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Abstract. For any Lie algebra, g, and integral level, k, there is defined an invariant, Z;;(M,L)7 of
embeddings of links L in 3-manifolds M, known as the Witten-Reshetikhin-Turaev invariant. When

27
(k+2)°
link L. This paper discusses the invariant Z* ,(M, @) when g = sl; for a simple family of rational
homology 3-spheres, My, ;, obtained by integer surgery around (2, n) type torus knots. In earlier work
of the author it was shown that there is an associated holomorphic function Zoo(My ;) of Ing € C\iR,

related to Ohtsuki’s invariants, from which Z* ,(My ¢, @) may be derived for all sufficiently large

g =sly, Z} (S3, L) is a polynomial in ¢ = exp namely the generalised Jones polynomial of the

primes r. The current paper extends the results to prime powers and odd composite numbers coprime
to |Hy (M t)|, showing how the invariant Z* ,(My ¢, @) may be extracted from Zoo (M ¢).

1. Introduction and Main Results

Suppose that M is a compact oriented 3-manifold without boundary. In [38], Witten
formally defined a topological invariant Zyy2(M), dependent on some additional data,
namely a choice of a Lie algebra g and of a level & € Z, in the form of a functional
integral,

Ziga (M) = / o 3% Jy (AdATEA AN drp (1.1)
A/G

over a quotient of the space of G-connections on M by an appropriate gauge group,
G. For the integrand to be well-defined, that is invariant under G, one needs k to be
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an integer. Although many attempts have been made to give a direct and calculable
meaning to this Feynman integral, it remains only a formal expression from which valid
results can be derived when the functional integral is manipulated according to certain
rules; see for example [2, 3, 4, 5, 6, 32, 33, 34]. The approaches which are closest in
spirit to that of (1.1) employ the notion of a topological field theory (see [1]) whose
definition is based on Segal’s mathematical definition of conformal field theory.

The situation is much like that which existed for divergent series in the last century.
For example, at integer values of m > 2, one has

Z n ™= —W(Q’R’l)
n#0

where B, is the mth Bernoulli number. However, Euler was happy to consider the
same sum for negative integral m, writing that

Zn =— m—i, for m > 1.

One may ask in what sense it is meaningful to claim (using m = 3) that the sum of the
positive integer cubes is —B,/4 = 168
rather close connections between this story and that of the Feynman integral (1.1),
including the occurrence of Bernoulli numbers, and so there is no reason to think that
in the future such Feynman integrals will not be able to be put on a completely rigorous
foundation.

As will be seen in this paper there are some

Many alternative and completely rigorous formulations of Zy42(M) have been ob-
tained, primarily using the description of a compact, connected, orientable 3-manifold
M, without boundary, as obtained by Dehn surgery around a suitable link Lys, in S3.
Reshetikhin and Turaev [31] found Zj42(M) as a combination of the quantum invari-
ants of L obtained from all possible choices of irreducible representations attached to
the components of L. This sum will only be finite when ¢ is a root of unity. However, it
is still something of a mystery that while quantum invariants of links in S* are defined
for all values of ¢, being polynomials in ¢, this happy state of affairs is not true of any
of the definitions so far known for Z; (M, L) when M # S3.

From the formulation of [RT], it is seen that Z £ (M, @) can be defined for all roots

of unity ¢, rather than just those of the form e . Very few concrete computations
of Z{(M, ), as a function of r = k 4 2 (the order of the root of unity ¢), have been
carried out—see [9, 14, 15, 17, 18, 27| for some such computations.
It follows quickly from its definition that, for fixed order r of the root of unity
, Z{(M,@) can be written as an algebraic function of ¢, with rational coefficients.
In the normalisation for which the invariant for S? is 1, denote the invariant, as an
algebraic function of ¢ at rth roots of unity, for the pair (M, @) by Z,(M). Kirby and
Melvin [18] derived a symmetry principle for terms in the sum arising in Z,(M) and
thereby obtained a slightly finer invariant, which is just the associated SO(3)-invariant,
Z!(M). We now describe some of the results of Murakami and Ohtsuki on the forms
of these functions of h = ¢ — 1 when r is an odd prime. The reader is referred to

[25, 26, 28, 29, 30] for details.

