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ON FAMILIES OF SELF ADJOINT OPERATORS

§1. Introduction

In this paper, we shall discuss the behaviour of the eigen-
values of a family of Dirac operators, and in particular, calcu-
late the local contributions to the spectral flow in terms of
easily obtained algebraical data.

We start with a compact oriented manifold M, fibred over

the circle Sl} with map 1:

This induces a map on homotopy:

Ty © ﬂl(M) -> wl(Sl) =7

~

and we may therefore construct the infinite cyclic covering M
of M, the sheets of which are iabelled by elements of Z. So,
now & is fibred over R

Let N denote the fibre; we shall assﬁme throughout this
paper that N 1is even dimensional, say dim N = 2n; so that
dim M = 2n + 1.

Each representation of nl(Sl) = %, and its corresponding
character ¥, gives rise to a local coefficient system Xg

~

on M, and thus to a self-adjoint operator:

even even
D : Q €

M;x} - @
X (M:x7)

(M;x)

produced from the Dirac-type operator on M, associated with

(namely t#d + d* : see definition 2.1 for the brecise form).




The characters of representations of Z are given by maps:

Z >~ ¢*
n ~ "
for any z e C*. However, unitary representations require that
|z| = 1, and thus form a one-parameter family specified by 8
S.t. eie = z,. These characters are denoted Xg - When ¥ 1is
the identity, the above operator DX (i.e. Dxe) is that discussed
in [11]. We will abbreviate D to Dyg -
So, we have obtained a one—garameter family Dy of self-adjoint
operators on Qeven(M;Xe), parametrised by 6 « Sl. Any such

family has an associated natural invariant, namely the spectral
flow which we shall now define. In §8, we shall show how Dy
can be conjugated to operators all acting on the same space, and
varying linearly with 6 (see Lemma 8.1). Thus the associated
eigenvalues, which must all be real since the operators are self-
adjoint, will also depend real aﬁalytically on & (see proposition
8.2). Intuitively, one‘understands this last statement as
follows. As 8 moves around Sl, the eiéenvalues will change
smoothly. They cannot 'suddenly appear or disappear', since then
the number of eigenvalues for a fixed 6 would change abruptly,
which it cannot do, due to the self-adjointness (see diagram
below) . The rigourous proof of this statement involves Puiseaux
expansions (see §8, Proposition 8.2)

Since X2 and Xg are idencical, thus the eigenvalues of
D

9 must come into coincidence for 6's differing by multiples of

2m. The spectral flow is defined to be:




A6)

where n, is the number of eigenvalues crossing A = 0 from

-ve to +ve and n_ is the number of eigenvalues crossing
A =0 from +ve to =-ve, counting multiplicies of eigen-
values, as 68 flows from 0 to 2w. (See the diagram below) .

Since M is fibred over Sl with fibre N, there is a

map:

N -+ N
corresponding to each element of ﬂl(Sl) =Z%. These are the
monodromy actions. In particular, we refer to the mapping

corresponding to 1 ¢ Z as the monodromy map:

T ¢: N> N .
This map induces a mapping of the cohomology A H*(N):

T* :H*(N) -~ H*(N) .
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Our aim is to relate this monodromy map T* to the
eigenvalue variation of the Dirac operators {De} . More

precisely, we shall find the multiplicities of intersection

of the graphs of eigenvalues of the De against 6 with the

g-axis; and the associated crossing numbers at such inter-

sections, in terms of the monodromy. We shall obtain a local

version of the global result that:

(spectral flow of eigenvalues of DB ass 9 wvaries round Sl)

= (signature of monodromy induced on middle cohomology)




which in itself is an easy consequencebof the Atiyah-Singer
index theorem (see §2, Theorem 2.2).

More generally, we are trying to link the local behaviour
of the eigenvalues of De with the monodromy on cohomology.

This local behaviour involves properties such as:

(i) 98's where an eigenvalue vanishes;
(ii) number of eigeﬁvaluesVanishing at that value of 6;
(iii) the order of contact of such an eigenvalue with the
f—-axis;

(iv) the crossing numbers of such eigenvalues.
The monodromy contains information such as:

(i) the number of Jordan blocks, their sizes and corresponding

eigenvalues;

(ii) the signatures of the Jordan blocks (see §11, Theorem 11.5).

To obtain a link we split the problem into three stages:-

H(N) «» H_(M) < H_(M) <> Coker D .
The first stage connects N and &, and\is discussed in 8§83, 4,
See Theorems 3.1 and 4.6. ~ The second stage is the connection
between the 'analytic' cohomology of &, and the 'algebraic',
i.e. compactly supported, cohomology of &. This is discussed
in §5, see Theorem 5.3. Finally, in §6 we connect Ha and
the cokernel of D (considered as a module over the analytic
functions on Sl), see Theorem 5.2.

The Hermitian form on Hn(N) (middle dimensional

cohomology) which we use is the standard one; that is:

(a,B) =J aAB .
N




This we relate to a certain Hermitian form on Coker D, see
§7, Theorem 7.1.

This Hermitian form we relate to the eigenvalue structure
of De. The eigenvalue structure of De is found using
perturbation theory in §8. In 89, we apply thé theory of
normal forms, from Appendix II, so as to produce the connection
between local De eigenvalue structure and the Hermitian form

on Coker D, and hence with the Hermitian form on H(N).

This gives our main Theorem 9.1.




§2. The global result

In this section, we wish to show that the spectral flow

of Dy 8 ¢ SY) is equal to the signature of the natural form:

(@,8) = J a A B ’ (2.1)
N

on the middle cohomology HY(N) of N. The signature is

usually called the signature of N, sign(N).

For each 6§ € Sl, we have an operator De defined:
Qeven(M;Xe) N Qeven(M;Xe)
2

such that De = dd* +'d*d where d* denotes the adjoint of
Hemmitian :

d with respect to thedinner product on p-forms:

P (Mixg) x 2P (Mixg) > R

(a,B) + J a A *B . (2.2)
M
Let g be the dimension of M, i.e. 2n + 1. Then we
define a map:
T P » %P
L - L -
w > (=1) PTG (2.3)
where % denotes the Hodge star operator on QP Then:
2 = (_l)%(q-p)(q-p—1)+%q(q—l) (-1) 2P (P=1)+3q(q-1) 42

(1)@ -a(2p+1) #2021 +ha(g-1) 2

1l

2
-1 4g -q-qp+pz_ _1 P la-p)
(-1) (-1)

2\“}
= (-1T 9=

and




2 .
cdr = (-l)%(p -p)+%q(q—l) (_l);é(q-P) (q"P‘*'l)‘*'%Q(q"l) (*dx) on Qp

since if § ¢ 0P, then drw ¢ oI P*l
LT q%= “1)+2(p 2= Lo (o
— (_l)ZEq q(zp 1)+2(P p)]+2q(q l) (*d*)

2 2
= (—l)q ~gp+p -p (xdx)

= (_l)q(q-p) (xd*) as p2 - p 1is even .
However, if x ¢ Qp-l, Y € Qp,

then <dx,y> = IM dx A (*y)

= jM d(x A *y) -~ (-1)°% x & d(*y)

(-l)p<x,(*-ld*)y> since Jde = 0 by Stokes' Th.
where <, > denotes the inner product (2.2). That is:
= P, 1
d* = (=1)%(* ~dx*)

P
= (-1)P(-1) (@) B-D) 4.y since if 4 < gP

then dagy ¢ g% P+

(-1) 3P =1 4.

(-l)q(p—l)-l(*d*) since g - g is even

-tdt, by above

Thus dd* + d*3 = -dtdt - Tdrd

2

(dt - td)

it
o
1}
o
)
0

A
i

since (dt) (td)

and (td) (dt)

0
~
[oR
—

Il
o
o

Hence we define:




Definition 2.1. De = (dt - td)

on 9P,p, = (-1) 2P (P-L)+5a(a-1) 4, _ ;) 5p(PHL) +3q(g-1) 4

= (1) E-L)+ha(a-l) g, o (o1)P*l g,

even even .
When we use maps >~ Q ’ q 1is even, and thus D

is (d+x = =*4). Now, we have ensured that Dé = A, the

0

Laplacian.

We now proceed to prove:

Theorem 2.2. The spectral flow of the eigenvalues of De

around Sl equals the signature of N.

The proof that the spectral flow is defined in this case,
i.e. that the different branches of eigenvalues can be separated
out, can be found in 88 (proposition 8.2). To prove theorem

2.2, we can construct a new space:
X=Mx [0,1]
and define on it an operator:

D =D + d/3t .

We map the parameter t ¢ [0,1] to e2Trlt on Sl, and so for

each t, there is an associated self-adjoint operator Dt'
that 1is DeZWit

Now X has two boundaries:

Sg = M X {0}

0
i

Mx {1} .

Each of these boundaries gives a space LZ(SY, which we can

split:
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2 I - = :
L (St) = Ht ] Ht (t =0 or 1)

and

t

where H+ is specified by a positive spectrum for Dt’

Ht is specified by a negative spectrum for D

conditions used at the two ends S

£ The boundary
S are that:

OI l,

1l
[ew]

f ¢ H near t

f e H near t

We prove theorem 2.2 in two parts:

Lemma 2.3. Index(D(X')) = (spectral flow of DG)

Lemma 2.4. Index (D(X')) = sign(N) .

Here X' =M x STt .

Proof of Lemma 2.3. The Atiyah-Patodi-Singer formula [1], for

the index of U, when applied +to the cylinder:

Xt = M X [Olt]

gives:
2 indeX(D(Xt)) = nF - Ng + th L
where n,(s) = Z(sgn A |A| 7% is summed over eigenvalues of
Dt and Ny denotes the limiting value of nt(s) as s ¢+ 1.
The integral on the right-hand side varies continuously with
t - this is the only information we require about the
behaviour of this term. The factor '2' comes in, since
the ? defined here acts on the space of even-dimensional
forms only, whereas that in [1] acts on the space of all forms.
However, index(D(Xt)) is an integer, and thus can jump

by integer amounts as t varies continuously from 0 to 1.
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The integral is a continuous function of +t, and thus, if

t =t is a value at which index(D(Xt)) jumps, then:
28, (index(D(Xt))) = A, (nt)
0 0
where At denotes the change as t passes through tO .
0 ;
Since n(s) = I(sgn A)|A]|"®
At (nt) = 2 (crossing number for eigenvalues of Dt'
0
at t = tO ).

