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Abstract. In this paper the new concept of an n-algebra is introduced, which em-

bodies the combinatorial properties of an n-tensor, in an analogous manner to the

way ordinary algebras embody the properties of compositions of maps. The work
of Turaev and Viro on 3-manifold invariants is seen to fit naturally into the context

of 3-algebras. A new higher dimensional version of Yang-Baxter’s equation, distinct
from Zamolodchikov’s equation, which resides naturally in these structures, is pro-

posed. A higher dimensional analogue of the relationship betweeen the Yang-Baxter

equation and braid groups is then seen to exhibit a similar relationship with Manin
and Schechtman’s higher braid groups.

1: Introduction

The central theme of this paper is the interplay existing between algebras and decom-
positions of polyhedra; see for example [S]. Central, to the concept of classical algebras
and groups, is their abstract embodiment of the properties of actions and their compo-
sitions and hence, it is their representation theories which play a prominent role in the
understanding of their natures.

Let G be a group and {hj} be a set of generators. Recall that the Cayley graph of G
is defined to have vertices indexed by the elements of G, while an oriented edge joins the
vertex, x, to the vertex, y, with label hj if, and only if, y = hjx. For 1 ≤ i ≤ n, choose
gi ∈ {hj}. The product g1 . . . gn defines a path of length n in the Cayley graph, starting
from any given point x ∈ G, namely, it joins x to gnx to gn−1gnx . . . to g1 . . . gnx. It is,
therefore, natural to represent a product g1 . . . gn in an algebra, A, more generally, by a
labelled sub-division of an interval into n subintervals. The labelling defines,

(i) an orientation on each sub-interval, compatible with neighbouring orientations;

(ii) an element of A associated to each sub-interval.

An evaluation of such a product is given by defining a bracketting, or equivalently, by a
binary tree with one root and n leaves. Such a tree specifies how the (n−1) multiplications
should be performed so as to effect an evaluation.

For present purposes, it is convenient to replace such a tree (evaluation) by its dual,
namely a triangulation of an (n+1)-gon with one marked edge, and no internal vertices
in the triangulation. Thus the n unmarked boundary edges are labelled with g1, . . . , gn,
while the number of triangles, (n−1), gives the number of multiplications in an evaluation.
The result of the product can be considered as appearing on the marked edge.
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The Stasheff polyhedron [S] associated with such a product has vertices labelled by
the triangulations of the (n+1)-gon, while two such triangulations, T1, T2 are connected
by an edge if they differ only in one line, which divides a quadrilateral into two triangles
in the two possible ways, one in each of T1 and T2. It follows from the connectivity of this
polyhedron, that associativity (independence of the result of an evaluation of a product
upon the chosen evaluation) is ensured by this property holding just for quadrilaterals.
The latter is the usual associativity relation,

(ab)c = a(bc) ,

which is given in Fig. 1.

A representation of a group, in the usual sense, may also be viewed in the above
framework. Suppose ρ defines a representation on a vector space V . Then one may asso-
ciate a copy of V to every vertex of the Cayley graph, and an element of End(V ) to every
oriented edge. The property that ρ is a representation is now expressed as the commuta-
tivity of closed loops. The geometric nature of the discussion of the preceeding paragraphs
leads to an immediate generalisation to higher dimensions, which is the subject of this
paper. Indeed, one may replace intervals by triangles, and thus embody the properties
of combinations of 3-tensors. In §2 the formal definitions of the notion of a 3-algebra
and its representation are given, while the associated notions of product, evaluation and
associativity are discussed. It is seen in §3 that a 3-algebra may be constructed using
6j-symbols, starting from a quantum group; in this case associativity is guaranteed by the
Elliot-Biedenharn relation.

In defining the notion of a quasi-triangular Hopf algebra, the triangle relation (quan-
tum Yang-Baxter equation) played a prominent role; see [D 1]. This relation may be
considered as the commutativity of a hexagon, which should not be confused with the
pentagon and hexagon relations of conformal field theory which are central to the notion
of a quasi-Hopf algebra in [D 2]. The duality of the triangular and honeycomb lattices
leads to a procedure for generating the QYBE directly from a triangular lattice, which may
be naturally generalised to higher dimensions. In three-dimensions, it leads to the con-
sideration of commutativity of combinations of 3-algebra elements associated with closed
polyhedra (as opposed to the hexagon in two-dimensions). This is discussed in §4, along
with relations with Manin and Schechtman’s higher braid group representations.

The n-dimensional generalisations of such concepts are discussed in §5, and some
comments on relations with other work are made in §6.

2: 3-algebras

2.1 Definition of a 3-algebra

As noted in §1, a 3-algebra embodies the properties of combinations of 3-tensors.
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Definition 2.1 A 3-algebra, A, over a field K, is a vector space over K, endowed
with K-linear maps,

P :
m:

b:

A −→ A (of order 3, P 3 = id)
A ⊗ A ⊗ A −→ A

A ⊗ A −→ A ⊗ A

which satisfy the following conditions,

(i) m(m ⊗ 1 ⊗ 1) = m(1 ⊗ 1 ⊗ m)P34(1 ⊗ b ⊗ 1 ⊗ 1)P34;

(ii) (1⊗m)P23(b⊗1⊗1) = b(1⊗m)P12(P−1⊗1⊗1⊗1)(b⊗1⊗1)(P ⊗P ⊗1⊗1)P23;

(iii) b(m ⊗ 1) = (1 ⊗ m)P12(P 2 ⊗ b ⊗ 1)(1 ⊗ 1 ⊗ b)P12P23;

(iv) (1 ⊗ b)P12(1 ⊗ b) = (b ⊗ 1)(1 ⊗ b)(P ⊗ P ⊗ 1)(b ⊗ 1)(1 ⊗ P−1 ⊗ 1);

(v) (1 ⊗ m)P23(b ⊗ P 2 ⊗ 1) = (m ⊗ 1)(1 ⊗ 1 ⊗ b);

(vi) Pm = m(P ⊗ P ⊗ P )P23P12;

(vii) b commutes with (P 2 ⊗ P )P12.

In this notation, Pij denotes the action on A⊗n of transposing the ith and jth factors.
Each of the conditions (i)–(v) represents the coincidence of two maps A⊗n −→ A⊗(6−n),
in which n = 5, 4, 4, 3, 4, respectively. Meanwhile, (vi) and (vii) express the coincidence of
the two actions on A⊗n with n = 3 and 2, respectively. A is said to be an orthogonal
3-algebra if, in addition to (i)–(vii), the following axiom also holds,

(viii) (1 ⊗ P 2)P12b(P ⊗ P )b = Q is a projection A ⊗ A −→ A ⊗ A, while m vanishes
on ( kerQ) ⊗ A.

Definition 2.2 If A is a 3-algebra over a field K, then by a representation of A is
meant a K-linear map ρ: A −→ V ⊗V ⊗V for some K-vector space V with positive definite
inner product, such that, for all a, b, c ∈ A,

ρ(Pa) = P23P12

(
ρ(a)

)
,

ρ
(
m(a ⊗ b ⊗ c)

)
=

∑
l,m,n
i,j,k

ainmbnjlcmlkeijk ;

in which aijk denotes the coefficient of ei ⊗ ej ⊗ ek = eijk in ρ(a), where {ei} is an
orthonormal basis in V . It is also required that if,

ρ
(
m′(a ⊗ b)

)
=

∑
Almn

ijk eijk ⊗ elmn

then, ∑
k

Alkn
ijk =

∑
λ

aiλlbλjn .
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2.2 The meaning of a 3-algebra

Recall the summary given in §1, of how 2-algebras may be viewed in terms of sub-
divisions of intervals, and triangulations. To move from 2–algebras to 3–algebras, replace
‘interval’ and ‘triangles’ by ‘triangle’ and ‘tetrahedra’, respectively. By a product in a
3-algebra, A, is meant a labelled triangulation of a triangle; that is, a triangulated surface
endowed with a labelling, whose boundary is a triangle in which further,

(i) each triangle has labels 1,2,3 placed on its sides, in such a way that the orienta-
tions of adjacent triangles so induced, match;

(ii) each internal triangle is labelled by an element of A.