THEOREM 1.1 (MURAKAMI/OHTSUKI). Suppose that r is an odd prime and M is an
oriented Z /rZ-homology sphere. Let N = |H{(M,Z)|, so that r { N.
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(a) As a function of q, Z(M) € Z[h], so that for some am (M) € Z, one has
ZI(M) =3 am (M)A, For 0 < m < r—2, ap, (M) is uniquely determined by
this condition as an element of Z/rZ.

(b) There ezist rational numbers am oo(M) € Z[3, %,. .., ﬁ, +] such that, for
any prime r = 2m + 3, am (M) = (%) Um,oo(M) as elements of Z/rZ, where (%)
denotes the quadratic residue while

0,00 = N7, a1,00(M) =6N""AN(M),
where A(M) denotes the Casson- Walker [37] invariant of M in Casson’s normalisation.

As a result of part (b) of this Theorem, Ohtsuki defines a formal power series

o0

Zoo(M) = amoch™,

m=0

with rational coefficients, which is an invariant of rational homology 3-spheres, M. It
is expected that a stationary phase expansion of (1.1) will lead to precisely this series
and indeed, according to Rozansky [34, 35] this has been verified for three-fibred Seifert
manifolds.

In this paper we restrict our attention to a particular two-parameter family of
rational homology 3-spheres, {M,, ;}, given by integer t-surgery around a (2, n)-torus
knot. Here N = |Hy{(My+,Z)| = |n + t| and so this family contains a sub-family
of integral homology spheres, namely those for which |n 4+ ¢| = 1 while the Poincaré
homology sphere is included as M_3 . The Poincaré homology sphere is realised as
M3 _5 and the framed knot in S* giving rise to this manifold is shown in Figure 1,
where the knot is given the blackboard framing. This diagram also serves to identify
positive twists, the two extra curls being negative twists.

FiGURE 1. Knot for Poincaré homology sphere

THEOREM 1.2. [20]. Suppose that n is an odd integer and t # —n is an integer. Put
h=q—1and N = |t + n|.

(i) There is a formal power series, Zoo(My ) € Z [L, %] [R]] which is such that it
converges r-adically to (%) Z!(My, ¢), when 14+ h = q is an rth root of unity for some
odd prime r not dividing t + n.
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(i1) There is a holomorphic function of Inq € C\iR whose asymptotic expansion
around q = 1 gives the formal power series Zoo(My, ). This function may be defined

by

n [ee] . .
(_1)tq5 qu(zz)_qAQ(zz)
2 1_q—6 f e27rz_|_e—27rz dZ
—

Zoo(Mpy) = (1.2)

m=—0o0

according as the integral or sum converges, where § = sgnt + n and Ay(z), Az(x) are
the quadratic functions given by

1 1
2(t +n)Aqy(z) =4n(t — n)x2 + dtx — Zn(t +n)— 3

3t + n)Ay(x) = dn(t — n)a® + 4(f — 2n)a — %n(t +n)— g

(1.3)

For the particular family of manifolds under consideration, the first part of The-
orem 1.2 is much stronger than Theorem 1.1(a), since it allows the reconstruction of
Z, (M) from Zo.(M) for all but finitely many primes r. Indeed, the r-adic convergence
of Theorem 1.2(i) may be expressed in more elementary terms as stating that the dif-
ference between Z, (M, +), a formal power series in k, and (%) Z!(M, +), a polynomial
in h, is divisible by

(1+h)" -1
h Y

within the ring of formal power series in h with rational coefficients whose denominators

(1.4)

are coprime to r. Since for prime r, the coefficient of A™ in (1.4) is divisible by r
whenever 0 < m < r — 1, one may deduce that

N
Umr = (7 (m 0o whenever m < r — 2,

and not merely when m < T;?’ as in Theorem 1.1(a).

