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Abstract. It has been seen elsewhere how elementary topology may be used to construct
representations of the Iwahori-Hecke algebra associated with two-row Young diagrams,
and how these constructions are related to the production of the same representations
from the monodromy of n-point correlation functions in the work of Tsuchiya & Kanie
and to the construction of the one-variable Jones polynomial. This paper investigates
the extension of these results to representations associated with arbitrary multi-row
Young diagrams and a functorial description of the two-variable Jones polynomial of
links in S°.
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1. Introduction

In [L 1], a construction for special types of Hecke algebra representations was
given, using elementary topology. Let H,(q) be the Iwahori-Hecke algebra with
generators o1 ..., 0, and relations,

0;0j = 0505
Oi0i10; = i1 003 ; for|i — j| > 1; (1.1)
(0 —1)(0i + ) = 0.

For generic ¢, the representation theory of H,(g) has the same structure as that
of the symmetric group S, (see [We]). In other words, to each Young diagram A
with n squares, there is associated an irreducible representation w5 of Hp(q). When
A is a two-row Young diagram, w5 was constructed in [L 1] from the monodromy
representation of a vector bundle over the configuration space X,, of n points in
C, on which a natural flat connection is defined. This construction will be briefly
outlined in §2. It was also seen in [L 1], how these methods are related to those
of [TK], where the same representations were arrived at from a discussion of the
monodromy of correlation functions of a conformal field theory on P!. Indeed,
it was shown in [TK], that the n-point correlation functions considered satisfy a
system of differential equations known as the Knizhnik-Zamolodchikov equations,
and the structure of the associated monodromy representations was established by
investigating this system of equations.



The discussion of [TK] was based on the Lie algebra sl and the spin-1/3 (vector)
representation. However, similar constructions can be carried out for arbitrary Lie
algebras and representations, see [SV]. Indeed, it was shown in [K], that using
sl,, and the m-dimensional vector representation, the monodromy representation
of the associated system of differential equations again provides a representation of
H,(q). The homological analogue of the constructions for the case of sly and the
spin-j representation was discussed in [L 4]. In this paper, the constructions for the
case of sl,, with the m-dimensional vector representation will be investigated. The
general case of sl,, with an arbitrary representation does not lead to representations
of Hp(q) but only to representations of the braid group B, = m1(X,) where X,
is the configuration space of n distinct unordered points in C. These braid groups
have a presentation consisting of generators o1, ..., 0,1 and relations given by the
first two in (1.1); that is, H,(q) can be viewed as a quotient of the group algebra
CB,, of B,.

Any link, L, in S? can be represented by a braid in at least two distinct ways.
Any element of the braid group B, on n strings can be depicted by a diagram
of n strings joining two sets of n points with ‘over-crossings’ and ‘under-crossings’
marked, as in Fig 1. Such a braid # € B,, may be closed by joining corresponding
pairs of points in the two sets, so as to produce a link, denoted by 7 (see Fig 2(a)).
When n is even, another method for producing a link from 3, is to join up adjacent
pairs of points; that is, each set of n points is divided into 7/2 adjacent pairs
which are joined to produce the link denoted by f); (see Fig 2(b)). Indeed, any
systematic procedure for joining up the 2n points bounding a braid provides a
closure. However, the closures # and (3, whose particular significance is mainly
historical, are known as the braid and plait closures, respectively, of the braid 5.
The two-variable Jones polynomial X1 (g, A) of the link I, expressed in the form of
a braid closure 3, may be evaluated in terms of a linear combination of characters
of B, associated with representations which factor through H,(g) (see [J] and §§2
and 5). The one-variable specialisation of Xy, given by A = ¢, may be expressed as
a linear combination of characters of H,(g) evaluated on the image of § € B, in
H,(q), and associated with two-row Young diagrams. Using this fact, a functorial
representation of Vi(¢) = Xr(q,q) was given in [L 2], which used only elementary
topological constructions. This construction will be outlined in §2.
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Figure 1

In §3, the basic representation theory of sl,,, will be recalled. The sl; construc-
tion of §2 will be generalised in §4 to provide the necessary geometric formulation
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Figure 2

of general Iwahori-Hecke algebra representations, which can be compared with the
generalised Tsuchiya-Kanie theory. In §5, the homological approach of [L 1] and
[L 2] is generalised in line with §4, to produce a topological interpretation of the
two-variable Jones polynomial.

2. The sl; theory

Let V; denote the spin-j representation of the Lie algebra sl,. If #, ' and F'
denote the standard generators for sls, with commutators,

[H,F]=2FE, [H,F]= —-2F, [E,F]=H,
then let €2 denote the polarised Casimir operator,
oHOH+2E®F+2FQE). (2.1)

The methods of [TK] produce representations of B, as the monodromy of the system
of differential equations,

of Qi o«
ne = ;Z—f (2.2)

for the vector-valued function f:X,, — W;. In their approach, Tsuchiya & Kanie
construct f as the n-point correlation function,

<v | Dy (ur;21) - Pp(tn; 2n) | Vac> , (2.3)

where @1, ..., ®, are spin-1/> vertex operators, (21,...,2n) € Xp, u1, ..., un € Vi,
|Vac> € Vp and <v| € V,. Such a function can be viewed as a map,
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where (21, ..., z,) is mapped to the functional (2.3) on VIQZ” @V;. Here W, is defined
to be the slz-invariant part of VIQZ" ® Vi (where ¢ is a half-integer), and £;; acts on

W; by acting as € on the ith and ;0 factors in Vl‘i", and as the identity on the
rest. Since the Casimir operator commutes with the action of sly, the action of €
is well-defined on W;. The dimension of W; is the multiplicity of the representation

Vi in sz”, and is given by,
n n
ng = - 3
()= ()

where m = 1/2 — ¢. That is, there is a decomposition,

Vl%n = @(nt‘/t) 3

given by the sls-module structure, in which the sum is over all half-integers ¢,
0<t< "R with 72—t € Z. The Young diagram A,, is defined to have two rows
with n —m and m squares in them. Tt gives rise to a representation, wa, , of H,(q)
of dimension n;.

Theorem 2.1 [TK] The monodromy representation obtained from (2.2) where
f is considered as a W;-valued function on X, is a scaled version of the single
irreducible representation wa, of Hy(q), where m and t are related by /2 —t = m,
while ¢ = exp (27Ti/;g) is not a root of unity.

