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Abstract. The concept of a topological field theory is extended to encompass
structures associated with manifolds of codimension >1. When all the manifolds
involved are considered triangulated, it is seen that such structures may be con-
structed from a finite quantity of data, most conveniently viewed as associated
with polyhedra and their decompositions. The special cases of 2 and 3 dimen-
sions are briefly considered, the relations with structures of higher categories,
algebras and vector spaces, becoming clear. A more detailed account is currently
in preparation.

2:: INTRODUCTION

A d-dimensional topological field theory (TFT), associates a vector space Z(3)

to a closed (d —1)-dimensional manifold ¥, and a vector Z(M) € Z(OM) to a d-
dimensional manifold M. In many cases the allowed manifolds M and ¥ may be
restricted in some way, or may be supplied with extra data, for example, a framing
or triangulation. We shall assume that all manifolds considered are orientable,
and supplied with an orientation, unless otherwise stated. The structure, Z, is
constrained by the requirement that it satisfy certain axioms. Their precise form
varies amongst authors, but the following general set are by now fairly standard

[A].

NATURALITY An isomorphism of manifolds a: $47 = $9~ induces an
isomorphism (a): Z(X1) —» Z(Z2) of the corresponding vector spaces,
with Z(8 o a) = Z(3) o Z(«a) for any suitable 4: 23+ = ©¢
MULTIPLICATIVITY Z(£,][%s) = Z(X1) ® Z(X), where ][ denotes
disjoint union.

VACUUM Z(2) = K, the base field.

DUALITY If 247! is a closed manifold, there is a natural isomorphism
Z(X*) = Z(X)* where X* denotes the manifold ¥ endowed with the op-
posite orientation.

NATURALITY An isomorphism a: M = MJ induces an equality be-
tween the vectors Z(M;) and Z(Ms) in the vector spaces Z(0M;p) and
Z(0Ms3), by the isomorphism Z(alapz, ) of .

ASSOCIATIVITY If ¥4, 39 and X3 are (d —1)-dimensional manifolds and

1 This paper was presented at the AMS Meeting #876, held in Dayton, Ohio, on Oct. 31 1992.
2 This paper is supported in part by NSF Grant No. 9013738.

3 The author is a Junior Fellow of the Society of Fellows.



Y and Y’ are cobordisms between ¥ and X5, X5 and X3, respectively, then
ZYUYNY=2(Y)oZ(Y'") e Z(31) ® Z(23)*

where Z(Y) and Z(Y’) are viewed as elements of Z(3;) ® Z(32)* and
Z(39) ® Z(X3)*, respectively, and here o denotes the natural contraction
map.
There are two other axioms that are sometimes included, viz., that of complete-
} Lo gvel of d-dimensional
prain structure involvdd, the latter only
smetoWed with a x-structure, e.g. itN\g is a Hilbert

being meaningful when Z(¥)
space. /

Suppose that M? is a closefl manifold. Then, by , Z(M) € K is th associated
invariant. It may be computed from a|splitting of M into M; and M5 wifh common
boundary X471 as follows. Heré OM; = ¥ and OMs = ¥*, say. Then I, and M
determine vectors, Z(M;) € Z(X) gnd Z(Ms) € Z(X)*. The naturg pairing on
ese two vectors gives Z(M). —

Figure 1: 3

5,13

Suppose now that X, a closed (d —1)-dimensional manifold, is split into two
parts, 1 and ¥y with common boundary C4=2. We would like to associate to 3;
and Yo elements of an appropriate structure and its dual, dependent on C', in such
a way that their natural pairing gives back Z(X). Since Z(X) is a vector space,
the appropriate structure to be associated with C' is a higher generalisation — a
2-vector space. In a similar way, closed (d — r)-dimensional manifolds will give rise,
in an extended topological field theory (ETFT), to r-vector spaces.

In §2, the notion of an r-vector space, extending Kapranov and Voevodsky’s
notion of a 2-vector space, will be briefly introduced. Appropriate axioms for an
ETFT are given in §3, and they are seen to embody the natural rules of composition
(gluing laws) of manifolds and, therefore, an ETFT can be viewed as a functor from
a universal object embodying such rules, to an object based on r-vector spaces. The
precise formulation of these concepts are to appear in [L 1].