This is because as we .pass through t = t only those terms

OI
in n(s) corresponding to eigenvalues éf Dt crossing zero

change, and they change by:
£2|3]”® (sign is the crossing number) .

As s - 0, this just gives twice the crossing number.

Thus 2At (index D(Xt)) = 2 X (crossing number at -tO) .
0 .

Hence the total jump in index is:

index(U(Xl)) —index(D(XO)) = % A, (index D(Xt))
jump points 0
t
0
= X (crossing number at to)
jump points
9

(spectral flow of eigenvalues of Dt).

However, X, =X and Xg = M X {0}. So, the left hand side is

just index(D (X)) .
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Hence index(D (X)) = (spectral flow of Dt eigenvalues) .
However, DO and -Dl are identical, and so Ng = Nyp-
Thus 2 index(D (X)) = n; < N + j L by Atiyah-Patodi-Singer

formula

2 index (D(X"))

1

where X' =M x § is a manifold without boundary.

So index(D(X')) = (spectral flow of D eigenvalues) .

t
Q.E.D.

Proof of Lemma 2.4. Td.cénnect the index of 0¥ with the

signature of N, we use the main Atiyah-Singer index theorem

[27.

Since M 1is fibred over Sl with fibre N, X' =M x §

is fibered over Sl X Sl T2 with fibre N:
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Let D, be the signature operator on X. Then the
operator D = Dt +93/9t on X' can be written as
D =D, RD .
N T2

For, suppose we consider a form on X. This can be

written as a function of 6 and u, where u is the Sl
variable in M. So, we start with a form:
w (e ru)

which has:

w(d,u + 2m) = eied(e,u)

w(e+2m,u) = w(6,u) .

When we untwist,

w(d,u) = eieu¢(6,u)

say. Thus, ¢ 1is now periodic with periods 2w.

However, 0 as defined on ¢ acts as:

6 (6,u) » e 10U § (18T 45 4y

= e-leu[De + a/ae](eleu

= 70U 0L, e 4 1ue® (o ,u0)

+ eleune¢(e,u).+ B,

(0 ,u) x eeieu]

I

(D +3/88)¢ + (im + 6B)¢
where B 1is the symbol of De.
So, the symbol of 7 is 8B + iu. = It is thus D

tensored by D 27 where we twist by a line bundle L .
T
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Thus index (D) index(DN QD 2)
T

indexTz(DT2 5] index(DN))

where index(DN) € K(TZ) .

Since L describes the twist, thus:
(index DN) = (sign N) 8 L

R L)

i.e. (index 7) (sign N) index 2(D

T T2

However, D , is just 3. This is due to the ‘'iu

T
term in the above symbol, which just means 3 on 2. The

first Chern class of L  1is 1, due to.the elue twisting

above.

1

So index 2(D 5 2 L)

index 2(3 2 L)
T T T

1 - g + cl(L)

since the genus of a torus is 1.

2 L)

Thus index B (sign N) index ,(D

T Tz

(sign N).
’ Q.E.D.

Putting Lemmas 2.3 and 2.4 together gives Theorem 2.2.




§3. The connection between H(N) and HC(M)
Let HC(M) denote the cohomology of M with compact

~

support. We represent M as N x R. Define a map:
4~
B (0 ~ 527 o)

by using w - X[ 0 lj(t) (wadt) for w e QP(N) where
14
X[ o l](t) denotes the characteristic function of the
!

interval [0,1]1 in t (we often abbreviate this to X[O 17
clistabutions !
The above defines a map on the level of {fesms which can be

extended to a map on cohomology. For, if:

[w] = 0 in HP(N)

then w do . Thus:

Xpo,11 @ ~ 4t = dlXpg 99 » dE)

which corresponds to zero cohocmology class in H§+1(M) .

Furthermore, if [X[O 17 wadtl = 0 in H§+1(M) then
rdod

= P i . ]
X[O,l] w A dt dx some X € QC(M). Let us write x as:

Xx =y + z A dt

~ .

some forms y, z on M, not involving dt, of degrees

p,p - 1 respectively. Then:
dx = dy + dz A dt + dt A 3y/5t

and so =dz + (-1)P 3v/dt (L)

Xro,11%

o
i

dy (ii) .
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Since x 1s compactly supported, we may integrate (i) over
a sufficiently large interval containing [0,1] so that

[yl = 0. Hence ww is a closed form,'énd‘ [w]l] = 0 in

BP (N) . Thus the above map is injective.

Since M 1is fibred over R with fibre N, the space

M 1is contractible to N, and so the cohomologies of M and

N are identical. Thus the above map is bijective:

EP () = R (w)

(The map is linear, and HP(N) is finite dimensional as N
is compact).

The map preserves the.overall integral:

[ (W A d&)Xpg,17 = JN {R Xrg,11 @ ~ dt

~

M
N
by definition. However,
P+l - > p+l P
H, () HE 7 (Q)

~ ~

where Qc denotes the space of all forms on M with compact
support.

The shift operator T on M 1is defined by:
MM
(x,£) - (x,t+1)

for all x € N, t € R. This induces an operator, which we

also call T, on the forms on M, and thus also on the
cohomology of M. So, the ring:

~

A= c[T,T'l

]
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acts on the cohanology spaces H€+1(M), Hp+l(ﬂc), and

~

thus these cohomologies can be viewed as A-modules.

There is also an action on Hp(N) given by the monodromy

T on N. So HP(N) can be viewed as an A-module, where
a=clr, Tt It can also be viewed as an A-module: (i, is

free, whereas H is not free.

Suppose W € HP(N). The image of Tw in H5+;(ﬁ)f is:

XEO,l](Tw A dt) (T* has been abbreviated to T) .
At a point (x,t) (x € N,t ¢« R) ,

[XEO,l] Tw A dtl(x,t) = ((Tw) (x) A;dt)X[O,l]

(TlXpg,p 1@ A 98D (x,t) = ((w A db)Xpq ;) (x,8 = 1)

((Tw A dE)xpy ) (x,8) .

Thus, since ((Tw)(x) A dt)X;, 77 and (Tw A dt) X, 5,7 are

in the same cohomology class, the image of Tw ¢ HP(N) in

Hg+l(M) is the image under T of the form in H§+1(M)

corresponding to W ¢ HP(N). Hence:
o F EPm
¥ ¥
HET () : =21 )

is a commuting square.

Note that in order to make T, % correspond, we have
chosen T to be the inverse of the 'natural' map, that isy
it is the monodromy on N (or induced on Qp(N) or HP(N))

when t 1s reduced from 1 to 0.
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The maps:
HP () ~ HET ) = P (a)

are bijections, and preserve the A-module structure. So, we

have obtained:

Theorem 3.1. There exists a bijection:

B - B (a )

and this map transforms the A-module structure of Hp(N) into

the A-module structure of _Hp+l(ﬂc).

-

The map we chose above is by no means unique. The cleanest

way is to use:
w > d(w A dt)

where § is the delta function at t = 0. This uses distribu-

tions, but creates problems in the next section. This map
is the 'spiky' extreme. On the other extreme, we may use:

w » B(t) (w A dt)

where B 1is a C°° function of integral 1. However, the
map we used is in between these two extremes - it is used so as

to simplify the reasoning in §4.
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§4. The Fourier Transform

~ ~

The space, Qc’ consists of forms on M with compact

support. For any form w « Qc’ define its Fourier transform

w, & form on M dependent on g Dby:

Definition 4.1. w(g) = I (T—kw)gk.

keZ

The form w has coefficients in the space of Laurent

~

series in . Restricting w to a form on N x [0,1]1, we
see that it has only a finite number of Fourier components.

This is because:

~ .

-k
T 0l gk, ke 1

-

-k

which vanishes for all k ¢ Z,:. except a finite number, since
w is compactly supported.

Note also that:

~ _ ~-k k
w(C)INXEa,a+l]— kg% (T w)leﬁa,a+l] c
T -k . k
= I T “(w] )T
Keh Nx[k+o ,k+o+1 ]
_ o s = (k+a) k
=T kZ T (wlNX[k+a,k+a+l])C
A
mo =0 pEg 4
=T g 2 T w] )z -
p&e% Nx[{%,2+1] where ¢ k + 0
- - =g 2
=1 ™ 1 (T z
=T W@ gyo1 7

and hence w(g) 1is determined uniquely by its value on
N x [0,1]: the rest is essentially just shifted.

Thus w(zZ) can be considered as a form on M, since:

W@ yepy,27 = /8 T@E) [yerg,17




L
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So a(g) is a form on M which twists by 1/, what we

would call an element of:

Q(M:x_e)
where g = ele.
Lemma 4.2. J w(l) = J~ W e
M M
Proof: Now J w(l) = j z
M Nx[0,1] keZ

)
kE% Nx[oll]

z

J~ w Since
M

~

-

keZ JN><[k,k+1]

~

M

(1" %e)

k(wl | )
Nx[{k,k+1]

~

w since T preserves
integrals
is fibred over IR, fibre

Q.E.D.

We define an inner product on Hn(N):

Definition 4.3. {(a,B) = J o A B
. N

This inner product is indefinite, and

definition, sign (N). By theorem 3.1, we have a bijection

from HM(N) to Hn+l(
product on Hn+l(Qc) .

~

By the above, any form w ¢ Qc

~

Fourier transform a form w on M,

Qc), and thus we can induce an inner

can be mapped to its

which depends on z.

