An Introduction to Topological Field Theory !

R.J. Lawrence 2

Department of Mathematics
University of Michigan
Ann Arbor, Michigan

Abstract. A topological quantum field theory (TQFT) is an, almost, metric
independent quantum field theory that gives rise to topological invariants of the
background manifold. The most well known example of a 3-dimensional TQFT
is Chern-Simons-Witten theory, in which the expectation value of an observable,
obtained as the product of the Wilson loops associated with a link, is the gen-
eralised Jones invariant of the link. Unfortunately the form for the invariants
obtained by this procedure is that of an integral over an infinite dimensional
space on which, for a mathematician, a measure is not rigorously defined. Var-
ious ways of avoiding this difficulty have been developed. These fall into two
main categories, namely, formal manipulations of Witten’s path integral into a
form which can then be rigorously defined, and axiomatic encapsulations of the
properties of TQFTs. In these notes we will be concerned with the second path,
demonstrating how complex categorical and algebraic structures appear, from
apparently simple geometry. As will be seen in the lecture, these structures are
related to the quantum group structures which arise in other approaches.

1: INTRODUCTION

In these notes an elementary introduction to some of the basic algebraic struc-
tures arising in topological field theory (TFT) will be given. The case of two dimen-
sional topological field theories will be covered in detail. Although the classification
of manifolds in two dimensions is very simple, the analysis of possible theories is
yet interesting because when correctly interpreted, it contains in a simple form all
the main features which arise in higher dimensional theories. In §2, the basic ax-
ioms for TFTs will be formulated, stimulated by structures which arise in Quantum
Field Theory and Statistical Mechanics. The associated geometrically motivated
structure of a domain category is used in §2.4 to express a TFT as a functor from
a domain category of manifolds to a domain category of vector spaces. This leads
to notions of TFTs on manifolds endowed with various additional structures, while
in §2.5 a technique for generating a TFT over a class of such manifolds, from one
on manifolds with even more additional structure, is given. In §3, the process of
§2 is seen in action, examples being generated of TFTs, both over the collection of
topological manifolds and the collection of triangulated manifolds.

The extension of these ideas to higher dimensions are briefly discussed in §4
and §5 where general notions of higher category structure and extended topological
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field theories (ETFTs) are introduced. Some relationships with constructions of
invariants of links and 3-manifolds are also mentioned.

Since the field is a huge and rapidly increasing one, these notes necessarily
leave many loose ends; however, it is hoped that they will give the reader a feel for
the origins of some of the structures naturally arising in TFT.

2: FORMULATION OF AXIOMS

2.1 Motivation

In classical mechanics, there are two ways of describing the possible evolutions
of a system. The first is to specify the equations of motion, which will determine
the state of a system at any time (as a point in phase space) once it is given at some
initial time; this is known as the Hamiltonian approach. The second description
proceeds on the assumption that the worldline followed is one which minimises a
certain functional, known as the action. This minimisation takes place over all
possible paths in the configuration space, beginning and ending at given points,
and is known as the Lagrangian approach. In quantum theory, the phase space is
replaced by a Hilbert space of possible states, and dynamical variables are replaced
by observables, which are operators on the Hilbert space and have expectation
values. In a quantum field theory, the states of the system studied are specified
by fields on the background manifold. The Hamiltonian approach leads to the
consideration of operators on Hilbert space which describe the evolution of the
state of the system. In the Lagrangian approach, the basic object which arises is
the partition function of the theory which can be expressed as a Feynman integral.

As for any quantum theory, the ouput from a quantum field theory is a collec-
tion of expectation values and correlation functions of observables. A topological
field theory is a theory in which the output is unchanged under a variation of the
metric on the background manifold, so that expectation values of observables must
give rise to topological invariants of the manifold.

The first interesting topological field theory was introduced by Witten in 1988,
see [W].? The partition function of the theory supplies invariants of 3-dimensional
manifolds in the form of a Feynman integral,

Z(M) = / eI ApY (2.1.1)
A

where CS(A) = ﬁ fM<A,dA + 13[A, A]) is the Chern-Simons action.* The data
for this theory consists of an integer k, called the level, and a Lie group, G. Here

3 The stationary phase approximation to Chern—Simons theory had already been investigated by

A.S. Schwarz, a decade earlier.
Here, A is a g—valued 1-form on M, [-,-] is the Lie bracket and (-,-) is an invariant bilinear form
on g.
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the integral for Z(M) takes place over a quotient of the space of all G—connections
on a principal G-bundle over M, that is, on g—valued 1-forms, A, on M. From
the same field theory, Witten also generated invariants, Z(M, L), of pairs (M, L),
where L is a link embedded in M, as the expectation value of a suitable observable
known as a Wilson loop. Additional data of a choice of representation, p;, of G for
each component of L is needed, so that,

Z(M,L) = / e'kCS(A) H tr,, (P exp% Ads) DA, (2.1.2)
L; L

A

where the product is over all components L; of L. The additional term in (2.1.2),
which is associated with a component of the link L, may be geometrically expressed
as the trace of the holonomy of the connection A around the component.

In the simplest case of G = SL(2), these Witten invariants for links in $?, all of
whose components are labelled by the 2-dimensional representation, reproduce the
one-variable Jones’ polynomial, an invariant which was discovered in 1984, see [J1].
When G = SL(m) and the components are all labelled by the vector representa-
tion, they generate a slice of the 2-variable HOMFLY polynomial, see [HOMFLY],
[PT] and [J2]. These invariants were originally constructed combinatorially from
presentations of links, either in the form of two—dimensional projections with over
and under crossings, or as closures of braids. These are somewhat unsatisfactory
formulations since the invariance of the result is not immediately evident. On the
other hand, Witten’s functional integral can be fairly easily seen, by a formal proof,
to define a topological invariant. However, it has the disadvantage of not being
defined rigorously because it is unclear what measure, DA, may be placed on the
infinite dimensional space A. Various ways of avoiding this difficulty by formal ma-
nipulations of Witten’s path integral into a form which can be rigorously defined,
have been developed.

In these notes, however, our basic philosophy is as follows. We wish to for-
get about the physical origins of these theories and attempt to make sense of the
functional integral form of Z. Instead of pusuing the physical connections, we try
to extract properties which could be expected to be satisfied by expressions of the
form of (2.1.1), if indeed any reasonable meaning could be attached to them. These
properties then become our axioms and we attempt to find solutions to this system
of axioms by using methods which may be completely unrelated to the physical
origins of (2.1.1).

From our perspective, the output of a theory is a topological invariant, Z (M),
defined for objects M which, for the moment, we think of as arbitrary (d + 1)-
dimensional oriented manifolds. In practice, objects will often be endowed with
extra information, such as a triangulation, a framing or a metric, and indeed, it is
not even necessary for M to have any geometric interpretation so long as there are
certain formal operations defined, such as boundary and union.
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To motivate the initial set of axioms for TFT, we will start by investigating
expressions which look formally similar to (2.1.1). Although we have it in mind that
Z(M) will depend only on the structures inherent in M, it may be easier to define
a scalar from M when it is endowed with extra structure. One way of obtaining a
quantity independent of this structure then, is to sum the values obtained over all

such structures. Thus we suppose that Z(M) can be expressed in the form,

Z(M) = o War(A)DA . (2.1.3)

Here A(M) represents the possible set of extra data on M; Wy (A) is a scalar (the
weight) computed from M and A € A; while DA represents a measure on A(M).
If A(M) happens to be a discrete set then the integral becomes a summation and

the measure turns into a weighting.

Suppose further that the allowed additional data that is placed on M has the

following properties.

(i) (Restriction) Data may be restricted to submanifolds in a well-defined way, so
that there are maps ry a: A(M) — A(N) for N C M with the property that

TPNOTNM =TPM-

(ii) (Pasting) Data on two submanifolds M; and M, may be pasted together so
long as it matches on the intersection. Thus if M is split into two parts (see
Figure 1), My and Ms, by a codimension 1 submanifold, ¥, we are supposing
that for any A; € A(M;) (¢« = 1,2) with ry ar, (A1) = ry, v, (A2), there exists a
unique A € A(M) such that A; = ra; m(A) for i =1, 2.

(iii) (Multiplicativity) The weight can be defined on manifolds with boundary and
is multiplicative under pasting. That is, in the situation of (ii), W (A4) =
W, (Al )WM2 (AQ)

M

Figure 1: Splitting of a closed manifold
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Given boundary data Ay € A(X), for any manifold M whose boundary contains X,
we let A(M, Ag) C A(M), denote the set of all data on M which restricts to Ag on
Y. The above properties of 4 and S enable Z(M) to be written as,

Z(M)= Y Z(My,Aq)Z(M,, Ao), (2.1.4)
Ag€A(Y)

where Z(M;, Ag) is the part of the sum in (2.1.3) consisting of those terms for which
A € A(M;, Ag). Equation (2.1.4) may be rewritten as,

Z(M) =(Z(My) | Z(My)),

a contraction of two vectors (Z (M) ‘ and ‘ Z(M3)) which lie in dual vector spaces,
whose bases are indexed by A(X).