For the manifolds M, ¢, the result on the denominators involved in @y, o obtained
from Theorem 1.2 is also somewhat stronger than that in Theorem 1.1, namely they
involve only powers of 2 and divisors of N. From numerical evidence in the computation

of am, 00 for integer homology spheres of our family, the following conjecture was made.
CONJECTURE 1.3. [20]. If M is a Z-homology sphere then Z(M) € Z[[h]].

Currently this cannot be proved even for all integer homology spheres within the
family {My ¢}. The restriction to the particular family of manifolds discussed in this
paper is necessitated by the fact that it is only for these manifolds that the associated
state-sum expressions for Z,(M) involve only “trivial” quantum 6j-symbols which
cancel, leaving a relatively simple sum.

In the current paper we discuss the main steps in the proof of Theorem 1.2 and
examine the extent to which they may be generalised to values of r which are prime
powers and, more generally, arbitrary odd integers. Specifically, it is seen in §4.1 that
Theorem 1.2 holds equally well when r is an odd prime power coprime to N. When r
is composite it is impossible to speak of r-adic convergence of a formal power series in

2%. However, it will be

h = q— 1, since then (, — 1 is a unit in Z[(,], where (, = exp
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seen in §4.2 that it is still possible to reconstruct Z.(M) from Z..(M), so long as r is
assumed odd and coprime to N.

2. Witten-Reshetikhin-Turaev Invariants

Throughout this paper, r € N will denote the order of a root of unity q. Set I =
{0,1,...,7 —2}. Let A = ¢'/* and define the g-numbers by

A2n _ A—2n
o= T

The g-factorials are defined by [n]l, = [[i_;[{]s- A triple of non-negative integers
(a,b, ¢) will be said to be g-admissible when b+c—a, c+a—b,a+b—cand 2r—4—a—b—c
are all positive and even. If a is a non-negative integer, set A, = (—1)*[a + 1],.

Suppose that M is a 3-manifold obtained by surgery around the framed link L
in $3. Represent L by a link diagram, D, with the blackboard framing. The sl,
Witten-Reshetikhin-Turaev invariant of the empty link in M, at the root of unity ¢,
will be denoted Z,(M). It can be computed generally as a suitably normalised version
of the partition function of a certain state model, whose states are allowed assignments
of an element of I to each of the components of L, as well as to each of the regions
into which D divides the plane. Such an assignment is said to be allowed if the infinite
region is labelled 0 and, for each edge of D, the triple of integers assigned to the two
adjacent regions and the component containing the edge, form a ¢-admissible triple.
The weight, Wp, assigned to a state, o, is defined as the product of local weights
associated with each vertex, edge, face and component of D, each of which is a certain
ratio of products of g-factorials, namely quantum dimensions, theta nets and quantum
67 symbols.

The invariant Z,(M) is now obtained from the partition function of this state
model by renormalisation, so that

Z (M) =G{"™GT" Y Wo(o),

states o

where ny and n_ are the numbers of positive and negative eigenvalues, respectively, of
the linking matrix defined by the framed link L. Also G4 and G_ denote the partition
function evaluations on an unknot with framings 1 and —1 respectively; they take the
form of Gauss sums.