Since N is compact, Hn(N) is finite dimensional, and thus

so is Hn+l(ﬂc). We shall abbreviate Hn+l(Qc) to H_. The

~

c

action of T on Q- has a characteristic polynomial, and so

&c
4 ~
’”’V;wf“E‘ : y,éf ,

its signature is, by

N
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L
~. N

P(T)[w]l =0 in H

~seme- polynomial “p-

The map a - a gives:

~

m ™ k

Ta + £ (T (Ta))z
keZ
= 3 (T—(k_l)a);k
keZ
= 5 (T—ka);k+l - Cg .
keZ

So, if [w] e Hc’ then
Pp(Tw = dx

some X € Qc and polynomial p. Thus, taking Fourier transforms,

~

p(C)w = dx .

~

We define an inner product on Qc by:

~

Definition 4.4. EE a,b € Q

o
(a0 = res [y |
K

;, define:
c ——————

ke.: ™ A B if’z].

r Tx-g
keZ

g

When x,y ¢ Hc, define

A —
<X,y> = J~ XAy .
M

Thus (a,b) = Res 0> dg.
14
Here, <, > is a pairing on Hc’ with values in the ring
of Laurent series in . The symbols Res and Res
=0, |z ] =1
{which we shall use later) denote a sum of residues over all poles

in the list of g-values: 7 = 0, in the first case, and

|z] =1 in the second case.
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Proposition 4.5. The inner product ( , )} on Qc induces

a well-defined inner product on HC .

Proof: We must show that:

(1) 41if p(T)a = dx', we get the same result for (a,b) on

interchange of x, x';

~

(ii) 1if p(T)g(T)a = d(g(T)x), we get the same result for
(a,b) 1if we replace p and x, by p-g and g(T)x;

(iii) (a,b) 1is independent of the choice of p and x;

dbl (a,b)

dal (a,b) = 0;

(-1) (deg g (deg b) TH—y.

(iv) if D

0;

(v) 1if a

(vi) (a,b)

. <X,b> dc <x' b> dC
(i) Now Res |—=t=—% =2} - Res |+~ ==
z=0,» p(g) C r=0, p(z) z

= <x=-x',b> dg

= Res i S .-

‘:=0’°° P(C) C

~

<x=x',q(T)b> dg

(using (b) below)

!

R -, =1
cm0w | P@TETH ¢

H
o)
(1]
1]

<x-x',dy> ggj
=, -1
t=0,o |p(zgig(z 7)) ¢

— l '
=+ Res <d(x i )i¥> Q% (using (d) below)
=0, plg)la(z ™)
=0 since d(x-x') =0
i.e. (a,b) is unchanged when we replace x by x' .

. . <g(%)x,b> dr - <xX,b> dz
(ii) Now ng?w {p(c)q(c) = ;igfm _ETET z (using (a) below)

and so we get the same result for (a,b) using:

a(Mx, p(g)a(g)




e
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as we do using x,p(z) .

(1ii) Suppose that:

dx

p(})a

qg(T)a dx' .

We wish to show that replacing p, x by g,x' leaves the

inner product (a,b) unchanged. Let r be the h.c.f. of
P:/q. Then r can be expressed as ps + gt some polynomials
s.t. Thus, '

[(a,b) wusing (r,t(%)x' + s(%)x)]

[(a,b) using (p,(®) (D) (£(Mx' + s(Mx)] by (i1)

((a,b) wusing (p,x)]1 by (1)

and similarly 1l.h.s. equals (a,b) calculated using gq,y.
Hence the values of (a,b) calculated using p, x and using

q, ¥y are equal.

(iv) Suppose that b = dbl’ dx = p(T)a . Then
<x,b> dg
/D) = —T>T 5
(a,b) Cig‘f’m(p(c) c}
- res |l ar
£=0, p(Z) g
<dx,b.>
- 271 dr .
_gigfw [—ETET—— z (using (d) below)

<p{T)a,b,>
= * Res [ (‘) 1 QEJ .




since

(v)

(vi)

However, using

* Res {<a,bl>

C:O ;@

<a,bl>
Now, if

(a,b)

Finally,

(a)

%)
C

below

=0

24

, this r.h.s. becomes:

is a Laurent polynomial.

a = da

Res {<al’b>

f§=0 ;@

ll

0 since

(a,b)

we can use x = a

d

<al,b

Res

=0,

Res
C.—_O,oo

Res
C=O r®
Res

C:O e

Res

'(:=O,°°

Res
g:o,oo

%)

,((_l)deg X+l <dx,y> QE}

17 p =1 to get:

> 1s a Laurent polynomial

<X ,b>

x B> _@5]
p(g) : d

{<x,q(%)b> dg
p()ac™h ¢

] (using (b) below)

where p(T)a = dx, g(T)b = dy

{<x,dy> dg
Pl h ¢

p(0)gz™ ¢
(using (d) below)

r

(_l)deg.x+l <p(%)a,y> QE]
P(DT( ) ¢
]
((-1)deg xHL o oo é_]
1 gz

(using (a) below)

Res [(_1>deg x+1 _;, (deg a) (deg y)
=0,

<Yla>(-l—_'.-l) dg

&(:‘l) z

Res (-1)4€9 a) (deg b_l)‘izLEZ dz
Z=°°,O - q(Z) Z

where z = g

-1
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deg a) (deg b)

(-1) { ®,a)

as required.

In this proof, various properties of <, > have been used:

(a) <p(%)x,y> plg)<x,y>.

§(g-l)<x,y>.

(b)  <x,p(T)y>

l) .

<y,x> (7

(c) <xX,y> ()

_1)5X+l

(d) <dx,y> ( <x,dy>.

Since <, > defined in definition 4.4 is a sum:

z ck.[~<T‘kx> o83
keZ M

and T, d commute, thus (d) holds. As the Fourier transform
of P(T)x is p(z)%, thus (a) holds. Clearly (b) follows

from (a) and. (c):

<p(T)y,x> (T by (c)

<x,p(T)y > (2)

= p(T H<y,x>(Th) by (a)
_ ==
= Pz ")<x,y> by (c) .
So, finally, we must prove (c). However,
Fp = 1 L@ a g
keZ M-
= ¢ T° [~<T‘k§Ay>
keZ
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'z Ek J~(y A TK X)
ke M

~

(since M is odd dimensional, a A b =Db A a

whenever a,b have complementary dimensions) .

¥ J~ (TXy A X)
keZ M

~

since T preserves integrals

1

)

<y,x> (T

as required.

Q.E.D.

-

We shall now show that this inner product on Hc is

identified with that on H(N) under the map in Theorem 3.1.

Theorem 4.6. The map of Theorem 3.1 transforms the inner

product of definition 4.3 to that of definition 4.4.

Proof. Suppose o ,B ¢ Hn(N)’ correspond to a,b € Qz+l. Then:
p(T)a = dx
for some x € Qg. Thus:
(é,b) = Res [~ XAD éé
' (;=O,oo 1 p(;) -
“k
= Res z 1~ T ?2? r~K é%
z=0,» kez (‘M P

= Res z j~ TkxAE} -F%£~* as
=0, k=0 M Zp (%) C
~_ k
+ Res z J~ T kx/\b & _dg (*)
z=0,% k>0 (/M p(&) &

The polynomial p may be assumed, without loss of

generality to be of the form:
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p(z) = ag + a;z + eo. + a 2P

1 P

with a, # 0. For, if p(z) = zzq(z) some £ > 0 with

g(z) of the above form, then:

L

% q(%)a dx
. _ s )
i.e. g(T)a = d(T "x) -

and so we can replace p by g, so long as x 1is replaced

by %-lx .

Hence 1/p(rg) can be written as a series in g with
first term 1/a0, near ¢ = 0. The residues at 0 in the
second term for (a,b) above (*), thus all wvanish. To

investigate the residues at ¢ =, put 2z = 1/z. Then:

~ ~ k
Tkx A b —E—£~— = (Tkx A By —2
z p(z) . p(l/2z)
However,
K ok ' p

z7/p(l/z2) = 2 /(aO + al/z + ... + ap/z )
_ _k+p iy P
= z /(ap+ap_luv ces +a,2Z )

and thus the residues at ¢ = » in the first term in (*) above,

all vanish, except possibly for k = 0 . Thus
(a,b) = Res I J~ ™% A b) -E.i__ Q%
£=0 k20 (‘M zop(g)
+ Res I J~ %% A B) —E—L———— Q%
z=0 k=0 M A p(]_/z)

z J~ Tkx A Db (coeff of gk in /p(g))
k=0 M _

j~ T-kx A B] (coeff of ;k in 1/p(1/z)) (i)

M

+
k=0
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However, p(T)a = dx and since a,b are the images of

a,B € Hn(N) in Hc’ thus:

= Xpg,17 & " 9t

(see §3) .
b =

Il

~ 1 ~
Thus J~ (T¥% A B) J J (T°% A B A dt)
N

M
-k+1
kaJ z dtl A B
N -k

where =z 1is that part of x. involving

no. dt's .

Let x =2z + y A dt where y,z are forms not involving

dt. Then dx = dz = 3z/3t A dt + dy A dt. Since:

dx = p(T)a
= B(T) (x(q,17 @)
= pu(Tua) on that part of & where M < t < U + 1
=> dz = 0
and dy x %% = pu(TM&) on that part of ﬁ where H < t < U +1

A solution of this equation is thus:

z(x,t) = poa + ... + pu;lTu-la + (t-u)puTud if < & < U + 1.

Therefore,
k+1
J zdt = {o if ks -1
k
k-1 k- .
L 5
p0a+...+pk_lT a+2ka if k= 0 .