Expressions of the form (2.1.3) arise in many areas. In statistical mechanics,
A(M) will represent a set of possible states of the system and W (A) will be the
relative weight of that state, e FM(A)/kT where Fpr(A) is the energy associated
with A, T is the temperature and k is Boltzmann’s constant. In field theory, A(M)
represents a set of possible fields on M and Wy (A) = €4 where S(A) represents
the action.” The physical meaning of the conditions (i)-(iii) above is locality of the
theory. Thus for a statistical mechanical model on a lattice, it is the requirement
that states may be specified by local pieces of data (e.g. spins at vertices), while
the energy of a state may be expressed as the sum of local (nearest-neighbour)
interaction energies.

2.2 Axioms

The above discussion motivates the following initial definition of a (d + 1)—
dimensional TFT, which is due to Atiyah and was modelled on Segal’s axioms for
Conformal Field Theory. The theory should assign,

(a) toevery closed d-dimensional manifold, ¥, a vector space which will be denoted

by Z(X);
(b) to every (d + 1)—dimensional manifold, M, a vector Z(M) € Z(0M).

Here the manifolds may be endowed with additional structure and/or constraints;
it is assumed that all manifolds are oriented. We generally use the symbols M,
Y and C with appropriate suffices to refer to manifolds of codimension 0,1 and 2
with respect to the dimension of the theory under consideration (here d+1). These
quantities should satisfy the axioms below.

Al. (VACUUM) Z(¢) = C.

5 Usually A(M) is actually a quotient space by the action of an appropriate gauge group. At the
level of the present discussion we ignore such complications.
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A2. (DUALITY) Z(S*) = Z(S)*.
A3. (MULTIPLICATIVITY) Z(S; I 5,) = Z(51) ® Z(5s).
A3'. (GLUING)
(a) Z(My I My) = Z(My) ®@ Z(Ms) as elements of Z(0M;) ® Z(0My).

(b) If M is a manifold with OM = ¥, II ¥ I ¥* while Ug M is the manifold
obtained from M by identifying the boundary components ¥ and ¥*, then

Z(UsM) = ozsy Z(M)

where o7sy: Z(X1) @ Z(2) ® Z(X)* — Z(X1) is the natural contraction
(%)

map on the second and third factors.

Un M
M
21 Z]1
Figure 2: Gluing along a boundary component
Remark 2.2.1
(i) Topological field theories may be defined over any ring, replacing C in axiom
Al.

(ii) In axiom A2, the symbol ‘*’ is used in two different ways on the two sides of
the equation. On the left hand side it refers to the operation of reversing the
orientation, while on the right hand side it i1s that of taking the dual on vector
spaces.

(iii) As a consequence of axioms A2 and A3, if M, ¥, and 3, satisfy OM = 7113,
then the theory supplies

Z(M)e Z(OM)=Z(21 11 %;) = Z(51)" @ Z(X2),

which may be alternatively viewed as a map Z(3;) — Z(X3), so that the
theory associates linear maps to cobordisms.
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(iv) With the notation of the previous remark, one may view M alternatively as a
cobordism from ¥} to 3. The associated map Z(X2)* — Z(X1)* is now the
adjoint of the map Z (M) of the previous remark.

(v) Suppose that M; and M, are cobordisms from ¥; to ¥ and from 3 to X,
respectively. Using axioms A3'(a),(b) it follows that

Z(M) = Z(My) 0 Z(My): Z(S1) — Z(5s),

where M is obtained by gluing M; and M, along ¥. For this reason, axiom
A3’ is often referred to as the associativity axiom.

Y

Figure 3: Gluing cobordisms

It is necessary to introduce a further subtlety since it is not really possible to
decide when two manifolds are actually equal, the most that exists is an isomorphism
between them. The same is true for vector spaces and so we arrive at the following
additional axioms.

AO0. (NATURALITY) Any isomorphism f:¥ — ¥’ of codimension—1 surfaces in-
duces an isomorphism Z(f): Z(¥) — Z(¥') in such a way that Z(f')oZ(f) =
Z(f o f) for all f:3" — X",

A0'. (NATURALITY) For any isomorphism f: M — M’ the restriction to oM
gives an induced isomorphism for which Z(M') = Z(f|om)Z(M).

Remark 2.2.2

(i) In axioms A0 and AQ’, the isomorphisms, f, are to be thought of as topological
equivalences of manifolds, while Z(f) is an isomorphism of vector spaces.

(ii) The same symbol, Z, is here being used to specify the object assigned by the
theory to several different object types at the level of manifolds. Thus Z(x)
is a vector space, vector, or map according as * is a codimension—1 object,
codimension—0 object or morphism specifying the equivalence of codimension—
1 objects.
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(iii) In Remark 2.2.1(iii), the map Z (M) also depends upon a choice of isomorphism
from OM to X7 II ¥,. Strictly speaking it is therefore necessary to introduce
extra isomorphisms in place of equalities in axioms A1, A2, A3 and A3’.

In some theories, Z(X) may possess in addition a *— structure, such as when it
is a Hilbert space. In such a situation there is a natural identification of Z(X) with
its dual and it then makes sense to consider a further axiom.

A2'. (CONJUGACY) Z(M*) = Z(M)* where Z(M*) € Z(OM)* is identified with
an element of Z(X%).

Those axioms whose labels differ only by the addition of a prime are very simi-
lar, the main difference being in the dimension of the base objects — codimension—0
in those axioms with primed label as opposed to codimension—1 in the other axiom.
The similarities will become clearer in §2.4 and are extended in §5.

2.3 Consequences

The axioms given above, while they do not determine the theory, Z., do impose
quite strong conditions on the structure of Z(M) and Z(X¥). Before moving on
to a reformulation of the axioms in terms of categories, we give three immediate
consequences of the axioms.

Firstly, if it is possible to cut up a manifold M into ‘elementary pieces’ by
closed submanifolds of codimension—1, then the axioms may be used to evaluate
Z(M) in terms of the vectors associated with those pieces. This allows theories to
be specified completely by a small number of pieces of data, which, as we will see
in the next section, may be thought of as constituting an algebraic structure, in an
appropriate sense.

Suppose next that ¥ is a codimension—1 object. By Remark 2.2.1(iii), the
cylinder ¥ x I (I = [0,1]) supplies a map ix: Z(X) — Z(X). The result of gluing
together two copies of this cylinder along a common boundary, is isomorphic to the
original cylinder and therefore, by axiom A3’,

Iy 0ly =1y .

Thus iy, is an idempotent, whose image defines a subspace Z'(X) of Z(X). According
to Remark 2.2.1(iv), i+ = (1n)* and so Z/(¥*) = Z/(¥)*. By axiom A3, iy, 1n, =
iy, ® ix,, from which it follows that Z'(X; II £5) = Z/(%;) ® Z'(X2). For any
manifold, M, it follows from axiom A3'(b), by gluing a cylinder on dM onto M,
that,

ionr (Z(M)) = Z(M) € Z(dM) .

We conclude that Z(M) € Z'(¥) and therefore that the smaller theory Z' defined
with Z'(M) = Z(M) also satisfies the axioms for a TFT. As a result, in the classi-
fication of TFTs we may assume, without loss of generality, that Z'(X) = Z(X) for
all ¥. Hence we assume throughout the rest of these notes that iz = idz(y).
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Finally, suppose that we apply axiom A3'(b) to the cylinder ¥ x I. The result
of identifying the two copies of ¥ in the boundary is ¥ x S'. Thus Z(X x S') €
Z(Q) = C is obtained as the trace of iy, that is,

Z(T x §') = dim Z(3) .

2.4 Interpretation using categories

A neat way of encapsulating the axioms for TFTs is in terms of categories. For
a nice account of category theory, see [M]. So that the reader who is unfamiliar with
the notion of a category can still follow these notes, we give here the definition of a
category and some elementary examples which will be relevant to us.

Definition 2.4.1 By a category, C, is meant a set of objects, denoted Obj (C) along
with, for each pair of objects A, B € Obj(C), a set, Morph (A, B), of morphisms
and the following additional structures.

(a) For each A € Obj(C), an element ids € Morph (A, A), called the identity
morphism on the object A.

(b) For each triple A, B,C € Obj(C), a map,
o: Morph (B, C) x Morph (A, B) — Morph (A, C)

called composition, which is such that idgof = f = foid4 and fo(goh) = (fog)oh,
the equalities holding for all objects and morphisms for which both sides make sense.

We will often use the same notation for the set of objects in a category and
the category itself, so that ‘a € C’ means ‘a € Obj(C)’. Also, when it is clear in
which category we are working, we will drop the suffix to Morph. If A and B are
two objects in the category C, it is sometimes convenient, and easier on the reader,

to represent the fact that f € Morph (4, B) by f: A — B.

Example 2.4.2 If G is a group, then one may construct a category with a
one-element set of objects, for which the set of morphisms from this object to itself
is just G, the identity and multiplication operations in G providing the requisite
structures in Definition 2.4.1(a) and (b), respectively. Observe that only the identity
and associativity properties of G have been used, so that this construction works

equally well for any monoid.
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Example 2.4.3 Another way of viewing a category is as a monoid structure in
which the multiplication map is only defined on a subset of the set of all pairs of
elements. Thus, if C is a category, let C° = Obj(C) and C' denote the (disjoint)
union of the sets {A} x {B} x Morph (A, B) over all pairs of objects A and B. Then
there are defined two maps s,:C! — CV, called the source and target maps,
under which the images of (A, B, f) are A and B, respectively. Elements a,b € C!
can be composed so long as s(a) = t(b). The identity morphism provides a map
i:C° — C" for which soi = toi = idgo, while part (b) of Definition 2.4.1 are
identity and associativity constraints.

