(2.1.1)

|:a’4 as a6:| = Hv,e[ye - 'T'U]!q o) (_1)8[5 + 1]'q
a’g 0/2 al Hle[a”t]'q s:max(wv) H’U [S - :U'U]!q He[ye - S]!q

Here 2z, = Zie” a; for each v € S while if e denotes a pair of opposite edges, of
which there are three, then 2y, = zz’ee a;.

It is easily verified that when all indices are elements of the set I, the quantity
A, along with the values of f-nets and tetrahedral nets are all non-zero. The #-net
depends in a totally symmetric way on the three indices, while the tetrahedral net
exhibits the Sy symmetry of the tetrahedron. Special values of these symbols are

)\g,o =1, 0(a,a,0) = A,,

7 a a

{0 o a]zﬁ(a,a,i).
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2.2 Gamma functions

We shall use N to denote the natural numbers while Z* and Z~ denote non-
negative and non-positive integers, respectively. The usual gamma function is char-
acterised by the properties

(i) T(z+ 1) = 2T'(2),
(if) T(

(iii) I'(1) =
(iv) T(z)0 (1—2)—Smﬂm-

It has an infinite product expansion, due to Euler, with

z) is meromorphlc with no zeros and simple poles at Z~

oo

en
P(z) =z te 7
F=ee H(H%)’

n=1

N
where v = hm <Z % —InN > is Buler’s constant. Its logarithmic derivative is
n=1
the function
I'(2) 1 = [1 1
F = = —— — - — .
(2) ['(z) z ’Y+;<n Z+n>

The following properties will be used repeatedly in what follows.

(a) F(—2) — F(2) —2z  =mcotmz =1+ Y 225,
neN

(b) F’(z)—i—F’(—z)—z_Z = n2cosec 2wz = z%—}-ngl ((z_ln)2 + (z—i—ln)2) = ngz 7(z+1n)2 .

(@ —2PEN-2) =TT (- 32)7 = a5

A generalisation of I'(2) to a g-gamma function appeared in the work of Jackson
[J]. Using a Jackson integral in place of a Riemann integral and a g-version of the
exponential function, he defined a function I'y(z) for |¢| < 1, so as to satisfy a
modified version of (i) above, with I'y(z + 1) = [2]I';(2). Here [z] is a g-number,
which Jackson defined in the asymmetric way %.

We begin by constructing a function, f(z; K), which is slightly different from
Jackson’s, and is characterised by properties similar to (i)—(iv) above. This can
only be done when K € C\(R\Q), while the cases in which K € Q (that is ¢ is a
root of unity) and K € C\R (so that |¢| # 1) must be dealt with separately.
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2.3 The ¢-gamma function for K Z R

Let € denote the sign of J(K), so that K € H¢, the upper or lower half plane.
The characterising properties of I'(z; K) will be
(i) Tz + 1 K) = []4I(5 K),
(ii) T(z; K) is a meromorphic function of z, with no zeros and simple poles at
Z- + KZ,
(i) T(1; K) = 1.
Observe that since [z], vanishes precisely when z € KZ, assuming that I'(z; K)
has no zeros, the positions of the poles are forced by the first condition. Note
that I'(z; K) = I'(z; —K). From (i) and (iii), it can be deduced that the residue of

the pole at z = 0 is ~sin %. Any function satisfying (ii) may be written as the
. nTr . .
exponential of an entire function times

—1 i 2
e_nK—S_2(nK—s)2
I ( nK_8> ,

s=(0 n=—oc0
(n,s)#0

a product which is absolutely convergent. The function Gc(f(;’)l) has zeros at KZ

and no poles and thus, for some entire function g(z),
G(z+1)
G(z)
Taking logarithmic derivatives of both sides yields
, Toomz 1l 1 1 1
= —— cobt — = — - -
92) K K+z z+1+z Z(nK—s—z—l nK—s—z (nK—s)?

s=0n=—oo0
(n,s)#0

w2 ) ™ m(z+S+1) 5. 2 QTS
=5 dm, (E““T P2 et

s_

Tz
= e9®) gin —=

where the sum has been evaluated as a limit of partial sums 0 < s < S and properties
(a)—(c) have been used. Observe that