From (i), we thus obtain:




(a,b)

since
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-k+1 '

= I { ™ J zdt| A B| (coeff. of ¢® in —%ET)

k=0 N -k P

k+1 |
+ T [ 7K J adt| » B| (coeff. of ¥ in ll )
k=0 N k p(f)

= (5 pa) A B (coeff. of ¢ 9 in 1

N 0 p(2T)

k-1 k

(coeff of ck in 1 )}

=% J arB + % T i PkaAE (Coeff:. of gk in llj)
N k=0 N p(-i-
k-1
+ 3 X j pS(TS ka) B) (Coeff. of ;k in i )
k>0 s=0 /N P(E)
= = 0 . 1
= % J arB + 5 % J pkaAB (Coeff. of ¢ in _E__T_')
N k=0 N C p(z)
+ Lz J p (1T (coeff. of 7% in
s=0 k=s+1 N z p(f)
= | - 0 Px
= % J arf + % J anB{lcoeff. of ¢ in T _E_—T_]
N N ) k=0 ¢ p(z)
o] o« ) ) p
+ Iz I I (T-'Qob AB|[coeff. of ¢* in s—ST‘]
- s=0 g=1 /N J z P(E)

putting & =k - s

0

5 [ &AE{ (Coeff of ¢~ in 1)
N

2

Il
WY
g"‘"‘-
2
Q
>
w|
+

+ T [j (T-la)AE} [Coeff. of ;2 in 1]
N .

last term wvanishes. Q.E.D.
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§5. The relation between Ha and ch

Let Qa consist of all forms w ¢ Q*(ﬁ) such that

T (TP~

=~ —x

n

converges pointwise in g7 when 7 i1s on the unit circle
lz] =1, and is C” convergent on compact subsets of M.
Let Ha denote the homology of the Qa complex. As noted
in §3, there are many possible maps H(N) - Hc’ all of which
are equivalent. For the purpose of this section, all forms
are C.. This is achieved by 'rounding the corners' of
Xro,11%* ? dt 1in the map of3§3f
Define A' to be thé-rinq of anélytic functions on S .
Then Qa is an A'-module, the action of A' on Qa being
defindd by T.

By Theorem 10.11 (see §10), we obtain:

o

s - G o
Proposition 5.1. Ha Hcvﬁh A

Now HC = H(Qc) is the homology of forms with compact

support on M. The Fourier transform (Definition 4.1)

transforms w ¢ i, to wlg) e Q(M;Xe) where ¢ = ™18

Thus Hc can be written as a direct sum of parts, each

corresponding to a particular z:

H =0 H (z) (¢ € ¢¥)
c c
G
where Hég) is the homology associated with QM;y). So
Ha can be identified with that part of HC corresponding
to g ¢ Sl.

By Proposition 5.1,

B o= e m'% .
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The inner product on Hc’ as defined in Definition 4.4

is:

(a,b) = Res

C=Ol°°

xAb 4z
~ == £ ' H
j ot) ¢ or a,b ¢ c

where p(T)a = dx some polynomial p. If p has all its

roots on Sl, then:

(a,b) = - Res

J QAB dg
|z |=1

q P& ¢

by the residue theorem, since the only roots of p are on the

unit circle.

So, the inner product defined on Qa’ and thus on Ha’

-

QC (or Hc)

which is induced by the inner product.defined on
is given by:

Definition 5.2. EE' a,b ¢ Ha, define:

rB_'dg

&
(g) ¢

tS

o

(a'b)H = - Res J~
a lz|=1 ‘M

The inner product on Hc is thus a direct sum of inner

products on the individual HéC). The inner product on Ha

is, when Ha is identified as:

® (H(c)

zest
precisely the restriction of the inner product on Hc’ and

is thus also a direct sum.

We thus obtain:

Theorem 5.3 _
can be written as a direct sum of spaces H(C)

’

(2
o}

(1) Hc
is isomorphic to the direct sum of those

and then Ha

corresponding to ¢ ¢ Sl.
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(ii) The inner product on Hc decomposes into inner products

(¢)

on H
== c ’

and that on H is the sum of those parts of the

Hc inner product on HéC)

spaces where |z| = 1.

Note that inner products can be defined between spaces of
forms like Q*, which do not have an associated unique
dimension - that is, between forms which are linear combinations
of forms of different dimensions. This is done using linearity,
and 'incompatible' dimensions give rise to a zero result. For
example, the inner product defined on H; (Definition 4.4) 1is

only 'compatible' between forms a, b of degrees s.t.

deg(x) + deg(b) = 2n + 1

i.e. deg(a) + deg(b) 2(n + 1) .

For any other pair we obtain a zero result.
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§6. The connection between Coker D and Ha

The operators De act on Qeven(M;Xe) for 8 € Sl.

We can consider the family De to consist of operators dependent
ana@&ally on a variable g = ele € Sl. Thus, we can consider its

image to be a subspace of Q=VeER(

M;Xe) defined as Im(De),
considered as formally dependent on ¢.

So (Coker D) refers to the space of forms in

even

Q (M;Xe) which can be written as analytic functions of

z = ele, up to an equivalence relation under which:

iff (ml-mz) = Dy some ¢ in this space of 'analytic' forms
on M, in Qeven(M;Xe). So, we are considering D as a map:

Vv - V

where V 1s the space of all forms w which depend analytically

even

on z, and for each ¢ = eie,w(C) e 0 (M;xe). This map
takes w(g) to (Dyw(g)) .
Define Qm = {(w/p(%)) where w ¢ Qa and p 1s a non-zero
poiynomial withzeros oﬁly on |z| = 1}/~ .

where . 1s the equivalence relation:
w/p(T) ~ w'/p(T)

iff p'(Tw = p(T)w' .
In this section we investigate the connection between
Coker D and Ha, and in the next section, we shall discuss

their inner products.

Lemma 6.1. If w e @ , then there exist unique Xy1Xy € Qm

such that
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and p(T)x, = dyl

1

p(T)x, = d*y,
some polynomial p whose roots are all on |z| =1, and some
Yypr¥p ¢ Qa'

That is, X, = d (element of Qm) and X, = d* (element of Qm).
Proof : Let w(8) = I (e tPOrhy)

n=-w

Then Tw(8) = ele-w(e), and so w(8) € Q(M;Xe) . Suppose

~ ~

]

MO is a fundamental region for the action of T on M, i.e. o

the form N x {0,1].

Then w(8)|, = = (e @[, ))
0 n=-o 0
2r L~ ~
=> J elnew(e)!M de = 2H-Tn(w[~_n )
0 0 T M
0
2T . o~ o~
and so w[~n = %; J e lneT'n(u)(BHM )de .
T M0 0 0

However, M 1is compact, and so the Hodge theorem for the
coefficient system Xg provides, for generic 6, a Green's

function GC' sO that:-

where DC is our Dirac-type.operator. The points at which

such a GC does not exist are those with 'ker(DC) # 0 .

There are finitely many such ¢'s, namely the eigenvalues of T.
We reduce the situation to a finite-dimensional one by

introducing a cut-off, so that we only examine those parts of

the space V spanned by eigenvectors of D 'corresponding to
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eigenvalues A s.t. |A| < ¢ where ¢ is a suitable cut-off.
The value of ¢ 1s chosen so as to include all those eigen-
values crossing zero at some 6.

Then, for ¢ ¢ {cj} where Cj are the exceptional <¢'s,

we. have
w(®) = (1d + dt)(Ggw)
= *
dwl + d ws
where wl Fwy T TGCM. However, wy wo are analyticfunctions
of ¢ away from the Cj' Their behaviour near Cj's may have
poles. Since the situation is finite-aimensional, thus these
poles are all of finite order. Let
n.
p(z) =T(g - g.) 7
: B
J
where nj is the order of the pole at Cj’ Then:
p(glu; (i =1,2)
have no poles. Define:

yi’(%nM

_ L[ (1 (u. (a))e tm8qs (1 =1,2)
0) 2T ) P Wy =y :

Then, the Fourier transform of vy is p(ele)wi(e), i.e.
Y‘ = p(T)(.L)i -

1 ——
Thus (p(T)w)

p(Z)w(8)

d(p(Z)w, (8)) + a*(p(2)w,(8))

dyl + d*y2 .

Hence p(T) = dyl + d*y2 .

Moreover, w = X + Xq where:
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2T ~ o~ s
x, = 1 ™dw, (6)e T ap
1 2m 0 1 ~n
on T™M
0
2T ~ ~ ,
_ 1 n -in6
Xy = 3= jo T d*wz(e)e d9
1 Moy~ - -ing il o}
since w = > T (dw, (8) + d*w,(8))e dg8 on T M
T Jo 1 2 ] 0

So X)Xy € Qg7 while Y11Y, ¢ Qa and p is a polynomial all
of whose roots are on the unit circle.
Q.E.D.
Using this lemma, we now show the equivalence of Ha and

Coker D, exhibiting the isomorphism.

Theorem 6.2. H, = Coker D

Proof : Define amap 0 from Ha to Coker D as follows.

Any element of Ha can be represented as [x+y] where:

even
[x] ¢ Ha

[yl e 5 2% .
We define the map as:
8 : Ha + Coker D

[x+y] » [x+ty].

Well-defined in Coker D

(1) Since [x+y] ¢ Ha, there exists a polynomial p(T) such

that
p(T) (x+v) = d(x"+yv")
some Xx' ¢ ded, v' € Q:ven .
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Thus p(T)x dx'

and p(T)y dy"* .

By Lemma 6.1, 3xj,yj e 9, (3 =1,2) s.t.

x!' = x

1 T %2

y' =y, t+Y,
and q(T)xl,q(T)y1 e Im d

q(T)xz,q(T)y2 e Im d*, say d*zz,d*zé

some polynomial q(T) in T, whose roeots all lie on |z]| = 1.

Hence 0 ([x+y]) = [x+1Yy]

Il

and p(E)q(E)e([x+y]) q(%)[dx'+tdy']

= q(T)de2+rdy2]

[dd*zz+rdd*22']

[(dr-#rd)(drzz+Tdrzz')]

since D = dt + td and ’d* = tdT (see 2, Definition 2.1)-.

