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Abstract. It was seen elsewhere how representations of the Iwahori-Hecke algebra associated with two-row
Young diagrams could be constructed using elementary topology. Such representations also arise in the
context of conformal field theory, where they are associated with the spin- 1/, representations of sl;. In
this paper, the analogue of this topological construction will be produced, giving rise to those braid group
representations associated with higher representations of sl;. The associated problem of the construction
of link invariants from such representations is also discussed.

1: INTRODUCTION

It has been seen in [L 1] how monodromy representations of the braid group B, may be obtained on
a natural flat line bundle whose fibres have the form of a homology space. These homology spaces are
evaluated on the space obtained from the configuration space of points in the complex plane with a number
of punctures, by placing a suitable twisted local coefficient system on them. The representations obtained,
turn out to factor through the Hecke algebras, and can be used in order to obtain the one-variable Jones
polynomial, evaluated on the link obtained by closing a braid. The procedure can be identified with the Lie
group sl and the standard vector representation.

In this paper the analogue of this procedure will be developed for the case of the higher representations
of sly. Starting with the homology space used in [L 1] it will be seen that, from a slightly more general local
coefficient system, one derives those representations of the braid groups associated with higher representations
of sly, by taking a suitable subrepresentation of the monodromy representation obtained on the twisted
homology space. These representations no longer factor through the Iwahori-Hecke algebras; however they
do factor through a quotient of the braid group, B, , given by imposing a polynomial relation on the standard
generators {o;}. In §2, it will be shown how such representations are derived from the techniques of Tsuchiya
& Kanie [TK] generalised to higher representations. In §3, the details of the construction using homology,
will be given, and the isomorphism which exists between these two approaches is discussed in §4.

Just as sly with the standard (vector) representation gives rise to those Hecke algebra representations
occurring in the one-variable Jones polynomial [J], it is reasonable to suppose that the braid group repre-
sentations constructed here, although not factoring through the (Iwahori-) Hecke algebra, can also be used
to construct knot and link invariants. Such questions are briefly discussed in §5.

2: REPRESENTATIONS OBTAINED USING CFT

Let X,, denote the configuration space of n distinct (ordered) points in the complex plane C. In this
section we will recall the construction of Tsuchiya & Kanie [TK], based on conformal field theory on P!.
Suppose that ®;(u;z) is a vertex operator of spin-j;, considered as a map H — ﬁ, in the sense of [BPZ],
where H is a suitable Hilbert space with completion ﬁ, z € C\{0} and u is an element of Vj},, the spin-j;
representation of sl;. One can then calculate an n-point function:

<v | D, (Un; zn) - Poug; 22) D1 (u1; 21) | v> (2.1)

so long as ®q,...,®, are ‘compatible’, in the sense of [TK]. Here u; € Vj}, for 1 < i < n, while |vac) € V}
and (v| € V; for some target spin, t. The complex valued function of the u;’s and z;’s defined by (2.1) may
alternatively be viewed as a function of zq,..., z, whose values are linear functionals in the u;’s and v. It
was shown in [TK] that this is well-defined in the region 0 < |z1] < |z2] < -+ < |2n|, and that such an
n-point function, considered as a map:

fiXn —(Vj,@ 0V, ® Vi) (2.2)

1 The author is a Lindemann Fellow of the English Speaking Union.



satisfies a system of differential equations of the form:

of Qi 5
ne = ; f (2.3)

©Zi — Zk
g

(the equations of Knizhnik and Zamolodchikov). Here ¥ denotes the dual representation of sly and ( )o
denotes the sly-invariant part of the space within the brackets. As a (single-valued) holomorphic function, f
is only well-defined by the expected value of an operator product in the region 0 < |z1] < |22 < -+ < |2n],
but it can be analytically continued to give a multivalued meromorphic function on the whole of X,,. In
(2.3), ©;; are matrices defined for all i # j, by taking the action of the polarisation of the Casimir operator,
Q, on the it and jt factors of the tensor product Vii®---®V;, ®V;, with the identity action on remaining
factors.