[ee]
7'['2 2 e 7T2

m
> Fpeoee’ T = 3 o = g B e~
s=1 seN EZ

so that ¢'(z) = —”—62 (E2(K)+ #=). This determines g(z) up to a constant. Observe
next that in the limit z — 0, 2G(z) — 1, so that G(1) = £ €9 and

S 2.2 g1
g(0) = lim (E cot =2 T8 cosec2E> —lnsinM

s\ K VK T 2K? K K
B 2 7r2E (K) + m‘e(l K_l) 24 2mie i( cs 1)_1
T T12k? 1272 2 & K 1 '

s=1
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This enables the unique function I'(z; K) satisfying all the characteristics (i)—(iii)
to be written down,

~ K . T 11—z 2 e_ nK—S_2(ans)2
I'(z;K) = 32 (231n ?) et K ~hx= H H 7 ~ ,
Tz s=0 n=—o0 o nK-—s
(n,s)#0

where

ax =" (EQ(K) + ﬁ> ,

TIE 2TiE 1
b= 5 (L-K )+ =) ——

Observe now that I'(z; K)['(—z; K) is a meromorphic function with poles at
Z + K7Z, all of which are simple, except for double poles at KZ. Indeed,

2
- ~ K (sin %=
[z KN (=2 K) = _singrzsilrizr—z
K

o0 .
H sin® raK

. . 9
et sin? raK — sin® w2z

and hence using (i) that

sinmz sin? Tra K
a=1

(iv) Tz KO~ 2 K) = K3 ] (1 st )™

Next observe, from property (ii), that % has no zeros or poles and can
%

therefore be written as e™*) for some entire function h(z). Taking logarithmic
derivatives yields,

1 1 > 1 1 K
b (z) = - — 2K _ _
(2) z z+K * aK+§ nze;<z—nf(+s z+K-—nK+s (nK—s)2>
(n.,5)#0
= iTE .

To determine h(z) completely, it is only necessary to evaluate it at z = 0, where one
finds that e gives the ratio of the residues of T'(z; K) at z = K and at z = 0.
Thus

__K __ Kz _
nK—s 2(nK—s)2

K o0
h(0) _ _ (2 . 1) arxK2—bx K—3 e
e in ) e I X —

= nezZ
(n,s)#0,(1,0)
o) "
= —1¢€ SN —
K

and hence

(v) I'(z+ K; K) = —ie (2sin %)_K e™ " (2, K).
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2.4 The ¢g-gamma function for K € N

Although it is possible to work with any rational value of K, for our purposes
it will only be necessary to consider integer values and so we restict our attention
to K € N. The characterising properties of I'(z; K') will be

(i) T(z + L K) = [2]I'(2; K);

ii) I'(z; K) is a meromorphic function of z, with all its zeroes and poles at integer
g
points on the real line, the order of the zero at n € Z being ["T_l], which when
it is negative represents a pole;

(iii) I'(1; K) = 1.
Note that property (ii) is significantly different from the corresponding property
in §2.3, and indeed this is a direct consequence of (i) which forces the degree of

vanishing of I'(z; K') at z € Z, to increase by one after each multiple of K. Any
function satisfying (ii) may be written as the exponential of an entire function times

tEZ
t#£0

a product which is absolutely convergent. The function Gg(;“)l) has zeroes at KZ

and no poles. It can therefore be written as

G(z+1)
G(2)

. Tz
= e sin -,

where g(z) is an entire function, as in §2.3. By taking logarithmic derivatives along
with an evaluation of G(1), one obtains

(2) = In? 1 72 1+1 +1 WI(X_:I MG
= - — — - - = cot — .
R O K2)\""2) K2 ="K

This allows an appropriate normalisation of G(z) to be made, so as to make the
resulting function satisfy properties (i) and (iii),

: K L TN Ak B Z\ ity s
F(Z,K):%@sm?) e’ K K g(@—;)e 2t )

t£0

where
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The function I'(z; K)T'(1—z; K) has poles precisely at Z, all of which are simple
and the precise form of the analogue of relation (iv) in §2.3 in this case is

(iv) T(z; K)I'(1 — z; K) = Ksin gt

sinmwz

Since K is here an integer, the relation between I'(z + K; K) and I'(z; K) may be
derived in this case directly from (ii) giving

(v) I'(z+ K;K) = (22;;%{‘(2’ K).