Thus 6 ([x+y]) e Coker D.

even odd

(1i) We next show that if w X +yY, X e Q M), v € @ (M)

vanishes in Ha’ then:
8(fwl) = 0

in Coker D. So, suppose that:
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x=ax', x' 0%

y=dy', y'eqy o 0n .
Then 6 ([wl) =dx' + tdy'. Apply Lemma 6.1. to x', y':

L

X X, + X,

Yy =Y, ty,
where q(T)xl, q(T)yle Im d

q(T)xZ, q(T)yze Im d*, say d*zz, d*zz'

some polynomial ¢g(T).  Thus: .

qg(T)8 ([w]) = Edd*z2 + Tdd*ZZ']

= HdT+Td)(dez+d*zz')]
i.e. 9 (fw]) = [(dT+Td)(Tx2+y2)]
= 0 1in Coker D

as required.
Injectivity

Suppose [x+1y] = 6{([x+y]) vanishes in Coker D. That
is, x¥1y = Dg some 0O « sz. Then since x,y ¢ Ha‘

p(T)x = dx'

) (%)
p(T)y = dy'
. odd . even .

some X' ¢ Qa y Y'e ﬂa and some polynomial p whose
roots are all on |z| = 1.

Thus p(T) (tde + dto)

I

p(T) (x + Ty)

i
jon
%
+
—
[oN}

<
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By uniqueness of the representation in Lemma 6.1,

p(T)dro = dx’

p(T)do = dy'
and comparing with (*) above, x = d10, y = d0.  Thus
X +y = dto + do, and is thus a closed form. So, it

vanishes in that, hence proving injectivity.

Surjectivity

Suppose that:
[w] € Coker D

Then, for some polynomial p with all its roots on the unit

circle,
P(T)w = Dn

some n € Qa .

Hence w = D¢, some ¢ with p(T)¢ = n (this ¢ 1is an

element of Q m). Thus:
w= (dt + 1d) 9o

d(te) + T(d9)

]

=> [wl= 6([A(Td + ¢)7I)
€ ImH
since d(Td + ¢) € Ha‘ This is because:
P(T)A(To + ) = dlwn + 1)

Il

0 since we are in Ha
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Hence © 1is surjective.
Q.E.D.
There is therefore a map from a subset of H(N) +to Coker D
which is a bijection. This is given by the composition of

the maps so far outlined.
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§7. Calculation of the quadratic form on Coker D

In the last section, we described a map:
8 : Ha -~ Coker D

x +y]l »~ [x + Ty]

for x € szen' Y € ded. The quadratic form on Ha
(Definition 5.2) was:
% (T'xaB) ¢ %
(a,b) = - Res J~ k ag (*)

where p(T)a = dx, some polynomial p, »all of whose roots are

on the unit circle.

even

Let A = dd* + d*d be the Laplacian on { (Mixg) -

Let GA be the Green's operator for A. For generic 6, i.e.
ele # Cj for the finite number,of special points cj, A is
invertible, and so:

a - YA
Define Gd = d*GA. Then for a,b ¢ Ha’ let p be a poly-
nomial with roots only on |z| =1 such that:
p(TYa = dx .

The pairing

<a,B> = I J~ ™4 A Bz
Xk 'M
= j~ a A B (see Definition 4.4)
M

on Q; extends to a pairing on Q;. However,
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= 34%*
d(Gda) dd GAa
= (dd* + d*d)GAa since da = 0
= a .
N

Thus, if (Gda) has no poles, then:

(a,b) = - Res I

by I g T (Gga) A b
c|=1

[ “kxk T
M

using (*) with x replaced by Gda and p replaced by 1.

So:
N _ .

(a,b) = - Res J~ (Gda) A D .

lzj=1 ‘M

= - Res <Gda,b> .
o =1
N

If, however, (Gda) has poles of Cj’ then we can find

a polynomial p whose roots lie on the unit circle, (and which

are the cj), such that:

p(T) (G4a) = w |
PN
is in Ha’ as 1lts Fourier transform p(c)(Gda) has no poles.

Then, we obtain:

= - _l B
(a,b) = hﬁif 502 i J~C STw A b

1 .
ICR[:]S.: 5—(—(;—) <m,b> -

By defintion, when <, > is extended from Qa to &

<w,b> = p(g) <G,a,b>

d

and soO the inner product on Ha can be written:

(alb) = - Res <G

a,b> .
lz|=1

d
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Theorem 7.1. Under the isomorphism of Theorem 6.2 between

Ha and Coker D, the inner product on Ha (see Definition

5.2) corresponds to the inner product:

(a,b) = —ngil <‘(1:Gd + Gdr)a,rb>

on Coker D.

Note that here again, <,> 1is the extended inner product.

Proof: Suppose that x = X, + X, and y = Yy + y, are
elements of Qa. _ Thus:
Qeven
Xpr¥y € Mg
odd
X21y2 € Qa
and p(T)xi = dxi
for i =1,2
p(T)y; = dyy

some polynomial p whose roots are all on the unit circle,

and some x.' LYoe QF .
i ¥y ‘a

Thus,

(Xry)Ha = —{§Ti1 <Ggq(x +x,) ,(y,+y,)> by above

- Res [<del,yl> + <de2,y2>]

lz]=1
, odd even
since del € Qa ’ de2 € Qa
d
yl € Q:ven, y2 € QZ d

and so the cross—-terms have incompatible dimensions: for
<a,b>, compatibility means that 3a + 3b = 2n + 1 (i.e.

dimensions have opposite parities).




44

However, 6([x1)

[xl + Ile

i

and 0(lyd) [yl + Ty2]
=> <(164 + G4T) (% + TX,),T(y; + Ty,)>

= <TGXm,Tyl> + <TGdTX2,Tyl> + <Gdrxl,ryl> + <de2,ryl>

+ <Tdel,y2> + <erTx2,y2> + <Gdrxl,y2> + <de2,y2> .

Since Gd d*GA = TdTGA
=> TG, = dTGA.

Thus

|
(@]

qg.«&xl’yf = <atl,x) .,y =
’ as dy2 = 0, <do,B> = *<qo,dR>
<T%KFX2’Y2> = <dGAX2'y2> = 0

I
e

<TG£gxl,y2> = <TdGAxl,y2> =0

ras dG,x. =0
<G&TXL’TYl> = <TdGAXl,Tyf>= 0

<TG§fX2,Tyl> = <dGAx2;Tyl> = 0 as dGAx2‘= 0
<GE§2,tyl> = <TdTGAX2,Tyl>
= i<dTGAxl,ylZ

= 0 as. dy, =0 .

Hence <(TGd+Gdjr.)(xl + TX,), "c(yl + Iy2)>

= <de2,y2> + <Tdel,Tyl> .
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However, <Ta,Tb>= I J~ (T"ta A Tb)C-k

keZ M

J~ (-1)%3:30 7k, )7k

since TaATb = (—1)8"_’1.ab a A

= <a,b>, since p(2n+l-p) 1is always even .

So <(TGd + GdT)(x1 + sz), T(yl + Ty2)>

= <del’yl> + <de2,y2>
and hence: |
(x,y)H = = Res <(TGd + GdT)G(X),TG(y)>.
a lz]=1
Q.E.D.
Finally, note that TGd + gdf = GD. For,
TA = 1(dd* + 4*4d)
=1 (drdr + tdrd) as d* = tdr
=TdT&E-+deb as T2 =1
=ﬁ&d+dﬂﬂf
= AT
i.e. 1, A commute, and hence T, GA commute. Thus:
(Td+dT)(TGd+GdT)= tdT6y + 1dG T + de + dTGdT
= TdTd*G, + Tdd*G,T + dd*G, + de*GAt
= Tdd*TGA + dd*GA
since tdTd* = d*2 = 0, dTd* = 1a*2 = 0

and GA’ T commute
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(d*d + dd*)GA

= AGA'

Hence TGd + GdT is the Green's operator of Ttd + d1t = D.

We denote it by GD. Thus the inner product corresponding to

definition 5.2. on Hy is given by:

Corollary 7.2. (a,b) - Res

lz|=

NN _
. [~ (GDa) A Tb

Coker D M




§8. Perturbation theory

Consider De as a family of operators on the spaces:

even (

2 M;Xe) .

Since, for each 6, the space on which D acts is different,

5]
it is difficult to compare their eigenvalues, or do any kind

of perturbation theory. So, we must either:

(a) conjugate De, so as to obtain operators depending on 6,
which act on a common space, and then apply the standard
perturbation theory;

or

~(b) consider Dy as the restriction 6f a fixed operator D
(not to be confused with the operator of §2) on Q®Vel ()

to a subspace:

v, = Qeven(M;Xe) eV =Q (M)

and then Ve can be defined as the subset of V satisfy-
ing a certain 'algebraic' condition - algebraic in ele.
This approach is essentially the one used in the last two

sections.

Since Qeven(M;Xe) involves a twist of ele as we go

S .
around S, we can define a map:

. qeven even

ag = MiXg) = Q‘ (MiXg)

=i6u
- e w

u(x) = 5= log(m(x)) (x € M)
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and w is the projection of M onto Sl, considered as a
subset of (C*

The conjugated operator D is:

8
Dy : Qeven(M;XO) N Qeven(M;XO)
and Dyw = (ae o D o agl)w
= o710up (o181,

- e-ieu(eieuvw + D(eieu)w)

(DO + 6B)w

where B 1is a constant operator; that is, it does not depend

upon 8. Thus we have:

Lemma 8.1. The operators De can be conjugated so as all

(M;XO), and they become:

even
act on the same space

D, + 6B

O .

some operator B independent of 6.

These new operators all act on the same space. All their
eigenvalues are real, since the original 0 1is self-adjoint
and thus has real eigenvalues. Only a finite number of
eigenvalues, thought of as functions of 6, c¢ross the 6-axis,
as @ varies. Let P be the orthogonal projection of

Qeven(M;XO) onto the space N:

N = <Ne : De has a zero eigenvalue>

where Ne is the null space of De° For each 96, Ne is

finite-dimensional, and there are only a finite number of
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possible 6's. which give non-trival N Hence N must

5"
be finite-dimensional.

So {PDGP} is a one-parameter family of operators which
depend on 6 in a linear manner, and have the same local
eigenvalue properties as {De} . They do, however, act on a
finite~dimensional space, unlike thg {De}.

We now consider the situation in which we wish to determine

the local behaviour of eigenvalues of a family of (finite-

dimensional) Hermitian matrices:
A+éB.