Example 2.4.4 On any set S, there are two trivial category structures whose
object set is S. For the first, Morph (A, B) is a one-element set for all A, B € S,
while for the second Morph (A, B) is empty, unless A = B, when it contains just
one element. The former category will be denoted ALLg.

Example 2.4.5 The category of vector spaces, V!, has as objects, finite dimen-
sional vector spaces, and as morphisms, linear transformations. Since any finite
dimensional vector space may be determined up to isomorphism by its dimension,
one may also consider the category of coordinatised vector spaces, V!, whose set
of objects is N U {0} and for which Morph (m,n) is the set of n x m matrices
with entries in C. Composition is given by matrix multiplication while the identity
morphism on n is the n x n identity matrix.

Example 2.4.6 Suppose that G is any group. Then one may define a category
whose set of objects consists of pairs (V, p), where V is a vector space and p: G —
End(V) is a representation of G. For two objects (V,p) and (W, o), the set of
morphisms is defined to be the set of linear transformations a: V — W for which
a(p(g)v) = o(h)a(v) for all ¢ € G and v € V. The resulting category is known
as the category of representations of G. This same construction can be used for
almost any algebraic structure. The smallest structure for which it can be applied
is a groupoid, while additional structure on G induces additional functors on the
category.

Example 2.4.7  This introduces the fundamental groupoid of a manifold. Suppose
that M is a manifold. Construct as follows the category C, whose set of objects is
the set of points in M. If pg,p1 € M then Morph (po, p1) consists of all homotopy
classes of paths in M from pg to p;. That is, a morphism is an equivalence class of
maps 7:[0,1] — M, with v(0) = pp and v(1) = p1, under homotopy equivalence.
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Definition 2.4.8 IfC and C' are two categories, then by a functor from C to
C' is meant a map F:0bj(C) — Obj(C’), along with, for each pair of objects,
A,B € Obj(C), a map F:Morph (A, B) — Morph (F(A), F(B)) such that,

(i) F(ida) = idp(a);
(ii) F(fog)= F(f)o F(g) for any compatible morphisms f and g in C.

In terms of the notion of a category, one may now reformulate axioms Al-
3" by stating that a (d + 1)—dimensional topological field theory defines a functor
Z: M — V! where M denotes the category whose objects are closed, oriented,
d-dimensional manifolds and whose morphisms are cobordisms. The axioms also
imply that this functor preserves various other structures which exist on both these
categories, namely () and II as well as * on M.

However, as mentioned immediately following Remark 2.2.1, it is actually nec-
essary to take into account maps induced by isomorphisms between surfaces. Our
alm 1s to reformulate the axioms of TFT so that they just require that Z is a map
from an appropriate structure on our collection of manifolds, to a ‘linearised’ exam-
ple of this structure, which preserves the whole structure. The required structure
will take into account both the category structure in M and the existence of isomor-
phisms. To determine what structure we need, it is necessary to go back to the set of
axioms for TFT in §2.2, and carefully observe all the operations on manifolds used.
Let My denote the collection of (d + 1)-dimensional oriented manifolds and M/
denote the collection of d-dimensional oriented closed manifolds, where as usual
the word ‘manifold’ is used to include any additional structures and restrictions.
The indices are used to specify the codimension of the objects in these sets. Then
isomorphisms between manifolds make My and M, into categories. For ¢ = 0,1,
there are also special objects ) € M; as well as the operations II and *. Since
the latter two operations are consistent with isomorphisms of manifolds, they really
define functors,

H:/Mi X /MZ‘ — ./Mi s
*3 /\/tl — /\/tl .
The most important connection between Mg and M, is the boundary operation.

As seen in §2.3, there is also another important relation between these sets, namely
Y —— ¥ x I. This gives two additional functors

82/\/10—>/\/11,
XI:Ml —>M0.

The fact that d(X x I) = ¥ II £* translates into the existence of a morphism
between these two objects in M;. On My, in addition to the operation of II,

To include axiom A2’ we would require also a * operation on Mg. This gives rise to what we call
a *—domain category structure.
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the other important construction entering the axioms is that of gluing together
boundary components. For this we need a top-dimensional manifold M along with
an identification of M with X II ©* IT X', for some surfaces X, ¥/, and the result
will be a manifold Uy M whose boundary may be identified with ¥/. When this
statement is recast in our categorical notation, the data consists of an element
M € Mg along with a morphism f € Morph , (OM,X; HXIIX*), while the result
is the pair
UsM € Mg,
Us f € Morph , (0(UsM),X') .

We now arrive at the appropriate formal structure on (Mg, My); it was introduced
by Quinn and called a domain category. Just as Definition 2.4.1 gave a category
as a pair of sets along with a collection of maps which must satisfy a number of
conditions, this new structure consists of the pair of categories (Mg, M), along
with objects and maps ((,I1,*,d, xI,Uys), which are required to satisfy a fairly
long list of properties. These properties are obtained by translating into categori-
cal language, a generating set for the equalities satisfied by the objects and maps
just outlined, when considered in their natural setting of manifolds. For a formal
definition, the reader is referred to [Q], where there are also given a number of con-
structions of domain categories without any geometric connotations, coming from
purely algebraical data. The domain category based on manifolds will be denoted
by M, its dependence on d being omitted from the notation, as throughout, d is
assumed to be fixed and clear from the context.

Another example of a domain category, comes from the category of vector
spaces over C, say, for definiteness. It is based on the pair of categories (Vo, V1).
Here Vy has as its set of objects, the collection of all pairs (V,v) where V is a
vector space and v € V| while a morphism from (V,v) to (W, w) is an isomorphism
f:V. — W for which f(v) = w. The category V; has vector spaces as objects,
while the only allowed morphisms are isomorphisms. We now have structures,

@ Cin V; and (C,1) in Vo;
* Vie—V*in V7
I VOIW=VaWinV; (V,v)I (Ww)=(VeWyvew)in V.

The 0 functor takes (V,v) to V while xI takes V to (V@ V* e), wheree e V@ V*
is the vector defined by the identity map V — V. Finally, if M = (V,v) € V, and
[V — Wy @ Wy @ Wi, then Uy, M = (Wi,w) € Vo and Uw, f = id, where w is
the image of f(v) e Wy ® Wy ® Wi under the contraction of the first two factors.

We can now reformulate the definition of a TF'T given in §2.2.

7 This example can be extended to give a * operation on Vg by endowing all vector spaces with inner

product structures, which morphisms in V; are required to preserve. Then (V,v)*=(V* v*).
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Definition 2.4.9 A (d + 1)-dimensional topological field theory is a functor
Z:M — V, where now M and V refer to the domain categories of manifolds
and vector spaces discussed above.®

Whenever we use the word functor, we mean a map between two algebraic
structures which preserves all of the structure. In Definition 2.4.9, all the com-
plications of the axioms of TFT have now been wound into the domain category
structure. The dimension, d+ 1, of the theory, now only enters into the construction
of M. This formulation also allows for considerable generalisation; indeed one can
consider a TFT over any domain category, not just one arising from manifolds of
a certain dimension and this point of view is adopted in [Q]. One may say, that a
domain category embodies all the geometry of manifolds we are allowed to know

about in TFT.

Bordism categories

In the above discussion of the domain category M, it is not immediately ap-
parent how to reconstruct from M the basic category structure on the collection
of closed codimension-1 objects given by cobordisms, and so we give it here. This
process can be carried out quite abstractly on any domain category M. Construct
a category C whose set of objects is My, as follows. If 31,3, € M; then

Morph (21, X2) = {(M, f)|M € Mo, f € Morph ,, (OM, ] 1 X5)}/ ~,

where the equivalence relation ~ is defined by (M, f) ~ (M’, f') if, and only if,
there exists F' € Morph y, (M, M') such that f = f'odF. The category C is known
as the bordism category associated with M.

2.5 Inverse limit constructions

The definition of TF'T given in the last section, allows one to consider theories
over domain categories in which the basic objects are manifolds with additional data.
Adding further additional data usually makes the construction of TFTs easier. On
the other hand, the theory then only produce an invariant of a manifold endowed
with this structure, which may be a long way from what one would like to mean
by a topological invariant.? The compromise often employed is to construct a TFT
with additional data and then attempt to eliminate this data using an inverse limit
construction.

8 Replacing the domain categories M, V by *—domain categories gives a *~TFT, that is, a TFT
satisfying axiom A2’. See footnote 7.

For example, in this generalised sense, conformal field theories are 2—dimensional TFTs where the
additional data is a metric, given up to conformal equivalence. An axiomatic mathematical definition
of CFT was given by Segal in [S], and it is on these axioms that the first axioms for TQFTs [A2] were
based.
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Suppose that M and M’ are two domain categories and that there is a functor
r: M’ — M. Suppose Z' is a TFT over M'; we wish to construct a TFT over M
in such a way that the following diagram commutes.

!

/\/l/ — Vl

e

M

Think of the objects in M’ (that is, elements of Obj (M!) for i = 0,1) as being
objects of M endowed with additional data, such as a triangulation or a metric.
This is indicated by writing objects in M’ as pairs (M, «), where M is an object
in M and « represents the additional data. In this notation, r(M,a) = M and
Z'(M,a) € Z'(0M, Oa).

