A Note on Two-row Hecke Algebra Representations !

R.J. Lawrence?

Department of Mathematics
Harvard University
Cambridge, Massachusetts

Abstract. In this note, two forms for the representations of the Iwahori-Hecke algebra associated with 2-
row Young diagrams will be given. One of the forms appears naturally from the topological construction of
such representations given elsewhere, while the other form comes from a specialisation of Wenzl’s general
construction of irreducible Hecke algebra representations. In both constructions the bases used may be
naturally indexed by Young tableaux. The combinatorial structure of the transformation between these
bases is the subject of this note, involving g-numbers.

1: THE TWO CONSTRUCTIONS

1.1 Wenzl’s construction

The Twahori-Hecke algebra Hy(q) (type AW ) is generated by o1, ..., 0,1 with the following relations,

n—1
0i0i+10i:0i+10i0i+1 fOfi:l,Q,...,n—Q
0i0; = 0j0; for |z —j| > 1 (1.1)
(o; = D(os+q) =0 forl<i<n-—1.

When ¢ = 1, these relations reduce to those existing between the generators (ii+1) of CS,. When q is not
a root of unity, the representation theory of Hy(q) is similar to that of S,, with irreducible representations
being defined for each Young diagram with n squares. Such representations may be constructed using
similar techniques to those used for symmetric group representations (i.e. Young symmetrisers), and this
was carried out in [We]. In this note we restrict our attention to representations associated with two-row
Young diagrams, A,,, with n — m and m squares in the two rows (0 < m < [/2]). A tableau t of shape A,
is an assignment of the integers 1,2,... n to the squares of A,,. By a standard tableau is meant a tableau
whose labels increase along any row (left to right) or down any column. Such a standard tableau of shape
A is thus specified by the labels 1 < a3 < -+ < ap, < n appearing (left to right) in the second row, subject
to the condition,

a; > 21 Vi . (1.2)

Let I,,, denote the set of such standard tableaux; it has order,
n n
_ 1.3
() = (a0): o
where 0 < m < [1/2].

Let e; = (0; + q)/(1 4+ q). This defines generators for Hy,(q) which are all projections. In [We], Wenzl
constructs a representation m; of H,(q), on the vector space U = (v; |t € I,) indexed by I, by setting,

1
mi(ei)ve = agvy + (aqa—gq) /2va,(t) ) (1.4)

where o;(t) is the tableau obtained from ¢ by interchanging the labels i and i+1. The number a4 is defined
by,

_ (1=q¢™)

(=14

Here the integer d is defined to be r; — 71 + i1 — ¢i, where the square labelled ¢ in the tableau ¢, lies in

the ’Pith row and cith column. Note that although it is possible for o;(¢) ¢ I, even though t € I,,, in such
cases d = +1 and so aga_qg = 0. Hence (1.4) gives a well-defined action of e; upon U.
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1.2 A topological construction

Let X, denote the configuration space of n distinct ordered points in C. Then there is a natural fibration
of Xymyn over X, with projection map given by forgetting the first m points. The fibre over w € X,,, denoted
Yw m, is the configuration space of m distinct points in C\w. For any local system y on X, 45, a natural
flat connection (the Gauss-Manin connection) exists on the vector bundle over X,, with fibre H” (Y m, X)-
The monodromy of this connection provides a representation of B, on the middle cohomology of Yiy n,.
For more details, we refer to [L 2]. Tt is possible to pick out of the monodromy representation a natural
subrepresentation which factors through H,(¢) and may be defined as follows.

Let 7,, denote the set of all subsets of {1,2,...,n} of order m, and V be a vector space with basis {f,}
indexed by a € 7,,. Consider the subspace W of V generated by,

98 = ZqStfﬁu{i} (1.5)
igp

where @ runs over elements of 7,,_1, and s; denotes the number of elements of 3 less than 7. The representation

79 1s defined on V/W by,

M=) fa+ foiay figa,i+lea,

fo otherwise,

where 0;(a) denotes the m-tuple obtained from a by interchanging 7 and i+1.

Theorem 1 When q is a root of unity, (1.4) and (1.6) define isomorphic irreducible representations of
H,(q), associated with the two-row Young diagram A,,.

A basis for Vv is given by those f, for o € S,, where,
S, = {{labels on second row of squares of A, int} |t € Im} C T .

This statement is equivalent to showing that a certain matrix has maximal rank. For, let A be a matrix
whose rows are labelled by the (mril) elements of 7,,\S,, and whose columns are indexed by elements of
Tm—1. The entries in a row associated with label & € 7,,\S,, are all either powers of ¢ or zero. Indeed, if 8

is an (m—1)-set,
0 if3¢ a
Aﬁﬁ = {qi—l lfﬁ =ay (17)

where a(;) denotes the set obtained from a by removing the it entry when arranged in ascending order.

Example 1 For n =4 and m = 2 we have |T,| = 6, |7;| = 4 and |S»| = 2. Indeed, 77 = {{1}, {2}, {3}, {4}}
and 75\S» = {{1,2},{1,3},{1,4},{2,3}} and the matrix A is shown below.

g 1 0 0
g 0 1 0
qg 0 0 1
0 ¢g 1 0

It has determinant q(g +1).