2.5 Extensions for general q

In order to compare the two versions of the ¢g-gamma function, f(z; K) defined
in §2.3 away from the unit circle, and T'(z; K) defined in §2.4 at roots of unity, it
is first necessary to realise that they have been normalised in completely different
ways. Thus the former has only poles, all of which lie in the half-lattice Z— + KZ,
while the latter has both poles and zeroes distributed symmetrically in Z. Suppose
that K € C\R. Define

wiE

(2sin7TK)* e 3K 2(z+1-K)

where the last factor has been inserted so as to maintain the correct transformation
properties under z — z + 1. From properties (i)—(v) in §2.3, we obtain

(i) T'(z+ ; K) = Sinzr(z;f();
(ii

z; K) has su’nple poles at Z— 4+ KZ~ and simple zeroes at N + KN;

) .
) (1_2 K)_ K.sm%.

)
) T'(1
(IV) r sinmz
(v) T'(z + K; K) = 287z (2 K),

(2 sin %)
Despite the fact that the set of zeros and poles of I'(z; K), is antisymmetric under
z <> 1 4+ K — z, rather than under z <> 1 — 2z, we have left (iv) in this form, since
it may then be more readily compared with the case of K € N. This symmetry,
along with that under (z, K) > (£, &), are expressed algebraically by

(iv) D(zK)P(1+ K — %K) = K (2sin &)

(iii

I(
(L
(%
(

(i) T (%5 %) = K%H  K).

The last two properties can be neatly combined by multiplying them together, to

give, where we have put w =1- %,
. . . _ (2sinwtK)"
(Vll) F(I—M,F)F(I—I—KM,K)—W
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Using the infinite product expressions for ¢g-gamma functions constructed in
62.3, it is possible to derive

K 1-2 2 2 22 E(t)
D(z:K) = 5 — (2sin %) S | ((1 - %) e?+F> . (2.5.1)

tET)
t#0

where ¢ runs over all non-zero complex numbers of the form nK + s, in which n and
s are either both positive integers, or both non-positive integers. The quantity €(t)
is +1 or —1, according as n,s € N or n,s € Z~. Note that since K ¢ R, this set
Tk will consist of distinct elements; indeed this also holds for irrational real values
of K. Here, Ak is as given in §2.4 while the constant B is given, in terms of the
constants of §2.3, by

TiE
Bg = —01 —(1-K
K bK+Kb?+2K( )
Tie T o~ (2.5.2)
:—2K(K—1)+E;(cot—%—KcotwsK—kze(K—l))

from which it is seen that B 1 = KBg. From property (i), another form for By
may be derived,

Bik =~ <1 + %) k) + > ( ;—D : (2.5.3)

teTt

which has the advantage over (2.5.2), of being well defined for real K. Here T}
denotes those elements t € Tk with €(t) = +, that is, nK + s with n,s € N. Next
observe that equations (2.5.1) and (2.5.3) may be used to define a meromorphic
function I'(z; K) of z, satisfying properties (i)—(v) above, for any positive real value
of K, as well as for non-real values. The only change that occurs for real K is when
K is rational, there being repetitions in the set Tx and it is important that these
repetitions be counted in the product in (2.5.1) and in the sum in (2.5.3). Note
that when K is an integer, (2.5.3) agrees with the form given in §2.4. By direct
comparison with the previous section, we arrive at the following proposition.

Proposition 2.5.4 There is a unique function I'(z; K') of complex variables z and
K, which is defined when K ¢ R~ and z ¢ (N+KN)U(Z~+KZ™), while satisfying
properties (i)—(v) above. In addition, for fixed z, this function is a holomorphic
function of K off the negative real axis and its behaviour under the transformation
K — % is given by property (vi') above. Furthermore, when K € N, I'(z; K) is

identical with the function defined in §2.4.
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As a corollary one may deduce that I'(z; K) = I'(z, K ), where the bar denotes
complex conjugation. The asymmetry under K <> —K comes from the initial choice
of zeroes and poles to be limited to the first and third quadrants of the (1, K) lattice.
If the other pair of opposite quadrants had been used instead, the resulting function
would have been I'(z, —K).