It is first necessary to assume that Z'(M,«a) = Z'(M,() for any data «, 3
agreeing on the boundary, that is for which da = 33. Our aim is, for each ¥, to
identify the vector spaces Z'(3, ) and then to define a particular vector, in this
vector space, associated with each M for which OM = X. Fix ¥ and assume that
the possible extra data, r () on ¥, forms a category, C, while there is a functor
F:C — V! such that on objects it acts according to,

F(Z,0)=2'(%,a).

That is, we are assuming that for each morphism f:a — 3 in C, there is defined
a linear transformation F(f): Z'(X,a) — Z'(X, ) compatible with composition.
Using F', we now define a vector space Z(X), independent of additional data by,

Z(%) = {(v:a — v(a)) ‘V(oz) € Z'(%,a) Va,
F(f)(v(a)) = V() Vf:a — feC},

the set of all flat sections. An element of Z(X) is now a choice, for each possible
additional structure a on ¥, of an element of Z'(3, ), in such a way that they are
compatible with respect to F.

Suppose that F' has ‘trivial holonomy’, that is, F(f) depends only on the source
a and target 8 of f, and so may be denoted F(a — 3), while any two objects in
C are connected by a morphism.!® Then there is an isomorphism,

Z(Z)g{vezl(zvao) ‘ F(f)V:V,Vf:a0—>a0},

10 Equivalently, take C:ALLT_l(E).
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for each possible additional data ag on ¥. To define Z on objects M € My, pick a
representative of r = (M), say (M,0) € M, and define Z(M) to be the choice

(o — F(00 — a)Z'(M,9)) .

This completes the definition of the inverse limit theory, Z over M.

In some cases, the functor F' may be generated in terms of Z’ itself. For
example, if the extra data is that of a triangulation on a d—dimensional manifold, X,
then it is known that one may pass between any two triangulations by a sequence of
local moves on the simplices. The moves replace a local configuration of j simplices
with d + 2 — j simplices, by replacing the union of a proper subset of the faces of a
(d 4 1)—simplex by the union of the complementary set of faces. Such a sequence of
moves can be thought of as providing a (possibly singular) triangulation of 3 x [0, 1]
and therefore Z’ provides a map between the vector spaces associated with the two
different triangulations of ¥. This process will be seen in action in §3.2.

3: TWO DIMENSIONAL TFT

In this section we shall discuss 2—-dimensional TF'T, illustrating how the axioms
enable a complete classification of the possible theories in terms of simple algebraic
structures. In §3.1, decompositions of manifolds into elementary pieces will be used
to obtain this classifying structure. In §3.2, a family of TFTs will be constructed,
using the inverse limit construction of §2.5, by starting with theories on triangulated
manifolds. The examples so obtained, depend upon a choice of data which is similar
to, but different from, that arising in the §3.1. Finally, the relation between the
data required in §3.2, and the algebraic structure classifying the theory in §3.1 is
obtained.

3.1 Classification

Identification of domain category

According to Definition 2.4.9, before we can start to classify 2—dimensional
topological field theories, we must understand the structure of the associated domain
category, M. Our aim is to construct purely topological invariants, and therefore
we take the objects in M; to be oriented manifolds given only up to topological
equivalence. In particular, an element, 3, of M should represent a manifold with
codimension-1, that is, a disjoint union of oriented copies of the circle, S. More
precisely, ¥ is specified by an integer N € N U {0} (the number of components of
), along with an identification of II"V S with ¥, given up to orientation-preserving
diffeomorphisms. Equivalently, each component of ¥ is labelled with an element of
{1,..., N} and is given an orientation.
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Notation 3.1.1 For N € N U {0}, let [N] denote the set {1,..., N} when
N # 0 and @ when N = 0. If M is a manifold, let ¢(M) denote the number of
connected components of M. If M is triangulated, let ng(M) denote the number of

d-simplices in the triangulation.

For our purposes it is sufficient to work with the following domain category, N,
which is a slight variation of M. The elements in N7 will consist of pairs (N, a),
where N € N U {0} and o € {4,—}", that is, a:[N] — {4, —}. The set of
morphisms between two objects (N, a) and (M, 3) will be empty unless M = N
and then it will consist of those permutations o € Sy for which 3; = ay(;). Let
C, denote the circle in C of radius 1/3 and centre n. The elements of Ny are
given by 2—-dimensional oriented surfaces, M, embedded in C x R~ along with
a choice of orientation of the boundary components, in such a way that OM =
Unern]Cn x {0} for N = ¢(OM). A morphism in Np is just an orientation preserving
homeomorphism. The full domain category structure on N is given as follows.

(i) The objects @ are (0, () € N and the empty manifold in A.

(ii) The operation * is (N, a) — (N, —a) in N7 and the reversal of all orientations

n No.

(iii) The operation II is given by (N,a) Il (M,3) = (M + N,af) in N;, where
a3 denotes the sequence a followed by the sequence 3. On Ny, My II M, is
given by the union of My and Mj, in which M, is translated (and possibly also

deformed so as to avoid self intersections), so that its boundary is the union of

circles C; x {0} for i € ¢(0M;) + [c(OMz)].

(iv) The boundary functor 9: Ny — N; takes an object M € Ny to the pair
(¢(OM), o) where a(i) is + or — according as the orientation supplied on the
ith boundary component matches or otherwise, the orientation induced on the

boundary by the orientation on M.

(v) The functor xI takes (N,«a) to a disjoint union of N deformed cylinders
whose boundaries are C; U Cnyy, for ¢ € [N] and for which the orienta-

tions of the 2N boundary circles Cy,...,Cyy, are in accordance with the signs

a(l),...,a(N),—a(l),...,—a(N).

(vi) Suppose that M € Ny and f € Morph », (0M,Z; I X II X*). Say, ¥ = (N, a),
Yy = (N1,a1). Then ¢(OM) = 2N 4+ Ny and f is given by a permutation
o € Scam). Re-embed M in such a way that ¢ = 1. Then the manifold Uy M
is defined by gluing onto M, N cylinders joining the :*" and (i + N)*™ boundary
components, for each 2 = Ny +1,..., Ny + N.
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Fundamental objects

Having now specified the domain category over which to consider topological
field theories, we are in a position to consider such a theory, say Z. Denote the
image under Z of the object (1,+) € Ny, consisting of a single positively oriented
component, by V. By axioms A2 and A3, it follows that Z is completely determined
on N and is given by,

where Vi, = V and V_ = V*. The morphisms in N provide an action of Sy on the
groupoid of tensor products of N vector spaces V. We shall assume that this action
is generated by the natural identification of tensor products in opposite orders, Wi ®
Wy and Wy @ W11 Any 2-dimensional compact orientable surface with boundary
can be obtained by gluing together copies of a disc and a trinion along boundary
circles. Thus any element of My may be obtained by appropriately gluing together
copies of the three elementary pieces shown in Figure 4, namely a disc with positively
oriented boundary, a trinion with all three boundary components positively oriented

and a cylinder with its two boundary components oriented negatively.

AN AN

Figure 4: Elementary pieces for 2-d TFT

Under Z, these elementary pieces map to vectors which we denote by 1 € V,
teVeVeVand g€ V*®@ V* respectively. By axiom A0, u and ¢ must be
invariant under the actions of 53 and S5, respectively. By the gluing axioms A3 and
A3, it follows that it is possible to determine the image, under Z, of an arbitrary
element of N, as a contraction of a combination of 1, ¢ and p. Thus Z is determined
by the collection (V,1,t, ).

H Allowing more general actions of Sy would provide the structure of a symmetric tensor category

on the set of tensor products of copies of V and V*.
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Relations

Suppose that M is an oriented surface with boundary. Choose a collection of
oriented simple closed curves, D;, in ¥ which are such that all components, T}, of
M\U; D; are homeomorphic to one of the forms in Figure 4. To such a decomposition
one may correspond an oriented graph I' with external legs, whose vertices are
labelled by the components T; and whose (internal) edges are in 1-1 correspondence
with the curves D;, while the external legs are labelled by connected components
of OM. An edge labelled by D; is oriented from T} to T} if the orientation on D
matches that induced by the orientation of T; (and consequently is opposite to that
induced by the oreintation of Tj). The vertices of I' will have valencies 1,2 or 3
depending upon the type of the associated piece T}, while at a vertex of valence v,
all edges will be oriented outwards or inwards according as v is odd or even. This
process is illustrated in Figure 5.

D A

)

(>

Figure 5: Decomposing a cylinder

Given such a decomposition, Z(M) may be computed from I' by placing a copy
of 1, pt or t at each vertex, according to its valence and then contracting along all
internal edges. Indeed, without loss of information, all vertices of I' of valence 2
may be omitted, while orientations need only be given for the external legs, it being
understood that on internal edges the contraction V ® V — C is determined by
pt. For example, the contraction represented by Figure 5 is the element of V @ V*
given by 151 = idy: V — V so that,

(p@ideou)(veatel)=wv, forall v e V. (3.1.2)

For a fixed surface, M, there are many different possible decompositions while,
by axiom A0, the results of the associated contractions of tensors must be equal.
The equality of the images of the two decompositions of a sphere with 4 discs
removed shown in the left hand side of Figure 6 yields the relation,

psa(t @t) € V@4 is invariant under the action of Sy . (3.1.3)
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Except for the sphere, disc and torus any surface can be obtained by gluing trinions
without the use of discs, while any two such decompositions of a surface may be
obtained from each other, up to homotopies of D;, by a sequence of local moves of
the two types shown in Figure 6. It follows that any quadruple (V,1,¢, 1) for which
t and p are totally symmetric, while properties (3.1.2) and (3.1.3) hold, may arise
as the quadruple associated to a TFT. Such a quadruple forms the structure of a

commutative ambialgebra in the terminology of [Q)].