The monodromy representation given by the Knizhnik-Zamolodchikov
equations (2.2), where f is considered as a Vl‘i"—valued function on X, , consists

of a direct sum over m, of (2t 4+ 1) copies of a scaled version of the representation
wa,, of Hu(q).

The homological approach of [L 1] to these same irreducible representations
7A,, proceeds as follows. There is a natural map X, 4+, — X, given by taking the
first n points, and this map has fibre Yy ,, over w € X,,, which is the configura-
tion space of m points in the punctured complex plane C\w. The fundamental
group 71(Yw m) is a generalised version of the pure braid group on m strands,
P, = m1(Xm). It has generators, denoted fy,, in which all z; are fixed except
for one, say z; = A, which follows a loop with winding number 6., around each
v e {z1,. .., Zm,w1,...,wa }\{A}. The relations satisfied by these generators are
quite complex, but their abelianisations are trivial; i.e. the abelianisation H1(Yw m)
is a free Abelian group. The generators 3y, are defined for all A € {z1,..., 2z} and
w€{zi, ..., 2Zm, w1,...,w,}, where A = z;. Thus, a local coefficient system x on
Yw m may be defined by,

X: 71-1(}/w,m) — C” )

where the images of the generators £, of m1(Yw m) are specified as o if u €
{z,...,zm} and ¢ if g € {wi,...,w,}. The middle-dimensional cohomology
H™(Yw m,x) may now be evaluated, and defines a vector bundle E” over X,,. It is
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clear from the definitions that the natural actions of S,, and S, on X, 4, given by
permuting the points z1,...,2,m and wy, ..., wy also act on E™, and preserve the
fibres. Thus there is a related vector bundle £E™ over X,, with identical fibres to E™
on which a natural action of Sy, is defined. Since homology is homotopy invariant,
there is a natural flat connection defined on E™, and the associated monodromy

representation of m(X,) = B, is given by the following Theorem.

Theorem 2.2 [L 1] The monodromy representation of B,, obtained on the Sy,-
antisymmetric part of H™(Yw m, X) contains, as a subrepresentation on a subspace,
Wy m, the representation ma, of H,(q), whenever o = q=2 and q is not a root of
unity.

In [L 1], the subspace W, , was defined explicitly. Let S,, be the set of m-
tuples a1, ...,am with a; € {zip1,...,2m,w1,...,w,}. For each @ € &, define
an embedding 7,: [0, 1]™ — Y4 n of the hypercube, in which the rth generator is
mapped into a loop in which z, goes around «, with winding number 1. Let 7,
be the subset of S, consisting of m-tuples for which {a;} are distinct elements
of {wy,...,wy}. Then the embedded m-cubes v, (for a € S,,) may be lifted to
embedded m-cubes in any covering of Y ,, and one may consider holomorphic
functions, f, on Y ,, which twist according to the local coefficient system y, while,

f=0, Va € S\Tm -

Yo

Such functions define elements fdzq ... dz,, of the Dolbeault cohomology space
H™%Yw m, x), and the space spanned by such elements defines W, ,,. An explicit
basis for W, ,,, with indexing set 7,,, was constructed in [L 1] and it was also shown
in [I. 1] and [L 3] that an isomorphism could be constructed between the approaches
of Theorems 2.1 and 2.2.

In [L 4], this result was generalised to the case a = ¢~ /4. The associated
homology construction gave rise to a representation of B, which no longer factored
through the quadratic algebra Hy(q). Indeed, the generators o; of B, were mapped
to matrices which possessed (2j + 1) eigenvalues, and had dimension,

(), = (),

where (:1)] is the generalisation of the binomial coefficients (:1) to multinomial

coefficients; (:1)] is the coefficient of 2™ in (1+ 2+ --- + :L‘2‘7)”. These represen-
tations give eigenvalues with multiplicities for the generators o;, which coincide
with those obtained from the approach of [TK] when generalised to slz with higher
representations; see [L 4].

Suppose L is a link, expressed as the plait closure of a braid # € Bsy,. Associate
to the plane C with 2n marked points wy, ..., ws,, the vector space,

W2n,n g Hn(Yw,mv,X) .
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The braid § induces an action 7(3) on Wa, n.

Theorem 2.3 [L 2] The one-variable Jones polynomial of the link I = ﬁ
where 3 € By, may be expressed in the form,

(va [ 7(8) [ va)

where |Un> and <vn| are elements of Wa, , and W;n,n independent of 3. Moreover
|Un> is an element of the one-dimensional subspace of Wy, , which transforms totally
antisymmetrically under the action of Sg x - - - X Sy (n copies) in which each Sy acts
by interchanging adjacent pairs of points.

[. 2] went on to describe Vg in terms of the link L in a functorial way; that
is, it associated to any collection of curves joining a set of 2m points on one plane
to 2n points on a parallel plane, a map W, , — Wam m. The vectors |Un>, <Un|
and the map 7(3) are all special cases of this map (see Figure 3). However, in this
paper, it will only be necessary to note the result in the form of Theorem 2.3. In
85, we will see how Theorem 2.3 can be generalised to give a similar result for the
full Jones polynomial, X7, .

W2m,m

yd -

)

Figure 3

3. Representation theory for sl,,

The Lie group G, of all m x m matrices of determinant 41 has associated Lie
algebra g = sl,,, generated by Ay and E;; for 1 <4, j < m, i # j with commutation
relations,

[A;, Aj] =

[Aia E]k] — amkE]k )
[Eij’Ekl] = ]kEzl ) for 7 ;ﬁ J;
(Eij, Eji) = Ai + Aip + -+ Aja fori < j;

where a8 = 65 — 6ik — 61 j + Sia k. The generator Fj; in the m-dimensional
vector representation of sl,, is given by the m x m elementary matrix with entries
0 everywhere except 1 in position (7, j). The generator A; in this representation is
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given by the diagonal matrix with the only non-zero entries being 1 and —1 in the
ith and i+ 1t positions, respectively.