It turns out that for the manifolds M, ;, the quantum 63 symbols in the local
weights are particularly simple and the weight of a state can be reduced to a product
of quantum dimensions. Let D,, be the link diagram of the (2,n) torus knot containing
n vertices with n+42 regions. Figure 2 shows Djs; the associated blackboard framed link
defines M5 o. The states are indexed by a pair a,: € I, where a is the label assigned
to the single component of L (and thus also to the n shaded regions) and i is the
label assigned to the interior unshaded region, with the constraint that (a,a,i) be a
g-admissible triple. The invariant for the manifold M, ; is therefore

r—2 mina,r—2—a

1 4 " -n
Zr(j\/[nﬂf) - G_6 Z Z (_1)atAa(a+2)t-AaA2j <(_1)a—]Aa(a+2)—2](]—|—1)> >
a=0 3=0



FIGURE 2. Link diagram for M5 g

where § = sgnn + t and we have put ¢ = 25. See [20] for details of the calculation. By
some simple algebraic manipulations, this may be rewritten as

o(n+1)—
Z(My ) = MZT(MM),

er(9)
where ¢,(m) = A7"(1 + A_mr2) and

3 (_1)qu(l’7y)

Zo(My) = (-1)fteaznZ0et (2.1)
(¢7° —1) 3 ¢%*
s=0
Here
t—n n 1

(fﬁ—y)Q—g+—(3$+y)

Qr,y) =gz +y)" + —¢

e

is a Z/rZ-valued quadratic form on Z x Z, while a = rgl and X denotes the set of
integral points in [—~a, a] X [~a, a] whose coordinates have opposite parity. When M, ;
is an integral homology sphere, n + ¢ =6 and so Z, (M, ¢) = Z,(M,; ).

3. Sketch of Proof of Theorem 1.2

In this section we give the main steps in the proof of Theorem 1.2, starting from the
formulation of 7,«(1\/[”71,) in (2.1). We will be assuming that r is an odd prime which
does not divide N = |t + n| and all congruences are modulo r unless explicitly stated
to the contrary. Let Z, C Q denote the set of those rationals whose denominators are
not divisible by r. If a,b € Z, then we will write a = b to mean that b;a € Z,. There
is a natural map Z, — Z/rZ defined by = — T with z = 7.

3.1. Reformulation of Sum. Since ¢ is an rth root of unity,
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and therefore the ratio of sums in (2.1) may be rewritten as

% 3 (_1)chz<r,y)—as2:% YOy (QQ(ym)—éf_qQ(r7y)—582)‘ (3.1)

(z,y)EX r=—a y s€Z/rT
SEZ|TE T even

In the last step, the region X was broken into a union of sets of pairs of points of the
form (z,y) and (y,z) where z is even and y is odd; the antisymmetry of the summand
on the right hand side now enables the restriction on the parity of y to be removed
without any effect on the resulting sum. The coefficient of ¢ in (3.1) is therefore

% z (#{@,s) € Z/rTLx L|rT. ‘ 2(Qy,7) = P) }

T even

- #{(y,s) € Z/rZ x L)L ‘ 3(Q(z,y) — P) = 32}> (3.2)

for any P € Z/rZ.
LEMMA 3.1. For any a, A € Z[rZ, with a # 0,

#{(y,S) €EZ/rZ x T|rTZ

ay* + A = 32} = (rda=o — 1) (%) + 7,

where d7 denotes the Dirac delta function d7 which is 1 if T 1s true and 0 otherwise.

As a corollary, one obtains that for any quadratic Q(y) whose coefficient of y?* is
a, not divisible by r,

a

#{(y,s) € Z/rZ x T)r7Z. ‘ Q(y) = 52} — (réazo — 1) (—) +r,

r

where A € Z, denotes the discriminant ¢ — %. Applying this result to the two quadrat-
ics Q(z,y) and Q(y, x), considered as functions of y with x fixed, and noting that they

have a common leading coefficient, namely “2 one finds that (3.2) may be simplified

16 °
to

[5]
t
Z (6ay(x)=P — A, (x)=P) <| -I-n|>’

x=—[4] '

where Ay (z) and Aq(x) are the discriminants of Q(2z,2y) and Q(2y,2z) as quadratics
in y. It may be verified that Ay(z) and Ag(x) are given by (1.3). Hence (3.1) reduces
to