In particular a product, Π, provides a set of vertices and a set of 3-sets, namely, the vertices
of the triangles appearing in the triangulation. There is also a distinguished 3-set, given
by the triangle bounding the surface associated with Π, called the base triangle and
which will be denoted by Π0. It is required that the surface represented by the product is
topologically just a disc. Let TΠ refer to the triangulation of Π0 given by the product Π,
without the additional data on the faces and edges.

By an ordered evaluation, T , of such a product Π, is meant a sequence of triangula-
tions, starting at TΠ and ending at the trivial triangulation of Π0 by a single triangle, each
triangulation being able to be obtained from the previous one via a local operation which
is of one of the types depicted in Fig. 2. This may be expressed alternatively by a set of
tetrahedra with no internal vertices (that is, 4-sets of vertices of TΠ), in which each 3-set
appears at most twice, the triangles associated with those appearing once being precisely
the base triangle and those belonging to TΠ. In other words, it is a decomposition into
tetrahedra of a 3-region which is topologically a 3-ball, whose boundary is the triangulated
sphere, TΠ, associated with TΠ with an additional triangle glued onto the boundary of this
surface. The term evaluation will be used to refer to such an (unlabelled) subdivision into
tetrahedra, while by an abuse of notation, it will also be denoted by T . Note that many
different ordered evaluations may give rise to the same evaluation (change of order), while
not all subdivisions into tetrahedra will arise from ordered evaluations, it being required
that a type of shellablility condition be satisfied.

The first move is analogous to ordinary multiplication in (2-)algebras. Using this first
move alone, most products cannot be evaluated. For example, no product based on the
surface of an octahedron, with one triangle removed, can be evaluated with this move. The
second move, which has no analogue in the theory of ordinary algebras, must therefore also
be included.

The basic structures in a 3–algebra, A, may be interpreted geometrically as actions on
the labels of local pieces of triangulations, in which P diagramatically represents rotations,
as shown in Fig 3, while m and b are shown in Fig 4. Thus

(
P (a)

)
ijk

= akij . Any
ordered evaluation T , of a product Π, now produces a result as follows. Each intermediate
triangulation, Ti, in T , once supplied with a labelling of edges may be endowed additionally
with an element of A⊗|Δi|, as a result of recursive applications to the initial vector in A⊗|TΠ|

given by Π, of the operations P , m and b in A, as appropriate, according to the types of
the moves in T . The product on Π0 resulting from the last stage of this sequence will be
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called the result of the evaluation; it will be determined, up to the action of P , by an
element of A.

Recall that a representation of a 3-algebra associates to any a ∈ A an element ρ(a) ∈
V ⊗ V ⊗ V . Place a copy of V on each edge of the triangulation; the labelling of a
triangulation required to specify a product now has a natural meaning, specifying the
order in which the copies of V enter into the description of the element associated with
the interior of a triangle. Let {ei}i∈I be an orthonormal basis for V , and suppose that Π
is a product. Then set,

ρ(Π) =
∑

i,j,k∈I

(∑
σ

∏
triangles Δ

ρσ(aΔ)
)

eijk ∈ V ⊗ V ⊗ V . (2.1)

Here the product is over all triangles Δ in the triangulation describing T , while aΔ is the
element of A associated with Δ. The sum is taken over all assignments, σ, of elements of
I, to edges of the triangulation, coinciding with i, j, k on the boundary, Π0. Finally, for
given σ and Δ, ρσ(aΔ) describes the element of K,

[
ρ(aΔ)

]
σ(δ1)σ(δ2)σ(δ3)

,

where δ1, δ2, δ3 are the edges of Δ with labels 1,2,3.

The definition of 3-algebra and its representations axiomatises the principle that the
choice of evaluation of a product should not affect the final result, be it an element of
A, or of V ⊗ V ⊗ V . In the latter case, it should be an expression of the form (2.1), a
generalisation of the formula for matrix products appearing in 2-algebras.

Any (shellable) decomposition of a 3-ball with boundary TΠ, into tetrahedra with no
internal vertices, leads to an evaluation of the product Π. One may pass between any two
such decompositions by a sequence of moves, each one having the form of a local ‘variation’
or its inverse. The local variations replace the join of two adjacent tetrahedra by a union
of three,

1234 ∪ 1235 −→ 1245 ∪ 1345 ∪ 2345 .

In this situation, decompositions refer to those of geometric polyhedra in R3. A
(combinatorial) triangulation, T , of S2 defines a collection of polyhedra in R3, namely
those whose boundary is equivalent to T . In particular, one may consider the subset CT of
this collection consisting of polyhedra in general position, that is, such that no four vertices
are coplanar. Clearly CT may be identified with an open subset of R3n where n is the
number of vertices in T . Elements of CT lying in a common connected component behave
identically in all the constructions that arise; such a component is called a geometric
realisation of T . A decomposition, T , of the interior of T into tetrahedra, refers to a
subdivision of the interior of some geometric realisation of T into a number of tetrahedra
with disjoint interiors. It is only such decompositions which are allowed as evaluations.

Axioms (i)–(iv) generate all the relations given by such associativity conditions. In
Figs. 5–8, the starting and ending configurations, with appropriate labels, are supplied for
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each of the axioms. In the figures, the 3-region whose boundary is the union of the trian-
gulation shown on the left with that shown on the right (which has opposite orientation),
may be subdivided into tetrahedra with no internal vertices in precisely two ways, each of
them describing a local evaluation. Indeed, each diagram in a figure should be viewed as
a local piece of the triangulation associated with a product.

Fix a 3-algebra, A. Note that for any oriented (not necessarily closed) two-dimensional
manifold Σ, and a set of ‘allowed’ triangulations C of Σ, closed under the moves of Fig. 2,
one may define the product space AC(Σ),

AC(Σ) ≡ {labelled triangulations of Σ}/ ∼ ,

where ∼ is an equivalence relation generated by the moves m, b and P . Indeed,
AC(triangle) = A, while AC(square) ∼= ker(Q − I). Here, Q = (1 ⊗ P 2)P12b(P ⊗ P )b
denotes the k-linear map A⊗A −→ A⊗A associated with a double application of b. If Σ
has genus 0, with ∂Σ ∼ S1, one may pick n points on the boundary, and a base triangu-
lation TΣ with n − 2 triangles. Using m, b and P , any product on Σ may be reduced to
a labelling of TΣ, and thus A(Σ) may be identified with a quotient of A⊗n−2. Here, the
allowed set of triangulations, C, consists simply of those whose vertices on the boundary
are precisely the chosen n vertices.

In this spirit, each of the axioms (i)–(iv) may also be viewed as specifying the equiv-
alence of two procedures for re-expressing a product of (8− k) elements based on a k-gon,
in terms of a standard triangulation of the k-gon. Here k = 3, 4, 4 and 5, respectively. See
Figs. 5–8.

Axiom (v) ensures that products are independent of the position of internal vertices;
see Fig 9.

Finally, axioms (vi) and (vii) specify the symmetries one expects in m and b; namely those
of Figs. 10 and 11. Axiom (vi) ensures that m commutes with rotation through 2π/3.
Axiom (vii) specifies that b commutes with rotation of the base quadrilateral through π,
given by a ⊗ b 	−→ P 2b ⊗ Pa.

