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Abstract. Manin and Schechtman’s higher braid groups B(n,k) are a generalisation
of the ordinary pure braid groups P,=B(n,1), in which the role that the symmetric
group S, plays in P, is replaced by a weak Bruhat order. In this paper a family of
concrete presentations of B(n,k) will be given, which generalise Artin’s presentation
of P,.

1: INTRODUCTION

Let ©¥,..., 7% denote n hyperplanes in C*, in general position. That is, it is assumed

that for any S C {1,2,...,n},
Ak

€S

has codimension |S|in CF if |S| < k, and is empty if |S| > k+1 . Let U(n,k) denote the
family of all sets {my,...,m,} of n hyperplanes in C*, in general position and such that ;
is parallel to 79 for all 1 <7 < n. Denote by B(n,k), the fundamental group of U(n, k).
This is the higher braid group in the sense of Manin and Schechtman [MS 2]. Note that
although U(n, k) depends on the initial choice of {77}, the structure of the group B(n,k)
and the topology of U(n, k) depend only upon n and k.

In this discussion, n and k are arbitrary positive integers with n > k. When k = 1,
U(n,1) reduces to X, the configuration space of n distinct, ordered points in C, whose
fundamental group is the pure braid group B(n,l) = P, on n strings. When k = n,
U(n,n) is just C, so that B(n,n) is trivial, while B(k+1,k) = Z. Choose hyperplanes
specified by,

r.n;, = o;, (1.1)

for suitable n; € C* and a; € C, so as to put {70} in general position. Then elements of
U(n, k) may be specified by points x = (z;) € C™ with,

T, rn, =oa;, —x;. (1.2)

For every (k+1)-set J C I ={1,2,...,n}, a hyperplane m; may be defined in C", by the
condition that {m; | ¢+ € J} have a common point of intersection. The set of hyperplanes
m; will be in general position so long as x lies in the complement of the (kj_l) hyperplanes
{ms} in C". Thus B(n, k) is the fundamental group of a complement of hyperplanes. It is
therefore possible to obtain a presentation of B(n, k) along the lines of [R].
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In this paper we will explicitly construct such presentations of B(n,k). Using a
suitable set of initial hyperplanes 7%, generators for B(n,k) are defined in §2. In §3
the associated relations are obtained by investigating the structure of the codimension-two
subsets of C associated with {m;}. Some special cases are discussed in §4, while some
connections with the combinatorial structures of [MS 1] and those of the ordinary braid
groups are considered in §§5 and 6.

It is well known that the complement of a set of complex hyperplanes possesses a
strong combinatorial structure (see [OS]). It is therefore not surprising to discover that the
formulae obtained for the presentation of B(n,k) are complex, involving inequalities.

2: CONSTRUCTION OF GENERATORS
The hyperplanes (1.1), will be in general position for suitable «;, so long as, for all
J C I with |J| =k,
det(ni)iej 7é 0 5

where (n;);cs denotes the k& x k matrix with columns n; indexed by ¢ € J. A suitable
choice for n; is thus,

n; =(1,a,...,a"7"), (2.1)
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where a; € RT are distinct, say 0 < a; < az < -++ < a,. Throughout §§2 and 3, this choice
of n; will be assumed, with a; fixed. Suppose J C I with |J| = k+1. Let j = max(J).
The condition for {r.n; = «; | ¢ € J} to not have a common point of intersection is that,

det Ay #0,

where A yis a (k+1) x (k+1) matrix with rows (a;,n;) indexed by ¢ € .J. That is,

Z{ai(—l)(#‘]<i). T (a - aj)} £0. (2.2)
eJ i<k
J,k€I\{¢}

The ratio between the coeflicients of «; and «; (¢,1 € J) on the Lh.s. here has modulus

Li
|HJ\{i,l}| where,

mi = [ <u> . (2.3)

pEK p = 45
This shows that if o is chosen sufficiently large in comparison with {a; | 2 € J\{j}}, then
(2.2) will automatically be satisfied.

To be more precise, let 7 denote maX{|HlI;]|} over all (k—1) sets K C T and i,5 ¢ K.
Consider also the set of all sums of all triples of expressions of the form H%ﬁlh Hlffy’f. Let 7’

denote the minimum difference between distinct elements of this set. Put M = 6”772/77’.



Theorem 1 Suppose that n; are defined by (2.1) and ay,...,a, are chosen to be
real numbers with ®ijo, ; > M for 1 < i < n where ag = 1. Then the hyperplanes 7 of
(1.1) are in general position.