In this paper the basic ideas will be presented and illustrated in the case of
dimension two. It will be seen that the formulation of invariants obtained is that
of a generalised state model construction on a ‘blow-up’ of a triangulation of the
manifold. The data involved in the state model is associated with a finite collection
of suitably labelled elemental polyhedra, and it must satisfy relations geometrically
expressed as the equivalences of distinct decompositions of a polyhedron into ele-
mental forms. This is discussed in detail in §4 where d = 2. In §5 some examples
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are given; in particular the Euler characteristic and the invariant of Turaev—Viro.
Further comments on the extensibility of the constructions are made in §6.

3:. HIGHER VECTOR SPACES

Suppose K is a field. A finite dimensional vector space V over K is specified,
up to isomorphism, by its dimension, a non-negative integer, n. Given two vector
spaces, V and W, over K, it makes no sense to ask whether V' and W are equal,
only whether they are isomorphic. In particular, a linear transformation, V. — W
is given by an m xn matrix over K, where m = dim W. From such considerations it
becomes natural to consider the category of coordinatised vector spaces, C1, whose
objects are such vector spaces and whose morphisms are linear transformations.

The structure of a higher vector space is meant to be like that of a vector
space, but where K has been replaced by a category, or even a higher category.
For 2-vector spaces, this notion was introduced in [KV], there being also introduced
three different 2-category structures of such 2-vector spaces, each with a different
degree of coordinatisation. A fully coordinatised 2-vector space is specified, up to
isomorphism, by its dimension. If V' is a 2-vector space of dimension n, and (e;) is
a basis for V, the elements of V should be thought of as formal linear combinations,

n
E Ai€i
i=1

where \; € C1 are vector spaces. That is, an element of V' is equivalently an n-tuple
of vector spaces. If W is a 2-vector space of dimension m, then a map T:V — W
is given by an m x n matrix T;; of elements of C;. The action of T' is given by,

T(Z Ajej) = Z/Mfi :
where,
ni = (T ® X))

in which @ and ® have their usual meanings as on vector spaces. Two such maps
S and T:V — W cannot be directly compared, just as vector spaces cannot be
equated. Rather there may exist a natural transformation U from S to T, and it is
specified by a family,

Uijt Sij — Tij R

of linear transformations, i.e., an array of matrices. Note that the dimensions of any
two entries in the array need not be in any way related. This whole structure forms
a 2-category in the sense of [MoSe], objects being 2-vector spaces, 1-morphisms
being maps between them and 2-morphisms being natural transformations.

In general, an (r+1)-vector space should be thought of as a linear space over C,.,
the r-category of r-vector spaces. Up to equivalence, an r-vector space is specified
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by its dimension. There is a special object in C,., namely the r-vector space, 1,., of
dimension 1. Whenever V is an r-vector space, the space of linear maps V' — 1,,
thought of as maps between linear spaces over V,_;, form another r-vector space,
denoted by V*. There are clearly also notions of direct sum, and tensor product,
defined in similar ways to those for the usual vector spaces. Finally, as can be
seen from the case of 2-vector spaces above, the higher morphism structures involve
multiple nested indices.

4:. EXTENDED TOPOLOGICAL FIELD THEORIES
The axioms for a topological field theory, as given in §1, may be embodied in
a statement of the form, 7 is a functor from the category M; to the category V; of
vector spaces, preserving suitable additional structures. Here and throughout this
section the top dimension, d, of the theory will be assumed fixed and therefore all
dependencies upon d will be omitted. The category M; has objects and morphisms
given by,

Obj g, = {closed (d —1)-dim. oriented manifolds up to isomorphism}

d-dimensional oriented manifolds M }

Morph y, (31, X2) =
i ) { with OM ~ 37 [[ X2, up to isomorphism

with additional special structures,
(i) Oe Obj o4, the empty object;
(ii) ]], disjoint union, providing a monoidal structure on My;
(iii) =, the operation of reversing orientation, which gives a contravariant func-

tor M1 — M.

The category Vi consists of vector spaces, that is,

Objy, = Z*
Morphy, (m,n) = {a:[m] x [n] — K}

where K is the chosen base field, and [m] = {1,2,...,m} as in §2. The additional
extra structures corresponding to those for M; are,
(i) 1 € Objy, , the vector space K;
(ii) ®, the operation of tensor product, which acts as multiplication on objects;
(iii) *, the duality operation, which on objects takes n — n, and on morphisms
takes a:: [m] x [n] — K to ao P:[n] x [m] — K, where P is the map permuting
the first two factors.