An orthogonal 3-algebra is such that the square of the operation b is a projection.
The extra factors of P and P12 are required to match the positions of the indices 1,2,3
on the edges. Any product involving adjacent triangles with labels in kerQ vanishes; and
thus Q specifies a compatability condition in the sense of [TV].

The dual of the generic diagram describing (i)–(iv) is shown in Fig. 12.

Theorem Suppose A is an orthogonal 3-algebra and Π is a labelled triangulation
of the triangle. The composition of m, b and P maps, specified by an evaluation T of Π,
has an image in A which is independent of the choice of T .

For a fixed geometric realisation of the triangulation TΠ of S2, independence of the
result of the product upon the evaluation is ensured by A being a 3-algebra. Invariance
under variations of the realisation within CT requires A to be an orthogonal 3-algebra. Note
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that unlike the situation in 2-algebras, the number of tetrahedra in an evaluation T is not
determined by the product Π, indeed the generating moves change pairs of tetrahedra into
triples, and conversely.

Full 3-algebras

The notion of 3-algebra introduced above may be extended to what will be called
a full 3-algebra, in order to deal with (arbitrary) triangulations of manifolds, rather
than just shellable triangulations of a 3-ball. Thus, in a full 3-algebra A, there are maps
mj : A⊗j 	−→ A⊗(4−j) for each j with 0 ≤ j ≤ 4, in addition to an element, P , of End(A) of
order 3. The relations to be satisfied by these maps are best motivated by the associated
geometric interpretation. Thus, the maps mj are visualised as lying on a tetrahedron in
which, on each face, labels 1,2 and 3 have been placed on the edges and a copy of A or its
dual is placed on each face, according as the orientation on the face defined by the labels,
matches or otherwise, the orientation induced from that of the tetrahedron. The maps mj

are required to be invariant under the subgroup of the direct symmetry group, A4, of the
tetrahedron which preserves the face orientations.

By a product in a full 3-algebra is meant a labelled combinatorial triangulation, the
labelling supplying for each triangular face, numbers 1,2 and 3 on its edges, a sign ± and an
element of A or A∗ according as the sign is − or +, in such a way that adjacent faces have
compatible orientations. The surface, Σ, which enters here is only defined combinatorially,
and not topologically; it is just a collection of triples of points in which each pair of points
appears at most twice, those appearing once forming the edges of ∂Σ. Let Σ denote
the closed surface obtained from Σ by adjoining n discs, where n denotes the number of
components in ∂Σ.

By an evaluation of a product, Π, is meant a combinatorial triangulation of a 3-
manifold whose boundary is Σ along with, for each tetrahedron, a sign on each face.
This data must be such that its restriction to Σ is that determined by Π, while the signs
associated with an interior face are opposite in the two bounding 3-simplices.

Given an evaluation T of a product Π, we now define the result of this evaluation as
follows. On each tetrahedron in T , one may place a copy of the vector space A or its dual,
according as the sign placed on that face in T is + or −, respectively. Each face of Σ may
also be adorned with a copy of A∗ or A according as the sign in Π is + or −. Thus, each
internal face of T and each face of Σ will be adorned with dual vector spaces from the two
tetrahedra incident on this face and hence there is defined a contraction operation from
the tensor product of all the vector spaces to a tensor product involving only those factors
associated with faces in Σ\Σ. If j is the number of negative signs on the bounding faces of
a tetrahedron in T , then one may place a copy of mj on that tetrahedron. The result of
the contraction of the tensor product of these vectors defines the result of the evaluation,
it is an element of a tensor product of n factors, each either A or A∗. (Note that there may
be extra operations P entering in order to match up the two sets of labels placed on the
edges of an internal face.) This procedure may perhaps be more familiar as contraction of
tensors on the 4-valent oriented graph dual to T . The orientation on this graph is defined
by requiring that an edge is oriented away from a particular vertex precisely when the sign
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on the associated triangle, as a face of the tetrahedron represented by that vertex, is +.

To ensure that the result of an evaluation of a product is independent of the choice of
evaluation, it is necessary that the result be unchanged under local moves on triangulations.
That is, for any combination of arrows on the external legs of Fig. 12, identical on the two
sides of the equivalence, and any choice of arrows on the internal edges, the results of the
contraction of the combinations of mj defined by Fig. 12, are identical. In addition, the
similar statement, associated with a move replacing a single tetrahedron by a union of four,
a new (internal) vertex having been introduced, must hold. This describes the conditions
to be satisfied by the mj ’s in a full 3-algebra. Those conditions which involve only m2 and
m3 are identical to the constraints on the structures m = m3 and b = m2 in a 3-algebra.

Theorem Suppose A is an orthogonal full 3-algebra and Π is a product based on a
triangulated closed surface Σ. The composition of mj maps, specified by an evaluation T
of Π, has an image in A(Σ) which is independent of the choice of T . Thus A determines
an invariant of 3-manifolds with boundary Σ.

3: An example

In this section we shall show how a 3-algebra may be constructed starting from a
quantum group. Suppose, more generally, that a set I is given, together with maps w: I −→
K and,

f : I6 −→ K .

The latter map will be denoted, for later convenience by,

(a, b, c, i, j, k) 	−→
(

a b c
i j k

)
. (3.1)

Any such set of six elements of I may be placed on the edges of a tetrahedron whose
vertices are labelled 1,2,3,4, as shown in Fig. 13. The direct symmetry group, A4, of the
tetrahedron acts on these six labels in a clear way, and we assume that f is invariant under
this action.

It is now possible to use this data to attempt to construct a 3-algebra, A, whose
structure as a K-vector space is simply that generated by a basis indexed by I3. Let eijk

denote the basis element associated with (i, j, k) ∈ I3.

Lemma 3.1 The K-linear space, A, generated by {eijk | i, j, k ∈ I} together with
maps,

P (eijk) = ejki

m(eakj ⊗ ek′bi ⊗ ej′i′c) = δii′δjj′δkk′

(
a b c
i j k

)
eabc

b(ej2bc ⊗ eb′aj1) = δbb′
∑

j

w2
j

(
j2 a j
j1 c b

)
ej2aj ⊗ ecjj1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.2)
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define a 3-algebra, if, and only if, for all a, b, c, e, f, j1, j2, j3, j23 ∈ I,

∑
j

w2
j

(
e j3 j
j2 a j23

)(
j c j1
b a j2

)(
j3 c f
j1 e j

)
=

(
j3 c f
b j23 j2

)(
e f j1
b a j23

)
. (3.3)

The axioms (i)–(iv) are each seen to be equivalent to (3.3) when the symmetries of
(3.1) are considered. This lemma allows the construction of a number of examples of 3-
algebras. Suppose B is a simple Lie group, and Uqb is a quantum group obtained as the
quantisation of the universal enveloping algebra of the Lie algebra, b of B, evaluated at a
root of unity, q. Let I be a suitable set, labelling the irreducible representations of Uqb,
and let Vi denote the representation labelled by i ∈ I.