The precise value of M is immaterial. It is only important to note that once {a;} are
fixed, it is possible to choose M sufficiently large so that when {a;} satisfies the conditions
in Theorem 1, the sign of any of the expressions > fra, we will wish to compute will be
determined by that of f,,, where m is the largest r for which f, # 0. Here f, will be

functions of the a’s only, given in terms of {II¥.}. From now on, aj,as,...,a, will be

J
thought of as defining increasing orders of magnitude, in the sense just described.

Consider the hyperplane 7y in C", given by the condition that {m; | : € J} have a
common point of intersection, where J C I with |.J| = k+1. This hyperplane will intersect
the z;-axis <= j € J, and the point of intesection will then be at,

Tj= l’}] = — Z (arﬂf;<{j7r}) ) (2.4)
reJ\j

Assume {a;} are chosen such that {HZI;] ‘ K C I\{i,j}} are distinct Vi > j. Let j =
max(.J). Define the generators 3; of (U, ) to be given by a loop in U, i, based at 0
and lying in the copy of C on which z; = 0, Vi # j. The loop is given by z; following
a path around 1’}] based at 0, in a clockwise direction, defined with ¥(z;) > 0 along the

whole loop except that part ‘close’ to x}] (see Fig 1). Note that in this situation, the values

of x}] in (2.4) are all positive real numbers. The (

been defined.

kj_l) generators 37 of w1 (Uy ) have now

K B
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Figure 1

3: ANALYSIS OF RELATIONS

As discussed in [R], the relations in By, ;, arise from the consideration of all codimension
two subsets of C" associated with the arrangement C = {r; ‘ J C I, |J|=k+1}. Such
subsets, A, come in two main types,

(i) {rx | K CJ, |K|=Fk+1}for J CI with |J]| =k+2;
(i) JN L for JJL C I with |J| =|L|=k+1 and |JNL| < k.
For later convenience, we choose to subdivide case (ii) into two parts,
(i1)" max(.J) > max(L);
(i1)"" max(J) = max(L).



Clearly, since .J and L may be interchanged, max(.J) < max(L) need not be considered.
In each case, define 5,1 € I with j > [, as follows,

(i) j = max(J), I = max(J\{;});
(i1)" j = max(J), I = max(L);
(ii)” j = max(J), I = max((J U L)\{s}).
Without loss of generality, it may be assumed in (ii)" that [ € .J.

The relations Ra, associated with A, may clearly be discussed by only considering the
arrangement C; ; induced by C upon the two-dimensional subspace of C™ on which z; =0
for all i # j,I. The arrangement Cj; on C? (axes x; and z;) consists of lines,

TMu{j}:Tj = aj — Z QTHM\{T} (3.1)
reM

TMu{l): Tl = ap — Z arﬂé\’;\{r} (3.2)
reM

for M C I\{j,1},

l
whose slopes are II;7,

M| = k, together with lines myyq;,y for [M| = k=1, M C I\{y,l}

. - M i1
re Mu{l}

The relations associated with A are now seen to be associated with a point of intesection

TA = (:1:?,:1:?) of na lines in C;; where,

k42 if A is of type (i),
AT 2 if A is of type (ii)" or (ii)".

These na lines are said to be the lines in C;; associated with A.

The generators (37 associated with lines 77 in C;;, were defined in §2 to be given by
loops based at 0 in the (complex) ;-axis, unless j ¢ .J, in which case they are loops in the
(complex) z;-axis. Choose z§ = (:v? —e,a) —¢) = (z5,77) with e > 0 sufficiently small,
so that the only members of C;; crossing the square [¢9 — ¢, 29] x [2] — ¢, 27] are the lines
associated with A, while no line of C;j; cuts the z;-axis in the interval (z§,2%). Let 35 be
the generators of,

™ (C*\Cj1, 73)

defined in the same way as 3; with basepoint 23 replacing O.

Definition Suppose g1, . .., gy are elements of a group G. It is said that the relation
R{g1,--.,9r} holds if, and only if, the product g1,...,g, is unchanged by cyclic rotations
of the g;’s.



Lemma 1 [R] Itmy,,...,my,,  arethena lines associated with A in an anti-clockwise
order, then the relation in B,  associated with A is,

Ra:R{B5,.....05% }.