With the above definitions of tensor category structures, the axioms — of §1 are
now precisely embodied in the functorial nature of Z. The category My, with the
above extra structure, embodies the gluing rules of manifolds of dimension d, and
of closed (d —1)-dimensional manifolds.



An extended TFT (ETFT) is a structure similar to a TFT in which gluing
rules of manifolds of all codimensions up to d are embodied. An s-ETFT contains

only gluing rules of manifolds with codimensions < s, so that a 1-ETFT is just a
TFT, while a d-ETFT is just an ETFT. Thus an s-ETFT is a functor,

Mg — Vs,

where M and V, are suitable structures, both not unlike that of an s-category; Mg
is a structure in which the r-morphisms label (d — s 4+ r)-dimensional manifolds,
r € [s], and the objects label closed (d — s)-dimensional manifolds. In Vs, the
r-morphisms are elements of (s — r+1)-vector spaces, as defined in §2, while the
objects are s-vector spaces.
A d-dimensional s-ETFT associates to each closed (d—r)-dimensional manifold,

M with 0 < r < s, an r-vector space ,.(M); and to each (d—r)-dimensional manifold,
M with 0 < r < s, an element Z, (M) of the (r+1)-vector space 43 (M ); and does
this in such a way that certain axioms are satisfied. As for the case of a TFT, the
manifolds involved may be restricted in some way, or they may be endowed with
extra structures. The properties which Z and must satisfy include the following.

NATURALITY An isomorphism, «, of closed manifolds, E‘f"ﬂ and Eg_T,

induces an isomorphism of the corresponding r-vector spaces, under which

the elements corresponding to isomorphic manifolds M; and M of dimen-

sion d — r+1 whose boundaries are 3;, are identified, whenever « is the

restriction of the isomorphism to the boundary.

VACUUM ,.()) = 1,., while if M is a closed (d — 7)-dimensional manifold,

(M) € 1,45 may be identified with Z,.(M) € V,.

DUALITY If X477 is a closed manifold (1 < r < s), there is a pairing

(X)) @ (X*) — 1,., where X* denotes ¥ endowed with the opposite

orientation.

MULTIPLICATIVITY ,(Z1][%2) = (21) @, (X2).

ASSOCIATIVITY
The most important property is , the analogue of the associativity axiom (axiom
of §1) for TFT’s. This is a generalised gluing law, by which whenever a man-
ifold M is decomposed into a union of other manifolds, M;, with gluing taking
place along boundaries (possibly only along part-boundaries), there is a proce-
dure by which Z(M) may be obtained naturally from {Z(M;)} by composing only
structures already associated in the theory to the M;, their boundaries, common
part-boundaries,. .., up to codimension s incidence properties. However, the exact
statement of this property, in the general setting, is complex. The case of 2-ETFT
with d = 2 is illustrated in the next section.

5:. 2-ETFT
In this section the structure of a 2-ETFT is investigated. The basic objects are
d-, (d —1)-, and (d — 2)-dimensional manifolds, the (d — 2)-dimensional manifolds

5



manifold M, obtained by gluing M; and My along X, w @& = d or ¢ —1. There
is also the slightly more general/gluing along a (sti ®£-DOr

of §1. However, in 2-ETFT, }@e e is an additiex
manifolds M; (1 < ¢ < n—1), for which QN ; ; ¥, lare (d —1)-
] is a closed

which each top-dimensional cell in 7* correspon
T (see Figure 2).

Figure 2: 4

0,20 When M is closed the vertices of 7* are labelled by flags of simplices in T,
Xop C --- C X, while faces in 7* are labelled by incomplete flags in 7. When M is
not closed, 7* is defined as for the closed case, except that 7 is altered by adjoining
a ‘virtual” top-dimensional simplex with the incidence property that it contains all
simplices in dM. In this case, there is also another decomposition for which the
vertices are in 1-1 correspondence with actual (complete) flags of simplices in 7.
As geometric decompositions, 7* can be obtained from 7, by adjoining a cylinder
on (OT)*, where OT is the triangulation of OM induced from 7 by restriction.
By definition, every cell, C, of T* may be labelled by a subset, I, of {0,1,...,k}
specifying the dimensions of the simplices in the corresponding partial flag. In such
a case, the dimension of C'is k+1—|I|, and I is called the type of C'. Let i = max(I).
Given I, the geometric form of C' is completely determined by the link of X; in 7.