3: WITTEN-RESHETIKHIN-TURAEV INVARIANTS

3.1 A state model

Suppose that M is a 3-—manifold obtained by surgery around the framed link
L in S3. Represent L by a link diagram, D, with the blackboard framing and place
the checkerboard colouring on the regions into which D divides the plane where
the exterior region is unshaded. The sl Witten-Reshetikhin-Turaev invariant of
the empty link in M, at the root of unity ¢, will be denoted Zx (M). A state-sum
formulation of Zx (M) was given in the original work of Reshetikhin and Turaev;
we here give a reformulation, using the normalisations and conventions given in
Kauffman-Lins [KL2].

For a link diagram D, let Rp denote a formal disjoint union of the set of
components of the complement of D in the plane, with the set of components of the
link. Let Sp denote the formal disjoint union of Rp with the set of crossings in D.
Thus Rp and Sp are finite sets. Define a state model in which by a state is meant
an allowed assignment of an element of I to each of the components of L as well
as to each of the regions into which D divides the plane, that is, it defines a map
Rp — I. Such an assignment is said to be allowed so long as the infinite region is
labelled 0 and, for each edge of D, the triple of integers assigned to the two adjacent
regions and the component containing the edge form a g-admissible triple. For a
fixed state, o, define local weights on each vertex, edge, face and component of D
as follows. If e is an edge of D, set

we(o) = 0(a,b,c)™X,

where a, b, c are the assignments given by ¢ to the component of L containing e and
the two regions adjacent to e and x is the Euler characteristic of the edge (1 unless
the edge contains no vertices, in which case it is 0). If f is a face or component of
D set

we(0) = A5 gy -
where xy = 1, unless f is a face containing no vertices in which case x = 0. Finally,
if v is a vertex of D, set

— 7. —€ d,. € a b .]
wifo) = 050 (20 1]
where ¢, 7 and a, b, ¢, d are the labels assigned to the two components of L and the
four regions meeting at v, respectively, while € = +1 according to the orientation of
the crossing (over/under) relative to the local shading of regions. The convention on
local labels and the sign € is determined by Figure 3 in which the sign is positive.
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Figure 3: Local labels at a vertex in D

To the state o we now assign a global weight

H Wy (o) H We (o H we(o H we(o) .

vertices edges reglons components
v € c

The invariant Zx (M) is now obtained from the partition function of this state
model by renormalisation, so that

Zk(M)=G"G"" > Wplo),

states o

where n and n_ are the numbers of positive and negative eigenvalues, respectively,
of the linking matrix defined by the framed link L. Also G4 and G_ denote the
partition function evaluations on an unknot with framings 1 and —1 respectively.

Finally, to simplify computations, it may noted that if a link is changed by
altering the framing on one of its components, then the global weight associated
with a state scales by the term

(_l)a,tAa(a+2)t 7

where n denotes the number assigned by the state to the component and ¢ denotes
the number of positive twists added. Applying this fact to compute G4 one obtains

A_36 2K—-1
— _ 1)@ gea(a+2) A2 _ __1\a gea’
G. ;( 1)*A A2 AT ;)( 1)%A% (3.1.1)

which is a Gauss sum. For odd K, putting ¢ = A*, one has

. =4 (36( A6K2 Z - (3.1.2)

One important property of the invariant Zx (M) is that it transforms according to
q — ¢! when the manifold M is replaced by its mirror image.
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3.2 Reformulations

In this section we will reformulate the state model of §3.1 into a form which is
easier to handle, and from which symmetries are more apparent. The only differ-
ence between the models is in the local weights; the states and the global weights
associated with them are identical.

Pick square-roots for —1 and A and let A\, = (—1)%/2A4%(+2)/2 by which we
mean that A\, = (vV/—1)%(vVA)*(¢+2) Then X% = A;\—i‘" The factors A appearing
in the terms associated with each vertex can be written as A *AfAZ°AS. It may
therefore be distributed amongst the four regions incident at a vertex by adding a
factor AT on a region labelled by a, for each vertex on its boundary, where the sign
depends on the orientation of the crossing. The new weight associated with a face,

f, containing vertices will be

(f
wh(0) = Aoy (Mog)

where €(f) is an integer index defined as follows. On tracing the boundary of any
region, f, in an anti-clockwise direction, one will pass a number of vertices and at
each one the change in the segment of the link represented by the change in the
associated segment of D will result in either an upward (that is out of the paper) or
downward (that is into the paper) jump. We associate the local index —1 in the first
case and +1 in the second case; the integer ¢(f) is now defined as the sum of the
local contributions at all the vertices on the boundary of f. The weight associated
to a component, ¢, will be

wi () = Do) = (=1)7 o (e) + 1y -

Observe also that each vertex in the link diagram D has four edges eminating
from it and one may therefore distribute the first term in (2.1.1) amongst these
four edges. Since there are two vertices which contribute such factors, the resulting
weight on an edge containing vertices is

w

o1 (e =Wy e allle — bl — ]l
e(a)_ngbﬂ)( a2 [e)tg2[e]tg" >_( ! 2+ 1

where z = l5(a + b+ ¢). The weight associated to a vertex will now be just the
sum in (2.1.1).