Equation (2.3) is equivalent to stating that f defines a covariant constant section of a flat line bundle over
X, specified by {€;;}. The collection of such covariant constant sections is spanned by all possible n-point
functions of primary fields (vertex operators) of spins {j;}. The monodromy gives rise to a representation
of m1(X,) = Py, the pure braid group of n strings, on the space of n-point functions. When j; = j,
independent of ¢, the action of P, can be extended to one of the full braid group B, = m ()?n) where )Afn
is the configuration space of n (unordered) distinct points in C. The case of j = 1/ is the one which was
discussed in detail in [TK], and led to the Hecke algebra representations associated with two-row Young

diagrams.

Let H, E and F be the usual generators for sl with [H, E] = 2FE, [H,F]= —2F and [E, F] = H. Then
the polarisation of the Casimir operator €2 is given by:

1hHQH+EQF+FQF.

However, in the spin-j representation of sly, the full Casimir operator, & = 15H% + EF + FE, acts by
multiplication by 2j(j+1). Thus the polarisation of € acts on V}, ® Vj, as:

JE+D) — 511 +1) — ja(ja +1)

on those parts of the decomposition of V;, ® V;, which transform according to V; under the action of sl,.
When j; = j Vi, the system of differential equations (2.3) for vector-valued functions:

FiXn— (VB @ W), (2.4)

has a solution set consisting of multi-valued meromorphic functions. The action of €;; on (VJ®” ® Vt):)/, for
1 < i,k < n,is defined to be the action of the polarisation of £ on the it" and kth V; factors. Since,as an
sly-module, V; ® V; has a decomposition into irreducible modules V; @ V; = Vo @ Vi @ - - - @ Va; the eigenvalues
of Q; on V; ® V;, are given by:
7+ =2 +1) (2.5)

where j* € {0,1,...,25} with multiplicity 25" +1.

However, the dimension of (V]®" ® Vt);/ is the multiplicity of V; in the decomposition of Vj®" into
irreducible modules under the action of sl;. For fixed j, consider the array b, ; given by this multiplicity.
Extend this to negative t by b, _; = —by, ;1 for ¢t > 1. It is easily deduced from the decomposition:

le @ ‘/‘72 = VY]j1—j=| @ V|jl—jz|+1 @D ‘/j1+j2

that: ) i .
anytzt =(z77 4+ AT 27) an—l,tzt .
t t

Thus ", by s2f = (277 + 2177+ 4 29)*(1 — z71). It is now apparent that, for ¢ > 0, b,, ; may be expressed
as the difference between the coefficients of 2"/=% and z™~*'in (1 + 2 + --- 4 z2)?. Throughout this

2



paper (:1)] will denote the coefficient of 2™ in (1 + 2z + -+ + zzj)"7 so that (:1) ", is the usual binomial

coefficient. The monodromy representations of B,, obtained by using the spin-j representation of sls thus
n n

— 2.6

<”j_t)j <”j_t_1)j (26)

The matrices €; have eigenvalues as given by (2.5), with multiplicities given by that of V; in the sls-
module (V]@”_2 ® V1), namely the coefficient of 2 =DHH i (T2 2202 (1424 - 422 ) (1= 2).

That is: ) 2
<(n—2n)g-_+j'_t)j_ <(n_2);l__j/_t_1)j (2.7).

Example Take the case of j = 1. There are three possible eigenvalues for €5, corresponding to the cases
j'=0,1,2. These are —2, —1 and 1, respectively. However when t = n—1, n — 2 and n — 3, the dimensions
of the monodromy representations obtained, together with the associated multiplicities of the eigenvalues of
Q1 are given below.

have dimensions:

where 0 <t < [nj].

t=n-1 dim= n—1 0 , 1 , n—2
t=n-—2 dim= 1l/n(n—1) 1 , n—2 , Yo(n—1)(n—2)
t=n-—3 dim= 1/sn(n? — 7) n—3, lhn=1)(n—-2), Ys(n+2)(n—2)(n-23)

Thus, in the first case, £2;; has only two eigenvalues, and the associated monodromy representation of B,
factors through the Hecke algebra.

The braid group representations obtained, depend on the parameter k. For large &, it is easily seen that
the monodromy obtained when z; and zg interchange is eXp(?TiI{_l Q;1), up to first order in k7!, and thus
has eigenvalues:

+exp (ﬂ'ff_l (' +1) - Qj(j+1))) :

Let ¢ = exp (QWi/;g). Then, in the example above, it may be seen that, to first order in 7!, the eigenvalues

of the generators of B, in the monodromy representation are ¢!, ¢~ /> and +q 7.