From an orientation on M it is possible to canonically define orientations on
all cells and sub-cells in 7,. For k = 2 the result is illustrated in Figure 2, in which
the orientations on r-dimensional cells are depicted by arrows, for » = 1 and 2, and
filled and open circles, for » = 0. The general definitions of the orientations on the
cells and subcells of 7* and 7, may be found in [L 1].

For k = 2, there are 7 possible non-empty subsets, I, of {0, 1,2}, the dimension
of an associated cell in 7* being 3 — |I|. For ease of notation, the type, I, of a
cell will be denoted by the string of its elements, in ascending order, and without
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separat, here are two kinds of type-012 cell, name ots with positive or
negatiye oriendation. There is one kind of cell of each of tlfe types\)1, 02 and 12, each
ite orientations.
cells in 7* o type 0,1 and| 2 are|2-dimensionaly/there being oge kind of each
. For any 1 =72, [there is a 2n.£on 0@0 in Y *, associated
o a point in 7 on which n edggs are \nc1dent and we say such a cell X of type 0™.
See Figure 3.

Figure 3: 3

4,30

Suppose now that M is a 2-dimensional manifold whose boundary C' contains
a point P, and that 7 is a triangulation of M for which P is a vertex. In 7* there
will be a 2-dimensional, type-0™ cell associated with P, where m is the number of
1-simplices in M containing P. In 7, there will be similarly associated a truncated
type-0 cell with 2(m—1) edges, illustrated for m = 3 in Figure 4(i); such a cell will
be said to have type 0,,. Any cell in 7, corresponding to a point in 7 will be of
type 0™ or of type 0,,, for some m, and can be decomposed into the two types, 03
and_02 of Figure 4, to be called 0a and 0b, respectively.. We now investigate the
ct of a'xluing operation upon the[associated blow-ups.

Figure 4: 0

Suppose that N is a 2-dimensional manifold with boundary C*, and triangula-
tion U compatible with 7 on C'. Let n be the number of 1-simplices in N containing
P. Then 7, and U, each contain a cell associated with P and of types 0,, and 0,,
respectlvely The cell associated with P in the blow-up (7 UU), will have type

2 his—®]l may be obtained by gluing together the two associated cells in

Figure 5: 6



5,30
For the case m = n = 3, the two local gluing rules just discussed are illus-

trated in Figure 5. The gluing rules in a 2-ETFT with d = 2, enable the invariant
associated with M in the theory, to be obtained from those associated with the
elemental triangles in 7, using gluing operations along the edges and vertices in 7.
By changing our viewpoint from the consideration of 7 to that of 7*, the struc-
tures associated with elemental triangles and the gluing operations are seen to be
on an equal footing, both being geometrically described by top-dimensional cells of
T*, the gluing operation coming from those cells of types Oa, 0b and 1. To specify
the weights for a 2-ETFT with £ = 2, it thus suffices to give those on the cells of
Figures 4(i) and 4(ii), along with the two right hand cells of Figure 3. What we will
call a polyhedral data for a 2-ETFT consists of to below.

Two sets I, and I_, to be considered as the allowed sets of labels on

type-012 cells with positive and negative orientations, respectively.

Sets I;;(a,b) for each (a,b) € I x I_ and {i,j} C {0,1,2}, the allowed

labels on type-ij cells whose boundary has already been labelled by a and

b.

Weights wy ({a,}, {a.}) € K for A € {0a,0b,1,2} whenever {a,} is an

allowed vertex labelling and {a.} is a compatible allowed edge labelling of

a type-A cell.
Thus, in , a, € I UI_ for each vertex v of a type-A cell, while, for each edge e, a,
is an element of a suitable set I;;(ay,,ay,). In order for the wy, and wo, data to
determine, via contraction on internal edges, a well-defined weight on an arbitrary
cell of type 0, it is necessary for,

wop to remain unchanged when the vertex and edge labels are changed by

performing a rotation through ;

the combination in Figure 6(i) to be invariant under rotations through

+27/3;

the identity in Figure 6(ii) to be satisfied.