The Lie algebra g consists of all trace-free m x m matrices. The maximal torus,
T C @G, consists of all diagonal matrices of determinant 1, while the associated Lie
algebra t = LieT" consists of trace-free diagonal matrices, that is, it is generated by
Aq,..., Ap1. The Dynkin diagram for G is shown in Fig 4.

o —— o o o — e (m—1) nodes
Figure 4
Let -
Q= i(m—i)A? + > 2i(m—j)AiA; + > EijEj; . (3.1)
i=1 i<j i£]

It may be easily checked by using the above commutation relations, that € com-
mutes with all E;; (j # k) and all A;. Indeed Q is the Casimir operator for sl,,,
up to a factor. In the special case of m = 2, the expression above for Q reduces to,

A% + 2E19F9 + 2E5, FEq5

while A1, F15 and FE5; correspond to H, F and F' in the notation of §2.

Let V denote the standard vector representation of sl,,. Then Q = (2m —1).7
in this representation. The action of the polarisation of Q,

—

m—

D im—i)A; @ Ai+ Y i(m—j)(Ai @ Aj + A; @ A)+m Y By @ B, (3.2)
i=1 i<j 1£]

on V ®V is given by,
e Qe —me; Qe — e Qej,

whenever 1 < i,7 < m. Hence this action has eigenvalues m—1 and —m—1 with
multiplicities 1/om(m+1) and !/am(m—1), respectively.

Consider the system of differential equations of Knizhnik-Zamolodchikov type:

322 Z z; — z] (3.3)

where f:X,, — V& is a vector-valued holomorphic function, and €;; acts on
V@™ by Q, as given in (3.2), on the it and jth factors, and the identity on the
remaining factors. In [K], it was shown that this system gives rise to a monodromy
representation of B, which factors through the Hecke algebra H,(g¢), up to scaling.
Here, ¢ = 2™ "= Indeed, the representation of B, produced gives an action of o;
on V@ with eigenvalues,

exp (Ti(m—1)/),  —exp (= mi(m+1)/) .
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That is after scaling by —q("bm/m7 one obtains eigenvalues 1 and —gq.

The representation of sl,,, on V®” decomposes into irreducible representations,
ver =PHn, v, (3.4)
r

where n, is the multiplicity with which V;. occurs. The representation of H,(q) on
V@"  defined by the monodromy of (3.3), decomposes into irreducible representa-
tions,

ver = P(dim V;)x, | (3.5)

r

where 7, is an irreducible representation of Hy,(q) and ¢ is assumed not to be a root
of unity. We may therefore index the decomposition (3.5) by Young diagrams with
n squares; it follows, from the work of Kohno [K], that the only Young diagrams
appearing in (3.5) are those with at most m rows. In the next section it will be seen
how such Young diagrams can be used in a natural way to label the decomposition
in (3.4), and in particular, to index irreducible representations of sl,. The two
relations (3.4) and (3.5) are dual: the multiplicities in (3.4) are the dimensions of
the Hecke algebra representations m, of (3.5).

4. Decompositions of representations of sl

Let V denote the (vector) m-dimensional representation of sl,,. Then G = SL,,
acts on V"™ by,

A(v1®"'®vnm):Avl@"'@-Avnm fOfAESLm,

whenever vi,...,Vym € V o C™. The action of the Lie group g = sl,,, on V& is
similarly given.

Lemma 4.1 The sl,,-invariant part of V®"™ has dimension,

_ (mn){(m—=1){(n — D!
Crmn = (m+n—1)

bl

and has a basis which may be indexed by reduced tableax of shape Ay ., the
rectangular Young diagram with m rows of n squares each. Here m!! denotes the
product m!l(m—1)!-.-2!1L

ProoOF: Suppose v € V®"™ is invariant under the action of sl,,. Denote by
v(a1,....Qnm) be the m x -+ - x m (with nm m’s) dimensional tensor specifying the
components of v. Under the action of any A € sl,,, it is necessary that,

sz(ala~-7anm)ea1 Q- QAey, ® - Req,,, (4.1)

r=1 a;'s



In particular applying this with A = A; leads to the fact that v(ay,..., anm)
can only be non-zero if the numbers of occurrences of 7 and ¢+1 in the sequence
a1, ...,0nm are equal for all . That is, the only non-zero components of v come
from those sequences a in which each element of {1,2 ... m} appears exactly n

times. There are, . |
(1)) ()

such sequences «, and thus this provides an upper bound on dim(V®”m)

Next, apply (4.1) with A = E;;. This gives,

0

Do, Bt G Bt Bam) =0,
Br=i

for all 4,5 and 8 = (B1,..., Pam) sequences of integers in {1,2,...,m} containing
n+ 6 — 651 occurrences of the integer k. The sum is over the n+1 positions r in
the sequence 3 corresponding to the integer ¢; and the statement i1s that the sum
of the v’s associated with the n+1 sequences obtained from § by replacing one of
the occurrences of i with j, vanishes. It may be shown that these relations enable
any v(a) to be uniquely expressed as a linear combination of those associated with
a € 8, where S consists of sequences in which the rth occurrences of 1,2,...,m
occur in this order for all » = 1,2,...,n. Any a defines a Young tableau of shape
An m in which the number placed in the 7' square in row i is the position of the
jth occurrence of i in the sequence «. It is seen that o € S if, and only if, the
associated Young diagram tableau is reduced; that is, the entries increase when
scanning along any row from left to right, and along any column from top to bottom.
The dimension of the sl,,-invariant part of V®?™ is thus the order of S, the number
of reduced tableaux of shape A, .

However, the representation theory of the symmetric group S, leads to a
construction of the representation of Sy, associated with Young diagram A, ,, on
a vector space indexed by reduced tableaux of shape A, . Thus the order of § is
exactly the dimension of the representation of S,,, associated with A,, ,,. The hook

length formula may be used to evaluate this. |

In this lemma, the numbers C}, ,, are generalised Catalan numbers, while C 5,
gives the usual Catalan number nlq(i”) and Cpn = Cpom. Let A be a Young
diagram with n squares and at most m rows. Let ly,... [, be the lengths of the

rows of A, with l,, > 1 > ... >0 >0,and ly + -+ L, = n. Set j, = m — I,
for r =1,2,...,m. Then {j,} are multiples of 1/m congruent to ®/m(mod 1), with
sum 0. Since {/.} is a non-decreasing sequence, {jr} is a non-increasing sequence.
Such a Young diagram A gives rise to a term in the decomposition (3.5). In [K], it
was shown that the multiplicity of w4 in (3.5) is,

MG =14 +i—3j) [T Gi—diti=Jj) ma

i>7 1<j<i<m~1 ) . ) .
(m—1)!! - (m—1)!! ~H(Jl+' CA2jit A e +m—i).
h N i=1

(4.2)



We thus expect, from the Weyl duality mentioned at the end of §3, that the irre-
ducible representations of sl,, exist with the above dimensions.