To complete the evaluation of R it is only necessary to move the basepoint from z%
to 0 and determine the transformed 35 in terms of {3;}. Let us note first that under the
conditions of Theorem 1, in all cases ;r;?, 29 € R while all lines in Cj,; associated with A
are either parallel to the x;-axis or cut it at a positive real point.

We shall define the curve followed by the basepoint in two parts. First, move the base-
point from z pelta® to (0, z7) along a path with z; fixed, and &(z;) > 0 at all intermediate
positions. This transforms all 39, associated with A to similarly defined curves, based at
(0,25). The fact that no line in C;; cuts the 2;-axis between zj and ;z:(l) has been used here.
Finally, move the base point from (0, z7) to 0 along a path in the (complex) z;-axis with
3(z1) > 0 at all intermediate points. Any generator 39, associated with A, for which the
lines 7z, in C;; is parallel to the zj-axis, will transform to 3;,. The remaining generators

transform according to the following lemma, see Fig 2.

Lemma 2 Under the shift of basepoint described above, a generator 35; (j € M)
associated with A, transforms to,

£ nBun ¢

where { and n are the products of the generators 3y associated with those lines mg in Cj
satisfying,
LK K 0
fray <0, 0<a” <uz;
K K

n:0 < x; <:1;§w, x

0
J > T

K

respectively, in order of increasing .1:]]‘ Here " denotes the value of z; at which mg

Crosses rj; — Jj(l)

£ TK, ™ : ™ TK

TA

Fiqure 2
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By (2.4), ZL’JA can only be negative if max(K) > j. Since z} has order at most that of
aj, it is impossible for 2 to be positive at the same time as .2:]1‘ < 0 (see (3.3)). Hence
¢ = 1 in Lemma 2, reducing the computation to that of determining the sets K satisfying
the condition for n. Note that if ), denotes max(K), then the sign of ;L’]BU{]} is, by (2.4),
determined by that of,

P - ]‘7I(m
aj OflmeK\{Km} :

This is positive if K, < j, while if K, > j it is only positive if,

]‘71&'77774

i\ {ky <0
That is, :L'fru{j} > 0 if, and only if, the number of elements of K greater than j, denoted
#(K > j), is even. Using similar arguments it may be seen that the following lemma
holds. Note that in all of cases (i), (i)’ and (ii)", all the generators 83 associated with
A, for which 7 € M, have max(M) = j.

Lemma 3 The condition 0 < :l:][‘ < .TL‘;W where max(M) = j is equivalent to,

(a) #(K >j) =0,
and (b) m =max((K UM)\{j}) € K,
and (c) H]I‘g{l{j,m} > 5m€MH§;I"<{j7m}, where dpmens is O or 1 asm & M or m € M.

The consideration of the remaining part of the condition for fx to be a term in n of
Lemma 2, namely z% > :1:?, must be broken up into three cases.
Case (i): In this case the lines in C; ; associated with A are 7 p\ ;3 and 7\ {1y (parallel to the
zj and x; axes, respectively) and {WJ\{],} ‘ pE J\{j,l}} which have positive slopes. The

condition 7 in Lemma 2 thus requires both j and [ to be elements of K. Also 2% = a:;-]\{l}

J
K

and so ™ > ;z;? requires,

1 I\{5} I\{1} K
I3 i >t -y
by (3.3). Applying (2.4) reduces this to,

I,m

5l 7™ _ J,m
~Omes ey Gy UG amy > Omer Ty my = Omes LG 1 my
where m = max((J U K)\{7,1}). If m ¢ J, this condition reduces to H]%;Kl{j my < 0 which
reduces to m < [, since by Lemma 3(a), m < j. In all cases, m < [, and condition n of
Lemma 2 applied to M = J\{p} (p # j) gives K of the form K U {7,1} with max K <[
and,
Ji! gl

l,m ]71 ]7l ST72
Ome LN 1, my e = TR (1 my ) < Ome kTR my -

As was mentioned above, the second condition is automatically satisfied if m ¢ .J.