Their characteristic equations are given by:
£®,A) =0

for some polynomial £ on k,Q, whose roots for A are real

for all values of 0. The local behaviour of such a root can
be written in a Puiseaux expdnsion as a series in (8 - Go)l/m
scme m. Let its leading term be:

r/m

A~ A(B - 64)

say, some constant A. Since the number of real roots is
constant (all roots are real){ m =1, and so we can describe
the eigenvalues locally, and therefore globally, by analytic

functions of 9. Hence:

Proposition 8.2. The eigenvalues of D are real analytic

S

functions of 8§ ¢ Sl.

We will now use perturbation theory to £ind this leading

term in the local behaviour near a value 6 = 8 of 98 at

0
which the eigenvalue vanishes. Without loss of generality,
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8 = 0, and the order of contact 1is m say. So, we suppose
that the local behaviours of the eigenvalue and corresponding

eigenvector are given by:

(m+1)em+1 L

A= k(m)em + A

vV =y + Bv

Let {zi} be the eigenvectors of A, with corresponding

eigenvalues Ki' Then:
(a+0B) (v P rev M u ) = (0™ ™y Oy Mu )
with, say, z(o) =v,; where A, = 0. .We assume {y,} to be

an orthonormal system, which it is possible to choose since A
is self-adjoint:

Equating coefficients of er, we obtain:

(x) (r-1)

Av + Bv = 0 ' ¥r < m (1)
av ™ 4 gy @71 o (M), (0) (r = m) (ii) .
Lemma 8.3. In the above situation:

(a) <Xi|B|z(r)> = {0 ' if r<m -1
{A(m) if r=m-~-1.
(b) Xz(r) =y (T where X = -B ™A, for r <m .
(c) !(r) = —GBz(r—l) + g(r) some g(r) in the null space.

of A, for 1 <r<m-1.

Proof

(a) Now from (i), (ii)

<21[A[K(r)> + <Ki!B[Z(r‘l)> = {0 ' if r <m

A(m) if r=m .
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However, Av., =0, and A 1is self-adjoint. Thus:
<zi[B|z(r—l)> = (0 if r<m
A(m) if r=m
and so
<ZifB[Z(r)> = {0 if r<m-1
A () if r=m-1.
(b) Since, from (i),
Bv (F7L) Az(r) =0 for r <m
- Z(r—l) - _B-lAz(r)
= X‘l(r)
_ -1
where X = -B "A
(c) From (i),
<ZlelZ(r)> + <v ]B]v(r~1)> 0
=> Aj<v3[v(r)> + <v [Blv(r—l)> = 0
and so <v ,Z(r)> = =-1/x, <v ]B[v(r—l)> £ kj # 0
Thus !(r) = - GBv(r—l) + a(r) some g(r) e N(a).

Q.E.D.
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§9. Comparison of eigenvalue and inner product structures

on Coker D.

Consider a single eigenvalue crossing at
80 = 0, and so:
De = A + 0B
where A = Djy- However,
Dew - e-ieuv(eieuw)
= e-ieu(rd+dr)(eieum)
= 719U (ay) + r(i0e™®Uau & w)
+ e (ry) + (10e™%an) A 103
= (td + dt)w + i6(Tt(du A w) + du A Tw)
i.e. B =i(t(du A w) + du A Tw)

Thus,

l.gj_.
I

(dt + 1d) (T(du A w) + du A Tw)

S

S

0*

= d(duaw) + d(t(duntw)) + td(T(dusw)) + Td(dustw)

= ~-du A dw + td*(duatw) + d*(dusw) - t(duadtw)

= =-du A dw + T(d*duatw) - T(duad*TW)

+ d*du A w =~ du A d*w - 1 (dunadTw)

= -du A (d+d*)w - T(dua{dt+d*T)w)

+ d*du A w + T(d*duaATtw) .

W.l.o0.9.,
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However, d + d* = 1D and d*du = 0

=> %DBw = = du A thw = T (duaDw)
- - lopy .
So B,D anticommute, and thus B,G anticommute. Also
-8%w = (t(dua) + duat) (T (dusw) + duatw)

T (duat (dusrw) ) + 1 (duadusrtw)

+ du A 7T (duaw) + du A 1 (duatw)

T{duat (dusw)) + du A T(dusrtw) as 1° =1 .
However, if w is in the basis, then:

(i) when w contains 'du’', the first term vanishes;
(ii) when w does not contain ‘du’', the second term vanishes.
It 15 easy to check the signs, and one finds that the right-

hand side B always w, on-even forms. Thus:

Note that B is the symbol of the Dirac-type operators De.
In Lemma 8.3, X = -B-lA, and so its adjoint with
respect to the inner product <x,ty>, the natural positive

definite inner product, is:

X* = -aB T

since A, B are self-adjoint. Thus:
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X*G = -AB TG

= age~} (81,6 anti-commute)
= gaB™t (G = G,)
A
-1 -1 .
= =GB TA (B 7 ,G anti-commute)
= GX
By Corollary 7.2, if <a, b>' = Res f~(a A b) , then
lz]=1 ‘M
(a,Xb)Coker D = -<GDa,Xb>
= —<X*GDa,b>'

= —<GDXa,b>', by above

= (Xa’b)Coker D

So X 1is self-adjoint, with respect to.this inner product;

and thus 1iX is skew—adjoint with respect to ( , )Coker D
However, if gﬂ = iuz(U), Y=~"iX, then:
(i) Y 1is skew-adjoint w.r.t. «, )Coker D
(i1) Ygu = Eu-l if 1 <=uy<m-=1 and Ye, = 0.

As we will show in §11 (see Theorem 11.5), the signature

of the inner product on this space is:

0 if m is even
m+1
the sign of d(-l)'z if m is odd
where o =

(ep-1780) -

This is because Coker D is spanned by:
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m-1
V. Vig oo- v, .
Vir 0¥y 8 =i

However, in Coker D, Im D is identified with zero. Since

D =A + 8B, thus, multiplication by 6 1is identified with

(87'a), and thus zi,ezi,...,em_lv are identified with:
v, (—B-lA)KI ey (_B—lA)m—lY_
i.e. Ko,...,gxm-l) using v = z(m_l). This gives the part
of Coker D associated with Ai(e) crossing zero at 6 = 0 .
However,
(_(0)’.\1(12))= <K(O)|Gll(r)>
= <«v %8| @m)vF)>
since BGB = -BBG = G
= —<y OBy FF)>
by Lemma 8.3 (c)
and <leB{K(O)> = 0 whenever Aj = 0
from Lemma 8.3 (a) .
So (z(o),z(r%=: 0 for r + 1 < m>
—x(m) for r +1 =m
=> o =
(9m-1 18g)

(_l)m—l/Z(_k(m))

(=1)M*1/2 (@)

So, the signature of that part of Coker D corresponding

to this crossing is:




0 if m 1is even
sgn(x(m)) if m 4is odd .
That is, it is the crossing number of the eigenvalue at 9§ = 0.

Since we have obtained maps, which composed give:

Hn(N) +~ Coker D

thus, for ¢ on the unit circle (i.e. eia), the signature

of the inner product on the subset of 2 (N) corresponding

to the eigenvalue ¢ of T, must equal that of the corres-

ponding subset of Coker D. By above, this is the local com-

ponent of the spectral flow for that oné eigenvalue crossing.
Those ¢ ¢ ©* with |[g| # 1 come in pairs, as eigen-

values of T on Hn(N), by Theorem 11.5 (§11). These components

of Hn(N) are annihilated when we map to Coker D. However,

the total signature on a pair of such spaces, corresponding to

z, E— vanishes (see §11, Theorem 11.5), and hence the total

spectral flow is just sign N, the signature of our indefinite

inner product on Hn(N).

Theorem 9.1. Suppose M is a compact oriented smooth manifold

fibred over S, with fibre N; and let M be its infinite

cyclic covering. Let De denote the Dirac-type operator on

(M'Xe)' the space of forms on M with local coefficient

system twisted by ele. Let T denote the induced monodromy

even
Q

action on the homology "H(N) of N. Then:

(1) There exists a mapping

H(N) - Coker D

which is an isomorphism when restricted to the parts of H(N)

corresponding to eigenvalues of T on the unit circle.
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(ii) Jordan blocks of T on H(N) correspond to eigenvalues

of D crossing zero, and the crossing number at 0 = 60 of

6

an eigenvalue is the signature of the Jordan block corres-

i@
ponding to the eigenvalue e 0 of T.

(iii) Those Jordan blocks corresponding to eigenvalues of T

not on the unit circle, come in pairs, and their signatures

cancel out, so not contributihg to the total.

Thus summing the results in (ii) and noting (iii), we
obtain the global result of Theorem 2.2.

The argument here can mostly be generalised to the case
where 7w : M -~ Sl is jﬁst a map, and ﬁbt a fibration. In
that case, §6's results rémain unaltered, although Lemma 6.1
must be changed to include an extra term X4 with
dx3 = d*x3 = 0. We must then consider only the torsion parts
of Ha’ Hc, Coker D, whereas in our case, the whole spaces

were torsion. The final result is, however, exactly the same,

with the above provisos.
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§10. Appendix I: Analytic and algebraic homologies

Define Qc to be the subset of Q(M) consisting of
forms with compact support. Let Hc be the corresponding

homology. Let:

A ring of 'algebraic' functions (Laurent polynomials)

1

Al ring of 'analytic' functions on S

We shall show that:

Ha = HC QA A

where H, 1is the L'-module homology, and H, is the A-module
homology (obtained using the Fourier transform, see §4). The

proof is along the lines of Serxe [31]. See also Lang [4].

Definition 10.1. We say that B is A-flat if whenever the

sequence of A-modules:

E-+F ~G

is exact, the sequence:

E QA B> F ﬁA B »~G QA B

is also exact.

Definition 10.2. We say that (A,B) is flat if B/A 1is

A-flat as an A-module.

So, we must show that (A,A') 1is a flat pair. From this

it follows that:

= 1
Ha Hc QA A,
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Define Tor?(B,E) = (ith

homology of F & E), where F
is the complex which resolves B, as a free resolution of

A-modules:

eee * F2 -+ Fl - FO -~ B > 0 .
F
Then Tor?(B,E) = 0 for all A-modules E if B 1is A-flat.
Theorem 10.3. (A,B) is flat iff B is A-flat and the map

E > E QA B, for any A-module E is injective.