Lemma 4.2 The action of sl,,, on V®" may be decomposed as,

@Nn(j11 . ~7jm—1)v(j17 . ~~1jm—1) 3
Ji

where V(j1,...,Jm-1) is an irreducible representation of sl,,,, defined for any non-
increasing sequence of (m—1) elements of 1/m.Z, congruent to each other mod 1,
and with j1 + -+ jm_2 + 2jm-1 > 0. The decomposition is indexed by those j’s
for which j; = "/m(mod 1), j < %/m. Moreover, the multiplicity N, (j1,..., jm-1)
is the dimension of the representation of S, associated with the Young diagram A
containing "/m + j1 + - + Jmet, ¥/m — Jm-1,- .., %/m — j1 squares in its m rows.

We will now make a few remarks on how this Lemma fits into the classical rep-
resentation theory of the Lie algebras. The maximal torus 7' may be parametrised

as, '
e27r291

e27ri0m_1

e—27l'i(91+“*+9m—1)

and then the system of roots obtained is generated by 61 — s, ... 6,9 — 0,1 and
01+ - +6m_o+260,1. The Weyl group in this case is just S,,, and the generators
(7i41) act on the roots by transposing 6; and 641, the result being a reflection in
the hyperplane on which one of the above roots vanishes. A suitable fundamental

Weyl chamber is bounded by such hyperplanes; for example,
0y >0,> >0, ;
t="r= - ! (4.3)
91+"'+9m—2+29m—1 ZO

Irreducible representations of sl,, are now indexed by points in this region for which,
gi—HH_lEZ, (i:1,2,...,m—2)
01+ -+ 0p_o+20,1 €7Z.

Such points have mf; € Z Vi, while having 61, ..., 8,1 all congruent to each other
modulo 1.

The point (0,...,0) gives rise to the trivial (1-dimensional) representation,
while the vector representation V, is associated with the point (1/m, e 1/m). The
tensor product of two representations may be decomposed into irreducible repre-
sentations, and one obtains a relation analogous to the Clebsch-Gordon relation for
sls. For tensor products with V', this relation 1s,

(1/'m, R 1/m)®(j1, v dme1) = (it 1/m7 R 1/m)@®(js—5rs+ 1/m);n:_%.
= (4.4)
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Thus one obtains a decomposition into m terms. This relationship should be inter-
preted as meaning that the tensor product representation on l.h.s. can be decom-
posed into irreducible representations as given on the r.h.s., when these lie within
the region defined by (4.3). Any term which does not satisfy (4.3) should be omit-
ted. By repeated application of (4.4), Lemma 4.2 may be verified. The dimension
of the representation V(j1,...,jm-1) is given by (4.2). For example, it is easily seen
that when j; = 1/m Y1 <i < m—1, (4.2) reduces to,

((m=2)1tm!) (m=1)1)" =m.

Example Consider the case m = 3. The irreducible representations of sl are
indexed by those j; and j; multiples of 1/3 which are congruent mod 1, with j; > js
and j1+2j3 > 0. The dimension of V(j1, j2) is Ya(j1 —j2+1)(2j1+ 72 +2) (§1 +242+1)
and the multiplicity with which it occurs in the decomposition of the 37-dimensional
representation of slz on V&7 is,

n!(j1 — j2 +1)(241 + j2 + 2)(j1 + 2j2 +1)
(3= )3 =2 +DI(V3+ 1+ j2 + 2
so long as j1 < /3 (see (4.2)).

In Fig. 5, the fundamental Weyl chamber described above is drawn, and the
points associated with irreducible representations of sl3 are pictured for j; < 5/3.
The numbers written next to each such point give the dimensions of these repre-
sentations.

o1 J1—J2=0

Figure 5
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Thus for n = 5, it is seen that V®% may be decomposed as,
6V (2/3, %/3) ® V(%/3, 5/3) ® 5V (2/3, —1/3) © 4V (53, 2/3) ® 5V (%/3, — 113) ,

while the representations V(j1,j2) mentioned here have dimensions 6,21,3,24,15,
respectively, and 6.6 + 1.21 4+ 5.3 +4.24 + 5.15 = 243 = 3°.

5. The general topological construction and the Jones polynomial

Let A be any Young diagram with m rows of lengths l1,0s,...,l1 and n —
ly — Iy — -+ — l,_1 from the bottom row upwards. Define k1, ..., ks, by,
kr =L+ - +1, for 1 <r<m-1
k, =n.
m—1
Let K = k1 + -+ km1 = > (m — r)l,. Then we may consider Yy g with local
r=1

kr m—1

coordinates {zﬁ’") Yerim,

where w = (w1,...,w,). A local coefficient system x
(r)
S

may be placed on Y5 g in such a way that when z;’ follows a loop of winding

number 1 around zg ), the system twists by,

q, if |[r—r'|=1;
g 2, if r=r";
1, if [r—7'|>1.

(r)

It is also necessary to specify that when z; ’ follows a loop of winding number 1
around wj;, the system twists by,

1

q, ifr=m-1.

, if r<m—1;

On the space Y5 g, there is a natural action of Si . There is a natural subgroup
of Sk of the form S, x Sk, x -+ x Sg,__, given by permuting {zﬁ”} while leaving
r invariant. The analogue of Theorem 2.2 involves the part of HX (Y &, x) which
transforms totally antisymmetrically under the action of Sg, x --- x Sg, ,. This is
meaningful since the local system x is invariant under the action of this subgroup

OfSK

Theorem 5.1  The monodromy action of B, on the part of H¥ (Y i, X) trans-
forming totally antisymmetrically under (Sk, X -+ x Sk, _,) contains a large irre-
ducible part which factors through the Hecke algebra H,(q), and is associated with
the Young diagram A.
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Sketch of Proof: This result follows in a similar way to that of Theorem 2.2

in [L 1]. Define an order on the formal symbols {zép) | 1<p<ml<qg<k}
(p)

by z5"’ < z§’") if, and only if, p < r or p = r and ¢ < s, where for convenience,

zﬁ’”) = w; with k,, = n. Just as in §2 where the set S,; indexed a basis for a set of

chains, so one may define a set of maps on formal symbols,
Sk = {g: {zg’“)} — {zgf)} U {w;} ‘ Q<Z£r)) S zg’") Vr,s} .