Theorem 1 Suppose that n, 2j and 2t are non-negative integers with 0 < ¢ < [nj]. Then the
monodromy representation obtained from (2.3) for functions f as in (2.4), has dimension given in (2.6), and
the generators a; of B, have eigenvalues (—1)7 ¢ 2" 0" +)=iGH) with multiplicities as given by (2.7), for
0<j' <25

In the next section the structure of the monodromy representations produced via homology will be deter-
mined, and the comparison with the representation of B,, discussed in this section will be made by using the
associated differential equations.

3: TOPOLOGICAL CONSTRUCTION OF REPRESENTATION

For any w = (w1,...,w,) € X,, define Yy ,, to be the configuration space of m ordered points in the
punctured complex plane C\{ws, ..., w,}. Define a twisted local coefficient system, x, on Yy n, based on C*,
with twists of ¢ and o when z; goes clockwise around wy and z; respectively, forall j #iand k € {1,2,...,n}.
Then H™(Yw m, x) defines a vector bundle over X,, with a natural flat connection, induced from homotopy
equivalence of homology, and hence there is naturally defined a representation of B,, on the homology space.
See [L 1] for further details. The particular values of the parameters ¢ and « which we shall use are:

q = exp(2mia), a=q b
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where 2j € N U {0} and «a is a real parameter. A suitable (multi-valued) analytic function on Yy ,» which

twists according to y is:
f= 1] Gi—we)™ J] G—-20"
1<i<m 1<i<i<m
1<k<n ==
The cohomology space H™(Yw m) may be computed by using analytic functions on Yw m, since Y m

is a Stein manifold. It is easily seen that the only functions that need to be considered are of the form f.g
where g is a single-valued analytic function on Yy ,, with trivial local coefficient system; and indeed that a
suitable spanning set is obtained from ¢’s of the form:

H(zi — ;)7

where a; € {w;,...,w,}. For more details on the derivation of this, see [L 1].
m
Let g, denote the sum of the m! terms obtained by symmetrising the product [] (2 —a;)tinzy, . 2,
i=1
where a1, ..., am € {w1,...,wy}. Let @ denote an (m—1)-tuple B1,..., Bma of elements of {w1,...,w,},

not necessarily distinct. Define g to be the sum of (m—1)! terms of the form:

H(Zz — Boiiy) ™

=1

itk

over o € Sy, such that o(k) = m. Then g is independent of z;. The functions f.gx are all holomorphic
functions of z1,. .., zm on Yy ,, with twisting v, and hence in H™ (Y m, X),

0
Ea(fgk)—(l
k
Ei(fg):Z%Jrgzgi—gz_az gi
% 8Zk k % 8zk ji<l Z; — Z] - Zi — Wy

ZV
a m—1 n
= 52D 988 0 Gpu
2'7 i=1 B =1 h

and thus for all 3, there is a relation, existing at the level of cohomology:

However,

~l =

m—1 n
> Foss— 2 F9puw =0. (3.1)

i=1 i=1
Suppose that {f1, ..., Bm-1} contains A copies of w,. Then, in (3.1), the first term contains an expression
Agpw, while the second term contains —2jgg,,. That is, so long as there are at most 2j occurrences of any
wy in {f1, ..., Bma }, (3.1) will involve only g,’s in which each o contains at most 25 copies of any w,. It is
therefore meaningful to consider the subspace, H, of the homology space H™ (Y4, ) spanned by f.g,’s for
a € 8, where S is the set of m-tuples of w’s consisting of the elements of {wy, ..., w,} which contain at most

2j occurrences of each w,. There is a natural action of S,, on this cohomology space given by permuting
the z;’s, and this action commutes with that of B, . One may therefore, consider the action of B, on the
symmetric part of the cohomology space, the space H being a subspace of this symmetric part.

The number of a’s, up to permutation, with a1, ..., @, € {w,...,w,} containing at most 2j occur-
rences of each w is (:1)] There are relations between the associated g,’s given by (3.1) for all § containing

at most 2j occurrences of any w. The number of relations is (m'il)j, so that the dimension of H is:

(Z)J - (mn—1>j ' (3.2)



This is to be compared with the dimension of the representation obtained in the last section using conformal
field theory. It can be seen that the evaluation of (2.6), when m = nj — ¢, gives dim H. However before
such a comparison can properly be made, it is necessary to verify that H is an invariant subspace of the
symmetric part of the cohomology space H” (Y m, Xx), under the action of the braid group B,.