For any three irreducible representations Vi1 , Vi2 , Vi3 , one may construct a basis for
Vi1 ⊗ Vi2 ⊗ Vi3 in two distinct ways. Firstly, as a join of bases for Vi ⊗ Vi3 as i ranges
over elements of I, for which Vi occurs in the decomposition of Vi1 ⊗ Vi2 into irreducible
representations. Secondly, a basis may be constructed as a join of bases for Vi1 ⊗ Vj as
j ranges over elements of I, for which Vj occurs in the decomposition of Vi2 ⊗ Vi3 into
irreducible representations. Thus, if Vk appears in the decomposition of Vi1 ⊗ Vi2 ⊗ Vi3 ,
then two distinct bases are known for the component transforming according to Vk. The
change of basis transformation has coefficients known as the quantum 6j-symbols and is
traditionally denoted, (

i i1 i2
j i3 k

)
. (3.4)

An element {i, j, k} of I3 is said to be admissible if Vi ⊗ Vj ⊗ Vk contains a copy of
the trivial representation (the assumption of simplicity then implies that it occurs with
multiplicity one). As defined above, (3.4) is only meaningful when {i1, j, k}, {i, i1, i2},
{i3, j, i2} and {k, i, i3} are all admissible triples. We extend its definition to all of I6 by
defining it to be zero in all cases where it would not otherwise be meaningful.

The symmetries of such quantum 6j-symbols, together with the Elliot-Biedenharn
relation ensure, by Lemma 3.1, that a 3-algebra results. See [KR] for precise definitions of
the quantum 6j-symbols. Note also, that the orthogonality relation amongst 6j-symbols
guarantees the orthogonality of the resulting 3-algebra, while the associated projection Q
of axiom (viii) has,

A ⊗ A/kerQ ∼=
〈
eijk ⊗ ejlm | (i, j, k) and (j, l, m) are admissible

〉
.

The purpose of using a quantum group at a root of unity is that the relevant rep-
resentation theory is then finite, that is, the resulting 3-algebra is finite-dimensional as a
vector space, so that problems of convergence of results of evaluations of products do not
arise.

The (Racah-Wigner) quantum 6j-symbols for Uqsl2 were found in [KR]. The map
w: I −→ C is simply given by w: n 	→ wn = i2n[2n +1]1/2, where the indexing set, I, is
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1/2Z+. Here, [n] denotes the q-number, qn−1 + qn−3 + · · · + q3−n + q1−n. At the sixth
root of unity q = e iπ/3, the resulting 3-algebra may easily be written down. The allowable
representations have spins in I = {0, 1/2}, while the ‘admissible’ triples are,

(0, 0, 0), (1/2, 0, 1/2), (1/2, 1/2, 0), (0, 1/2, 1/2) .

The relevant quantum 6j-symbols are,(
0 0 0
0 0 0

)
= 1 ,

(
1/2 1/2 0
1/2 1/2 0

)
= −1 ,

(
0 1/2 1/2
1/2 0 0

)
= −i ;

while w0 = 1, w1/2 = i. The associated 3-algebra A is thus four dimensional as a vector
space over C, with basis elements as in Fig. 14.

A complete description of the 3-algebra, A, is given by,

P (a) = c, P (b) = a, P (c) = b, P (d) = d ; (3.5)

together with the maps m and b, below.

m(a ⊗ b ⊗ c) = −id

m(a ⊗ c ⊗ b) = −a

m(b ⊗ a ⊗ c) = −c

m(b ⊗ d ⊗ b) = −ib

m(c ⊗ b ⊗ a) = −b

m(c ⊗ c ⊗ d) = −ic

m(d ⊗ a ⊗ a) = −ia

m(d ⊗ d ⊗ d) = d

b(a ⊗ b) = −id ⊗ b

b(a ⊗ c) = a ⊗ c

b(b ⊗ a) = −c ⊗ b

b(b ⊗ d) = ib ⊗ c

b(c ⊗ b) = b ⊗ a

b(c ⊗ c) = −ic ⊗ d

b(d ⊗ a) = ia ⊗ a

b(d ⊗ d) = d ⊗ d .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

Note that in the above list the images of basis elements have been given, with those not
mentioned having zero images.

The dual vector space has a dual 3-algebra structure, with maps P , Δ and Δ replacing
p, m and b,

Δ:

Δ:

A∗ −→ A∗ ⊗ A∗ ⊗ A∗ ;
A∗ ⊗ A∗ −→ A∗ ⊗ A∗ .

If A, B, C, D denote the associated dual basis for A∗, then,

P (A) = B, P (B) = C, P (C) = A, P (D) = D ;

while Δ is given by,
Δ(A) = −A ⊗ C ⊗ B − iD ⊗ A ⊗ A

Δ(B) = −iB ⊗ D ⊗ B − C ⊗ B ⊗ A

Δ(C) = −B ⊗ A ⊗ C − iC ⊗ C ⊗ D

Δ(D) = −iA ⊗ B ⊗ C + D ⊗ D ⊗ D .
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The dual of b, namely Δ, is specified by the images of basis elements of A∗ ⊗ A∗; those
which are non-zero are listed below.

Δ(A ⊗ A) = iD ⊗ A

Δ(A ⊗ C) = A ⊗ C

Δ(B ⊗ A) = C ⊗ B

Δ(B ⊗ C) = iB ⊗ D

Δ(C ⊗ B) = −B ⊗ A

Δ(C ⊗ D) = −iC ⊗ C

Δ(D ⊗ B) = −iA ⊗ B

Δ(D ⊗ D) = D ⊗ D .

These maps satisfy dual axioms to (i)–(vii) above. For example, the dual to axiom (i) is,

(Δ ⊗ 1 ⊗ 1)Δ = P34(1 ⊗ Δ ⊗ 1 ⊗ 1)P34(1 ⊗ 1 ⊗ Δ)Δ .

It is easily seen that all the axioms are satisfied, whilst Q is the projection onto

〈a ⊗ b, a ⊗ c, b ⊗ a, b ⊗ d, c ⊗ b, c ⊗ c, d ⊗ a, d ⊗ d〉 .

A non-equivalent 3-algebra over C, also of dimension four as a vector space is given
by 〈a, b, c, d〉 with similar relations to (3.5) and (3.6), except that in (3.6) all coefficients
±1 and ±i are replaced by +1. The resulting 3-algebra has a representation of dimension
two, with,

a 	−→ e1 ⊗ e2 ⊗ e2 ;
c 	−→ e2 ⊗ e2 ⊗ e1 ;

b 	−→ e2 ⊗ e1 ⊗ e2 ;
d 	−→ e1 ⊗ e1 ⊗ e1 .

The invariants of 3-manifolds discussed in [TV] are, in the case of no internal vertices
in T , just given by the multiplication map A(Σ1) → A(Σ2). The particular 3-algebra
described by (3.5), (3.6) above gives rise to the invariants discussed in §8 of [TV]. Here
A is the 3-algebra constructed from a quantum group at a root of unity, as above, and
Σ1 ∪ Σ2 is a subdivision of the boundary of the 3-manifold. To deal with arbitrary 3-
manifolds, general triangulations must be considered. The moves required to pass between
two topologically equivalent triangulations are more complex, and were dealt with in [TV]
and [M]. An extra ‘bubble’ move introduces a contribution from internal vertices into the
state model description of invariants in [TV]; see also [P].

4: Triangle relations

4.1 Lattices and triangle relations

In the theory of the quantum groups, the star-triangle relation, or quantum Yang-
Baxter equation,

R12R13R23 = R23R13R12 , (4.1)

for an element R ∈ A ⊗ A, plays a central role. In statistical mechanics, the solution of
the honeycomb Ising model directly involves the duality of the honeycomb and triangular
lattices, as well as the star-triangle transformation of Fig. 15. See [B].
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Both these transformations produce a honeycomb lattice from a triangular lattice,
and conversely; and their combination enables the solution of the model. In this respect,
a triangular lattice refers to a tesselation by a rhombus divided into two triangles. The
resulting dual honeycomb lattice has two types of vertex, corresponding to the two ori-
entations of triangle in the initial lattice. The three orientations of lines in the initial
triangular lattice give rise to three edge types in the honeycomb lattice. Let us label the
honeycomb lattice as follows. Place an element of A ⊗ A ⊗ A on each edge, it being R12,
R13, or R23 according to the type of edge; see Fig. 16. These elements may be regarded
as maps A⊗A⊗A −→ A⊗A⊗A, namely left multiplications. The commutativity of all
closed loops of such maps on the honeycomb lattice is ensured by that for the generating
loops, that is the commutativity of the hexagons themselves. In other words, (4.1) may be
interpreted as expressing the commutativity of a suitably labelled honeycomb lattice.