For any o € Sk, there is an associated embedded K-dimensional hypercube 7, in
Yw m which may be lifted to the cover of Yy ,, associated with the local system
X. The actions of B, and Sg, x --- x Sk, _, < Sk upon these chains, and thereby
also on homology, as the kernel of a suitable boundary map on chains, may be
deduced using the general recurrence relations of [L 1] which relate such actions to
one another, as they progress along a tower,

YW,K _’YW,K—l — T w1 = C\W .

The dual space is also indexed by the sets Sk. Let (a) denote a cochain dual to
Yo It is found that there is a subspace of the space of cochains invariant under the
action of B,, and indexed by the subset 7y of Sk, defined by,

T = {injective a € Sk ‘g(zg’")) c {zz()r+1) | 1<p< k,~+1}

whenever 1 < s<k,and 1 <r < m—l}.

We now give explicit formulae for the S, x ---x S, < Sk totally antisymmetric
part, denoted erl,km_l,...,k17 of the space of cochains just described, along with the
space of boundaries and the action of B, .

It will first be necessary to define some notation. For any set A C N, X will
denote the ordered list of elements of A, in an increasing sequence. Let [ and h
denote the maps,

.S, —NU{0},
h: S, —Hp(q),

defined on the symmetric group S, , by

h(o) =04, ...04, ,
l(o) =k ,
where ¢ € S, can be written as a reduced word (i14; +1)...(éx 4k +1) in the

generators {(ii+1) |1 <i<n—1 Vp}. Tt should be noted that h is well-defined,
but is not a homomorphism, while I(¢) is known as the length of o.

It is convenient to describe the formulae in a recursive manner. Suppose that
Ai CA{L,2,... ki } are sets of order k;, for 1 < i < m—1. We define [A1,..., A]
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for 1 <r < m—1, and the representations, =, of Hg () (0 < r < m—1) on the
spaces of such symbols explicitly by,

Do hl= Y @) (w,_l (h(0)[A1, - - A ], U(X,,)) , (5.1)

o€ Sk,
and,
A, A, ifi,i+1 ¢ Ay;
(@), A = ?Fi’q')'[xff‘?.’,(ifﬁ)[i’;], LG 1?2 i i:: Ziifzi:;;
[Tt () My -y At ], A ifi,i41 € A,

(5.2)
where, in the last line, ¢ denotes the position at which 7 occurs in A,. These recursive
formulae are initialised with g = 1d. It can be checked that the recursive formulae
are well-defined, so that the above definitions of actions of the o; for 1 < i < k.
under 7, extend to a Hecke algebra representation. Then,

(1) the symbol [A1,...; Ap] is a formal combination of symbols (1, ..., fm-1),
where p; is an ordered list of length k;, of elements of {1,2,...,k;y1}. It thus

represents a cochain via the identifications of (u1,..., gma) with @ € 7y in
which g(zgr)) is z;r“), where p is the s element of the list p,;

(2) the space ({[A1,...,Am-1]}) defines a subspace Wy, . of the space of
cochains indexed by Sk, which is antisymmetric under the action of Sg, x - - x

Sk
(3) the monodromy action of B, upon erl,km_l,...,kl defined by the Gauss-Manin

m—1

connection on the vector bundle over )~(n with fibres HK(YWVK, X) is given by
a quotient of the representation m,,_;.

In order to compute the monodromy representation in (3) it is still necessary
to give the form of the cocycles, that is, the dual of the boundaries map, by whose
image we should divide out. This invariant subspace of WT/L,kn_l,...,kl spanned by the
boundaries, can also be simply written down in terms of m, defined in (5.2). Tt is
spanned by,

k7\+1
{ Z q_x{ﬂ'r_l(ax o)A AL A UG Ar s - "/\m_l}} ’ (5:3)

J€Xr

for 1 <r<m—1where A\; C {1,2,... kia} for 1 <i<m—1 while |X;| = k; — 6.
In this formula, x denotes the number of elements of A, less than j. The quotient of
W, . . . k by the space spanned by vectors of the form (5.3) defines a subspace
of cyohorynoylogy, denoted by W,

ety oK1

The proof of the above formulae relies very heavily on the particular form of the
twisting parameters in y. Note for m = 2, w7 1s seen to be the two-row Hecke algebra
representation w4, of Theorem 2.2. It can be seen recursively from the above
explicit form for 7, that it is the irreducible representation of Hy, , (q) associated
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with the r+1-row Young diagram with rows of lengths kg —kr, kr —ky1, ... ka—k1
and k;. The (m—l)th stage gives that m,_1 is the irreducible representation, my,
of Hy(q) associated with A. [ |

The recursive nature of the formulae (5.1) and (5.2) is not essential, and was
only used to ease difficult notation. Tt is interesting to note that (5.2) can be used to

define a repesentation 7’ of Hy(q) on V(%) whenever a representation  of H,(q)
is given, for any n = k. This jacking up procedure is an iterated version of that in
[L 1], using k iterations, and doesn’t seem to come simply from any of the usual
operations used in representation theory. It should also be noted that the local
coefficient system y defined here is identical to that defined in [SV] for the case of
sl,, and the vector representation. Thus, to each node in the Dynkin diagram of
sly, [SV] associates a collection of variables, {zﬁ’") | 1 <'s <k} tothe rth node.
The twistings in x are then defined to be ¢~ where (a,,) is the Cartan matrix
of sl,,.

T‘T‘I

We shall now develop the analogue of the connection with the Jones polynomial
of §2, in this more general case. Let L be a link, expressed as the braid closure of
a braid € B,. In [J] it was seen that the two-variable Jones polynomial of L is,

Xi(,)) = ( Ak )) (VA tr(n(2) (5.4)

V(g -1

where e is the exponent sum of z as a word in the braid group generators o;; and
7 B, — Hp(q) is the natural quotient map. The map tr is the Ocneanu trace

defined on [] H,(q) by,

tr(1) =1,
tr(zo,) = ztr(z),
whenever z is a word 1n o4,...,0,_1. Here z denotes ﬁ. It was also seen in

[J], that the restriction of tr to H,(gq) can be expressed as a linear combination of
characters xa on H,(q) associated with Young diagrams A with n squares. This
explicit relation is,

tr(z) = Z Wal(q, z)xa(z) , (5.5)

where the sum is over all Young diagrams with n squares, and the coeficients

Wa(q, z) are defined by,

¢’z —q¢w
H (m) = Walg,2). (5.6)
(4,4)

The product is over all squares A, indexed by row 7 and column j, whilew = 1—¢q+z
and {(7, j) is the hook length associated with this square.