Figure 6: 2

0,20
The purely combinatorial data above may be alternatively expressed in terms
of vector spaces and 2-vector spaces in the following way. Let ny and n_ be |I4|

8



and |I_|, respectively. Consider two 2-vector spaces, V; and V_ of dimensions n
and n_, respectively. The data may be viewed as three pairings,

Vi@V, — 1y

under which the basis vector e, ® f, maps to the element of 15, given by the vector
space whose basis is labelled by I;;(a, b). Denote these vector spaces V;;(a,b). The
weights in may now be considered as maps between the vector spaces V;;. Indeed,
the relative orientations of the boundary edges on a cell may be used to determine
which vector spaces appear in the tensor product giving the domain, and which
appear in the image space. For example, the weights associated with the two right
hand cells of Figure 3 may be viewed as maps,
V12 (a’, b) & Vlz(a, b/) — V()l(a, b) & V01(a’, b/)
Voz (b, CL/) & V()z (C, b/) ® V()z (CL, C/) — Vlz(a, a’) ® V12 (b, b/) & V12 (C, C/)

or equivalently as tensors with each index appropriately raised or lowered. The
vertex labels may appear an arbitrary number of times in any allowed composition
of weights. However, edge labels, those coming from bases for V;;(a,b), may only
appear twice, once as upper indices and once as lower indices.

Starting from a polyhedral data, one can attempt to construct a 2-ETFT, that
is, to define the appropriate operations Z and of §3. To do this, first note that,
to any triangulated M? with boundary, there is associated a contracted product of
weights which gives rise to an element of the vector space,

(® f/u(a,,a,)) ® (® V(]Q(Cl_,(l_)) (4.1)

for each assignment of labels a. to vertices of O(7.) ~ (9T)*; here ~denotes the
dual. The tensor products above are over all edges of types 12 or 02 in 9(7.), or
equivalently of types 1 or 0 in (07 )*. The direct sum of the vector spaces (4.1) over
all vertex labels a, is the vector space (M, dT) to be associated with M, while
the direct sum of the vectors in (4.1) associated with M, defines a vector Z(M,T) €
(OM,0T). Indeed, given any closed 1-dimensional triangulated manifold, (3,U),
the construction above provides a family of vector spaces, depending upon the local
vertex labels, and this structure can be contracted to give the two important parts,

(i) the direct sum of these vector spaces, (3,U);

(ii) a pairing (X,U) ® (X*,U) — K, via the contraction of a product of

tensors with types 0b and 1 along common type-01 edges.

To a not necessarily closed manifold X! similar constructions associate a family
of vector spaces dependent upon the vertex labels on the boundary points. This
family of vector spaces defines an element Z(X,U) of the 2-vector space denoted
(0%, 0U), obtained as a tensor product of V* and V™~ spaces, one for each point
in 0¥. The gluing operation between the families associated with two such 1-
dimensional manifolds sharing a common boundary point, is given by the vector
spaces associated with type-02 edges. Our conclusions are summarised below.



Figure 8: 3

8,11

To see this, note first that any two triangulations of a closed manifold, M2,
may be obtained from each other by a sequence of moves under each of which only
a local piece of the triangulation is affected, via a change as illustrated in either of
the two diagrams of Figure 9. Two such triangulations, 7; and 75, representing the
same manifold, will give rise to identical invariants, Z(M,7;) and Z(M,T3), since
the local moves on triangulations in Figure 9 give rise to the local changes in the
blow-up illustrated in Figures 7 and 8. For manifolds with boundary, two different

triangulations matching on M may be transformed into each other by the same
(M,T) is a vector in gQM, 0T), independeni~of the choice

Figure 9: 3

,18

Suppose that U/, and Uy are two triangulations of a manifold X!. These give rise
in general to different families of vector spaces [Z(3,U;)]*, i = 1,2, indexed by an
allowed labelling a of 03. However, a change between two such subdivisions may be
accomplished via moves in which an interval is subdivided into two, or conversely,
an internal vertex is removed. These moves on triangulations U of ¥ translate into
moves on U,, and for each such move there is a natural transformation between
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the corresponding vector spaces. This is given by contractions of the tensors in
s 4. Flgure 10 is such an example in the case of the addltlon of an

Figure 1: 0

105,31

6:. EXAMPLES
In this section some examples of ETFT’s will be given.