The natural generalisation is obtained by considering a tetrahedral lattice, that is,
the tesselation by a cuboid divided into six tetrahedra. Its dual lattice has six different
vertex types and may be generated by a polyhedron which we call Γ3. It is a truncated
cube/octahedron, with 24 vertices and 14 faces (6 squares and 8 hexagons).

In general consider an n-dimensional lattice obtained by the tesselation of a hypercube
divided into n! n-simplices. That is, subdivide Rn by 1/2n(n+1) hyperplanes,

u∑
s=t

xs ∈ Z , (4.2)

where n ≥ u ≥ t ≥ 1. For u = t, (4.2) reduces to the hyperplanes, xt ∈ Z, defining the
standard n-dimensional cuboidal lattice. For n = 2, this gives x1, x2 and x1 + x2 ∈ Z,
the standard triangular lattice. Let Γn denote the polyhedron generating the dual graph
of the lattice of (4.2), the n–dimensional permutahedron. Thus Γ2 is a hexagon while Γ3

is a tetrakaidekahedron.

Let Pn,k consist of partitions into r terms of total order (k + r) chosen from
{0, 1, . . . , n}; that is, an element of Pn,k consists of an integer r together with r pair-
wise disjoint subsets S1, . . . , Sr of {0, 1, . . . , n} with

∑
|Si| = k + r and |Si| > 1 for all i.

Then Pn,k labels the k-dimensional faces of Γn. Indeed, such a face is defined by an
arrangement of k hyperplanes in general position, each of the type specified in (4.2). A
hyperplane of type (4.2) is given by a subset {t −1, u} of {0, 1, . . . , n} of order 2. Fix a
collection of (n+1) linearly independent vectors v0, . . . ,vn in some vector space. Then to
each set {t−1, u} associate the vector vt−1−vu. A collection of k, 2-sets corresponds to an
arrangement of k hyperplanes in general position precisely when the associated k vectors
are linearly independent, while the span of these vectors determines a face of Γn (up to
translation). It is apparent that Pn,k labels those k-dimensional vector spaces spanned by
vectors of the type vt−1 − vu, and hence to each α ∈ Pn,k, there corresponds a face Γn

α

of Γn.

The geometrical type of Γn
α is determined solely by r and the orders |Sj |, j =

1, 2, . . . , r. The set {|Sj| −1}r
j=1 defines a partition of k into r positive integers, and

therefore the geometrical types of k-dimensional faces of Γn are indexed by the partitions
of k.
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Suppose α is a partition of k. The geometrical types of the facets of type-α faces
of Γn, are labelled by sub-partitions of α. That is, a partition of k′ < k obtained from
α by reducing or removing some, or all, terms in the partition. Indeed, if α ∈ Pn,k, the
k′-dimensional faces of Γn

α are given by Γn
β with β ∈ Pn,k′ of form {T1, . . . , Tr′} in which,

(i) Ti ⊂ {0, 1, . . . , n} are disjoint subsets for i = 1, . . . , r′;

(ii)
∑
i

|Ti| = k′ + r′;

(iii) for each i, 1 ≤ i ≤ r′, ∃j with 1 ≤ j ≤ r and Ti ⊂ Sj .

Here {S1, . . . , Sr} specifies α ∈ Pn,k. Define an equivalence relation ∼β on {1, 2, . . . , n} in
which a ∼β b for distinct a and b, if, and only if, a, b ∈ Tj for some j. Under ∼β , {Sj}
is reduced to another partition, γ. The number of faces of Γn

α of type Γn
β is

∏r
j=1 γj!

where γj is the size of the jth segment in γ.

Example 1 k = 1. The set Pn,1 consists of pairs of integers in {0, 1, . . . , n}. It
has order 1/2n(n+1), and each element of Pn,1 specifies an edge of Γn up to orientation.

Example 2 k = 2. An element Pn,2 consists of r ∈ N and r pairwise disjoint
subsets, each of order at least two, and whose union has order r + 2. Clearly, either r = 1
with one set of order 3, or r = 2 with two sets of order 2. The elements of Pn,2 may
therefore be labelled,

ijk or ij; kl . (4.3)

These two types of elements are specified by the two partitions of k, namely, 2 and 1+1, and
correspond to the two possible geometrical types of 2-faces, namely, hexagonal and square,
respectively. Following the discussion of the relation (4.1), one may associate Rij ∈ A⊗n

to the edge of Γn labelled by {i, j} ∈ Pn,1. The commutativity of all 1-cycles in Γn is
equivalent to that of all 2-faces of Γn. The commutativity of faces labelled by (4.3) gives
relations,

RijRikRjk = RjkRikRij

[Rij, Rkl] = 0 ,

respectively. This is just the Yang-Baxter equation in the form natural in the context of
quantum groups.

Example 3 Take α = {{0, 1, 2, 3, 4}} ∈ Pn,4. It gives rise to Γn
α, a 4-

dimensional face of Γn. The 3-dimensional faces of Γn
α are labelled by partitions, β, of

{0, 1, 2, 3, 4} into r sets, of total size r + 3. Those with r = 1 are five in number, while
those with r = 2 are ten in number. Examples of each are

{
{0, 1, 2, 3}

}
(r = 1) and{

{0, 1, 2}, {3, 4}
}

(r = 2). The total number of three-dimensional faces of Γn
α is 30, each

of the above occurring twice in antipodal faces.
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Example 4 k = 3. The 3-dimensional faces of Γn come in three types, cor-
responding to the three possible partitions, 3, 2 + 1 and 1 + 1 + 1, of 3. Such faces are
labelled by elements of Pn,3, with parameters ijkl, ijk; lm and ij; kl; mp, respectively.
Here i, j, k, l, m and p are distinct elements of {0, 1, . . . , n}. The polyhedra so defined
have the shapes of, a tetrakaidekahedron, a hexagonal prismoid and a cube, respectively.
Following example 2, it is now natural to take the commutation of all 2-cycles of Γn,
as the 3-dimensional analogue of the quantum Yang-Baxter equation; that is, the condi-
tion is equivalent to the commutation of the three types of 3-dimensional face discussed
above. In this context, commutation is amongst 3-algebra elements, Sijk ∈ B(Σ6) and
Tij;kl ∈ B(Σ4), where Σn denotes an n-gon. These elements are placed on each face and
combined in a similar manner to the way Rij was placed on each edge in example 2. See
Figs. 17, 18 and 19. Note that here, B, is a 3-algebra and it is a suitable analogue of A⊗n

appearing in the case of 2-algebras.

The form of the 3-dimensional triangle relation descibed above should be compared
with Zamolodchikov’s relation (see [Z 1], [Z 2]). The tetrahedral equations appeared in
Zamolodchikov’s work while considering random arrays of planes in the context of 3-
dimensional statistical mechanics; this clearly has relations with the geometrical structures
above.

It is proposed, more generally, that the correct k-dimensional analogue of the triangle
relation is a relation between elements which live naturally in the context of k-algebras.
These relations merely express the commutivity of all k-dimensional faces of Γn, and are
between elements R(γ) ∈ B(X(γ)), defined for each partition γ of k −1, of the k-algebra
object associated with X(γ), a (k −1)-dimensional face of Γn with type γ. We refer to §5
for such generalisations.