Proof:

(i) Suppose that B ~iS'A—flat,vahd:l
E~ E QA B
is injective for all A—modulés E. Since:
0+~-A~+>B~> E/A - 0
is exact, thus:

TorA(A,E) - TorA

N :
1 l(B,E)-*Torl(B/A,E) - A @A E - ? @A E
is exact. However, trivially:
Tor?(A,E) =0
A @AE = E

and thus:
A A
g - Torl(B,E) > Torl(B/A,E) - E - B QA E

is exact.

Our assumption is that the map:




E-~>E QA B

is exact, and thus Tor?(B/A,E) maps into

gives an exact sequence:
A A
0 - Torl(B,E) - Torl(B/A,E) -~ 0 .
Hence, we must have:

Tor?(B,E) = Tor?(B/A,E) .

Since B 1is aA-flat, the l.h.s. is trivial,
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0 in E. This

and thus so is the

r.h.s.. So B/A is A—flat;'and hence (A,B) is flat.

Q.E.D.

Conversely, if (A,B) is flat, then B/A 1is A-flat,

and thus:
A
Torl(B/A,E) = 0 .

Hence, since:

0 - Tor®(B,E) - Torf(B/A,E) ~E~EQ, B

1

is exact, so:

0 - Tor?(B,E) -0 > E -~ E @A B
is exact. Hence:
(a) Tor?(B,E) =0 i.e. B is A-flat, since it is true for

all A—modﬁles E;

(b) E > E QA B 1is injective.

Q.E.D.

Theorem 10.4. If A< B < C are three rings, and (&,C),

(B,C) are flat pairs, then (A,B) is a flat pair.




Proof: Suppose 0 + E » F is exact. We wish to show that:
E @A B~ F QA B
is injective. So suppose:
0~ N> E QA B+ F QA B
is exact, where N is the kernel of the map:
E@B~>F QA B
Then, since C is B-flat, thus:
0 - N QB C - (E QA'B) QB cC - (F QAfB) @B C

is exact. However,

(E @A B) @B C E QA c .

Thus 0+N®BC+E@AC#F@AC is exact. Since C

is A-flat, thus E QA C~>r @A C is injective, and so

N QB C =20 .

But, (B,C) 1is a flat pair, and so by Theorem 10.3, the
map:

N - N QB C
is injective. So N =0, and thus B is A-flat.

Also, the composite map:

e

ER, C

E-ER, B+ (E QA B) @B C 2

A

is injective, since (A,C) 1is flat (by theorem 10.3). Thus
E > E QA B is injective. Thus,..by Theorem 10.3, (A,B) 1is
flat.

Q.E.D.
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Theorem 10.5. Suppose E is an A-module of finite type, and

A 1is a local Noetherian ring. If E =mE, then E =0 (for

any maximal ideal m).

Proof: Suppose E # 0 1is generated by S AR Choose

n to be the least number of basis elements. Since:

e, = Z(x.ei) some X. e m

Hence (l-xn)en = x,e, + ... F Xn—}en-l’ and so:

€, € <€ys...s8. 1>
since (l-xn) is invertible in A, Thus E is generated by
€ se-esp_yr @ contradiction. So E =0 .

Q.E.D.

Lemma 10.6. Suppose A is a Noetherian ring, and E 1is an
A-module of finite type, with an m-fibration, E . that is,
mEn < En+l ¥n. Then:

ES = ® (En) is finite over § = ® (mn)

neNu{0} ) neNu{0}

iff the filtration of E is m-stable (that is, mEn = E

n+k
for sufficiently large n).

n
Proof: Let Fn = @ (Er)
: r=0
and G_.=E_ ©® ... DE_ O mE_ & m2 E_ &
n n n n n ettt
Then Gh- is an S-submodule of ES, and is given to be finite
over ES' since Fn is finite over A. However,
Gn _ Gn+l and Vb(Gn) = Es' .
Since S is Noetherian, thus E is finite over S

S
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iff E =G some N
iff E =mE ¥k > 0

iff the fibration of E 1is m-stable.
Q.E.D.

Lemma 10.7. If E 1is an A-module of finite type with stable

m~filtration and F 1s a submodule, Fn =F A En’ then Fn

is a stable m-filtration of F.

Proof: Now m(F n En) < mF n mEn < Fon En+l' So Fn is an

m-fibration of F, and,

n=0¢
is finite over S, as S is Noetherian. So, by Lemma 10.6,
F is m-stable.
Q.E.D.

Theorem 10.8. If E 1is an A-module of finite type, then:

(a) The topology induced on a sub-module F cE by the

m=-adic topology on E, coincides with the m-adic

topology on F.

(b) Any sub-module of 'E is closed in the m—-adic topology on

Proof:
(a): Applying Lemma 10.7 to En = mnE, we see that there exists
s such that:
F_=mn' °F ¥n > s .
n S
That is, (F nm'E) =m’ °(F nm°E) ¥n 2 S  (i).

This result is usually known as the Artin-Reds lemma.
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Thus, since n"E generate the open neighbourhoods of 0
in E, thus (F n mnE) are the induced basis open neighbouf—
hoods of 0 and F. From (i), this bésis gives an m-adic
topology on F. Hence any open set in the induced topology

on F 1is open in the m-adic topology on F, as required.

(b) Let F be the intersection of all open sets containing
0. Then F = mF, since we are using the m-adic topology on
E. By theorem 10.5, F = 0. Thus if p # O, then p ¢ F,
and so there exists an open set U3 0 s.t. p £ U. So E

is separable.

Suppose E' ¢ E is a submodule.- Then, E/E' 1is
separable by the above argument. Hence E' is closed in E.
Q.E.D.
Theorem 10.9. The map € : E @A g - E is bijective if E
is an A-module of finite type.
Proof: Suppose that 0 + R ; L~»>E 0 1is an exact sequence

of A-modules, where L is a free module of finite type.
Since A is Noetherian, R is also of finite type.
Theorem 1o.é shows thaﬁ'the m-adic topology on R 1is induced
from the m-adic topology on L.

Clearly E is a quotient of 1L, since themap L + E

is surjective. Hence:

is exact. Consider the commutative diagram
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—_———— —_——
R @AA L QAA E QAA > 0
+ " + g ¥ €
R _— L —_— E —_— 0 .
Since L is a free module, thus ¢e' is bijective. The

two rows above are already known to be exact, and thus & 1is

~

surjective. For, 1if x' ¢ E, then as 8' 1is surjective:
x' = g'(y")

some y' ¢ i. But €' 'is bijective, i.e.:
y' = e'(y)

some y ¢ L QA A, and so:

x' = g8"'"(e'(y))

e(B(y)) (commutative square)

Thus ¢ 1is surjective.
Since this holds for all finitely generated modules E,

thus e¢" applied to R 1s surjective. Suppose that:

some X ¢ E & A. Then :3y e L QA A s.t.

A
B(y) = x .
So 0 = e(x)
= e(B(¥))
= g'(e'(y)) (commutative sguare)

=> e'(y) ¢ kexr(B') = Im(a') .
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Thus e€'(y) =a'(z') some 2z2' e R
o=> z'= g"(2) some z e R 8, ;
since ¢" 1is surjective.
Thus, ¢c'(y) =a'(e"(2))
= ¢'(a(z))
=> v =a(z), as €' 1is injective.
So x = 8(y)
= B(af(z)) =0

and thus € 1is injective .
Hence ¢ 1s bijective.

Q.E.D.

Theorem 10.10. (A,A) is flat.

Proof: Now A 1is A-flat. By Theorem 10.3, we need only

show that whenever E 1is an A-module of finite type:
E =+ E @A A

is injective.

By Theorem 10.9, ¢ 1is injective. Since E is finitely
generated, E = ﬁ is injective. Thus (A,g) is flat.
Q.E.D.
Theorem 10.11. Suppose A < B are two rings with g = g.

Then (A,B) is a flat pair.

Proof: By Theorem 10.10, (A,A), (B,B) are flat pairs. Thus
by Theorem 10.4 applied to A ¢ B ¢ C where C =A =3B, we

see that (A,B) 1is a flat pair. ' Q.E.D.
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To apply this, put:

A = ring of Laurent polynomials

A' = ring of analytic functions on Sl
Choose CO € Sl. Then the local completions of A, A' are
identical, namely formal power series about Zo- Thus the
local rings AC ’ Aé form a flat pair by Theorem 10.11.

0 0

However, HA" HA are both expressible as direct sums of

local spaces Hgg), HgC) (see §5). The above theorem shows

that locally these spaces are the same:

g(5) _ 48

) ]
A’ A By R -

Summing over all T « Sl gives:

(2) '
H , = &, H K. A
A [CeSl A A
= '
i.e. H HA QA A
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§11. Appendix II : Normal forms in the orthggonal group

Suppose T 1s an orthogonal transformation for a certain
indefinite form. We shall now find the normal form for such
transformations up to conjugacy - that is, we find parameters
which specify uniquely the conjugacy class of an element of

u(p,q) .

Lemma 11.1. If A ¢ U(p,q), define for each eigenvalue A

of A, a subspace of cP e

v, = ker(a - AD)F™d
(the A\-Jordan block of A). Then V, L Vu whenever u # % L.
Proof. Suppose V ¢ VA’ W € Vu. Then 31n,n ¢ N such that
(a - 2D =0
(a - uD’w =0 .
Define % g = <(A - k;)kz, (A - u£)2y>. Then we are given
that:
o =0

kL

whenever k 2 m or £ = n.