Example 2 For n =6 and m = 3, A is a 15 x 15 matrix and its determinant is —¢%(1+ ¢)°(1 + ¢ + ¢%). In
general, each row in A contains 1,q,...,¢™ " exactly once, and its determinant is non-zero whenever ¢ € C*
is not a root of unity.



Theorem 2 The determinant of the matrix A defined by (1.7) is given by,
a Yor(r— r— ¥n,m—r
iH(q far( 1)(1+q+...+q 1))
r=1

where a,, ) = (Z) — (kril) is the dimension of Ty, .

This may be verified inductively. Note that when ¢ is a root of unity, H,(q) may not be semi-simple.
Indeed, (smaller) irreducible representations of H,(q) may be picked out, at such roots of unity (see [We]).
However, in every construction it is seen that if ¢ is a primitive k*® root of unity,

(i) for k > n, Hy(q) is semi-simple;

(i) the representation m; constructed in §1.1 is irreducible if & > m.

Thus if £ > m, q behaves, for the purposes of the representation theory, like a non-root-of-unity. It may be
seen that the singular behaviour of det A appears only at roots of unity of order at most m.

Hence for ¢ away from roots of unity, V/W has a natural basis indexed by &, which may be naturally
corresponded with I,,.

2: INNER PRODUCTS

In this section we shall consider inner products defined on the spaces of §1 on which representations
and 7o are defined. These inner products will be identified by the condition that they are invariant under
the involutions,

TiI'Zei—l, V1.

This condition is equivalent to requiring the 1 and —q eigenspaces of the action of ¢; to be orthogonal, Vz.

2.1 Inner product for

It may easily be seen that the 0 and 1 eigenspaces of e; under the representation 71 are spanned by,

{ai/ﬁvt - a;/gvol(t) |t € Iy withd # 1} U {v; |t €I, withd = -1}

{a;/zvt + ai/(zivol(t) |t € Iy with d # 1} U {v; |t € I, with d =0}
respectively (see (1.4)). Choosing the standard inner product on ({v: | ¢t € I, }) under which {v;} are
orthonormal, it may be seen that this makes 7; preserve the inner product Vi. It is also clear that this inner

product is essentially unique, and thus, by Theorem 1, the isomorphism between U of #; and VIw of
must transform the natural inner product on U to one on V/W, also preserved under 7;, V.

2.2 Inner product for 75

In this section we proceed to construct an inner product on V/w invariant under 7;, Vi. This is equivalent
to a degenerate inner product (|} on V for which,

(i) (| B) =0 whenever a is a 1 eigenvector and f is a —q eigenvector of 71(0;) on V, Vi;
(i) (falgs) =0,Y8 € T, @ € Ty

Tt is easily seen that (i) is equivalent to,

(faugiy | Fpuging) = (fautiny | fougiy)
(fautiy | f3) = (fauginy | fo) (2.1)
(faugir | Foutiy) — alfaugamny | fougimy) = (0 =D {favtiy | fouginy)
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whenever a, 8 € 7,1 with 4,i+1 ¢ a, 3. Denote by s,, the sum of the elements of a, for any subset a of
{1,2,...,n}. Set,
(@, 0) = 4" =""2(fa | f3) (22)

Then (2.1) reduces to,

(@u{i},pu{i+1}) = (aU {i+1}, pU{i})
(aU{i},B) = (U {i+1},8) (2.3)
(U {i}, BU{i}) — g7 (aU {i+1}, BU{i+1}) = (1 — ¢ ) (a U {i}, fU {i+1})

Moreover (ii) reduces to,

Y T, pU{i}) =0 (2.4)

igg
foralla € 7 and B € T

We say that (a, ) is in standard formif a U g = {1,2,...,k} some k with m < k < 2m. Suppose that
such inner products, in standard form, depend only on |a U §|, say (a, B) = A4 where d = |an B|. Equation
(2.3) may be used to reduce any (a, 3) to combinations of inner products in standard form. Suppose (a, 3)
is general, with |a U 3| = d, say a U 8= {z1,...,24} arranged in increasing order. In the segment between
ziq and z; (2o = O),_there may be ai_integers which are in neither a or §. Then,

d d
@0 =3 er 3 ([ Pustar+om#5<0)) (25)
r=0 |S|:T‘ =1
where the second summation is over all subsets S of {1,2,...,d}, of order r, and,
ifi g S
po={® 1
s { l—=z ifics.

Applying (2.4) with @ = {1,2,...,m} and § = {1,2,...,d,m+1,...,2m — d —1}, gives,

Agp (T4 ¢+ g™ ™) 4 Ay + -+ ¢™ ) =0,

Thus up to scale,
_ (_1y\d,— Yd(dH)+d(2m—n) (n —2m +d)ly(m —d)!y ;
Aa= (=1 (n —2m)l;ml, Ao (2.6)

where [m], = (1 —¢™)/(1 — ¢) is a g-number and m!; = [] [k]4 is a g-factorial.