Case (ii)': In this case, the two lines associated with A are 7, (parallel to the z ;-axis) and

7. Hence 2§ = :z:lL and = > 1’? requires,

g s .
(516KH]K\{]<J} - 5IEJH{]\{]‘7I})$IL > ‘E}] - :r:f '

This reduces to,
i1 i1 I,m j,m ), m
(5 (5.y ek = T .y 1€ DTNy Omen gy < (TR oy Omes = TRy dme) > (3.5)

where m = max(((J U K)\{j,l}) U (L\{l})) Thus condition 1 of Lemma 2 applied to
M = J gives K of the form K U {j,1} with max(K) < [, so long as max(J\{s}) <1 and
(3.5) together with,

3 Gy > e o - (3.6)
Indeed, if max(J\{s}) > [, no K satisfies condition n of Lemma 2 for M = J.

Case (ii)"" : In this case the two lines associated with A are m; and #;. Using a similar

argument to those in the last two cases, it can be seen that condition 1 of Lemma 2 is
satisfied by those K of the form K U {j,1} for which max(K) <[ and,

J,m . 3l .y 5m
Ty Srmere < (I 1y = T 5 D€ DI,y e

51 5l J,m 5l 5l -1
(T3 oy = T G TNy Omer | (T gy = Sten Ty .y) ™
(3.7)
where m = max((J UK UL)\{y, Z}) It is also required that,
Y Y
Mievgiay > g,y rem - (3:8)
These give the possible K’s corresponding to both M = L and M = J.
Theorem 2 B(n,k) has a presentation with generators {ﬁj ‘ JclI, |J = k‘—l—l}

and relations,

(i) R{ﬁj\{p}, e 5}\{1},ﬁj\{j}} for |J| =k + 2, j = max(J), | = max(J\{j}), where
p ranges over J\{j} in increasing order;
(ii) R{B%,0L} for |J| = |L| = k+1, |[JNL| < k, max(J) = j > | = max(L);
(i)' R{p%, B3} for |J| = |L| = k+1, |JN L| < k, max(J) = max(L) = j with
max(J\{j}) = > max(L\{j}).
Here (33, = nBun~' where n is the product of generators Bx over K whose maximal
elements are j,1 and which satisfy (3.4) in (i); (3.5), (3.6) in (ii)'; (3.7), (3.8) in (ii)"". The
product is taken in order of decreasing H]I;'l\{j iy In case (ii)', if max(J\{j}) > [ then
3 = /6].



This presentation depends on the choice of positive real numbers a1 < as < -+ < a,

such that,
i g ar — a;
i _
keJ I

are distinct over all J C I\{7,} of order (k—1).

4: SPECIAL CASES

In this section we shall illustrate the use of Theorem 2 in some special cases. If
n = k41, there is only one generator, so that B(k+1,k) £ Z. If n = k 4 2, there are n
generators labelled by the k+1-sets I\{j}. There is just one relation, which is of type (i),

By Bngny} -

In other words, the only relation states that 8r\(1},..., 8 (n} is central.

The generators for B(n, 1) are labelled by pairs {¢,57} C I. There are no relations of
type (ii)". The relations of type (i) give,

{Bjks Bix, Bij } i<j<k.
The relations of type (ii)’ give,
{Bij, B} forj>i>I>korj>1>Fk>i
{B1Bii B3 By forj>1>i>k.

These are the standard relations existing between generators of the pure braid group P,.
Here all II’s are 1.

In the case of B(n,2), the generators are labelled by triples {7, j,k} C I. The relations
of type (i) are,
{Bjrt, Birt, B30, Bigny - fori<j<k<I,

where 37, = nBi;in~" and n is the product of generators B, with ¢ < 4, in decreasing
order. The relations of type (ii)’ give,

{ﬁijk,ﬁlms} forl<m<8<]<k,l<],
{ﬁjjkv/glms} fOIi<j§S<k, [<m<s.

In the latter case, ﬁl*]k = nBijkn ", where n is a product of generators 3,5 with ¢ decreasing
and such that max{i,m} < ¢ < j, for j = s, while for j < s, ¢ must satisfy,

IE ™ Sam < I 80, — R4, (4.1)
with o = max{m, ¢, j}. Finally the relations of type (ii)’’ are given by,
1Bl Bkm; } fork<m<li<yg k#i<l
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and 37, = EBu €71, Bimj = nBrm;in " in which ¢ and n are suitable products of generators
15, 1n decreasing order of p. The p’s involved in ¢ are those with 1 < p < m (equalit
ply) g p p p q Yy
only if k < 7), while the condition required for 7 is that,

. N il
I T 00y > TP 00 — T T Sam
where a = max{i, m,p}. This latter condition reduces to,

[ >p>iandp>m (equality only if k£ < 1)
or p<i<m

In a similar way, (4.1) (type (ii)’) may be reduced to,

m<qg<s

or m<g, q¢g<s
. S (42)
or m =7 > qand HqSHl] < ;7

or m=j=gqandl <1

It is apparent that the values of {a;} only enter into the presentation given above, in those
relations associated with case (ii)’, for which 1,/ < j = m < s < k (¢ # 1) and then the
allowable values of ¢ are such that ¢ < 5 with H’;SH? < Hf].