Now @W/gz = A. The exact form of the expression of Wa(q, z) is unimportant
here; it is only necessary to note that when A = ¢™%, Wy(q,z) = 0 for all Young
diagrams A with more than m rows. Therefore the Jones polynomial X (g, ¢™")
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may be expressed as a combination of characters associated with Young diagrams
of n squares and at most m rows. For example,

XL(q,l):L (m:l)
Xr(g,9) = Vi(q), (m=2)
Xi(g,¢7") = AL(y), (m=0)

where V7, is the one-variable Jones polynomial, and Ay, is the Alexander polynomial.
Note that this last result is obtained in the limit A — ¢7', and that X7,(q, ) has a
(non-essential) singularity at A = ¢~ when defined by (5.4).

The one-variable Jones polynomial may be expressed as in Theorem 2.3, where
the space Wa, , is associated with a slice of L involving 2n points. The space Way, »
is associated with the two-row Young diagram with n squares in each row. It is
natural to suppose that in the generalisation to arbitrary m, this is replaced by the
space on which the representation of H,,,(q) associated with the m-row Young di-
agram Ap, n. By Theorem 5.1, this space is Wy n(m-1),....n- It has dimension Cp,
and may thus be identified with the sl,,-invariant part of V®™" (see Lemma 4.1).
However, such a space can only be defined when there are nm points {w;}, and
yet the slices of L obtained only give 2n points. This problem is resolved by the
following construction.

Suppose L is a link, expressed as the plait closure of a braid f € By,. Put
an orientation on L. Then the orientations induced on the strands of § are such
that any slice of # contains 2n points with n oriented one way and n oriented
the other way. Construct a diagram L* from L as follows. Replace each strand
in § oriented downwards by m—1 parallel strands, while leaving all strands in g
which are oriented upwards. One now has a braid §* with mn strands. The link
L was obtained from ( by plait closure, and in a similar way L* is defined by
performing a ‘generalised plait closure’ to 3%, in which nodes are produced joining
m consecutive strands, as shown in Fig. 6. Then there is a natural action of #* on
W = Wamn(m-1),...n- The generalised plait closure operation gives rise to special

elements of W and W*.

The analogue of Theorem 2.3 can now be stated.

Theorem 5.2 Suppose L is the plait closure of a braid 3 € By,. Then,

XL(qaqm_l) = <Un,m | 71'n,m(ﬂ*) | Un,m> )

where T, is the tensor product of the one-dimensional representation o; —
ql/z(m_l) with the representation of Bpmy, on W = Wy n(m-1),...n, and <vn7m| and
|Un7m> are elements of W* and W respectively, dependent only on m and n (inde-

pendent of §*). Moreover |'un7m> transforms totally antisymmetrically under the
natural action of Hp,(q) x -+ x Hy,(q) upon W.
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PROOF: In this Theorem the action of B,, x --- X By, on W is given by that
of the subgroup of B,,, in which only those points within the same cluster of m
points may be permuted amongst each other. These clusters are determined by the
2n nodes introduced in L*. The part of W transforming totally antisymmetrically
under the action of Hy,(q) X -+ x Hy(q) is one-dimensional, just as for the case
m = 2. Indeed, W/ (=1, ., has dimension (mn)!/(n!)™ and is spanned by
[M, ..., Ame1] with |X;]| = in, /\ C {1,2,...,(i+1)n} for 1 <i < m—1. Represent
such a term by an array of marks built up, row by row, on top of each other, as
follows. The ‘ground’ row consists of mn positions, labelled 1, ..., mn, in which a
mark 1s placed in a position whenever the position’s label lies in A,,_1. The second
row is placed vertically above the first, marks only being placed in those (m—1)n
columns above marks already present, with a mark appearing in the jth allowed
position whenever j € A, 5. Continuing in this way results in 1/smn(m—1) marks
placed in m—1 rows. There are mn columns, precisely n having each of the heights
0,1,...,m—1. We will refer to this diagram as the picture of [Ay,..., Ay_1]. For
n = 1, the permutation defined by the heights establishes a correspondence between
w! 1 and CS,, considered as a vector space. In this way,

m,m—1,...,
Z (_q)l(a) o,
defines an element, vq ,, of W), mel, 1 and it is this element that we shall associate
with a single node |v1 ). Then |7un m) is just a tensor product of such terms, applied
to the n sets of m w’s, each with m—1 z(™1)s . two z(2)’s and one z(1)’s attached;
that is, the image of v?iz1 under the natural map ern,m—l,...,1®n — Win (mt)n,n
in which the new picture is obtained by placing n pictures in a line one after the
other. Similarly, the associated ‘bra vector’, (v, m| is, up to scaling, specified by

the element of W/ m—1,.1 glven by,

o — sgn(o) = (=1)!7) .

N

Figure 6

The proof of the result parallels that of Theorem 2.3, as given in [L2]. Firstly,
the construction of L* from L given above, is extended from that for links expressed
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as plait closures to those given by arbitrary link diagrams. Thus, suppose that D is
an oriented link diagram in the plane, on which a height function is given, such that
critical points of the height function on D do not occur at double points. Define D*
to be the unoriented diagram obtained from D by replacing each of the sections of
D between consecutive critical points, on which the height function is decreasing,
by m—1 parallel strands. Thus D* may be subdivided by slices defined by level sets
of the height function, into elemental sections, namely vertices in which m strands
either emerge or enter, and braids, each deriving from the elemental sections, cup,
cap and braid in a subdivision of D.