O O TN &3
N <~
Figure 6: Moves on trinion decompositions

Complete solution

It follows from (3.1.2) that p defines a non-degenerate inner product on V.
Thus ¢ may be used to identify V' with V*. By contraction with two copies of
i, the element t € V@ V ® V gives rise to a map m:V ® V. — V which may
be graphically represented by a trivalent vertex with two incoming arrows and one
outgoing arrow. Considering m as a muliplication map, a ® b —— ab makes V
into a commutative associative unital algebra. (That 1 € V is a unit, follows from
(3.1.2), commutativity follows from the symmetry of ¢ while associativity comes
from (3.1.3), which may be graphically depicted as in Figure 7.)

33
|

c (ab)c

Figure 7: Associativity of m
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Assuming that V is finite dimensional, it follows that there exists a basis for V
consisting of idempotents {w;}, say, for which w;w; = 0 whenever ¢ # j. The unit
here is 1 = >, w;. Let \; = p(w; ® w;). Thent =), /\i_zwi ® w; @ w;. A surface
M of genus g and with r boundary components can be decomposed into 2g — 2 +r
trinions by 3g — 3 + r interior curves.!? If M has an orientation which on precisely
s components matches that induced by the orientation of M, then Z (M) is given
in terms of the basis by,

Z(M) =3 TP T P = Y N T e e VEr = VEg (V)R

? ?

This completes the classification of 2-dimensional TFTs and the explicit evaluation

of Z.

3.2 Theories derived from triangulations

In this section we construct a particular example of a TFT from algebraic
data different from (V,1,¢,u) of §3.1. This is done by first constructing a TFT
over a domain category containing extra data and then applying the inverse limit
construction of §2.5.

Identification of domain category N’

The extra data we will employ is that of a triangulation. Thus an object in
N will be a triangulated oriented 1-dimensional closed manifold, ¥. To reduce to
combinatorial data, we insist that all our codimension—1 objects be rearranged so
as to be unions, U;e(n1Ci x {0}, of circles in standard position, as in §3.1. Such
objects are specified by a pair (N,a) where N € N U {0} and a:[N] — Z\{0}.
Here N = ¢(¥) and a(z) is an integer whose absolute value gives the number of
vertices (or edges) in the triangulation of the i*" boundary component, while the
sign gives the orientation. The morphisms in N] are given by permutations of the
components.

The objects in NV} will be triangulated, oriented, 2-dimensional manifolds with
boundary, up to equivalences which preserve the boundary triangulation. More
precisely, an object will be an embedding of a triangulated manifold in C x R,
whose boundary is of the form U;gizCi x {0} where N = ¢(0M), up to a change
in interior triangulation. The morphisms in N are topological equivalences of the
associated manifolds, up to transformations, which preserve the orientation of the
manifold and the combinatorial structure of the boundary triangulation.

12 For this argument it is necessary to assume that (g,7)€{(0,0),(0,1),(1,0)}. However it may be

separately checked that the result for Z(M) holds in the exceptional cases. Alternatively, for any u>0,
M may be decomposed into 2g—2-+r+u trinions and u discs by 3g—3-+r+42u interior curves.
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The rest of the domain category structure is much as for A" and so we will not
give it in detail except for noting that the operations * and II on N] are given by,

(N,a)* =(N,—a), (N,a) I (M,b) = (M + N,ab),

where ab denotes the concatenation of the two sequences a and b.

The functor from the domain category N’ to N is given by forgetting the
additional triangulation data. In particular, objects in N] transform according to

(N,a) — (N, a) where a(i) = sgn(a(7)).

Construction of TFT over N

Since a triangulated manifold is naturally expressed as the result of gluing!?
together copies of an elementary piece (a triangle), a natural way to construct a
theory is to associate a tensor to a triangle and obtain Z(M) by contraction along
internal edges.

The data for the theory consists of a vector space, V., along with a tensor
te VeV ®V and a pairing ;1: V@V — C. It is assumed that ¢ is invariant under
the action of Zs by cyclic permutation while p is symmetric. If ¥ is an object in

N7 given by the pair (N, a) then set Z(X) = ®f\;1 ngla((ai()l!)). Thus on a positively
(negatively) oriented boundary component, there is a copy of V' (V*) assigned to
each segment in the triangulation. Again, we make the symmetric group defining

the morphisms act by permutation of the tensor product factors.'*

If M is an object in NV}, we define Z'(M) as follows. For simplicity, we assume
first, that all the boundary components of M are positively oriented. Consider the
tensor t&m2(M) ¢ y@3n2(M) - The factors may be put in 1-1 correspondence with
pairs (Ay,A;) where Ay is an edge in the boundary of the triangle A,y in M.
There are, therefore, precisely two factors associated with each internal edge and
the result of applying ; on each such pair to t272(M) will be defined to be Z'(M).
Observe that this will be an element of V®% where 2 = 3ny(M)—2n (M) = n,(0M)

and n! (M) denotes the number of internal edges. If M contains components which

13 Observe that the form of gluing used here involves the identification of part-boundaries, namely

along edges of the triangles, and is therefore more general than the gluing entering axiom A3’. Therefore
one cannot conclude from the discussion following, that all TFTs can be obtained by the construction
of this section, as one could in the case of decompositions into trinions in §3.1. However such a result

would exist in the format of 2-ETFTs, see §5.

14 To be absolutely correct, the morphisms in ./\/’{ should not only allow permutations of the compo-

nents but also rotations of the triangulation on each component, so that the correct group is (Z|a(1)| X
~--><Z|G(N)|)><ISN rather than Sy. We assume then that Z, acts on V®¢ by cyclic permutation of the

factors.

15 The order of the three factors associated with a triangle is chosen to be consistent with the cyclic

order of the edges defined by the orientation on its boundary, induced by that on M. This precisely
defines the tensor since t is Zg invariant.
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are negatively oriented then Z'(M) is defined in the appropriate vector space by
using the identification V' = V* given by p.

Since an object in Nj is only defined up to changes in interior triangulation, it
is necessary to check that Z'( M) is well-defined, that is, that it is independent of the
choice of triangulation. Any two triangulations of M which agree on the boundary
can be obtained from each other by a sequence of local moves, each being of one
of the forms depicted in Figure 8. Thus Z'(M) is well-defined so long as the local
contractions of tensors remain unchanged under these two moves. Symbolically,
this gives the following conditions on ¢ and u,

t = poaptarites(t @t @ 1) € Vo3

‘ ‘ 3.2.1
(id** @u® id®)(tet) = (id®* @ u)Pis(t@t) € VO, (3.21)
where p;; denotes the action of y on the " and ;' copies of V and P;; is the
transposition of the 't and j'' factors. For any triple (V,¢, ) satisfying the above
conditions, we have now constructed a TFT over N’.

Figure 8: Local moves on triangulations

Graphical presentations

For any triangulated surface, M, the vector Z'(M) has been defined as a con-
traction of tensors. As in §3.1, this may be graphically represented by a graph,
namely the graph, I', dual to the triangulation. All internal vertices of IT' have
valence 3 (labelled by triangles in the triangulation), while the external legs cor-
respond to the edges in the restriction of the triangulation to dM. The tensor ¢
is represented by a trivalent vertex with all arrows directed outwards, while p is
represented by a bivalent vertex with arrows pointing inwards. To obtain Z'(M), a
copy of t is placed on each internal vertex, and of p on each internal edge; external
legs have a copy of p attached if the orientation of the boundary component to
which they belong, is negative. Since p is symmetric while ¢ is only invariant under
cyclic permutation of the indices, such graphs must be drawn with attention to the
cyclic ordering of the edges eminating from trivalent vertices. Once again, we omit
bivalent vertices and internal arrows, since they can be deduced from the vertex
types. The constraints given by Figure 8 are now represented by Figure 9.
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Ty KX

Figure 9: Diagrammatic formulation of relations on ¢ and p

z' —— —

—

Figure 10: Z'(cylinder)

As an example of the use of this notation, we show graphically that Fy; =
Z'(S' x I) is an idempotent. Represent the cylinder by a triangulation in which
there are two triangles with precisely one edge in each boundary component, so
that F ; is presented by Figure 10.

Place opposite orientations on the two boundary components, say positive on the
upper component, so that Z'(S! x I') describes a map V — V from bottom to top.
Then Fy ; o Fy; is graphically represented by placing two copies of Fj ; on top of
each other; Figure 11 gives a graphical proof that F ; is an idempotent, using the
relations in Figure 9.

L

Figure 11: Verification that Z'(cylinder) is an idempotent

The constraints on the triple (V,¢,1) in Figure 9 give rise to an algebraic
structure much as in §3.1. Thus, by contracting ¢ with one or two copies of p, one
may obtain maps A:V — V@V and m:V @ V — V. see Figure 12.
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g o

Figure 12: Construction of m and A

It follows from the right hand relation in Figure 9, that m is associative and A
is coassoclative, just as in Figure 7. Since ¢ is only assumed to be invariant under
the action of Z3, m need not be commutative. Also, there is no unit supplied. The
two structures m and A are not necessarily compatible, in the sense that A may
not define a homomorphism with respect to m, as can be seen from the example at
the end of this section for general finite groups G.