[z%% (QAz(X) — ) (M) ,

x=[¢

and (2.1) now gives

. 2]
o6 =T (D) e X (ST -AT). e

1—q~ r
=h




3.2. Bernoulli numbers and holomorphic extensions. Let B,, denote the mth
Bernoulli number, as defined by the generating function

iBmzm z
m!  er—1

m=0

Following [8], we will use a symbolic notation employing the symbol “B” so that B™
refers to B,,.

b—1 B+b
LEMMA 3.2. For any polynomial g, Z g(1) = [ g(z)dz whenever a,b € Z.
i=a B+a

When the integrand is not a polynomial, it is not in general possible to make sense

of f B g(z) dx. However, if g(x) has the form ¢ F(#) where f is a polynomial, then the
integrand may be con81dered as a formal power series in h = ¢ — 1 whose coefficients
are polynomials and this allows the integral to be evaluated giving an element in Q[[]]
as the result. The following lemma allows the limits of such an integral to be shifted
by multiples of r in Z,..

LEMMA 3.3. Suppose that f(y) is an Z,-valued polynomial function and that a,b €
Z, C Q with b — a divisible by r in Z,. Then,

B+b b—a 0 )
/ . (7@ 4 D)
B+a r

is divisible by ¢" — 1 in Z.[[h]].

LEMMA 3.4. If x € Z, then ¢*, as a formal power series in h = q — 1, defines an

element of Z,[[h]]. Moreover, whenever x = y in Z,, then ¢° — ¢¥ is divisible by
(1+h)" —1 n Z,[[R]].

Set
_ B+3
B, = 2/ ™ dz.
B+1
Then 22™B,, is the mth Euler number and other expressions for B,, are
m— > z2)"™ d
m—4zm'z ) (2mi(2s + 1)) 1:4/ (iz)™ d=

2wz —2mz "
o © + e

S§=—0

A symbolic notation may be employed in which B™ means B, and then one has the
following lemma.

LEMMA 3.5. Whenever g is a polynomial, g(B) = 2f§+f g(z)dx.

Suppose that ¢ is any analytic function. Then ascribe a meaning to g(B) via the
following formulae,

4 f _gliz)d=

e27rz+e—27r )

mi(m+3) (m
2 Z L € g( / 2)7
meZ+ 5

9(B) =
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for those functions ¢ for which at least one of these expressions converges. Note that
use of Cauchy’s theorem allows one to pass formally between the two expressions, so
that if it happens that both the sum and integral converge then they will be equal.
From Lemma 3.5, it may be seen that whenever g(z) is a polynomial function of z, the

integral presentation for ¢g(B) given above matches the symbolic formulation.

LEMMA 3.5, When g(z) = ¢/%) where f is a real quadratic function,

B+32
sB)=2[ g

B+1

where the right hand side is a formal power series in h = ¢ — 1 and the left hand side
is a holomorphic function of Inq € C\iR and the meaning of the equality sign is that
the formal power series is an asymptotic expansion of the holomorphic function around
q=1.

Applying Lemmas 3.4, 3.2, 3.3 and 3.5" in turn, we obtain

5] s
07 Y (A - F) = (-1 (4210 — g2+ ax
X=-[5] B-[2]
B+2
_ / (4419 = g+9) ax
B+1
_ % (QME) _ qA2<§>> ,

where in the second step we have used the fact that — [g] and [3

5 2] +1 are congruent to
i and % in either this or the reverse order according as « is even or odd. Throughout
we are operating in the quotient of the ring of formal power series Z,[[h]] in h = ¢ —1,
by the ideal generated by q;_—_ll. This is precisely what is meant by r-adic convergence
and gives part (i) of Theorem 1.2.
Finally, in the last step, we know that by Lemma 3.5, the formal power series may
be viewed as the asymptotic expansion around ¢ = 1 of a certain holomorphic function
of In ¢ as defined by (3.4), namely (1.2) and this gives part (ii) of Theorem 1.2.