5: RELATION TO ORDINARY BRAID GROUP

Let C be an arrangement of n+1 hyperplanes in C*, constructed as in as in §2, with
n+1 replacing n. Then, by construction, {7 yu(n) ‘ J C I,|J| =k} cut the z,4-axis in
(Z) distinct points. Any element of B(n,k) is associated with a loop in C™, based at O,
and as X = (z1,...,%,) moves, the (Z) values a j(x) of .41, for which 7,41 passes through
the intersection of k other hyperplanes {x; ‘ i € J}, will follow paths in C. It is possible
that some of the a;(x) may coincide, for some values of x.

For any JJK C I, |J| = |K| = k, |[JN K| < k—1, a path in U(n,k) exists in
which aj(x) = ax(x) at some point x on the path, while all other ar,(x) remain distinct
along the entire path. For every such pair, .J, K, pick such a path, and deform it slightly

so that aj(x) and ax(x) never coincide, but do wind around each other. Denote the
corresponding element of P(n) by k. This will be conjugate to 87k in P(n), using the
k k

standard notation for generators of B(*,1) (see §4). For every J C I of order k+1, choose
an element gy € P(n), corrsponding to a path in U(n, k) based at 0, associated with the
k

generator 35 of B(n,k). Such a path may need to be slightly deformed so as to ensure
{as(x)} distinct throughout the path.

Let G be the group generated by {gs ‘ |J| = k+1} and {h; K ‘ |J| = |K| =k, |Jn
K| < k—1}. Let H be the subgroup of G generated by {h;x}, and K be its normal
closure in G. Then the choice of ¢ is arbitrary up to composition with elements of K.

9



The analysis above shows that,
B(n,k)= G/K , (5.1)

a quotient of a subgroup of P(n) The generators g; and h s used to construct G and K
k

H(H 5J\{z‘},J\{j}) and G,

e J ieJd
I€ i<y

will be conjugates of,

respectively, in P(Z)'

The construction described here is analogous to viewing B(n,1) as P,. That is,
consider X4y 1 fibred over X, ; with projection map given by forgetting the last point.
The fibre will be C with n points removed, and has fundamental group F},. In the case of
general k, one can still consider the map from X, 1 to X, ; obtained by forgetting the
last hyperplane. However, this map is not a fibration; this corresponds to the non-triviality

of K.

It should be observed that when & = 1, the higher braid group reduces to P,,, the pure
braid group, and not to B,,, the full braid group. A natural action of 5, exists on X,,, by
permuting the points, and B,, appears as the fundamental group of of Xn/Sn. There is no
obvious action of S, on U(n,k) for k > 1. Let V(n, k) denote the space of all (a,x) with
a € X, and x € C, for which the hyperplanes {r.n; = z;} with n; defined by (2.1), are
in general position. Clearly, the projection to X,,, given by (a.x) — a defines a fibration
with fibre U(n, k). A free action of S, exists on V(n, k), given by,

o(ax) = (o(a), o(x))
for 0 € S,. The resulting quotient fibration,

V(n, k‘)/sn
l
Xn/S,
gives rise to a homomorphism,
B, — Aut(B(n,k))
in much the same way that a homomorphism B,, — Aut(F},) exists (see for example [B]).

This provides yet another construction for braid group representations, distinct from, but
similar to [L].
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6: FURTHER REMARKS

In [MS 1], it was shown how the space of orders on k-sets satisfying a certain condition,
generalises, in some sense, the structure of the symmetric group 5,. These orders may
be viewed as the order of {a;(0) ‘ |J| = k}, which clearly depends on the choice of
a1y, -

It is clear from the analysis of this paper, that B(n,k), for & > 1, has no unique
natural presentation, but rather possesses a family of such, indexed by possible real {a;}.
In other words, a different presentation may be defined for each component of the space of
allowed {a;}, a complement of hypersurfaces in R". This corresponds to the fact that for
kE > 1, B(n,k) is associated with only a weak Bruhat order. The results of §5 (see (5.1))
may also be seen as the formulation in terms of groups, analogous to the constructions of
partially ordered sets in [MS 1].
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