It may be easily verified that, in H™ (Yw m, X),

0 U fgocwk—w fgocw —wk
Ow; (f92) Z {as( 27/ w; — wg + av 2] w; — Wg

wp Ea

s (3.3)
f [e] f QWER—W; f o
+ [as(?—j—l)—}-auk(z—l)] r' f‘wk}—kas Z —g_i;—wk Jao

wrgo

where s and ug denote the number of occurrences of w; and wy in «, respectively. Thus if the multiplicity
of any wy in « is not greater than 2j, then the same is true of all the terms fgg occurring in %(fgg).
For, in (3.3) the last two terms clearly satisfy this condition. The first term contains f9awy —w,; in which the
multiplicity of any w; (i # k) must be at most 2j. Tt is possible, however, that wy occurs 2j 41 times, namely
when ug = 27; but in this case the coefficient of this term vanishes. A similar argument applies to the second
term. Hence the subspace H C H™(Yw m,X) is invariant under the action of 5 —, for any i = 1,2,.

Let C;; denote the matrix whose (a,ﬁ)th element is given by the coefficient of — _%}k in W(fgg). Thus,
at the level of cohomology:

Ow; (f52) = ki Wi Wk

Cik)a

A flat section of the bundle over X,, whose fibre over w is the cohomology space H” (Y m, x) is thus given
by >, Aa(fga) where A, is a function of wy, ..., wy such that:

Z(fgoc ZA*@@

e

g)~

(ClkTA)g
W, —Wgk

That is, Zﬁf + >

E#i
of the functions (A,) and hence also the monodromy representation of B,. It is to be compared with the
monodromy representations obtained from conformal field theory, which are associated with the Knizhnik-
Zamolodchikov equations, (2.3), in which —x 1€, is to be compared with C;x. Since (Cik)ap = 0 whenever
a € Sand ¢S, thus the evolution of the functions (A,) preserves the subspace in Which—Ag = 0 for all
aéS. That is, B, has a well-defined action upon H. In the next section it will be shown that the two

representations obtained are isomorphic up to scaling when x and a, and m and ¢ are suitably compared.

= 0, by (3.4). This system of differential equations describes the evolution

Theorem 2 There is a natural flat connection on the vector bundle with fibre H C (Hm (Yer,m, X))Sm

over Xn, and the associated monodromy representation of B, = ”rl( ) has dimension as in (3.2).

For the rest of this paper we shall denote this representation by @’ . and the space H on which it acts by

n,m
W,{ym. The constructions of this section should also be compared with those in [SV], where functions of the
form fg, are shown to satisfy the Knizhnik-Zamolodchikov equations, and thus generate, as monodromy

representations, the same representations as those obtained from n-point correlation functions.

4: THE CORRESPONDENCE BETWEEN THE TWO APPROACHES

As was remarked in the last section, if a correspondence exists between the approaches outlined in §§2,3
for producing representations of By, then ¢ should be compared with nj — m (see equations (2.6) and (3.2)
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for the dimensions of the respective representations). Both representations are monodromy representations
associated with flat connections of the following form (see Kohno [K]):

ZAij dln(zZ — Zj)
i<j
where the appropriate constant matrices, A, are —k7';; in the case of §2, and C;; in the homology

approach. The former matrices are generated from the polarisation of the Casimir operator on V; ® V;. The
latter matrices were given in §3. Using (3.3) it is apparent that:

a(Witk/j — u; — uy) ifg=a
Cir)os = 4 Qui(1=15/27) if f = awy — wi 4.1
( k)_ﬁ aug(1— vif25) if § = aw; — wy (4.1)
0 otherwise

Note that the notation used here requires that § = aw; —wg, if and only if, the (m+1)-tuples fwy and aw;,
of elements of {w1, ..., w,} are identical up to permutations.