We remove the summation in the vertex weight by increasing the state space
to consist of maps 0: Sp — I, so that labels are also assigned to crossings in D. In
addition to the K—Clebsch Gordon condition on edges, there is a constraint at each



Holomorphic invariants of 3-manifolds and g-gamma functions. 13

crossing x, namely that max(z,) < s, < min(y.). The local weights on components,
regions, edges and crossings are now given by

we(o) = (=1)7o(e) + 1g;
w}(o_) — (_l)a(f)[a-(f) + ]-]q ()‘a(f))E(f) :

utlo) = (0 (o, N7 )

—2—xx—azx—-bzxz—c a

wy(0) = (-1)° ({s - xf}f{yi - S}>q,

where in the last expression the set {€’} consists of four elements at each vertex,
namely the three opposite-edge pairs of the associated tetrahedron, along with
another (formal) element, for which y.» = K — 2. We have here used the fact
that [K — n], = [n], and hence that [K —n — 1]!;[n]!, = [K — 1]!,. After all these
operations the resulting reformulated theory has local weights w’; the new global
weight Wp (o) of a diagram obtained from w’ in place of w, is identical to that in
§3.1.

Example 3.2.1 Figure 4 shows a link diagram D whose associated blackboard
framed link defines M5 . There are seven regions into which this link diagram di-
vides the plane, namely the exterior region, innermost region and five other regions.
The indices €(f) for these regions are 5, 5 and five —2’s. Observe that in all cases
the sum of the local indices over all regions must be zero.

%

Figure 4: Link diagram for Ms5 g

3.3 A Symmetry Principle

In this section we use the reformulation given in §3.2 to extract a factor from
Zk (M), employing a Symmetry Principle similar to that obtained in [KM2].

There is an involution on I given by 7:n —— K — 2 — n. Suppose that L’ is a
sublink of the link represented by D, that is, it is determined by a subset of the set
of components of D, or equivalently by its characteristic function, a map 6 from the
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set of components of D to {0,1} = Z/2Z which takes value 1 on those components
contained in L'. Extend 6 to a map, a: Rp — Z/2Z by

(f) = 0, where fq is the exterior region;
)= a(f')+0(c), for adjacent regions f, f’ separated by the component c.

Such a sublink defines an involution, tg, on the set of maps o: Rp — I, by

16(0)(f) = 7D (a(f))
for all f € Rp.

Lemma 3.3.1 1y defines an involution on the set of states in the state models of
§3.1 and §3.2.

PROOF: It is only necessary to verify that admissibility is preserved by tg. Fix a
state, 0. Observe that a(fy) = 0 so that t9(o) takes the same value as o on the
external region fy. For any edge of D, there is associated a triple f1, f2, f3 € Rp,
namely the component containing the edge and the two regions on either side of the
edge. By the construction of «, a(f1) + a(f2) + a(f3) = 0. Thus when the values
associated with f1, fo and fs in the state tg(o) are compared with those associated
in the state o, they are either identical or precisely two differ, via the application
of 7. The lemma follows upon noting that if (a,b,c) is a g-admissible triple, then
so is (a, 7(b), 7(c)). |

We now compare the local weights associated to o and o’ = tp(0) in the
state model of §3.2. Since [7(c) + 1], = [c + 1], and (=1)7(9) = (=1)K(=1)¢, thus
Arey = (1)K Ac. Also, Ar(q) = (—1)K/2AK*/2 AK(a+1) \ | Hence, for components,
&

— (_I)Kﬁ(c)

while for faces, f,

g
S
q\

a(f)

— ((\/Tl)(E(f)—Z)K(\/Z)e(f)KZ AKe(f)(a(f)+1)>

w

(o)