4. Other Roots of Unity

In this section we investigate the extent to which Theorem 1.2(i) can be generalised to
deal with evaluations at roots of unity whose order is not prime, by observing how the
steps in the proof given in §3 can be extended to such cases.

4.1. The Case of Prime Powers. Suppose r = p™ (m > 1), where p is an odd
prime not dividing N = |t + n|. In the reformulation of the ratio of sums in §3.1, the



only change is in Lemma 3.1, whose appropriate extension is given below. Again all
congruences will be modulo r, unless stated otherwise, while for any = € Z/rZ,

B, i plle, pPt iz, 0< B8 <m,

m, if z =0,

[z], denotes the integer {

that is, the largest power of p in {0,1,...,m} dividing z.

LeEMMA 3.1". For any a,A € Z[rZ, with a coprime to r = p™,

#{(y,S) CZ/rZ xL|rZ

ay2—|—A532}

(L= p ) (Al + 1)+ rp bazo, i (£) =1

o, if (5) = —1, [A], < m is odd;
r(1+4p~1), if % = —1, [A], < m s even;
2%l if (2) = -1 and A=0.

As before, the same result holds when ay? + A is replaced by an arbitrary quadratic

function Q(y) whose leading coefficient is @ and whose discriminant is A. It allows (3.3)

to be derived in this case also, where now (%) is replaced by the factor

p (1 —p )0y, if (&) =1
—1(_1\m+1 -1 F (X)) = —
p (=) 1+ pThCO-, i () = -1
where C4 = Y. ¢P[P], and C_ = Y} qP(S[p]p even- The fact that ¢ has order

PEZ/rE PEZ)rT
exactly p™ enables these sums to be evaluated to give Cy =1 and C_ = (—1)™ and

m
hence the total factor becomes (%) , which 1s nothing more than (%)

In §3.2, r only enters in Lemmas 3.3 and 3.4. When r is only a prime power, these
lemmas still hold if Z, is everywhere replaced by Z, while (1 + k)" — 1 is replaced
by hér(1 + h), where ¢, is the cyclotomic polynomial. Lemmas 3.4, 3.2, 3.3 and 3.5’
may now be applied in just the same way as at the end of §3, except that now the
terms should be viewed as elements of the quotient of Z,[[h]] by the ideal generated
by ¢r(1+ h).

THEOREM 1.2(1)". If r = p™ is an odd prime power coprime to N then the formal

power series Zoo(My ) € Z [%, %] [[R]] evaluated at h = q — 1 where q is an rth root

of unity, converges r-adically to (%) Z(q). That is, they are equal as elements of the

quotient of Zy[[h]] by the ideal generated by the cyclotomic polynomial ¢.(1+ h).

-1

Since {(lpn; 1)}}3 =m —1—[j], and <‘p:: 1) = (;) for 1 < 5 <1 < p, thus the

cyclotomic polynomial ¢,(1 + h), which is

S peg ()
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is a monic polynomial in h, all of whose coeficients, except the leading one, are divisible
by p. Hence even when r is any prime power, similar statements to Ohtsuki’s may be
made, at least for manifolds M = M, ;, namely

a (M) = <5> 1,00 (M) (mod p),

r

forr=p™and 0 <l <r(l—pt).

4.2. Roots of Unity of Composite Order. When r is composite, say r = Hle pi,
the analogue of Lemma 3.1 is obtained by observing that for any a, A € Z/rZ,

#tw) [a? 0= ) = [T#{w5) € @ /o2y

ay’ + A = s* (mod plmi)},

where on the left hand side all expressions are considered to be in Z/rZ. Thus, when-
ever a and r are coprime, this number may be calculated with the help of Lemma 3.1’

k m;
Once again it will be found that (3.3) holds, where now (%) =] (%) denotes the
=1
Legendre symbol.

Unfortunately though, the equivalent of Theorem 1.2(i) is now meaningless, since
whenever k > 1, so that r is composite, ¢.(1 + h) is invertible in Z,[[h]]. One can,
however, in general make a direct link between the holomorphic function of (1.2) and
Z.(q) € Z]q]. The main observation is that since A;(z) and Ay(x) are quadratics with
the same leading term and the same discriminant, they are therefore just translations

of each other.