Example 1 Consider a polyhedral data for a 2-ETFT, that is , and . Suppose
that in , || = [I_| = 1, so that supplies three sets, Ip1, Ip2 and I;2. Suppose that
|Io1| = |Io2] = 1. Then gives rise to weights,

Wog and wop € K
wi:li9 X [19 — K
wo: 19 X I19g X [19 — K

Conditions , and are automatically satisfied, while and require w; to be symmetric
and wsy to be invariant under cyclic permutation of the three indices. Put I = Iy».
The identities depicted in Figures 7 and 8 give rise to,

Z wa (a1, az, \)wa(p, as, as)wi(A, p) = Z wa(aa, a1, N)wa(p, az, az)wi (A, p)

A A
(5.1)
Wonwoy wa(ay, as, az) = Z wa (a1, vi, p2)wsz(as, A1, va)ws(as, 1, A2)
iyl
wi (A1, A2)wr (p1, p2)wi (v1, v2) (5.2)

for all a; € I. Whenever w; and wq satisfy (5.1) and (5.2), a 2-dimensional ETFT
is obtained.
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A specific solution of (5.1) and (5.2) is obtained from any finite group G, by
setting I = G and
w1(g,h) = c16(gh = 1)
wa(g, h, k) = c20(ghk = 1)
where (5.1) is automatically satisfied and (5.2) gives the constraint,
ciciwy wop|Gl = 1. (5.3)
For a closed triangulated 2-dimensional manifold (M, 7)), the associated invariant
is,
Z(M) = ¢ ¢5*|G"M "= ] T (wia ™ *won)
v
where n; is the number of i-simplices in 7, and ¢ is the number of components of
M. Here d, denotes the degree of the vertex v, the product being over all vertices
v of T. By (5.3), since 3ny = 2nq, > (dy — 2) = 2n1 — 2ng and x = ng — ny + no,
thus,
Z(M) = (wy, wop)X|G|°
giving rise to the only two global invariants present, namely y and c.

For an arbitrary solution of (5.1) and (5.2), let V" be a vector space with basis
indexed by I. Then w; gives a symmetric pairing V®V — K, and using it to identify
V* with V, it is seen that wy gives maps m:V® V — V and A:V -V ® V. By
(5.1), m is associative and A is coassociative. It is therefore not surprising to see
that solutions of (5.1) and (5.2) are indexed by algebraic structures. The general
solution is indexed by ambialgebras, c.f. [Q].

Example 2 The detailed analysis of §4 can be similarly carried out for 3-ETFT’s.
A polyhedral data for 3-ETFT will associate a class of allowed labellings to 0-, 1-
and 2-dimensional cells in a blow-up 7, of an arbitrary 3-dimensional triangulation,
while allowing weights to be associated to already labeled 3-dimensional cells. Just
as in §4, there are an infinite number of cells of types 0 and 1, but they can be
decomposed into a finite number of elemental cells. For the purposes of defining a
specific 3-ETFT, it suffices to define all the allowed cell labellings and weights on
all the possible cell types, rather than just for the elemental ones.

There are two forms of type-0123 cell, namely, points with either of two ori-
entations. Associate to both cells the 3-vector space 13, that is, only one allowed
label exists on points. The 1-dimensional cells are of type-012, -013, -023 and -123,
to which there are associated sets giving the allowed labels, or equivalently 2-vector
spaces. Suppose that the first three sets are of order 1, the last being I. The
2-dimensional cells come in 6 types, there being only one geometric form to each
type, except type-01. Suppose that there is only one allowed label on all type-01,
-02 and -03 cells. Two elements of I suffice to label the vertices and edges of either
type-12 or type-13 cells, three being necessary for type-23 cells. The allowed sets of
labels on these cells will be denoted by X;;, Y;; and Aj;ji, respectively, (¢,7,k € I).
Both this and the next example use the data as given so far.
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For a finite group G use I = G, while X;;, Y;; and A;j, are sets of order
d(ij = 1), 6(ij = 1) and §(ijk = 1), respectively. The polyhedral data is completed
by specifying weights on all type-0, -1, -2 and -3 cells. In the case when these
weights are all independent of the allowed labelling of the vertices, edges and faces,
the invariant obtained of a closed 3-manifold, M, depends only on the number of
components, the Euler characteristic of M, and |Hom(71(M),G)|. A more general
system of weights can be defined in terms of a choice of 3-cocycle, and the resulting
3-ETFT gives rise to TFT’s of the form investigated in [FQ)].

Example 3 This example differs from the last, in that here I is chosen to index
a set of irreducible representations of a quantum group, A. In the case A = Uysly,
at a root of unity g = exp(m/r), I is chosen to be {0, Vs, ..., (r —2)A}, labelling
the generators of the semi-simple part of the category of representations. The sets
X;; and Y;; are both chosen to be of order 1 precisely when ¢ and j represent dual
representations, being of order 0 otherwise. The set A;; is chosen to specify the
multiplicity of the trivial representation in the tensor product of the representations
labelled by ¢, 5 and k.