=~

For edges, note that {2K —4—a—b—c,b+c—a,c+a—b,a+b—c} is invariant
under (a,b,c) — (a,7(b),7(c)). The only local edge weights affected come from
those edges for which precisely two of the three associated labels have been changed
by the application of 7, say b and ¢, and then

w/e(a’) — (_1)(K+b+c) )
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For vertices, the labels will be affected by ¢y in such a way that the trans-
formation on the collections {z,} and {ye/} is given by an isometry of R, that is
either a translation or a reflection. Indeed, the effect on the six labels local to a
vertex must be either trivial or the changed labels must correspond to a collection
of edges of a tetrahedron which form a closed loop (either three or four edges). The
transformation is now trivial in the first case and in the other cases is z —— 6, - =
with the sign being positive or negative according as the number of local changes
is four or three, respectively and

5 — K — 2 — 1/3(sum of changed labels) if four labels are changed locally
Y| K — 2+ Y(sum of unchanged labels) if three labels are changed locally.

In particular, for vertices affected by the transformation,

= (—1)%.
wy(e) ~ Y

One may define a shading of the regions, by making a region f shaded precisely
when «a(f) = 1. This defines a checkerboard shading of the subdiagram, D', of D
defined by L' C L. Observing that A2X = —1, so that AX is a square-root of —1,
one finds that the ratio of the global weights

WD(UI): K/2\A(L")
Wo(o) (A™/7)

where A(L") € Z/8Z is expressed as a sum of local terms,

(4K for each component in L/,
—4K + (3K +2+20(f))e(f) for each shaded region, f,
4K +a+b) for each internal edge,

S 4K +a+c) for each boundary edge,
4K -2)—2(a+b+c+d) for each internal vertex,
4K —-2)+2(a+b+c) for each boundary vertex,

(4(K —2)—2(a+b+c+d)  for each vertex of L'.

Here edges and vertices are referred to as internal and boundary with respect to the
shaded region, while a, b, ¢, d are used to denote the labels on the shaded regions or
components adjacent to the edge or vertex concerned.

Suppose now that the initial state, o, is such that all the labels on the compo-
nents are even; such a state will be said to be even. Since ¢ is an admissible state,
all the labels on regions are also even. The above expression can now be simplified
to one dependent only upon the subdiagram D’, and not on the particular state o,

A(L') = 4K (# components in L') + 4K (# shaded regions in D’)
+ 2(K — 2)(# vertices of D’ counted with sign)
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where the sign associated to a vertex of D’ is determined by the relative orientation
of the crossing and the shading, Figure 3 showing the positive sign.

For the rest of this section, we suppose that K is odd. For any state, o, let L’
denote the sublink of L defined by those components for which ¢'(¢) is odd. Then
o' = 1p(0), where 0 is the characteristic function of L' and o is an even state. Thus
one may now write the WRT invariant as

Zr(M)=G{" G Y AKAEN2 N p(0), (3.3.2)

L'CL even states o

where the sum is over all sublinks, L', of L. Note that A(L’) is always even and so
the first sum is a sum of fourth roots of unity.

Lemma 3.3.3 Z3(M) = (AK — 1) mA-Kn— S~ AKAL)/2 where n =ny +n_.
L'CL
PROOF: Note that for K = 3, the states are maps Rp — {0, 1}. There is precisely
one even state, namely that for which o(f) = 0 for all components and faces f. The
weight associated with this one even state is 1. Observe that A¥ is a fourth root of
unity, independently of the value of K, so that the first sum in (3.3.2) is actually
independent of K. The result now follows by applying (3.3.2) for K = 3 while
noting that G4 (K =3) = AX —1land G_(K =3) = A=K — 1. |

As a corollary we deduce that

Zg (M) = (AKX —1)nAK"- G GT" Zs(M) ) Wp(o)

even states o

and the term on the right hand side obtained by removing the factor Z3(M) is also
a manifold invariant which we shall denote by Z} (M); Z} is the SU(2) invariant
as opposed to the SO(3) invariant Zg, see [KM2].