LEMMA 4.1. Suppose that r is an odd integer and that A(x) = az® +bx+c is a quadratic
with rational coefficients whose denominators all divide some integer S coprime to r,
while € € Z. Then the asymptotic expansion of the function

oo ekA(iz) _ ekA(iz+e)
2 e elnz _I_e—27rz dz
i k, around k = @, has leading term
[5] o o
(—1)° (J%A(X) _ eﬁ%A(Xm) 7

x=]

R

]

where 1 = 2a + 1 and, for X € Z, A(X) denotes the element of Z/rZ defined by
A(X) € Q and s is any integer divisible by 16S. Indeed, when |bs| < r, the leading
term in the ezpansion of the first term of the integral is precisely the value of that
integral at k = 2—;”

This lemma has a simple proof using the residue theorem for e integral. The
lemma can be extended to other e for which SA(z + €) € Z[z] and thus the following
theorem may therefore be deduced from (3.3).

THEOREM 4.2. For any root of unity, ¢, of odd order coprime to N = |n + t|, an
appropriate sheet of the function Zo(My 1) has an asymptotic expansion around q = ¢
whose constant term is (%) Z( My +) evaluated at ¢ = (.



5. Some Examples

The manifold M, ; is a Z-homology sphere for |t + n| = 1. In this case, t + n = § and

so Zp(My 1) = Z,(My ). Since M, _,,— is the mirror image of M_,, ,,11, thus

Zoo(l\/-f—n,nﬂ)((]) = Zoo(ﬂ/fn,—n—l)(q_l)-

Indeed, as a power series in h = ¢ — 1 one has
Zoo(-z-\in,—n—l) = /\0 + )\1;1 + /\2h2 + e,

where \g = 1 and A,, is a polynomial in n of degree 2m. By geometric arguments it

follows that Z,, = 1 when n = 1 and so one may write A\, = %(Tﬂ — 1)Bm, for
m € N, where 3,, is a polynomial in n of degree 2m — 2. Indeed, it may be computed
that 31 =6, B, = 1(25n? —16n+3) and (B3 = = (427n* —528n® +230n? —48n +15). It
can now be seen explicitly that these first few coefficients are integral. As follows from
Theorem 1.1, é/\l is always an integer, namely the Casson invariant of the 3-manifold.
From the above explicit calculation it can be seen that A\, is divisible by 3 and is an
odd multiple of $);; the first statement has been shown to hold for general integer
homology 3-spheres by Lin & Wang [23].

For the Poincaré homology sphere, M_3 5, the first 14 terms of the expansion are

Zoo(M_32) =1 —6h + 45h% — 464L° + 6224L* — 102816%° + 2015237h°
— 4567934947 + 1175123730R% — 33819053477h° + 1076447743008%'°
— 37544249290614h'" + 1423851232935885h'2 — 583353804812724914 '3+ - - -

The coefficient of h™ may be computed using the following line of Mathematica [39].

Zinf[m_] :=Sum[Coefficient[Binomial[30x"2-16x+9/8,m+1]-
Binomial [30x"2-4x-7/8,m+1] ,x,2*1]*2" (-4*i)*EulerE[2i],{i,0,m}]/2

The ratio between mth and (m — 1)th coefficients in the series for the Z homology
sphere M, _,,_1 in powers of h is asymptotically %n(l —2n)m. Further computations
of Zs for the family {M,, +} may be found in [20].

According to [24], the manifolds in this family are all three-fibred Seifert manifolds
with multiplicities 2, n and n—t. Rozansky [34] has explicitly computed the asymptotic
expansion of Z,(M) from the Witten-Chern-Simons path integral for Seifert manifolds
and, according to Rozansky [35], the results obtained agree with the numerical values
for the first few terms given above.