Consider one particular matrix C;y, for fixed ¢ and k. For any s, ¢ and 8 with 0 < s,¢ < 2j; 8 being an
(m — s —t)-tuple of elements of {wy, ..., wy }\{w;, wr} with each w; occurring with multiplicity at most 2j,

let v% denote the unordered m-tuple of w’s consisting of the elements of 3 together with s occurrences of
u; and t occurrences of ug. It is clear from the above description of C;;, that the space H on which it acts

may be generated by subspaces, H;, spanned by those elementary basis elements o = v%, as 3 varies over
all allowed (m — s —t)-tuples, with s and ¢ fixed. Then for fixed g, C;; T preserves the subspa?e generated
by the vectors v% over values of s and ¢ with sum d, for any fixed d with 0 < d < 4j. The matrix C;; " acts
on Hg = ({H; d-s | 0<s,d—s<2j}) by:
Hy g s — Hy 44500 ® Hs g—s © Heq g—s5—1

The three spaces on the right hand side have identical dimensions and there is a natural correspondence
between them, under which the vectors in {v% | s+t = d} with fixed d and 3, are identified with each
other. Given this, the action of C;; T can be written as an action on a subspace of C(Z x Z) specified by:

(5,t) — as(1—1R5)(s —=1,t +1) @ at(1— 5/25)(s +1,t = 1) ® a(5t/j — s — t)(s,1) (4.3)
where 0 < s,t < 2j. The multiplicities of the eigenvalues of C;; are given by those in the above action,

multiplied by a factor dim(H, 4—s) where d specifies the space Hg in which the associated eigenvector lies.
The action of (4.3) may be more neatly rewritten as an action on homogeneous polynomials in z and y of

degree d, (0 < d < 4j) as:
0 0 a H?
L= — — |- —=(z—y)?—
aly — ) (&r 83/) 2j (=) Oz dy
where (s,t) has been identified with z*y*. A change of variables, u = z — y and v = z + y simplifies this to:
au? [ 9? o? 3]
L= — | — — —— ] — 2au—
2j <8u2 81}2) o
acting on polynomials in u and v, of homogeneous degree d. It is now obvious that the eigenvalues of this

actlon are:

‘“/(V_l)/2j—2a1/ forv=20,1,...,min(d,4j — d) . (4.4)

The dimension of Hy 4_, is the number of unordered (m — d)-tuples, § taken from a set of (n — 2) w’s,
which are such that no w occurs more than 2j times, namely:

S ) )

(the second term is subtracted to take into account the relations existing in H). The multiplicity of the
eigenvalues of C;i given in (4.4), for some fixed value of v, is obtained by summing (4.5) over the allowed
values of d = v, v +1,...,45 — v.



Theorem 3 The natural action, ), ., of B, on the subspace H of the Sp,-invariant part of H™ (Yw m, X)

n,m? )
provides a braid group representation of dimension (:1)] — (mﬁl)j. The images rﬂlym(oi), of the standard

generators have eigenvalues given in (4.4) with associated multiplicities (Z:i)] — (m—Zj_-fu—l) .
J

Put j/ = 2j—v and t = nj—m. We may now compare the results of Theorem 3 with those of Theorem 1.

The above multiplicities can be rewritten as ((n_f);.ft_l_?.,) - ((n_,))r;.:f_j,_l) _which should be compared with
= /d o J = /d ]

(2.7). The associated eigenvalues reduce to a/Qj(j’(j’ +1)— ‘2j(j+1)) — aj, which identify, up to suitable
shifting, with the eigenvalues obtained in §2 using conformal field theory (see (2.5)).
We deduce that a correspondence does indeed exist for the construction of braid group representations,

between the two approaches outlined in the preceding two sections. The comparison is given in the table
below.

Homological approach CFT approach
a=q" i Spin-j
nj—m Target spin ¢
v = 2j — j' eigenvalue J' component of V; ® V;
Eigenvalues av(v _1)/2j — 2av Eigenvalues &' (j’(j’ +1) —25(5 1))

e . _92 _92 e . _9 _92
Multiplicities (Z_V)j — (m—2j+u—1)j Multiplicities ((n_;)j_tﬂ.,)j — ((n_z)’;_t_j,_l ;
Natural connection on cohomology Kohno connection

Cik ' KTy,
2j/y where ¢ = e%™@ K

H: FURTHER REMARKS

It was shown in §4 how a correspondence could be established between representations of B,, constructed
in §2 using conformal field theory, and the homological approach. The representations produced do not factor
through the Twahori-Hecke algebra Hy(q). Since the connection matrices k71Q;, and C;p, are conjugate, the
associated representations must also be. The eigenvalues of the operators associated with the standard
generators, o;, of the braid group B,, are thus given by:

exp (7/uj' (7 + 1)) (=1)7 (5.1)

for 7/ =0,1,...,27, up to a constant factor. Hence the braid group representations obtained factor through
a generalisation of the Hecke algebra. It would be interesting to investigate the representation theory of
these new algebras; they are deformations of CS,, as ¢ moves away from 1, although being much larger, as
linear spaces.