The local weight system of §3.2 gives the following state model for W, (D). The
states of the model are maps o: Sp — [ for which the labels on link components
and regions are all even, with the outer region mapping to zero and the appropriate
form of the triangle inequality holding on edges and at crossings. The local weights
are defined by

we (o) = [207(c) + Ugs
w(0) = [20(f) + 1],g DTOED+/2,

utlo) = (17 K2 )

—2—xx—2ax—2bx—2¢c

utio) = (N )

§— Ty} {Yer — 5}
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Here, & is obtained by halving the labels from o. For the local weight assigned to
an edge, a, b and ¢ denote the 7-labels associated in a state to the adjacent regions
and the component to which the edge belongs. For a vertex, x, are sums of triples
of o-labels and y. are sums of quadruples of 7-labels. Note that since ql/ 2 = —qszr -
and Ay, = (—l)aq“(“+1)/2, thus the sum of weights over even states may be written

as a polynomial in q.

4: HOLOMORPHIC MANIFOLD INVARIANTS

4.1 Formal invariants for generic ¢

In §3.2, a state model was given in which the states consisted of assignments
of elements of I to every component, region and vertex of D, with the restriction
that certain inequalities hold on each edge and at each vertex. It will be convenient
to change variables, replacing o by amap @ into I' =T+ 1={1,..., K — 1}, with
(i) = o(i) + 1 for all regions and components i. The Clebsch-Gordan constraints
on an edge are now that, for each triple of labels defined by an edge and the two
adjacent regions

@K! |61—62|<a3<61+62, a1+ as +aszisodd and < 2K

The state sum of this model is a handle-slide invariant, and when suitably nor-
malised to be also invariant under the second Kirby move, gives the slo-WRT in-
variant Zg (M). The state sum may be decomposed as a sum

Z(M)=G" G Y (=) o(0))yZk (L, ¢)
b:{c}—1T'

where Zg (L, ¢) is the state sum obtained by summing only over those states o
which match a given assignment ¢ on the components. In other words, Z(L, ¢) is
the Jones polynomial for the link L, in which the component ¢ is coloured with the
representation of dimension ¢(c), evaluated at the K*® root of unity. See [RT].

Let us fix the assignment ¢: {c} — I’ on the components. The set, Rg(¢), of
matching states o, that is of allowed assignments of labels to the faces and vertices
of D compatible with ¢, will be an increasing function of K, which stabilises for
large K to R(¢) say, with respect to the inclusion order on sets. Then R(¢) is the
set of labels on faces and vertices which satisfy the Clebsch-Gordan condition on
each edge, without K-constraints; this set is finite and the corresponding state sum
Z(L, @) is the ¢-coloured Jones polynomial of L.

The argument used to prove invariance under handle slides of the state sum in
which the bound K is present, formally applies also when this bound is removed;
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see p.143 of [KL2]. It only relies on an interchange of summation signs, one of which
remains finite. Formally, therefore

> 2L, d) [ (1P (o)
b

C

is invariant under handle-slides. In line with §3.1, the normalisation required to
give invariance under the second of Kirby’s moves, would extend literally to give
G:rm“ G_"", where n_ and n_ are the numbers of positive and negative eigenvalues
of the linking matrix of L, and G, are infinite Gauss-type sums given by similar
formulae to those in §3.1,

G.= 2 f: (—1)%4%

qc—1

a=—00

Thus, up to convergence questions, this defines an invariant.

4.2 Holomorphic invariants using integrals

The main technique for turning a function defined only at integer values of K,
by a sum over a set dependent on K, into a holomorphic function of K as employed
in [LR1], is that of replacing sums by integrals, using Cauchy’s residue theorem,
once the summands have been transformed into functions defined away from integer
arguments. This works for one-dimensional sums, and by iteration, for sums over
any hypercuboid, that is, over a product of intervals. Our second step, then, is to
convert the current sum into one over a set of states determined by independent
parameters in I'.

By the fundamental properties of the function I'(z; K), it is known that at
integer arguments I'(n; K) = [n — 1]!;. This may be used to replace all the g-
binomial coefficients appearing in the local weights by ratios of products of g-gamma
functions, making all the local weights well-defined away from integer arguments,
and for non-integer values of K. This completes the first step.