By work of Murakami and Ohtsuki, A,, may be defined for all rational homology
spheres. When M is a Z-homology sphere, A\g(M) = 1 and we may let zo(3/) denote
the formal power series In Zo (M), in hQ[[R]]. Then z behaves additively under the
operation of connected sum, while the coefficient of h™ in zoo (M, —5,—1) is a polynomial
in n (an odd integer) of degree 2m. It follows that for each m, there exist integers A,
(for 1 < n < m) for which

Z Anzoo(j\/f2n+1,—2n—2)

n=1

has non-zero coefficient of h™ but zero coefficients of h',... , h™ 1. For e = +, —, let
I, = {n ‘ €A, > 0,1 <n < m} Define X, to be the manifold obtained as the direct
sum of €A, copies of Mypy1,—2n—2, over all n € I.. By construction the power series
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Zoo(X4) and zoo(X_) have their first discrepancy in the coefficient of ™. Thus X4
and X_ cannot be distinguished by Ay,...,A\;,_1, but can be distinguished by A,;,.

COROLLARY 5.1. For each m > 1, the manifold invariant \p, (M) is independent of
the previous invariants in the sequence Ai,..., Apm—1.

6. Conclusions

Since (3.3) was seen in §3 to hold for all odd r coprime to N = |Hy(M,Z)|, it follows
that for this particular family of manifolds, Z/(M) € Z[q] for all such r. It has been
shown by Murakami [26] that Z/ (M) € Z[q] whenever r is an odd prime and M is a
Z /rZ-homology 3-sphere.

CONIJECTURE 6.1. For all rational homology 3-spheres M and integers r coprime to
|Hy (M, Z)|, the invariant Z.(M) lies in Z[q].

Indeed it is natural to suppose that once the correct normalisation has been found,
this will also hold for all 3-manifolds, not just for Q homology spheres. Conjecture 1.3
on the integrality of the coefficients in the formal power series Z, for integer homology
spheres would lead one to believe that all these coefficients should have a neat combi-
natorial interpretation similar to that for the first of these, namely Casson’s invariant;
see [23] for the first step in this direction, namely the second coefficient. It should also
be possible to directly compare the coefficients in the formal power series Zo. (M), for
an arbitrary manifold M, with those obtained from an expansion of (1.1).

If it is possible to generalise the approach in [20] and the current paper, to deal with
general (Q-homology spheres, then one would hope for a generalisation of Theorem 4.2.

CONJECTURE 6.2. There ezists an invariant Zoo(M) of rational homology spheres M,
taking values in holomorphic functions of Ingq € C\iR such that, for any odd integer r
coprime to N = |Hy(M,Z)| and any primitive rth root of unity ¢, an appropriate sheet
of Zoo(M)(q) has an asymptotic expansion about ¢ = ( whose constant term is (%)
times the value of the SO(3) Witten-Reshetikhin- Turaev invariant Z(M) at ¢ = (.

This conjecture would imply that almost all the information on slo-WRT invariants
at roots of unity is contained in a new invariant, Z..(M), which is a holomorphic
function of Ing. It would be very interesting to understand the properties of this
function when ¢ is away from the unit circle.

For general Lie algebras, similar results are expected to hold. Paralleling the world
of Vassiliev invariants for knots, there should be a universal ‘quantum’ invariant of 3-
manifolds whose values are holomorphic fuctions of Ing in the graph cohomology of
M; see [19]. It is already known how many of the algebraic structures existing in the
theory of Vassiliev invariants (see [6], [7]) can be carried over to the theory of finite-
type invariants of 3-manifolds; the reader is referred to [10], [29], [11], [13] and [12] for
details. See [22] for a construction of a power series 3-manifold invariant, Q(A/), based
on Kontsevich’s universal Vassiliev invariant for links. According to [21], Q(M) is a
universal invariant, containing all finite type invariants of rational homology 3-spheres.
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