Let 7 denote the subcategory of the category of oriented tangles defined by
restricting to objects with equal numbers of upwardly and downwardly oriented
strands. The objects in 7 consist of pairs (n,o), where n € N U {0} and ¢ is a
sequence of 2n signs, precisely n of them being ‘+’. Next define a functor §: 7 — V
as folows, where V denotes the category of vector spaces. For any object (n,0) € T
there is associated a subdivision of mn objects into 2n clumps of sizes 1 and m—1
as determined by o. One may now define,

ey

0(71,0') = W(n,m) g an,n(m—l)

to be the subspace consisting of those elements which transform totally antisymmet-
rically under the action of the subgroup Bp1 X -+ X Bp_y (n times) of By, gener-
ated by those o;’s permuting pairs of strands within the same clump. Morphisms, 3,

of braid type transform according to () = x(3*), where 8 € Morph ((n, o), (n, T))
becomes 3* € Bpn, under the replicating procedure and 7 is the representation
of Bpm on W(n,m) of Theorem 5.1, scaled by q1/2(m_1) = a, so that #(g)v =
oze(g)ﬂ'An)m(g)v for g € By, of exponent sum e(g). Thus 7 is the restriction of 7, n

to W(n,m).

For any consecutive set of m strands, there is associated a subalgebra, H,,(g),
of Hm(n_H)(q) generated by o;’s associated with the strands in the given cluster.
The part of W(m,n+1) transforming totally antisymmetrically under this action
of Hm(q) gives a representation of Hp,p(g) isomorphic to that naturally defined on
W(m,n). The image of a cup morphism in 7, corresponding to the diagram D* in
which m strands emerge from a vertex is defined, up to scaling, to be this inclusion
map. Explicitly, if there are ¢ strands to the left of the insertion, the map is,

W(m,n) — W(m,n+1),
A= A ] — g (=) 3 (=) eu(M)]

oc€ES,

where o4(A) € T(nfi)m,...ny1 18 such that its picture is obtained from that of A €
T(nm,...n) by inserting m new columns immediately after the #th column, with marks
placed in these columns according to o, as in the description of vy ,, above. Here

7¢(A) denotes the number of marks to the left of column ¢, in the picture of A.

The image of a cap morphism with ¢ strands to the left of the m strands defining
the vertex, is similarly defined to be the map W(m,n) — W (m,n—1) in which
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[A] maps to O when the heights of the columns ¢t + 1,...,¢ 4+ m in the picture of A
are not all distinct, and otherwise to,

A (DD (1 )

Here o € S, is determined by the permutation of {0, 1, ..., m—1} giving the heights
of columns ¢+ 1,...,¢4+ m, and u has picture obtained from that of A by removing
these columns. Also,

m—1

Am = (VO™ [TA+a+--+07),

r=1

this particular value arising from the relations,

a—l Z ql(0)+s—1 — m —a Z (o) s+1

TESm cE€Sm
o(m)=s s(1)=s

valid for arbitrary s = 1,..., m.

The category 7 is generated by braid, cup and cap morphisms and therefore the
above definitions fix the images under # of arbitrary elements of 7. The relations
satisfied by these generators have simple local forms (see [Y] and [T]). The scalings
involved above in the images of elementary morphisms in 7, have been chosen in
such a way that # defines a functor; this is directly verified by checking that the
generating relations are preserved, in a way similar to that for the special case of
m = 2 to be found in [L2].

The image of the empty object in 7 under 6 is the one-dimensional vector space
C. Thus for any link L, 6(L):C — C is given by multiplication by a quantity
which is an invariant of L. To identify this invariant of links, observe that since 7 1s
a multiple of a restriction of the Hecke algebra mp f(L) satisfies a skein relation.

Indeed,

n,m?

(m(o;) — a)(w(os) + qa) = 0,

for 1 < i < mn — 1 where a = q1/2(m_1). Suppose that Ly, Lo, L_ are three
links, identical away from a single crossing, that crossing appearing in L4, L_ with
positive and negative orientations, respectively, while being split in Ly. Then,

0(Ly) + (g — Dab(Lo) — ¢™0(L_) =0 .

This identifies the invariant as B.X1(g,¢™ ") where B = f(unknot). Since an
unknot may be obtained as the composition of cup and cap morphisms,

B= A—lz VO g+ +a ‘/;_f :

which is the value of X (g,¢™ ") on the two component unlink.

19



Finally observe that if L and 3 are as in the theorem, then 6(L) = (v, m |
(%) | ”Z,m) where (v, m | and | ”Z,m) are the images under # of the closure
sections of L*| as illustrated in Figure 6. |

The result of Theorem 5.2 gives X1(g,¢™ ") as a matrix element of m, ,(3*).
The action of 3* on W may be given alternatively as an action of 3 on a subspace
of HK(YWIVK, X') where w € Xs,, and the local coefficient system x’ is defined to

(r)

have twists of z;'/ around w} given by,

~

q, if r = m—1, and w; is a strand with upwards orientation;

~

m-1 if r = m—1, and w! is a strand with downwards orientation;

)

N

1, otherwise.

All the other twistings are defined in the same way as for x. This interpretation of
X1 puts ¢ and A (the two variables in this Jones polynomial) on an almost equal
footing, as twistings around parts of L with upward and downward orientations.
Note that this explains why in the special case A = ¢! it is especially casy to deal
with; for, in this case the local coefficient system is given by a twisting of ¢ around
upward strands and ¢~ around downward strands. This may be specified as a local
coefficent system on S3\ I, namely, precisely the system used in the topological
description of the Alexander polynomial Ar(q) = Xr(¢,¢7") (see [L 1],§4.1 for
more details).

Suppose that L is the braid closure of the braid v € B,. Then L* will be
obtained fron v* = v ® id € B, by joining up the nm strands at the two ends
of this braid, into n clumps, the r*® clump joining the rth strand together with the
m—1 consecutive strands numbered from nm—r(m—1)+1 tonm—(r—1)(m—1) (see
Fig. 7). We then obtain, by the proof of Theorem 5.2, an expression for Xy, (g, ¢™ ")
as a matrix element (w, | 7(y*) | W m) Where w, ,, € W is associated with the
closing method employed. Thus 7 is the same as in Theorem 5.2, while w,, ,, differs
from v, m, although it still depends only upon n and m. However, the representation
TAp.m OF H,m(gq) in Theorem 5.2 is associated with the Young diagram A, . It
induces a representation of H,(q) x --- x Hp(q) (m copies) which is no longer
irreducible. Indeed, it has a direct sum decomposition into terms of the form,

TA) & - Q@ Tp(m)

where the Young diagrams A(¥) each have n squares and at most m rows, and form
a partition of A, . Hence w(y*) may be decomposed as a direct sum of terms
T (7) ® id, and its matrix element leads to a linear combination of the traces of
7wa(7y) as A ranges over all Young diagrams with n squares and at most m rows,

namely, that given by (5.4), (5.5) and (5.6).