The second step is to replace the constraints on the labels specifying a state
by ones which make the labels independent. For vertex labels, note that the only
occurence of a vertex label is in the local weight associated with that vertex,

I'(s+1; K)
HF(S_$H§K)1;[F(ye _5§K) -

v

g9(s) = (=1)°

Observe that, if K € Z and the labels on regions and components satisfy the
Clebsch-Gordon constraint on each edge, then {z,} and {y.} are sets of integers,
with z, <y, for all v and e. In this case, it follows from the properties of I'(z; K)
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that g(s + K) = g(s) while g(s) will be a holomorphic function of s will no poles,
and zeros at those integer values outside [c,d] + KZ where ¢ = max({z,}) and
d = min(K — 2,{y.}). One may therefore equally well remove the constraints on
vertex labels.

For the Clebsch-Gordan constraints, the Verlinde formula

K-1 . Bai ... Baz .. Bas
SIN == SIN == SN = 55
R ﬁ - 2 (al,a2,a3)ECGKa
ﬂ:]_ San

removes each edge constraint while introducing an extra label on the edge. This
completes the second step, since now

Zk(M)=GT 6T Y flp)

pE[l,K—l]M’

where M’ denotes the sum of the numbers of regions, vertices, edges and components
in D, and f(p) is product of evaluations of I'(z; K) at values of z which are linear
functions of p.

Finally one may apply the residue theorem to replace the sums by a complex
integral over an M’-dimensional torus. Unfortunately, the function obtained, while
being a holomorphic extension of Zx (M), need not be independent of the link L
used in its construction.

4.3 Holomorphic invariants using sums

Instead of considering ¢ as a formal variable, as in the last section, or as a
root of unity, as in §3.1, we suppose that |q| > 1, that is K € H*. Then G_ is a
convergent series, while G is not.

Each term in the state sum is a ratio of products of ¢g-factorials and ¢g-numbers.
Each can therefore be written, in a unique way, in the form of an element of
¢'Z[[q7"]], for some half-integer . All the series involved will be absolutely con-

n—1 n(n—1)

vergent. In particular, "= and are the values of ¢ for [n], and [n]!,, respec-
tively. The sum of these terms, over all labels with a fixed assignment ¢ on the
components, is finite, and may therefore also be written in this form. The degree
t(o) associated with the state o is a quadratic function of the state labels, while the
leading coefficient is +1. For fixed region labels, t(0) has a maximum value over all

possible vertex labels, which is attained only on the one state where

s = min({y}) ,

at each vertex, in the notation of (2.1.1). After summing over face labels, we obtain,

dog 7(1,9) < gmax (32 ()77 +47) = 3 (o= Ao —7) + 2a - 2)))
f

T
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where the maximum is taken over all possible face labels compatible with ¢. At
each crossing x, the symbols «, # and « here denote the three sums of pairs of labels
of opposite edges of the tetrahedral symbol associated with that vertex, while « is
chosen to be the largest of the three. Equality holds if the maximum is attained
only one set of face labels. The maximum is evaluated over a subset of N™ defined
by the triangle inequality and parity constraint on each edge,

CG: |ar—¢(c) |<a <ar+e(c), @ +az+ ¢(c)is odd

for adjacent regions with labels @; and as separated by part of a component with
label ¢, and M denotes the number of interior regions. Now restrict to only odd
labels, in accordance with the symmetry principle of §3.3, so that the conditions
on labels are simple inequalities. When the labels ¢(¢) on components are all
sufficiently large, the degree t(¢) of Z(L,¢)[].[¢(c)]; as a polynomial in ¢, is a
quadratic function T'(¢), of the individual labels ¢(c). This degree is an invariant
of the link L.

A single unknot with framing « has t(¢) = $a®+a—1— & where a is the label
assigned by ¢ to that component.

We may now define

0 Y Z(L, ) T (=1)*O [g(e)]g
Z (M) - ah—r>noo z j:qT(¢)

where both sums are over maps ¢: {c} — {1,...,a}. The signs are generated
by the leading coefficients of Z(L, ). We conjecture that this is well defined and
invariant under Kirby moves, and moreover that it defines a holomorphic function
of ¢ outside the unit circle, with limiting values related to Zx(M). Indeed, one
expects that the homogeneous part of 4T'(¢) is the quadratic form in ¢(c) given by
the linking matrix of the components, so that the denominator reduces, for rational
homology spheres at a root of unity, to

n n_ H
e (%)

by the properties of Gauss sums, since |det(lk L)| = | (M Z)| = H. Thus we
expect the function so generated to be related to (£)Z , the SO(3)-invariant
in precisely the normalisation used by Ohtsuki.

This leaves many open questions!
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