Inverse limit construction

In order to obtain a TFT over N from Z’, it is necessary to apply the inverse
limit construction of §2.5. Since all closed codimension—1 objects can be written as
disjoint unions of copies of S, the images of all such objects under Z are determined
by Z(S'), with positive orientation. An object in N, representing a positively ori-
ented circle, is specified by the number of segments into whch the circle is subdi-
vided. The image under Z' of a cylinder whose boundary components are oppositely
oriented and are subdivided into m and n intervals, the former associated with the
negatively oriented boundary component, will be a map F, ,: VO™ — V@ and
will be independent of the choice of interior triangulation. Picking a simple trian-

gulation gives the presentation of Figure 13, all arrows on external legs pointing
upwards. Since Z' defines a TFT over N/, F,,, , 0o F,, , = Fp, , for all m,n,p € N.

Figure 13: F, ,,

The vector space, Z(S') associated with S', generated by the inverse limit construc-
tion, is therefore ker(Fy; — 1) = Im(Fy 1) C V. Suppose that M is an arbitrary
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two-dimensional oriented surface in Ay, whose boundary components are all posi-
tively oriented. Pick a triangulation, 7, of M. Then

Z(M) = ((X) anl) Z'(M,T),

where n, is the number of segments in the 7" boundary component, in the restric-

tion of 7 to M.

Classification data

We have now constructed a TFT over V', namely Z, from the data of (V,¢, u).
By §3.1 any such TFT generates a quadruple (V',1,#', ') which describes, in par-
ticular, a unital commutative associative algebra. In our case, V' is the image of
the map in Figure 10. The element 1 € V' represents the image of a disc under Z.
The simplest triangulation of a disc involves just one triangle, giving Figure 14.

CVAYRI = Rh S e R

Figure 14: Unit in V'

The element ¢’ comes from the image of a trinion. The simplest triangulation
involves five triangles and gives the element of Figure 15.

ATy

Figure 15: Image of trinion

It may be graphically verified, using manipulations similar to those of Figure 7, that
t' defines a commutative algebra, as we know it must, by the analysis of §3.1.
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An example

Suppose that G is a finite group and let V denote the vector space spanned by
a basis {ey4]|g € G}, indexed by elements of G. Define,

t=|G|™? Z eg @ep @ eg ,

ghk=1
eq ® en) = 1G] 8y

By the last paragraph, the triple (V,¢, 1) defines a TFT, say Z', over V. Suppose
that 7 is a triangulation on a manifold M and assume that the orientations on all
the boundary components are positive, while a(z) is the number of segments in 7 on
the 7*" boundary component. Then Z'(M) € V®¥2(), Denote the set of simplices
in 7 of dimension r by 7" and the set of edges in the restriction of 7 to dM by T.!.
Let 75, denote the set of pairs {(u,v)lu € T',v € T? u C v}; this may be thought
of equivalently, as the set of oriented edges of 7, each internal edge appearing twice,
while boundary edges appear only once.!® Then, by construction,

200 = Y (@ epn)leT 1T (Fmapspidor — Gy

oG Srer compatible with p, and 7
Peti, r e

Here, by compatibility with 7, we mean that p assigns inverse elements to any
two elements of 7. given by the same edge with opposite orientations, while the
product of the elements associated with the three pairs (u,v), defined by a triangle
vis 1 € G. Compatibility with p. means that the restriction of p to the boundary
is pe. This formula may be rewritten as,

zon =Y (@ep(r))|G||T2|—|Tl|+m0|—c<M>+c<aM>H”pci]

p:T}—G reT]} (oF
- (# maps p: m (M) — G such that [p(C;)] = [pc,] Vi),

-1

where [a] denotes the conjugacy class of a € G, C; is the i*" boundary component
and [pc,] denotes the conjugacy class of the product of the images under p of the
segments in C}.

The maps F}, 1: V®" — V are given by

€aq @@ €a, /2 f[al...an] )

16 An element (u,v) of 7E)1r is represented by the edge u with orientation given by the restriction of

the orientation induced by v on its boundary, dv.
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where fo = |a|™ 3, ¢, €a. Hence the inverse limit construction generates Z(S') =

(fa)- The resulting theory, Z, has

Z(M) = |GIX(M)—c(M)=c(aM) epin) - (# maps p: 71 (M) — G ) ,
(M) = ¢ Zb:(®0,€b( ) such that [p(C;)] = be, Vi
where the sum is over all maps b from the set of components of M to the set of
conjugacy classes in G. On closed surfaces, this reduces to |G|X(M)=¢(M) times the

number of homomorphisms m (M) — G.

The commutative unital associative algebra structure associated with this the-
ory by §3.1, is the natural group algebra on G restricted to (f,), with unit fi.
Equivalently, it has a basis whose coordinates with respect to {e;} are given by
the characters of irreducible representations of GG, so that the algebra is just the
representation ring of G. Using the latter basis and the orthogonality of characters,
Z(M) may be easily computed for closed surfaces; for a connected closed surface of

genus g,
Z(M) =) la|'™?,
o
where the sum is over all conjugacy classes a. Hence we obtain the equality,

3 Ja'7? = |G' 729 Hom(m (M), G)| ,

between the two different expressions for Z (M), the left hand side obtained from the
trinion decomposition and the right hand side from a triangulation. It is instructive
to explicitly verify these equalities for small genus surfaces, starting with the sphere
and torus.

4: CATEGORY STRUCTURES

The initial motivation for the axioms of §2 comes from physical ideas in field
theory, where the image under Z of a cobordism, M from ¥; to X5, is thought of
as the operator defining the propagation across M of fields on ¥; to those on X,.
The slices ¥; can be thought of as time-slices and M is the whole of space-time.
In a topological field theory, there is no direction which is specially picked out as
labelled by time, and indeed there is no particular reason why one should only
consider decompositions by codimension—1 submanifolds.

Consider a topological field theory in dimension d. Suppose that M is a d-
dimensional closed manifold and that it is split into two parts M; and M, by a
(d — 1)~dimensional manifold ¥. Then,

Z(M) = (Z(M) | Z(Ms)),
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where Z(M;) € Z(X) and Z(M,) € Z(X)*. Hence, as was seen in §3.1, Z(M) can
be completely determined if it is possible to subdivide d—dimensional manifolds into
elementary pieces and Z is known on each of these pieces. Suppose now that ¥ is
split into ¥; and ¥ by a (d — 2)-dimensional manifold C. We would like to be able
to express Z(X) as <Z(21)|Z(22)>, where Z(X;) and Z(X3) are suitable objects in
dual spaces Z(C) and Z(C')*, respectively. However, Z(X) is to be a vector space,
and so the question arises as to what sort of beast Z(C') could be, so that an element
of it can be paired with an element of a dual contraption to give a vector space.
The answer we employ is that of a 2—vector space, and more generally, an n—vector
space for codimension—n manifolds. This is our first motivation for the study of
higher categories, since their definition naturally comes in the form of a structure
on the collection of all n—vector spaces, analogous to the category structure on the
collection of all vector spaces.

Just as domain categories were used in §2 to formalise the possible gluing op-
erations appearing in TFTs, so more complex structures appear when more general
gluing operations are allowed and provide a second motivation for the consideration
of higher categories. Thus, allowing gluing down to codimension—2 manifolds, pro-
vides three types of objects, namely d—dimensional manifolds, (d — 1)—-dimensional
manifolds and (d — 2)-dimensional closed manifolds, forming sets Mg, My and Mo,
respectively. There is now a particular object () in each of these sets, while there
are operations * on M;, My and II on all three sets. The sets are linked via two
boundary functors, operations xI and numerous gluing maps, which allow gluing
of objects at one codimension, along objects of higher codimension (up to a max-
imum of 2). Thus we allow only the operation of disjoint union on manifolds of
codimension—2, while manifolds of codimension—1 may be glued along closed parts

of their boundaries and top dimensional manifolds may be glued at corners.'”

4.1 Higher category structures

As discussed in §2.4, a category may be viewed as a pair of sets along with
various maps, namely source, target, identity and composition. The simplest way
to extend a category structure to higher dimensions, may be obtained by trying to fit
it to a generalisation of Example 2.4.7, in which points and paths are generalised to
embeddings of closed balls, DP. Observe that such a closed ball can be decomposed
into open cells,

AP U AP u AP UL uAS U AY, (4.1.1)

where A® denotes an embedding of a ball, B®, whose boundary 0A® is given by the
union of all A! with ¢t < s and i =0, 1.

17 In this respect, we view disjoint union as a form of gluing along an empty object at the next higher

codimension, although we also allow it on the top codimension.
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The formalisation of the geometry just outlined, leads to the consideration of a
structure known as a spheric set, see [MS]. Here there are objects of multiple types,

forming sets C°,...,C", along with source, target and identity maps,
skt CF — CF 1 (1 <k<n);
ip: CF — O (0<Ek<n).

These maps must be compatible in the sense that the following equalities of compo-
sitions of maps hold, where, in each equality, k¥ may range over all values for which
one side of the equality is meaningful.