The associated weights to be placed on labelled 3-dimensional cells of types
0,1,2 and 3 are now all given in terms of structure constants of A. In particular, the
geometric form of a type-3 cell is that of a tetrakaidekahedron, which has twenty-
four vertices, eight hexagonal and six square faces. A complete labelling of the
vertices, edges and faces of such a cell is given by six elements of I, and four
multiplicity labels. The weight to be associated with this cell is now a generalised
quantum 6j-symbol. For the case of U,sls, these symbols were investigated in [KR].
The conditions on the weights, which in the case of a 3-ETFT are equivalent to
the constraints of Figures 7 and 8 in the case of a 2-ETFT, are satisfied due to
relations amongst the quantum 6j-symbols, known as the orthogonality and the
Elliot-Biedenharn relations.

As for any ETFT derived from polyhedral data, the associated (scalar) in-
variant of closed, top-dimensional manifolds has the form of a sum, over allowed
labellings, of a product of local weights. Thus,

Z(M) =" [] welole), (5.4)

o CCT*

where 7 is a triangulation of M, o ranges over allowed labellings of the cells and
subcells of 7 of codimension at least one, and we(7) is the weight associated with
cell C' when labelled according to 7. The product is over all top-dimensional cells in
T*. For top-dimensional manifolds with boundary, the contraction of weights given
by the right hand side of (5.4) provides a tensor, indexed by the boundary labelling
o |3 M-

The sum (5.4), in the case of this example, is that found in [TV] for U,sls.
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7:. FURTHER REMARKS

In §4 it was seen in detail how the combinatorics of triangulations of manifolds
of dimension 2 translates directly into rules for a structure, which was termed a
polyhedral data for 2-ETFT, of weights and allowed labellings for the cells in blow-
ups of arbitrary such triangulations. From such data, a 2-dimensional ETFT could
be constructed, and it was apparent that such data is indexed by algebraic structures
of a suitable type. The same combinatorics may be interpreted as giving the basic
elements and axioms of a d-dimensional 2-ETFT, for any d > 1.

The translation from the structure which we have defined as a polyhedral data
for 2-ETFT, to that of a d-dimensional 2-ETFT, is accomplished by introducing
an additional dependence into the weights and sets of allowed labels on different
cell types, upon a choice of suitable manifolds. Thus for any particular cell, C, in
the blow-up of a 2-dimensional triangulation, 7, the dependence introduced will be
upon (d — 2)-, (d —1)- and d-dimensional manifolds, one manifold being given for
each 0-, 1- and 2-simplex in 7T related to C'. The manifolds will satisfy boundary
constraints given by the incidence relations existing amongst the associated sim-
plices in 7. Those structures attached to cells C', whose type is other than 2, 12 or
012, are traditionally thought of as gluing rules.

In an arbitrary dimension d, s-ETFT’s can similarly be defined along with
polyhedral data for s-ETFT’s. Just as in the case of s = 2, the number of cell
types in a blow-up of an s-dimensional triangulation is infinite, but they can be
decomposed into a finite number of elemental cells. Thus, a polyhedral data may
be given by specifying a (finite) set of allowed labellings and a finite number of
weights (tensors). The analogue of Proposition 1 will then hold. The analogue of
Proposition 2 relies on there being a finite simple set of generators for moves on
(singular) s-dimensional triangulations of a manifold ([M], see also [P]). Hence there
is a family of s-ETFT’s coming from polyhedral data, indexed by finite collections
of tensors constrained by a finite number of polynomial relations, arising from in-
variance under local moves on triangulations. Since for s = 2, a polyhedral data is
equivalent to an ambialgebra, it is not unreasonable to also view such a polyhedral
data for s > 2, as an algebraic structure. These structures will not be algebras in
the usual sense, and will possess many, not necessarily binary, operations, rather
than just a multiplication; similar structures were studied in [L 2] and [L 3]. The
reader is referred to [L 1] for more details.

It may be remarked that the polynomial relations to be satisfied by a polyhe-
dral data are not unlike a generalisation of the Moore-Seiberg polynomial relations
[MoSe] of rational CET. The form of the invariant for s-dimensional manifolds will
always be that of (5.4). It may be thought of as a discretised version of the func-
tional integrals arising in other approaches, see [W] and [F].
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