In [FM], a solution of the classical version of Zamolodchikov’s tetrahedral equation is
quantised, but it is shown that a similar procedure breaks down in general for the simplex
equation in dimensions higher than three. It is hoped that the geometrical nature of the
proposed alternative higher dimensional equations will lead to a better fate for their solu-
tions, when they are constructed. Note also that in [KV], a formulation of Zamolodchikov’s
equations, differing somewhat from the original simplex equation, is obtained in three di-
mensions, and it appears that polyhedra of the types of those depicted in Figs. 17–19 enter.
Their formulation involves 2-categories which, although giving rise to similar geometrical
pictures to those of our approach, take account of fewer of the inherent symmetries.

A few more comments about the relations represented in Figs. 17–19 are in order.
Consider the situation from the standpoint of a supplied representation of B, on a vector
space W , say. Then Sijk, Tij;kl are now elements of W⊗6 and W⊗4 respectively, or
equivalently, maps W⊗3 → W⊗3 and W⊗2 → W⊗2. Fig. 20 depicts these maps, in which
the edges have been labelled by pairs of elements of {0, 1, . . . , n} as in Example 1.

A trivial solution of the relations may be obtained by supposing the actions of Sijk

and Tij;kl to be independent of their indices, say s and t, with s ∈ End(W⊗3) and t ∈
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End(W⊗2). The relations then become,

t12t23t12 = t23t12t23

t12t23t34s123 = s234t12t23t34

t34s123s345t56t23s345s123 = s456s234t45t12s234s456t34 ,

⎫⎪⎬
⎪⎭ (4.4)

in which sijk and tij denote elements of End(W⊗n), trivial on all factors except those
specified by the indices, on which the action is given by s and t, respectively. It is at once
apparent that if Pij denotes the action on W⊗n of transposing the ith and jth factors,
Pt = R is a solution of the quantum Yang-Baxter equation. Put Φ = P13s. Then (4.5)
reduces to the following relations.

R34R24R14Φ123 = Φ123R14R24R34

R34Φ356Φ246R16R25Φ145Φ123 = Φ123Φ145R25R16Φ246Φ356R34 .

}
(4.6)

A solution of these equations is Φ = R12R13R23. This solution should be regarded in much
the same way as the transposition matrix P12 with respect to the standard 2-dimensional
triangle relation. It is striking to note the similarity between the first relation in (4.6) and
the fundamental relation of [FRT]. See [CS1], [CS2] for other solutions, also derived from
quantum groups.

4.2 Dual triangle relations and higher braid groups

The commutativity relations discussed in §4.1 for the 3-dimensional faces of Γn have
the dual representations shown in Figs. 21–23. Here the actions of S and T are represented
by 6- and 4-point vertices.

The specification of a continuous map f :R → R1/2n(n−1) is equivalent to that of
1/2n(n−1) continuous maps R → R which may conveniently be labelled by fij , for 1 ≤
i < j ≤ n. Consider the space C of such continuous maps f which are such that,

(i) f(x) = f0 for all |x| > N and suitably large N , for some constant vector f0 ∈
R1/2n(n−1);

(ii) fij(x)− fkl(x) has a finite number of zeroes, in x, for all distinct pairs i < j and
k < l;

(iii) whenever x and 1 ≤ i < j < k ≤ n, are such that at least two of fij(x), fik(x)
and fjk(x) are equal, then all three are equal.

An element f ∈ C may be depicted by 1/2n(n−1) curves in R2, each being a vertical line
outside a sufficiently large region. These curves Cij , are labelled by pairs of elements of
{1, 2, . . . , n} and are such that the only intersections allowed between such curves, are
combinations of crossings of Cij and Ckl (for i, j, k, l distinct) or of Cij , Cik and Cjk (for
i, j, k distinct). Let C′ denote the subset of C, consisting of elements for which all crossings
are either double or triple points, of the elemental types just mentioned. Figs. 21–23 define
generators of an equivalence relation ∼ on C′. Any S and T satisfying our 3-dimensional
triangle relations will provide an invariant for C′ under ∼.
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Viewed in this way, Figs 21–23 may be considered as a natural generalisations of
the Yang-Baxter equation in another context. For, Fig. 21 is the classical depiction of
the QYBE, in which each line is labelled with a single element of {1, 2, . . . , n}, while a
crossing of lines labelled i and j represents the action of Rij. Suppose now that the labels
are changed to be pairs of elements of {1, 2, . . . , n} with the extra assumption that lines
labelled ij, ik and jk intersect at the triple points only. Figs. 22 and 23 naturally arise
as the closest approximations to Fig. 21 in which three lines with labels ij, kl and mn
intersect with i, j, k, l, m and n, not necessarily all distinct. Thus a double point, at which
lines with labels ij and kl intersect, represents the action of Tij;kl, while a triple point given
by lines with labels ij, ik and jk represents the action of Sijk. This viewpoint ‘explains’
the solution Φ = R12R13R23 of (4.6). Just as the braid group Bn and permutation group
Sn are associated with QYBE, it is possible to construct analogous objects for our three
dimensional generalisation. Let B

(3)
n denote the groupoid whose objects are orderings of

the set of pairs of elements of {1, 2, . . . , n}, and whose morphisms are generated by βijk,
αij;kl and their inverses, with relations specified by Figs. 21–23. Here βijk and αij;kl are the
morphisms depicted in Fig. 24, which are defined between suitable pairs of objects. Thus
βijk is only defined between objects in which ij, ik and jk are adjacent in an increasing
order on the tail of the arrow, and in decreasing order on the head, the two orderings being
identical, except from these three elements. A similar definition holds for αij;kl.

More precisely, suppose P1 and P2 are two objects in B
(3)
n , that is, they are total

orderings of the set of subsets of {1, 2, . . . , n} of order 2. By a morphism between P1 and
P2 is meant a sequence of α’s, β’s and their inverses, compatible with P1 and P2 at their
ends, defined up to an equivalence generated by the relations of Figs. 21–24.

Let X(n, 2) consist of all arrangements of n lines in C2 parallel to n given real lines
l01, . . . , l

0
n in C2, which are in general position. Its fundamental group is Manin and Schecht-

man’s higher braid group, B(n, 2), see [MS 1] and [MS 2]. One may construct a natural
map from the fundamental groupoid of X(n, 2), whose objects are real arrangements, to
a quotient of B

(3)
n , in which an arrangement of n lines is mapped to the image of the

1/2n(n−1) pairwise intersection points, under a projection onto a line l0. Here l0, l
0
1, . . . , l

0
n

are (n+1) real lines in general position in C2, with say, increasing positive slopes. The
generators of B(n, 2) are given by one line li, passing through the intersection point of two
others, lj and lk and this is mapped to βijk with i < j < k. The quotient is generated by
local moves represented by α’s.

A solution of the relations of Figs. 21–23, provides a representation of B(n, 2), so long
as the α’s are mapped to 1, in which case the relations reduce to Zamolodchikov’s relations.

Note: The above discussion indicates an analogue of the braid group which is a ‘3-group’
generated by Sijk and Tij;kl with relations as represented by Figs. 17–19. Note that the
corresponding construction with 2-groups gives the group,

Gn = 〈Rij | RijRikRjk = RjkRikRij and RijRkl = RklRij〉 ,

in which i, j, k, l run over all distinct elements of {1, 2, . . . , n}. The twisted product Gn�Sn,
in which Sn acts on Gn by permuting the indices,

σ(Rij) = Rσ(i)σ(j) = σRijσ
−1, σ ∈ Sn
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contains a normal subgroup Hn of index n!, generated by R̃ij = (i j)Rij. This group has
a presentation,

Hn = 〈R̃ij | R̃ijR̃jkR̃ij = R̃jkR̃ijR̃jk and R̃ijR̃kl = R̃klR̃ij〉

and contains many copies of the braid group Bn. A representation of Gn (and thus also of
Hn and Bn) is provided from any quasi-triangular Hopf algebra (quantum group) [D 1].