(a) Sk—1 08k = Sk—1 Otk, th—1 O Sp = tr—1 O 1.
(b) Sk+1 © Zk = ldAk = tk_|_1 0 Zk

Such a structure can be visualised in terms of a CW—complex, in which to each
element of C? there is associated a copy of D? decomposed as a union of open cells,
as in (4.1.1). The maps s and t take such an element to the two halves of the
spherical boundary, namely

-1 —2 —2 0 0
AP UAFTTUATTTULLLUAGU AT,

with s being given by « = 0 and ¢ by + = 1. Properties (a) and (b) allow one to
construct maps s, 4,1t 4: C? — C? whenever n > p > g > 0 by composing s and
t maps; geometrically, the images of the object of (4.1.1) under these maps are the
closures of Al and A{, respectively.

To get the notion of a higher category from that of a spheric set, it is necessary
to require that there also be a collection of composition maps, p) 4, defined for all
nzp>qz0,

{(u,v) € CP x CPlsp 4(v) = tpq(u)} — CP,

which we denote by (u,v) — v o, u. The source of v o, u is given in terms of those
of u and v by,
sp(u), if g=p—1;
sp(vogu) = i
(v 0q ) {Sp(v) og sp(u), ifg<p-—1,
and similarly for the target. The composition maps are also required to satisfy cer-
tain identity and associativity properties generalising those for standard categories.
The notion we arrive at, is known as that of a small n—category. Its full definition

may be found in [MS].
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3271(u)
5270(u) t2,0(u)

t271(u)

Figure 16: 2-objects in a 2—category

T B

Figure 17: Compositions in a 2—category

In accordance with the above geometrical imagery, compositions of type p ob-
Jects whose source and target match at the level of type g objects, is represented
by gluing along the common g—dimensional disc. Thus in a small 2—category, there
are three object types, namely elements of C°, C'' and C? and the confusing ter-
minology of, objects, 1-morphisms and 2-morphisms, respectively, is often adopted
for elements of these sets. They are represented by points, arcs and 2—cells. See
Figure 16 for the standard representation of an element of C?. There are three
possible compositions of objects in a 2—category, namely, j1 0, p12,0 and p21 which
are illustrated in Figure 17.

Independence of the result of a method for evaluating the composition of a
collection of compatible objects, upon the order in which the composition maps are
applied, is ensured generally by the truth of this statement for the two particular
arrangements of objects shown in Figure 18.

The higher category structure we have just constructed, is said to be strict, be-
cause it 1s required that the composition maps be absolutely associative. In weaker
forms of category structures, it is not required that the equalities of compositions
hold strictly, but merely that there are morphisms, given as part of the category
structure, between any two such compositions. Thus for example, in a weak 2-
category, it is not required that p; o is strictly associative, but rather that, for each
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vv

Figure 18: Associativity constraints in a 2—category

triple of compatible 1-objects, u, v and w, an invertible'® 2-object ¢y 4w, known
as an associativity constraint, is given, whose source and target are (w og v) og u
and w og (v og u), respectively. It is further required that this 2—object behaves
‘naturally’, in a suitable sense, under morphisms of u, v and w, and that given
four compatible 1-objects u, v, w and ¢, a compatibility condition holds amongst
the possible associativity constraints. This is illustrated in Figure 19, where the
symbol ‘o’ has been used to denote og. The structure now obtained is known as a

bicategory, see [B].

Cu,v,tow

(tow)ov)ou ——————> (tow)o(vou)

Co,w,t © 1du XU u,w,t

(to(wow))ou to(wo(vou))

Cu,wouv,t 1dt © Cu,v,w
N
to((wowv)ou)

Figure 19: The pentagon relation in a bicategory

18 The notion of invertibility of an r-object, z, for r>0 is the formal analogue in higher categories

of requiring a morphism to be an isomorphism in a usual category. Thus, it requires the existence of
another r—object, y, whose source and target are those of z reversed and is such that the compositions
zo,_1y and yo,_1x are both isomorphic to identity r—objects on appropriate (r—1)—objects. In the case
of Example 2.4.6, the notion of invertibility of a morphism reduces precisely to the requirement that the
associated map is literally an isomorphism.
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Although strict categories suffice!® for the purposes of constructing higher vec-
tor spaces, it is a higher category in the weaker sense which is needed for the higher
version of a domain category, just as it was necessary in a domain category to
consider isomorphisms between manifolds rather than equalities. Unfortunately, al-
though the notion of a usual category is perfectly well defined, there is at present no
unique notion of a maximally weak higher category. A number of different notions
of higher category, along with ‘categorifications’ of other algebraic structures, have
been constructed piecemeal over the last 30 years. Although they all seem to fit into
the same general framework, it is not currently possible to completely automate the
process of categorification, some manual intervention being necessary in each case to
decide precisely which of several possible slightly different structures is appropriate.
It 1s, however, instructive to give the general idea of how, starting from the notion
of one algebraic structure, another notion ‘at the next level of categorification” may
be constructed. (I believe this basic idea is due to Grothendieck.)

Suppose that A denotes a formal algebraic structure, that is, it is not a specific
example, but rather it is a meta-object defining the notion of that particular type
of structure. Hence it consists of a collection of sets, a collection of maps defined on
sets generated by the basic sets and a collection of axioms which must be satisfied by
these maps. Examples of such meta-objects include the notions of a set, groupoid,
group, ring and even of a category. The collection of axioms may be thought of as
a generating set with respect to our deduction system, for the set of all universally
valid statements in a type A structure. The categorification process replaces types
of object in the definition of A by other types, according to the list below.

Aset A — a category A.
A map f:A— B — afunctor f:A — B.
An element 1 € A —— an object x € A.
An equality a = b with proof P — an invertible morphism ¢p € Morph (a, b).
Concatenation of proofs —— composition of morphisms.

Two different proofs P, ()

— equality of morphisms cp = ¢g.
of the same statement 4 Y P P @

By a proof is meant a sequence of deductions, each step being an instance of one
of the axioms of A, or of the basic deduction system. The relations in the new
structure thus arise as relations amongst relations in the old structure. The am-
biguity in the new structure comes from the freedom available in deciding exactly
what deductions are allowed in a proof, along with the fact that the above process
may give inequivalent outputs starting from equivalent initial structures.?? By this

19 Actually a complication arises with the identification of the order of the basis of a tensor product

of three higher vector spaces.

20 For example, starting with the notion of a category, as given in Definition 2.4.1, the process gen-

erates the notion of a bicategory. However, if we choose to define a category according to Example 2.4.3
then the resulting structure will be slightly different, since a composition will be defined whenever there
are given objects u,v€C! and a morphism fEMorph co(s(u),t(v)), rather than only when the source of
one object matches the target of the other.
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type of procedure, category structures have been generated from many different
algebraic structures.

set —— category
groupoid —— monoidal category
abelian groupoid —— braided monoidal category
group —— rigid monoidal category
ring —— ring category 2!
module over a ring —— module category over a ring category
category —— bicategory
braided monoidal category ~—— braided monoidal 2-category 22
bicategory = —— tricategory %3
Hopf algebra —— Hopf category 2%

4.2 Higher vector spaces

Just as ordinary vector spaces can be considered as objects in an appropriate
category, V1, higher vector spaces appear as objects in an appropriate higher cat-
egory?5 Y™, To illustrate the structure, we will discuss the case of 2-vector spaces
only. Formally, one should think of a 2—vector space as a linear space over the
category of vector spaces, just as an ordinary vector space is a linear space over the
field of complex numbers. Everywhere that C previously entered, it is replaced by
V!, while the operations of addition and multiplication in C are replaced by direct
summation and tensor product of vector spaces.2®

Up to isomorphism, a 2—vector space is specified by its rank, a non-negative
integer.?” Thus, if V is a 2-vector space of rank n, then an identification with the
standard rank n 2-vector space is equivalent to a choice of basis, {eq,...,e,} for
V. With respect to this basis, any element, V., of V is specified by its coordinates,
a list of n vector spaces, (V1,...,V,,), and this fact may be formally denoted by,

V:éVi-en,
i=1

21
22

See [K], [Lap].
Here there is some ambiguity as to the ‘right’ definition. See [KV2] for the best list currently
known.

23 See [GPS].

24 See [CF).

25 The higher dimensional analogue of the category V' of uncoordinatised vector spaces, should be a

higher category in the as yet undefined weak sense. To avoid this problem, we only discuss the analogue

of Vcl in this section. We also take C as the ground field.

26 It is actually possible to make this more precise by defining a 2—vector space to be a module

category over the ring category of vector spaces. See [KV2].
In categorical language this reads: up to module equivalence, a 2-vector space may be identified
with the module category (V1)™, of rank n, over V!, for some non-negative integer n.
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7 is the analogue of scalar multiplication. If ¥V and W are two 2—vector

where
spaces, of ranks n and m respectively, then a morphism, S, between them should
be a linear transformation. In terms of bases it is specified by an m x n matrix of

vector spaces, S; ;, such that if S(V;,...,V,) = (Wi,...,W,,) then

WiZ@&,j@‘/}-

i=1

Two morphisms S and T from V to W cannot be considered as equal, as it is only
possible to talk about (2—) morphisms between them. Such a 2-morphism would be
given by a family of linear transformations S; ; — T; ; indexed by the pair (i, j).
That is, in terms of coordinates, a 2-morphism is given by a matrix of matrices.