1

It may be verified that (2.6) provides a solution to (2.3) and (2.4). Since the inner product on U is
uniquely determined by its invariance under the action of 1(7;), this must also be true of the corresponding
inner product on Viw, with respect to the action of m2(7;). Hence the isomorphism of Theorem 1 transforms
the standard inner product on U of §2.1, to one on V/w induced by the inner product,

s

d
—8a—S8 r —or(r r(2m—n c
| f5) = 45272 {(—1>q B4R mn) (0 9 g )l (m — 1)l
r=0

J (2.7)
E <H Piys(qa1+m+al—(#5<z’))) }

|S|=d—r i=1

on V (see (2.2) and (2.5)). By Theorem 2, a basis for V/J¥ may be obtained as {fa+W |ae€ Sy} The
determinant of that part of (2.7) associated with a, B € Sm is thus essentially A? where A is the determinant

of the transformation matrix between bases in U and V/iy given by the isomorphism of Theorem 1.
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3: FURTHER REMARKS

In §1.2, the origins of the representation w3 of (1.6) were briefly outlined. The basis f, is essentially
dual to a natural basis for homology in terms of iterated loops. An alternative basis for coho_mology comes
from using de Rahm cohomology. Let z1,..., zy, be local coordinates in Y5 . Then, since Ys », is a Stein
manifold, H"(Yw m,x) may be computed in terms of holomorphic differentials, fdz ... dzy, where f is a
(multi- Valued) holomorphic function on Yi , which twists according to x. The appropriate functions f, for
such a basis, turn out to be,

{ ZH i) )7 =hy

cES,, i=1

3

n

where fo = ﬁ (zi — zj)72 H [1 (2 —w;)* and ¢ = exp(27ia) (see [L 2]).

1,7=1 i=1j=1
i<J g

One may consider combinations > Ay(w)h, = f, such that % ~ 0 in the sense of cohomology,
0€Tm '
Vi. This reduces to a set of differential equations for the functions A,(w), which in terms of A(w) =

(Aa(W))aes,, are,

dA -y CijA (3.1)

Ow; w; — W;
[} Zi 1 7
in which C;; are constant matrices. The associated monodromy action is w2 and once again exists on a

quotient of V| since components of A are indexed by a € §,,. However, with respect to ~, relations also
exist amongst the h,. This gives rise to a representation on VIiw' where,

W' = (g, | a € Tmna)

=3 (hy). (3:2)

igo

The system (3.1) is reminiscent of the Knizhnik-Zamolodchikov equations of conformal field theory [KZ],
and indeed it was shown in [L 1] and [L 2] to be isomorphic to,

af':az'ﬂ#f (3.3)

up to a shift, where f: X,, — (V/ ® Vt)o = X is a holomorphic vector valued function of w € X,,. Here V;

is the spin-t representation of sl; and ¢t = /2 — m, while ©;; € End(X) is the polarised Casimir operator
acting on ¢ and j alone.

Theorem 3 [L 1] An isomorphism o: X — V/i¥" exists under which,

ao(Q; —1kI)a=Cjjoa.

It can be shown that the matrices C;; are just a(P;; — I) where P;; interchanges the elements 7 and
J, as an action on the basis f, for V. Let us now investigate the inner product correspondence induced by

a. A natural inner product exists on Vl/z’ which therefore carries over to one on X = (VQ?” ® Vt)0~ Now,
Q;; 4+ /21 acts on V/ by transposing the it h and jt! factors. The natural inner product is invariant under

this action. However, under «, by Theorem 3, the induced inner product on V/w' will be invariant under
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a™'C;j; + I = P;;. Hence, as an inner product on V, (fa | fs) can only depend upon d = |a N B, say Aj.
Since the inner product is well-defined on V/W’,

(fg|g,/6>:0 Va € Tm, B € Tna
Hence it may be deduced that,

(fo | f5) = Ay = (=1)*(n — 2m + d)!(m — d)!.C (3.4)

for some constant C'. This defines the inner product on V/W’.

The results of this section should be compared with those of §2. In particular, the structure of the
representation on V/w', as contrasted with that in §2 which is on V/Ww , can be seen to differ only in that the
relations W' of (3.2), are those of W at ¢ = 1 (see (1.5)). The inner product (2.7) which is natural, in that
it is invariant under some global action (the involutions associated with the monodromy action), specialises
at ¢ = 1 to (3.4), which is obtained by imposing a local invariance constraint (invariance under the local
action matrices C;;).

The two bases of Theorem 1 (§1) should be thought of as ‘global’, as opposed to the ‘local’ bases of
the present section. An example of a local basis coming from conformal field theory, is given in [TK]. Not
only does the transformation between ‘local’ and ‘global’ bases inevitably involve hypergeometric functions,
but it also depends upon the basepoint chosen, on the local side of the picture, with respect to which to
relativise. Of course, transforming between the two local bases, or between the two global bases discussed
in this note, will involve only algebraic functions of q.
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