5: Generalisations

Some of the structures constructed in this paper may be extended to the d-dimensional
case in a natural way. Thus, a d-algebra is obtained in a similar way to a 3-algebra, with
(d −1)-simplices replacing triangles and d-simplices replacing tetrahedra. It will describe
the behaviour of d-tensors under composition (via contractions).

Formally, a product in a d-algebra, A, is a labelled decomposition of a (d −1)-simplex
into other such simplices, with no internal vertices. The labelling defines an element of
A for each (d −1)-simplex, and a labelling 1, 2, . . . , d on the faces of each (d −1)-simplex
in the decomposition. These labelled simplices must have compatible orientations. This
allows a freedom for the labelling on each simplex, described by the alternating group, Ad.

An evaluation of a product is a set of d-simplices based on the vertices as defined
by the products, such that each (d −1)-simplex appears as a face at most twice, those
occurring once, being precisely the simplices defining the product, and the base simplex.
This is a combinatorial description for a d-dimensional manifold whose boundary is the
(d −1)-dimensional manifold formed by adjoining the base simplex to the surface defined
by the product.

The structure of a d-algebra is so arranged that, given any product and an associated
evaluation, a result may be obtained in this algebra. Moreover, this result depends only
upon the topology of the d-dimensional manifold bounded by the surface defined by the
product. The operations present in a d-algebra, like those of a 3-algebra, enable the
necessary symmetries and d-simplices to be described. There are, however, many difficulties
in the higher dimensional case, the foremost of which being that the moves required to
translate between any two topologically equivalent subdivisions of a d-dimensional manifold
with triangulated boundary, become complex. See the review in [TV] for details on how
such moves may be defined. Another problem is that some subdivisions into d-simplices
may not be capable of being viewed as compositions of multiplication maps. This is because
it is possible for no d-simplex to contain at least 1/2(d +1) faces in the boundary.

It is possible to remove some of these problems by restricting allowed evaluations to
those with trivial topology and introducing geometric realisations as in §2. An evaluation
is then a decomposition of the d-dimensional interior of a geometric realisation of the
product into d-simplices, whose interiors are pairwise disjoint, and which contain no interior
vertices.

By a d-algebra is meant a vector space over some field k, together with k-linear maps,

mi: A⊗(d+1−i) −→ A⊗i ,



Algebras and triangle relations 33

for i = 1, 2, . . . , [1/2(d +1)], and an action P of Ad upon A, satisfying suitable axioms. The
axioms come in three types.

Type I Associativity axioms.

For any j ∈ {2, 3, . . . , [1/2(d +1)]}, it is possible to subdivide a suitable union of j
d-simplices into (d + 2 − j) d-simplices. This corresponds to all possible projections of a
(d +1)-simplex onto a d-dimensional plane without internal vertices. Let Σj denote the
boundary surface of the union of j d-simplices, of the form just noted. Then Σj is a closed
union of j(d + 2 − j), (d −1)-simplices. The surface Σj may be projected onto a (d −1)-
plane, providing two decompositions into k and j(d + 2− j)− k, d-simplices, say Σ(1)

j and

Σ(2)
j . This is equivalent to decomposing Σj into two (topological) discs. One may now

attempt to interpret the different decompositions of the interior of Σj into d-simplices, as
evaluations from A(Σ(1)

j ) to A(Σ(2)
j ). When this is possible, there is exhibited an axiom

giving the equivalence of the corresponding compositions of the m-maps; j on one side of
the equation and (d + 2 − j) on the other side.

Type II Symmetry axioms.

For each j = 2, 3, . . . , [1/2(d +1)], there is an axiom requiring of mj the appropriate
symmetry of the union of i, d-simplices. The full symmetry group of such a union is
Sj × Sd+1−j , and the direct symmetry group Sd,j is an index-2 subgroup. The associate
axiom specifies that mj commutes with the action of Sd,j = Sd,d+1−j , upon A⊗j on one side
and A⊗(d+1−j) on the other. The action of an element of Sd,j upon A⊗j is the composition
of an appropriate permutation of the factors, with actions of the form P (σ), for suitable
σ ∈ Ad, on individual factors, A, of A⊗j .

Type III Invariance under change of internal vertices.

These may be considered as type I equivalences. Consider a segment of a product,
described by a collection of (d −1)-dimensional simplices, whose union is topologically a
(d −1)-dimensional disc. Introducing a notion of the geometrical realisation of such a
triangulation, it is seen that the allowed evaluations depend on the choice of a geometric
realisation of the product. Type III axioms ensure the equality of results obtained from
evaluations associated with different geometric realisations of the product.

For d = 3, (i)–(iv) of definition 2.1 have type I and (vi)–(vii) have type II, while (v) is
of type III. One may also define a full d-algebra, in which there are maps mi: A⊗(d+1−i) −→
A⊗i , for all i = 1, . . . , (d +1).

By a representation of a d-algebra A we mean a map A −→ V ⊗d where V is a k-
vector space with non-degenerate inner product, such that the multiplication maps are
compatible with contraction, in the same sense as in §2.

Example Let us consider the case d = 5. We are considering products given by
combinations of 4-simplices. Start with six points P1, . . . , P6 in R4 whose convex hull, C,
does not contain any of the initial points in its interior. Then C may be expressed as a
union of 4-simplices, the vertices being drawn entirely from the given points. Depending
upon the configuration of {Pi}, it may be necessary to use two or three 4-simplices.
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In the case when C may be decomposed into two 4-simplices, P1P2P3P4P5 and
P1P2P3P4P6, say, the boundary of C is a union of eight tetrahedra, P1P2P3P5, P1P2P4P5,
P1P3P4P5, P2P3P4P5, P1P2P3P6, P1P2P4P6, P1P3P4P6 and P2P3P4P6. Choose a seventh
point, P7, in the interior of C. A decomposition of C into eight 4-simplices is achieved,
using cones with vertex P7 and whose bases are the eight tetrahedral faces of C. This
defines a product in a 5-algebra, when endowed with a suitable labelling. To compute the
product one must combine the three types of multiplication maps appropriately.

m1: A⊗5 −→ A

m2: A⊗4 −→ A⊗2

m3: A⊗3 −→ A⊗3 .

As a function of the elements of A associated with the eight 4-simplices involved in the
product, the result of the product is a map,

A⊗8 −→ A⊗2 ,

where A is the 5-algebra. Recall that an evaluation may be denoted by a subdivision of
the 5-dimensional region bounded by the eight 4-simplices subdividing C, together with
P1P2P3P4P5 and P1P2P3P4P6 (the latter two with opposite orientations to the rest). It is
apparent that this 5-dimensional region may be expressed as the union of two 5-simplices
P1P2P3P4P6P7 and P1P2P3P4P5P7 (or as the union of five 5-simplices P1P2P3P5P6P7,
P1P2P3P4P5P6, P1P2P4P5P6P7, P1P3P4P5P6P7 and P2P3P4P5P6P7). The result of the
product may now be expressed in terms of the composition of maps mi. Below are written
the 4-simplices as they are combined, starting with the conical subdivision of C, and ending
with two 4-simplices. At each step, only the six 4-simplices involved in the mi map are
noted.