2

2, on the collection of totally

To make the form of the 2—category structure, V
coordinatised 2—vector spaces clearer, we now give a purely combinatorial list of the
sets of objects. A 0-object will be an element n® € NU{0}. A 1-object will consist
of a triple, (nd,n?,n') where nY € NU {0} (: = 0,1) and n' is an n{ x nd matrix
whose entries are elements of N U {0}.2%8 A 2-object will consist of five pieces of
data

0 0 1 1 2
(n07n17n07n17n ) )

0. e ] S |
; are non-negative integers, n;

entries and n? is an n? x n) matrix, whose (4, j
with complex entries. The source and target maps are given by forgetting parts of

are nY x nY matrices with non-negative integer
)t entry is an nl(i, j) xnl (7, j) matrix

where n

the information, while the composition operations are generalisations of matrix
multiplication.

This definition can be generalised to totally coordinatised n—vector spaces with-
out any major changes. However, as was mentioned above, in real applications,
what is wanted is a category of uncoordinatised higher vector spaces, which must
necessarily form only a weak higher category.

5: EXTENDED TOPOLOGICAL FIELD THEORIES

The axioms of §2 where formulated by considering the properties that would
be expected of Feynman integrals over manifolds with boundary, under various
gluing operations. As noted at the start of §4, if objects are to be associated with
codimension-1 manifolds with boundary, in such a way that they behave reasonably
under gluing, then these objects must be elements of a 2—vector space.

Let us fix the top dimension, d, of the theories under consideration (that is,
the dimension at which manifolds are assigned vectors). By an r—ETFT (extended

28 This is because, up to isomorphism, a vector space is specified by its dimension, so that a matrix

of vector spaces turns into a matrix of dimensions.
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topological field theory) we mean an assignment of objects to manifolds of codimen-
sion up to r, which behaves naturally under gluing operations. This assignment will
give,

codimension k closed __,  k-vector space Zk(ﬂ/[)7
manifold, ¥ for 0 <k <r.

codimension k arbitrary . element Zx(M) of the (k + 1)-vector space
manifold, M Zg41(0M), for 0 < k <r;

The only gluing operations allowed are those in which all parts of the gluing are
expressed in terms of manifolds of codimension at most r, while those manifolds
which appear at codimension r are all closed.

Notice that in §4.2, the collection of k—vector spaces was considered as forming
a k—category, V¥, while a particular k-vector space was considered as a linear space
over V¥~ in place of C. An element of a coordinatised k—vector space of rank m
is specified by a list of m, (k — 1)—vector spaces, namely, the coordinates of the
element with respect to a basis. This statement at k = 2 translates into the fact
that a 2—vector space is a (1-) category and that, with respect to a basis, an element
of a 2—vector space is given by a sequence of vector spaces. Pushing down to & = 1,
we see that a 1-vector space is an ordinary vector space and, with respect to a basis,
an element is specified by a sequence of complex numbers. In this sense we think of
a O—vector space as being a complex number, while the collection of 0—vector spaces
forms the set (= 0—category) C.

When r = 1, the structure of an r—ETFT therefore associates complex numbers
and vector spaces to closed codimension—0 and 1 manifolds, while associating vectors
to arbitrary codimension 1-manifolds; thus a 1-ETFT is just an ordinary TFT. For
ordinary TFTs, these three structures are not all independent, in the sense that the
vector associated to a codimension—1 manifold, M, in the case when M is closed, is
an element of Z(OM) = Z(()) = C. In a similar way, the structures associated with
arbitrary manifolds and with closed manifolds are identified, by the requirement
that Z(()) = 1j, the one-dimensional k-vector space, that is, it has rank one over
VE=1 Thus, if M is a closed codimension k& manifold, then Zj(M) € 1441, so that
it is a k—vector space, and we require that it be precisely Z(M).

In principle, it is fairly straightforward to define the notion of an r—domain
category, to be the generalisation of the notion of a domain category (for r =
1), which includes all the object types above and the allowed gluing operations
which may be performed upon them. A d-dimensional r~ETFT would then just
be a functor M"™ — V7", where M" is the r—domain category of manifolds of
codimension up to r, with base dimension d, and V" is the r—domain category
of r—vector spaces. By an ETFT we will mean a d-ETFT, that is, it will assign
structures to submanifolds all the way down to a point. Since, when gluing at
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arbitrary corners is allowed, it is possible to subdivide any manifold into fixed basic
pieces, namely simplices, an ETFT can be expressed in terms of the image of a
simplex and the gluing rules. This approach shifts all the complication into the
gluing rules, since unlike the case of TFTs, the gluing operations may now involve
corners and it is important to know the local structure of the manifolds being glued
near such corners.

If 7 is a triangulation of a manifold M, then a subdivision which shows all the
complexity of the gluing operations in the neighbourhood of subsimplices of 7 is
obtained by a construction known as the dual barycentric subdivision. It produces
a subdivision 7*, for which there are 1-1 correspondences,

top dimensional cells «— simplices and subsimplices,
vertices «— complete flags of simplices,
edges «— partial flags of simplices,

29

in which the left hand column represents structures in 7 * and the right hand column
is relevant to 7. For each subsimplex, A, in 7, the geometry of the associated top
dimensional cell in 7%, precisely specifies the complexity of the gluing operation
required in the neighbourhood of A. By decomposing these cells into a small number
of elemental pieces, it is possible to specify an ETFT by giving the structures
associated with only a finite number of geometric types of cell. See [L2].

Writing out all of the gluing data in terms of bases, one obtains the following
coordinatised description of an ETFT. It consists of a large quantity of data, sets and
numbers. It is simplest to think in terms of cells that may arise in the decomposition
T*, for a generic 7, since these describe all the required gluing operations. The
basic set-data is recursively given as a set of labels that may be assigned to vertices,
along with, for each geometric type of face, of dimension k < d, a set of labels
depending on a prior choice of labels on all the facets of the face. Finally, for each
possible d—dimensional cell type, there is a weight supplied by the data, whenever all
its subcells have been labelled by elements of the appropriate labelling sets. From
such data, the scalar assigned to a triangulated top dimensional manifold is,

Z(M) Z H (weight assigned to cell labelled A in 7*) ,

labelhngs subsimplices

aeT
where ¢ ranges over all allowed labellings of the subcells of 7*. This expression
may be viewed as a discretised form of a Feynman integral.

The example of a TFT constructed in §3.2 may be viewed in this framework
as follows. To vertices of 7*, there is associated a labelling set with only a single

29 A flag of simplices is a sequence AgCA1C---CAyg, for which each A; is a subsimplex of the complex

T. A flag is called complete if k=dim M and dim(A;)=: for all i. The type of a flag refers to the list of
dimensions of the simplices involved.
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element. To edges, there is associated a labelling set with dim V' elements, while the
weights on 2—dimensional cells are the matrix elements of ¢ or u, according to the
cell type. Of course, just as there were conditions on ¢ and p in §3.2, in order for a
set of combinatorial data to define an ETFT, certain conditions must be satisfied
which guarantee the independence of the result upon the choice of triangulation.
Fortunately, there is a simple set of local moves on triangulations which generates
the equivalence (see [Ma], [P]) and therefore the constraints on the data may be
written down as a finite set of conditions similar to (3.2.1). It is also possible to
recover a full topologically invariant ETFT by using an inverse limit construction
similar to that employed in §3.2. For more details of small dimensional ETFTs, the
reader is referred to [L2].

6: CONCLUSION

What we have indicated in these notes is how complicated algebraic and cate-
gorical structures can arise out of the consideration of gluing rules in higher dimen-
sions. The study of topological field theory is really the study of space, and to this
extent, any structure appearing in a classification of TFTs may be thought of as
dual to an appropriate structure on higher dimensional geometric objects.

We have constructed our algebraic structures in a fairly naive way, throwing in
all the structure that must be present and then constraining it by the obvious con-
ditions. The artful part comes next, namely extracting that part of the structure
which is essentially interesting. Thus, just as in §3.1 it was seen that the essen-
tial algebraic structure in 2—dimensional TFT was that of a commutative unital
associative algebra, in 3-dimensional TFT, it is a quasi-Hopf algebra.?°

The relation between algebraic and geometric structures is nicely illustrated
with reference to the Yang—Baxter equation. It plays a central role in the theory of
quantum groups and so one would expect to be able to realise its geometrical sig-
nificance. Indeed, all compact connected 3—manifolds may be obtained by surgery
round suitable links in S3. Any link can be represented as the closure of an appro-
priate braid, and braids on a given number of strands form a group whose main
relation is a variant on the Yang—Baxter equation. In fact, historically, it is this
latter connection which came first.3!

In the search for the construction of interesting higher dimensional TFTs, this
mirroring of the geometry in algebra has been exploited to try to guess at ap-
propriate algebraic structures, though the ‘right’ one has yet to be found. The
simplest higher dimensional geometric objects are simplices and hypercubes, and
various approaches at algebraic and categorical constructions to encapsulate their

30 See [F] for a differential geometric approach to the construction of the quasi-Hopf algebra associated

toa TFT.
31 See [RT] and Reshetikhin’s session in this Short Course.
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combination along codimension-1 faces have been investigated.3? There have been
various attempts at the construction of higher dimensional versions of the Yang—
Baxter equation and braid groups, some of which arise both in connection with
physics and the geometry of knots in higher dimensions.?* Using purely categor-
ical constructions, it is possible to construct from a suitably constrained braided
monoidal tensor category, a four—dimensional TF'T, but unfortunately the invariants
it defines are expressible in terms of simple classical invariants of manifold such as
the signature.?* There have also been attempts, using the general language of §4.1,
to construct category structures relevant in four dimensions, from those known to
be relevant in three dimensions, such as [KV2] for braided monoidal 2—categories
and [CF] for Hopf categories.
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