The representation of B, obtained from the conformal field theory approach of §2, on Vj®", is that
obtained from the solution of the Yang-Baxter equation associated with sl; and the spin-j representation.
It therefore gives rise to a link invariant in the usual way, which, up to normalisation, has the form:

tr(u®" o 7(8)) (5.2)

where 3 € B, is a braid whose closure is the link concerned; and g € End(V}) is an enhanced Yang-Baxter
operator (see [T]). From the discussion of §2, it is clear that @ decomposes into braid group actions on
(Vj®" ® f/t)o, and that these subrepresentations may alternatively be obtained using the homology picture.
The link invariant of (5.2) can thus be written as the linear combination of traces of the representations of
§3 over all possible values of m, that is, 0 < m < [jn]. It is easily seen that:

10, ()] = G- ),

m=0



Indeed, the representation ﬂgnyznj of Bs, induces a representation of B, x B, < Bs,, and as such may be
decomposed as:
lin]
Thm @ Thm
m=0
where the first factor acts on the first B,,, and similarly for the second factor. From this it is apparent that
the link invariant of (5.2) can be written in the form:

(vn | A | Un)

where A gives the action of # ® id € Bj, under T‘gn 2> and v, defines the vector in the cohomology
H?I(Yay, 2n;, x) associated with the closure operation on the braid 3 (see Fig 1).

Figure 1

That is, one can produce a functorial approach to the invariant in which, for each plane with marked
points wy, ..., wsy,, a vector space H2”j(wa2nj, X) is associated. The morphisms are defined by the natural
connection, induced by homotopy invariance of homology, between objects with the same n. When n increases
or decreases by one, a map:

H?™ (Yo amj, X) — H* M (Vs wanga 204100 X))

is introduced in such a way that the standard relations for the algebra of tangles are satisfied. This is a
generalised version of the approach of [L 2].

It is now obvious how the link invariant associated with sl; and higher representations is related to the
Jones polynomial. Suppose L is a link expressed as a braid closure g with § € B,,. The one-variable Jones
polynomial associated with the 2;tP cabling of # may be evaluated using the induced action of the braid in
Banj, given by the 2jth—cabling of B® 1 € By, on:

Han(YanjaXl) (53)

where w consists of 2n collections of clusters of 2 points (see [L 2]). The local coefficient system x; is here
defined with twistings of ¢ and ¢=% when z; goes around w; and z, respectively (using the usual notation).
Transforming this picture so that each clump of 2j w-points is transformed into a single point, leaving 2n w’s
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and 2nj z’s. Of course, this is only meaningful, if we restrict the action of Bay; to that subgroup preserving
the integrity of the clusters of points. The equivalent twisting, when z; goes around one of the new w’s,
is clearly ¢%. Moreover the subspace of (5.3) used to select out the Jones polynomial is given by repeated
loops, with no w mentioned more than once. In the transformed picture this gives no w mentioned more
than 2j times (one for each point in a cluster). The invariant obtained is now in the form of that of the link
invariant of L evaluated with sl; and the spin-j representation, with new k given by 2j/a’. Here ¢’ = e?mia’
is the ¢ associated with the transformed model, that is, ¢%/, and so @’ = 2ja. Thus the two values of , for
the spin-j evaluation on L (k' = 2J/q’), and the spin-1/> evaluation on the 2j-cabled link L9 (x = 1/q),
are identical.

It has now been verified that:

Theorem 4 The spin-j representation of sly gives rise to an invariant on links, L, which may be
identified with the Jones polynomial on L(27) the 2j-cabled link of L.

This result is already well known (see [R]), although the above ties it in nicely with the homological approach.
It may also be noted that |v,,) is naturally obtained from the vector vs,; associated with the closure operation
on 2nj-braids, in the notation of [L 2], under the clumping procedure discussed above, whereby blocks of 25
consecutive strands are transformed into single strands.

In this paper, the case of sl; and general representations, has been discussed in detail. A similar
procedure may be carried out for sl,,; see [L 3].
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