P1P2P3P5P7, P1P2P4P5P7, P1P3P4P5P7, P2P3P4P5P7
m2−→ P1P2P3P4P7, P1P2P3P4P5

P1P2P3P4P7, P1P2P3P6P7, P1P2P4P6P7, P1P3P4P6P7, P2P3P4P6P7
m1−→ P1P2P3P4P6 .

Another evaluation is obtained by interchanging P5 and P6. The equivalence of the result-
ing two maps A⊗8 −→ A⊗2, both of the form m1 ◦ m2 (with additional actions of A5 and
permutations of factors) provides an axiom of type III.

Another axiom of type III appears from the case when C can be decomposed into
three 4-simplices P1P2P3P4P5, P1P2P3P4P6 and P1P2P3P5P6, say. The boundary of C
is a union of nine tetrahedra, and adjoining a point P7 inside C, subdivides C into nine
cones. A product A⊗9 −→ A⊗3 is now defined, and evaluations may be obtained from
decompositions of a five-dimensional object with twelve faces, P1P2P4P5P7, P1P3P4P5P7,
P2P3P4P5P7, P1P2P4P6P7, P1P3P4P6P7, P2P3P4P6P7, P1P2P5P6P7, P1P3P5P6P7, and
P2P3P5P6P7 and the three initial 4-simplices, P1P2P3P4P5, P1P2P3P4P6, P1P2P3P5P6.
An evaluation is shown below.

P1P2P4P5P7, P1P3P4P5P7, P2P3P4P5P7
m3−→ P1P2P3P5P7, P1P2P3P4P7, P1P2P3P4P5

P1P2P3P4P7, P1P2P3P6P7, P1P3P4P6P7, P2P3P4P6P7
m2−→ P1P2P3P6P7, P1P2P3P4P6

P1P2P3P6P7, P1P2P5P6P7, P1P3P5P6P7, P2P3P5P6P7, P1P2P3P5P7
m1−→ P1P2P3P5P6 .
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There are six different such evaluations, all of the form m1 ◦ m2 ◦ m3. Geometrically
the above evaluation involves three 5-simplices which all define meaningful maps when P7

lies inside P1P2P3P5P6. The six possible evaluations come from varying the position of P7

inside C, so as to obtain differential geometric realisations of the product. The equivalence
of these six evaluations gives another axiom of type III.

The d-dimensional Yang-Baxter equations are given by the possible d-dimensional
faces of Γn (arbitrary n). These are relations amongst objects in a d-algebra, residing on
the (d −1)-dimensional faces of Γn. Recall that the number of such objects is the number
of partitions of (d −1), while the number of relations is the number of partitions of d.

Define a groupoid B
(d)
n whose objects are total orderings of Pn,d−2 and whose mor-

phisms are generated by operations corresponding to the (d −1)-dimensional faces of Γn.
The operation associated with a face, Δ, permutes the terms of the ordering associated
with elements of Pn,d−2 labelling the faces of Δ. Let X(n, d−1) denote the space of
arrangements, in general position, of n hyperplanes in Cα−1, parallel to a fixed set of n hy-
perplanes, also in general position. A map may be defined from the fundamental groupoid
of the space, X(n, d −1), to a quotient of B

(d)
n . The fundamental group of X(n, d−1) is

Manin and Schechtman’s higher braid group B(n, d −1). This establishes a relation be-
tween higher triangle relations and higher braid groups. Note, however, that the remarks
at the end of §4 apply again here, so that a more natural object of study in this context,
is not a group, but rather what may be called a ‘d-group’.

6: Further remarks

The axioms for a 3-algebra given in §2.1 lead to many interesting new equations. As
was seen in §3, quantum groups give rise to solutions of these equations via 6j-symbols, in
which a basis for the 3-algebra is labelled by triples of irreducible representations. Recall
that P acts by cyclically permuting the labels. One may attempt to construct a 3-algebra
based on a vector space 〈en | n ∈ Z〉 in which,

P (en) = en ;
m(ek ⊗ el ⊗ en) = Δk,l,nek+l+n ;

b(ek ⊗ el) =
∑

a

wl,k,aea ⊗ ek+l−a .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.1)

Such data provides a 3-algebra analogue of the ring of Laurent polynomials in one inde-
terminate, and m and b preserve the sum of indices. The 3-algebra axioms give relations
satisfied by Δ and w. Define f(i, j, k, l) = Δi,j,k when i + j + k + l = 0 and i, j, k, l ∈ Z.

Lemma Set wl,k,a = Δk,l,a−k−l and suppose that f is A4-symmetric. Then (6.1)
defines a 3-algebra on 〈en | n ∈ Z〉 if, and only if, for all λ, μ, ν, ρ, σ ∈ Z,∑

a∈Z

Δρ,μ,−aΔν,μ+ρ−a,σΔλ,a,μ+ν+ρ+σ−a = Δλ,μ,νΔλ+μ+ν,ρ,σ . (6.2)
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Denote Δijk = f(i, j, k,−i − j − k) by a tetrahedral vertex, in which each edge is
oriented and labelled by a flow as given in Fig. 25. The total flow into such a vertex is
zero.

In terms of this vertex notation for Δ the relation (6.2) is depicted in Fig. 26. Notice
the similarity with Fig. 12. Fig. 26 should be considered as expressing the equivalence of
the two networks of tetrahedral vertices shown, each with six inputs. For given inputs,
with net flow zero, the flow between the two vertices on the left hand side is determined,
while on the right hand side there is a one parameter freedom possible in the flows between
the three vertices.

The relations (6.2) are similar in form to the pentagon relation arising in the context
of quasi-Hopf algebras [D 2]. However, it is not clear for which fields, k, a non-trivial
solution of (6.2) exists over k. This question may be generalised by replacing Z by an
arbitrary abelian group. Note that putting λ = μ = ν = 0 in (6.2) gives,∑

a

σρ,a−ρσρ−a,σσa,ρ+σ−a = σρ,σσ0,0 , (6.3)

where σa,b = Δ0,a,b. Solutions to (6.3) come from the usual fusion algebras of conformal
field theory. For example, gijk ≡ σij for i + j + k = 0 provides a solution with g cyclically
symmetric, and

g1 0−1 = g0 0 0 = −g1−1 0 = 1 ,

defining the non-zero terms. This solution of (6.3) cannot, however, be extended to a
solution of (6.2).

The above example serves to illustrate the complexity of the structures arising out
of 3-algebras. It is apparent that a minimal 3-algebra on one generator is spanned, as a
vector space, by a set labelled by possible (genus zero) triangulations of a triangle. Any
triangulation into n triangles, may be transformed via b into a standard such triangulation.
It is thereby seen that there need be only one independent (vector space) generator, en,
for each integer n. Hence, (6.1) defines a 3-algebra structure with one (algebra) generator,
whenever solutions of (6.2) are given. The construction of more general universal envelop-
ing algebras involves equations which are more complex but of a type similar to (6.2),
whose solutions are fundamental in the construction of a ‘higher’ quantisation process.
Just as quantum groups appear as deformations of universal enveloping algebras of Lie
algebras, one may attempt to quantise 3-algebras. Since quantum groups may be used to
provide examples of 3-algebras (see §3), their quantisations can be expected to be ‘doubly
quantised objects’.

In further work, we intend to develop deeper the notion of a 3-algebra and its rela-
tionship to solutions of higher dimensional statistical mechanical systems, as well as to the
essentially geometric nature of topological field theories. The author believes that because
the notion of a 3-algebra contains within it inherent 3-dimensional symmetries, it provides
a natural setting for generalisations of many concepts in algebra and topology.
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