The monodromy representation of B, obtained from the system (3.3) factors
through H,(q) [K] and decomposes into a direct sum over j’s of dim V(j1, ..., jm-1)
copies of a Hecke algebra representation of dimension Ny, (j1,. .., jm-); for details
see Lemma 4.2. This gives the generalised version of the Pimsner-Popa-Temperley-
Lieb representation obtained for m = 2. Irreducible representations of H,(q) are
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U

Figure 7

obtained when we consider that part of the monodromy representation coming from
(3.3), where f is thought of as a vector-valued function f: X,, — (V®" @ Vj)o with
values in that part of V®" transforming according to Vj under the action of sl,,.
This is analogous to Theorem 2.1. The coefficients of 75 in Xz (g,¢™ ") (namely,
Wy in (5.6)) may thus be viewed as a sum of N,(j1,...,Jm-1) factors, giving the
weights of the different copies of Vj appearing in the weighted trace of the full
representation of H,(g) on V&,

We conclude this section with the general construction of the vector spaces W
to be associated with a slice of the link, in the topological field theory associated
with a general Lie algebra, g. It is well known that given g, an invariant can be
computed for any oriented link whose components are endowed with representations
of g. This is embodied in [RT] in its “quantised” form, in terms of modular Hopf
algebras and their representations, and in [Wi], [A] and [S] in the topological field
theory context.

Let d be the rank of g, and ay, ..., ag be simple roots. Suppose that L is an
oriented link in S? whose components are labelled with representations of g. A slice
of L gives an even number of points, w; € C, for ¢ = 1,2,...,2n, each suitably
labelled with representations, p;, of g, and orientations 8; € {#1}. Let A; be the
weight of the representations p; if 3; = +1, and of p; if §; = —1. Define {k,} by,

d

> kr(ar,a,) = ZQS(AZ») :

r=1

for1 <s<d. Set K = Zle kr, and consider the fibration of X 42, over Xy, with
fibre Y i over w € Xg,. Subdivide the K local coordinates in Yw i into d sets of
k, points, for 1 < r < d. Define an Abelian local system x on Y x for which the
loop with zz(,’”) going around zés) has twisting g~ (@) while a loop in which zf(,r)
goes around w; has twisting ¢®(*1) (see also [SV]). Then just as in Theorem 5.1,
there is a subspace W of the (Sk, x --- X Si,) totally antisymmetric part of the

middle-dimensional cohomology H¥ (Y &, X).
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If ¢ is a root of unity of sufficiently high order, it is claimed that there is a
correspondence between constructions of [A] and [S] of a functor, and the above
construction. The vector space Z(X) associated with a slice of L, corresponds to
the above vector space, W, while the image of a braid-like tangle is a morphism cor-
responding to the map between the W vector spaces given by the parallel transport
associated with the Gauss-Manin connection.

6. Further remarks

In this paper we have seen how X (¢, A) may be re-interpreted using methods
similar to those in [L 2]. It is possible to produce a completely functorial description
of X1.(q,A) along the lines of [L. 2], where one associates the space Wim n(m-1),...,
to the slice of L* with nm points, and defines maps between such spaces in which
n increases or decreases by 1. Here L* is defined generally along similar lines to §5,
by first choosing some unit vector and then transforming all ‘downward’ sections of
L into m—1 parallel copies, and all turning points (with respect to the chosen unit
vector) into nodes with degree m (see Fig. 8 below). This should be compared with
the functorial approach of E. Witten in [Wi], where a topological quantum field
theory with finite dimensional Hilbert space (the analogue of an,n(m—l),...,n) was
employed. See also [S]. The relationship between this form of parallel construction
and X1, is seen from [R], [KR] to be due to the fact that the sly,-invariant part of
V®™ is one-dimensional i.e. V™ contains precisely one copy of V.

(8-

Figure 8

n

Note that the parallel construction involved here, for any m > 2 requires the
the introduction of a framing (in this case, a vertical framing was used); cf. [Wi],
where framings also enter.

One may construct the homology HK(YWVK, X) in terms of rational holomor-
phic forms with appropriate twisting. The subrepresentation of Theorem 5.1 can
now be realised on a set of differential forms f - wg, where wq is a suitable holo-
morphic differential on Yy g, of degree K, twisting with local system x, and f is a
holomorphic single-valued function on Y5 g. It can be shown that the functions f
are spanned by the symmetrisations of a product,

fo- TT (29 = a(z)) 7,

r,8
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in which @ € S¢. Note that the a’s employed here are precisely those used in
the last section to characterise chains. The cohomology may be calculated as a
quotient of a vector space whose basis is indexed by the above a’s, and the relations
existing between such elements are fairly complex, having a strong combinatorial
structure. Finally, note that an isomorphism exists between the constructions in [K]
and [TK], and the topological construction of Theorem 5.1. According to this, 7 in
Theorem 5.2 is given by the monodromy of a system of equations of the form (3.3),
in which f is a vector-valued function on X,,,, with values in the sl,,-invariant
part of V"™ Lemma 4.1 provides the bridge between this interpretation and the
topological approach described above.

When g is a root of unity of the form e*"7* some integer k < n, the topological
constructions described in §5 give rise to a space, W, of dimension larger than
that in the case of generic ¢, on which the associated representations are thus not
irreducible. However, in this case Wenzl [We] has shown that semi-simpleirreducible
representations ma of Hy,(q) can still be defined, although their dimensions are now
less than those of the associated symmetric group representations, and they are only
defined for special types of Young diagram, A. In [TK], a set of algebraic relations
were obtained, for the case of sly, dependent on | = k — 2 € N, which together
with the differential equations (2.2) give rise to those irreducible representations
constructed by Wenzl associated with two-row Young diagrams. In a similar way,
one should replace the vector space W, of Theorem 5.2 by a subspace obtained by
imposing a set of extra conditions, see [FSV], analogous to the algebraic relations of
[TK]. The vector spaces so obtained should be isomorphic to the finite dimensional
Hilbert spaces of [Wi], in the case of arbitrary Lie algebras.

Note that the Hilbert spaces in [Wi] are only defined when ¢ is a primitive
root of unity, €”"""/=. However, when « is sufficiently large (in particular, > n), its
dimension is independent of «, and it is isomorphic to W in Theorem 5.2. It 1s only
for smaller values of x that truncation of the Hilbert spaces occurs (c.f. [V]).
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