However,
o = <(a-2I) (A-AT) Kv, (A=uI) (a=uI) Fuw>
K+1, L+ ATAZIAATAL) Yy (ATHL laTuL) W
= <D v, (a-uD) w> (1)
- (a-AD) Fy,aa-uD) fe

o

“i<a@-AD v, (a-uD) v

since A preserves the inner product
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=(bﬂﬂ<@ﬂ£ﬂ3r(§ﬂyzf

A
—x<(§—xz)‘1,(§-u£)2+ly>

1

< @Dy, A e

= (I=Away o = Aoy g4y T HORL g -

Thus, if pu # %X+, then AL - 1 # 0, and so:

It

o (l-xf)—l[a + Ao + po ] .

k,2 k+1,8+1 k,2+1 k+1,%

We apply this repeatedly, starting with k=m -1, £ =n -1

and then decreasing £ to 0; and then carrying on with

k=m-2, 2 =n-1, ..., 0 etc. We then obtain:
uk,l = 0 ¥ k,2 =20

=> a5 g=0

and so <v,u> = 0

3

Hence VK L Vu.

Q.E.D.

We can thus split up the space into orthogonal pieces:

v, e vzl for [A[#1 (both null)

v, for Ia]=1 .

Lemma 11.2. If |A| # 1, then the action of A on

VA ® Vx-l is completely specified by its action, B, on V,;

and then (B-\AI) is nilpotent, the action on Vx_l being that
of (857! .
Proof: Now VK, Vx-l are null spaces. Thus A's action on

VA ] Vx-l is specified by the actions:




B = Al|v

A
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1

B' =Alvy " .

But A is orthogonal, and so:

= <v,A "v'> for v ¢ V

1 -1

= <v,B' tyrs.

so B8 =81 i.e. B' =8B!, Ssince B = Aly . thus
- - - - T
(B=AI) must, by definition of Vo be nilpotent.
Q.E.D.
The rest of A's action is given by its action on
v, 's for which x| = 1. Suppose IXO] = 1. Then, map A,
an element of the Lie group, to say:
X = (é-XOE)/ (A+A41)
an element of the Lie algebra. Then X 1is nilpotent, and

skew—-symmetric relative to the quadratic form.

Lemma 11.3.

There exists a decomposition into orthogonal

indecomposable Jordan blocks for X.

Proof: Now

ker(Xk
and X(e.
1,37

Define nj

)

:)

X 1is nilpotent, and so = Dbasis e, i s.t.
= <ei’j]1 < k>
= i-1,73 (1 =z 1)
0 (1 =1) .
to be the number of e, 3 for each j: w.l.o.g.
, .

a decreasing sequence.

Since

X

is skew-adjoint with respect to the quadratic form:
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R = - . >
<Xej 58y 07 <@i,5%%, 2

=> < -<e

€i-1,5" x,2° ~ i,3%k-1,2"

=%y ,9%, 07 T T %441,57 %1, 07

We now change basis so that the blocks <e > for each

j are mutually orthogonal. Inductively, we need only show
how to add combinations of ej l's to e 2's so as to make
4 ’
ei,2 L ej,1 ¥i,3 .
1 = '
So, put e';, 5 =e; 5+ jzi (di—j+lej,l) some o, 's .
L. = j . e. .
Then Xe'y , =e,_; 5 * Z( i-g+l j-l,l)
j=<1
= 1
e i-1,2
<el. > = . > . . .
RS U T 5 Al U L 3% RN (<ey,1%,17% 541
We require to find suitable Oy re-ely s.£. this vanishes
: 7. 2
for i = 1,2,...,n2, and k = ni {since the other k's follow
using the skew-adjointness of X). However, the equations:
<e, e >0, . = —-<eg, e. >
jei  dri7Tmy.l i-gHL 1,21

have a triangular form, and therefore have a solution, since

the diagonal terms are all <e ;e > # 0.
1,1 nl,l
= (0 then the matrix <ei

i < > . >
For, if el,l’enl,l ,l,e],l

would look like:




and thus there are [nl72]
another wvector
independent of them all.

nl—dimensional space.

Thus,
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null orthogonal vectors, and

orthogonal to all of these, while being linearly

This is impossible in an
such a basis exists.

Q.E.D.

In the basis, the only non-zero inner products are between

elements with the same j.

indecomposably on one such

Lemma 11.4. In the above

SO0 we can now suppose X acts

biock say offsize n.

situation, the signature of the inner

product can only be:.

0 if n

1 if n is odd

is even

and given this signature, there is a unique conjugacy class in

the unitary group.

Proof: Suppose e, is a basis such that X, = e (1 =2,...,n,
i
and Xe = 0. Since X is skew-adjoint,
1
<ei,ej> = <Xei+1’ej>
= T<eyyyrXey”
T TCi41r8%51
for i <n, 3 >1; and :
<el,ej> = <el’Xej+1> 0 for Jj <n.

Thus the matrix <e; e.> looks like

J




with <gi,§j> =

However,
i
£. = I
i =1
gives
i
X£, = I
j=1
i-1
= I
J=1
= £.
l—

Under this bas

w
1]
N
h
-

(-0 some a's

i+j-n

a change of basis:

is change a, > 8. where:

i
£ >
n
n
a,_.e., r a__.e.>
1-3 3 j=1 n-=3j 3
n
- -k
z (a, _.a__, (= )n
k=n+1-j *+7J B k
i 3 (-1
(a;_sa, (=1)"a. _.)
k=0 i-j 'k j-k
i
- k
z (a, _.a, (=1)"a._.)
j=k+1 LTIk 1=k

73

(i+3j>n)

(i+jsn)
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i-1 i-k ke
= I T (as(=1)Ta,a,_._.)
k=0 j=1 kimy-k
i i-j _ Kk
= ¥ a, [ L aja,_._,(-1)7]
j=1 3 =g <1737k
Using a, = 0, except for ag = 1, a, = a we get:
= NG o .
Bl = loy + (a + (-1) a)oai_r (1 > r)
oy (L <) .
Thus we can reduce the situation to Bi =0 ¥i > 0, by
choosing suitable a's, recursively. For,
a + (-1)F3 ¢ R for r even
tiR for r odd

However, ui/ai_r is real for r even and pure imaginary

for odd r. Thus we can match up, and obtain:

Bi‘= 0 ¥i > 0

We now have inner porduct matrix:

0 0 o)
. . 0
0
(-1 0 0,
where o = (—l)n_la

Hence, there are [%] mutually orthogonal, linearly inde-
pendent null vectors. The dimension of a null space is,
however, at most min(p,q) where p,q ‘are the dimensions

of the positive and negative spaces respectively.
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Thus p,q = [g] while p + g = n. Hence:
(i) 1f n is even, p = g = n/2 (zero signature),
(ii) 4if n is odd, P = %(n+l), g = %(n-1) (signature +1)
or P = %(n-1), g = %(n+l) (signature -1)
Case (i). n even
Here oo = -a, and so o is pure imaginary. Using a map
e, > Aei p
<e e.> - ])\|2<e e.>
il j il ]
i.e. o ~» Iklza, and so w.l.o.g. a =:ii. Conjugation
transforms o = +i into o = -i, and so these cases are
essentially isomorphic.
Case (ii) n odd
Hence o = o, and so o is real. Suitable scaling will
give o = *1. If n =2k + 1, then put:
= L
a; = %2 (ejvey hy)
1 <1< k.
= L -
by = 8/2 (ej=ey4p-y)
= Lk , . :
Then <ai,aj> 2(<el,e2k+2_3> + <ej,e2k+2_i>)
= 0 unless i = 5
and similarly, <bi’bj> = 0 unless i = j, and for all
i,3, <ai,bj? = <bi,aj> = 0. Thus {ai,bi} form an ortho-
gonal set for 1 < 1 < k, all orthogonal to ek+l' with:
= L
@387 = 5(<@y8opinos” T “Cpip-37817)

(—l)i_la
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= =k - )
<bj, by (<@ /8511017 T <Cpp42-57837)
= (=1)"a

— (_1:\K
€41 78> T (Fl)a

giving signature *1 according as (—l)ku is +ve or -ve.

So o 1is determined by the signature.

Existence
Finally, we constructively show the existence of a basis

e with inner product as defined above.

Case (i) n odd
By above, we need only find a . b, (1 <1 < k)

mutually orthogonal, with:
<ai,ai> = (-1

— (_iy L
<bi’bf>‘ (=-1) "o

k

<e, = (=1)"0o

k+1,ek+l>

This is evidently possible, just so long as o, and the

signature of the space correspond.

Case {(ii) n even

Suppose n = 2k. Then ‘¢ 1is pure imaginary, say o = 1i.
Put a, = 1//2 (e, + ie )

i i 2k+1-1i i=1,2,...,k
and bi = 1/‘/2‘(e-i - le2k+l-i)

Then {ai,bi} form an orthogonal basis, and:

]

e,> - <e.

<a, ,ay . >
ayr 2k+1-1"7i 17®2k+1-1

1033 {i/2)[<e

(1/2) (21) (-1)* = (-1)+*L
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and  <b;,by> = (1/2)[<e;,pp 132 ~ <Cok41-17817]
=(i/2) (=2i) (-1)* = (-1)*

Clearly, such ai's, bi's exist so long as the signature

is zero. Hence, we f£ind the ei's by inverting the above

relations giving aj s bi in terms of the e, -

Q.E.D.
So we note the following:
Theorem 11.5
(1) If A is an endomorphism of a complex vector space V,

let V = @(V,) with Vx = $(Vk.j) be a Jordan decomposition

into indecomposable A-modules with (A-AI) nilpotent of

order n(A,j) on VA 3 The eigenvalues A and the n(A,3j)

I

determine the conjugacy class of A in GL(V).

(ii1) If A preserves a non-degenerate Hermitian (indefinite)

form on V, then the above decomposition can be chosen s.t.

A, | for [A] =1

-1
W, =V, @ Vy for IA] #1

are all mutually orthogonal.

Then, the Hermitian form on each V, 3 for |A] =1

14

has signature:

{ ¢ if n(Xx,j) is even

+1 if n(A,3j) 1is odd
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The conjugacy class of A in the (indefinite) unitary group

is determined by the Jordan block data (A's and

n(iA,j)'s) together with the signature (1) £for each VK 5
. 7

where || =1, and n(A,j) is odd. All such data occur,

so long as n(A,j) = n(f_l,j).
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